
Journal of Computational Physics 489 (2023) 112263
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

A method for computing inverse parametric PDE problems

with random-weight neural networks

Suchuan Dong ∗, Yiran Wang

Center for Computational and Applied Mathematics, Department of Mathematics, Purdue University, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 October 2022
Received in revised form 16 April 2023
Accepted 30 May 2023
Available online 5 June 2023

Keywords:
Randomized neural networks
Extreme learning machine
Nonlinear least squares
Variable projection
Inverse problems
Inverse PDE

We present a method for computing the inverse parameters and the solution field
to inverse parametric partial differential equations (PDE) based on randomized neural
networks. This extends the local extreme learning machine technique originally developed
for forward PDEs to inverse problems. We develop three algorithms for training the neural
network to solve the inverse PDE problem. The first algorithm (termed NLLSQ) determines
the inverse parameters and the trainable network parameters all together by the nonlinear
least squares method with perturbations (NLLSQ-perturb). The second algorithm (termed
VarPro-F1) eliminates the inverse parameters from the overall problem by variable
projection to attain a reduced problem about the trainable network parameters only. It
solves the reduced problem first by the NLLSQ-perturb algorithm for the trainable network
parameters, and then computes the inverse parameters by the linear least squares method.
The third algorithm (termed VarPro-F2) eliminates the trainable network parameters from
the overall problem by variable projection to attain a reduced problem about the inverse
parameters only. It solves the reduced problem for the inverse parameters first, and
then computes the trainable network parameters afterwards. VarPro-F1 and VarPro-F2 are
reciprocal to each other in some sense. The presented method produces accurate results
for inverse PDE problems, as shown by the numerical examples herein. For noise-free data,
the errors of the inverse parameters and the solution field decrease exponentially as the
number of collocation points or the number of trainable network parameters increases,
and can reach a level close to the machine accuracy. For noisy data, the accuracy degrades
compared with the case of noise-free data, but the method remains quite accurate. The
presented method has been compared with the physics-informed neural network method.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

In this work we focus on the simultaneous determination of the parameters (as constants or field distributions) and the
solution field to parametric PDEs based on artificial neural networks (ANN/NN), given sparse and noisy measurement data
of certain variables. This type of problems is often referred to as the inverse PDE problems in the literature [31]. Typical
examples include the determination of the diffusion coefficient given certain concentration data or the computation of the
wave speed given sparse measurement of the wave profile. When the parameter values in the PDE are known, approximation
of the PDE solution is often referred to as the forward PDE problem. We will adopt these notations in this paper.

* Corresponding author.

E-mail addresses: sdong@purdue.edu (S. Dong), wang2335@purdue.edu (Y. Wang).

https://doi.org/10.1016/j.jcp.2023.112263
0021-9991/© 2023 Elsevier Inc. All rights reserved.

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Closely related to the inverse PDE problems is the data-driven “discovery” of PDEs [4,7], in which, given certain mea-
surement data, the PDE functional form is to be discerned. Early works in this area include [4,58] based on symbolic
regression and evolutionary algorithms for identifying the hidden physical laws. An alternative approach based on sparse
regression/optimization has been investigated in [7,53,55,52], in which a library of candidate functions and their deriva-
tives is constructed first and then key terms are selected from this library to express the dynamics by sparsity promotion
techniques (L1 regularization). The work [69] employs dimensional analysis and sparse Bayesian regression to determine
the candidate terms and to approximate their weights in the underlying equations. In [2] the measurement data is first
approximated by a neural network in order to attain the derivative data of the measured variables, and then another neural
network (with L1 regularization) is used to approximate the functional form of the underlying equation. A symbolic neural
network has been employed to represent the PDE form in [35], thus replacing the library of candidate functions, and the
derivatives of the measurement data are computed by convolutions. In [64] the discrete evolution operator, rather than the
functional form, for the PDE is learned with deep neural networks. In another recent development [5] the state variables are
represented by a neural network, whose output is used to construct the set of candidate functions, and sparse regression is
encoded into the loss function of the neural network.

As advocated in [60,31], data-driven scientific machine learning problems can be viewed in terms of the amount of data
that is available and the amount of physics that is known. They are broadly classified into three categories in [31]: (i) those
with “lots of physics and small data” (e.g. forward PDE problems), (ii) those with “some physics and some data” (e.g. inverse
PDE problems), and (iii) those with “no physics and big data” (e.g. general PDE discovery). The authors of [31] point out
that those in the second category are typically the more interesting and representative in real applications, where the
physics is partially known and sparse measurements are available. One illustrating example is from multiphase flows, where
the conservation laws (mass/momentum conservations) and thermodynamic principles (second law of thermodynamics,
Galilean invariance) lead to a thermodynamically-consistent phase field model, but with an incomplete system of governing
equations [15,14]. One has the freedom to choose the form of the free energy, the wall energy, the form and coefficients
of the constitutive relation, and the form and coefficient of the interfacial mobility [12,13,67]. Different choices will lead to
different specific models, which are all thermodynamically consistent. The different models cannot be distinguished by the
thermodynamic principles, but can be differentiated with experimental measurements.

The development of machine learning techniques for solving inverse PDE problems has attracted a great deal of interest
recently, with a variety of contributions from different researchers. In [49] a method for estimating the parameters in non-
linear PDEs is developed based on Gaussian processes. The physics informed neural network (PINN) method is introduced in
the influential work [50] for solving forward and inverse nonlinear PDEs. The residuals for the PDE, the boundary/initial con-
ditions, and the measurement data are encoded into the loss function as soft constraints, and the neural network is trained
by gradient descent (or back propagation) type algorithms. The PINN idea has significantly influenced subsequent devel-
opments and stimulated applications in many related areas (see e.g. [37,39,56,36,65,47], among others). A hybrid method
combining finite element and neural networks is developed in [1]. The finite element method (FEM) is used to solve the
underlying PDE, which is augmented by a neural network to represent the PDE coefficient [1]. A conservative PINN method
is proposed in [29] together with domain decomposition for simulating nonlinear conservation laws, in which the flux con-
tinuity is enforced along the sub-domain interfaces, and interesting results are presented for several forward and inverse
problems. This method is further developed and extended subsequently with domain decompositions in both space and
time [28]; see a recent study of this extended technique for supersonic flows [30]. Interesting applications are described
in [51,9], where PINN is employed to infer the 3D velocity and pressure fields based on scattered flow visualization data
or Schlieren images from experiments. In [20] a distributed PINN technique based on domain decomposition is presented,
in which for nonlinear PDEs a related linearized equation is solved with certain variables fixed at their initial values. An
auxiliary PINN technique is developed in [68] for solving nonlinear integro-differential equations, in which auxiliary vari-
ables are introduced to represent the anti-derivatives and thus avoiding the integral computation. We would also like to
mention [11,60,38,34] (among others) for inverse applications of neural networks in other related fields. It is noted that in
the above works the full set of NN parameters (from the hidden layers and the output layer) are trainable.

In the current work we consider the use of randomized neural networks, also known as extreme learning machines
(ELM) [25] (or random vector functional link (RVFL) networks [46]), for solving inverse PDE problems. ELM was originally
developed for linear classification and regression problems. It is characterized by two ideas: (i) randomly assigned but fixed
(non-trainable) hidden-layer coefficients, and (ii) trainable linear output-layer coefficients determined by linear least squares
or by using the Moore-Penrose inverse [25]. This technique has been extended to scientific computing in the past few years,
for function approximations and for solving ordinary and partial differential equations (ODE/PDE); see e.g. [66,45,21,16,17,
10,22,57,19,43], among others. The random-weight neural networks are universal function approximators. As established by
the theoretical results of [27,26,40], a single-hidden-layer feed-forward neural network (FNN) having random but fixed (not
trained) hidden units can approximate any continuous function to any desired degree of accuracy, provided that the number
of hidden units is sufficiently large.

In this paper we present a method for computing inverse PDE problems based on randomized neural networks. This
extends the local extreme learning machine (locELM) technique originally developed in [16] for forward PDEs to inverse
problems. Because of the coupling between the unknown PDE parameters (referred to as the inverse parameters hereafter)
and the solution field, the inverse PDE problem is fully nonlinear with respect to the unknowns, even though the associ-

ated forward PDE may be linear. We partition the overall domain into sub-domains, and represent the solution field (and

2

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
the inverse parameters, if they are field distributions) by a local FNN on each sub-domain, imposing Ck (with appropriate
k) continuity conditions across the sub-domain boundaries. The weights/biases in the hidden layers of the local NNs are
assigned to random values and fixed (not trainable), and only the output-layer coefficients are trainable. The inverse PDE
problem is thus reduced to a nonlinear problem about the inverse parameters and the output-layer coefficients of the solu-
tion field, or if the inverse parameters are field distributions, about the output-layer coefficients for the inverse parameters
and the solution field.

We develop three algorithms for training the neural network to solve the inverse PDE problem:

• The first algorithm (termed NLLSQ) computes the inverse parameters and the trainable parameters of the local NNs all
together by the nonlinear least squares method [3]. This extends the nonlinear least squares method with perturbations
(NLLSQ-perturb) from [16] (developed for forward nonlinear PDEs) to inverse PDE problems.

• The second algorithm (termed VarPro-F1) eliminates the inverse parameters from the overall problem based on the
variable projection (VarPro) strategy [23,24] to attain a reduced problem about the trainable network parameters only.
It solves the reduced problem first for the trainable parameters of the local NNs by the NLLSQ-perturb algorithm, and
then computes the inverse parameters by the linear least squares method.

• The third algorithm (termed VarPro-F2) eliminates the trainable network parameters from the overall inverse problem
by variable projection to arrive at a reduced problem about the inverse parameters only. It solves the reduced problem
first for the inverse parameters by the NLLSQ-perturb algorithm, and then computes the trainable parameters of the
local NNs based on the inverse parameters already obtained. The VarPro-F2 and VarPro-F1 algorithms both employ the
variable projection idea and are reciprocal formulations in a sense. For inverse problems with an associated forward
nonlinear PDE, VarPro-F2 needs to be combined with a Newton iteration.

The presented method produces accurate solutions to inverse PDE problems, as shown by a number of numerical exam-
ples presented herein. For noise-free data, the errors for the inverse parameters and the solution field decrease exponentially
as the number of training collocation points or the number of trainable parameters in the neural network increases. These
errors can reach a level close to the machine accuracy when the simulation parameters become large. For noisy data, the
current method remains quite accurate, although the accuracy degrades compared with the case of noise-free data. We
observe that, by scaling the measurement-residual vector by a factor, one can markedly improve the accuracy of the cur-
rent method for noisy data, while only slightly degrading the accuracy for noise-free data. We have compared the current
method with the PINN method (see Appendix E). The current method exhibits an advantage in terms of the accuracy and
the computational cost (network training time).

Both the second and the third algorithms developed herein are based on the idea of variable projection (VarPro) [23,24],
as mentioned earlier. VarPro is a classical strategy for solving separable nonlinear least squares problems [23,32,24,44]. These
are problems in which the unknown parameters can be separated into two sets, the linear parameters and the nonlinear
parameters. VarPro treats the linear parameters as dependent on the nonlinear parameters, and then seeks to eliminate the
linear parameters from the problem to arrive at a reduced problem about the nonlinear parameters only. The nonlinear
parameters are determined first by solving the reduced problem, and the linear parameters are computed afterwards. The
benefits of variable projection include the reduced dimension of parameter space, better conditioning, and faster conver-
gence with the reduced problem [54,59,24]. The VarPro approach for training neural networks has been investigated in
e.g. [61,63,62,59,48,33,42,41,18] (among others). The projection learning method [61,63,62] seems to be the earliest work
on neural-network training in the spirit of variable projection. The improved conditioning in the problem and faster con-
vergence with VarPro for neural network fitting is shown in [59]. In [48,33] two-layered neural networks are trained by
VarPro together with the Levenberg-Marquardt method. In more recent works [42,41], VarPro has been extended to handle
non-quadratic objective functions (e.g. the cross-entropy function for classification problems) and a stochastic optimiza-
tion method (slimTrain) based on VarPro has been developed. In [18] the VarPro strategy has been adapted to numerically
solving linear and nonlinear (forward) PDEs by a physics informed neural network-like approach, leading to spectral-like
accuracy in the computation results.

The method and algorithms developed herein are implemented in Python based on the Tensorflow,1 Keras,2 and the
scipy3 libraries. The numerical simulations are performed on a MAC computer (3.2GHz Intel Core i5 CPU, 24GB memory) in
the authors’ institution.

The main contribution of this paper lies in the local extreme learning machine based technique together with the three
algorithms for solving inverse PDE problems. The exponential convergence behavior exhibited by the current method for
inverse problems is particularly interesting, and can be analogized to the observations in [16] for forward PDEs. For inverse
problems such fast convergence seems not available in the existing techniques (e.g. PINN based methods).

The rest of this paper is structured as follows. In Section 2 we first discuss the representation of functions by local ran-
domized neural networks and domain decomposition, and then present the NLLSQ, VarPro-F1 and VarPro-F2 algorithms for

1 https://www.tensorflow.org/.
2 https://keras .io/.

3 https://scipy.org/.

3

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Fig. 1. Cartoon illustrating domain decomposition and local random-weight neural networks.

training the neural network to solve the inverse PDE. Section 3 uses a number of inverse parametric PDEs to demonstrate
the exponential convergence and the accuracy of our method, as well as the effects of the noise and the number of mea-
surement points. Section 4 concludes the discussion with some closing remarks. Appendix A summarizes the NLLSQ-perturb
algorithm from [16] (with modifications), which forms the basis for the three algorithms in the current paper for solving in-
verse PDEs. Appendix B provides the matrices in the NLLSQ and VarPro-F2 algorithms. Appendix C and Appendix D provide
additional numerical tests of the current method with the inverse parametric advection equation and Sine-Gordon equation,
respectively. Appendix E compares the current method with PINN for several inverse problems from Section 3. Appendix F
lists the parameter values in the NLLSQ-perturb algorithm for all the numerical simulations presented in this paper.

2. Algorithms for inverse PDEs with randomized neural networks

2.1. Inverse parametric PDEs and local randomized neural networks

We focus on the inverse problem described by the following parametric PDE, boundary conditions, and measurement
operations on some domain � ⊂Rd (d = 1, 2, 3):

α1L1(u) + α2L2(u) + · · · + αnLn(u) +F(u) = f (x), x ∈ �, (1a)

Bu(x) = g(x), x ∈ ∂�, (1b)

Mu(ξ) = S(ξ), ξ ∈ �s ⊂ �. (1c)

In this system, Li (1 � i � n) and F are differential or algebraic operators, which can be linear or nonlinear, and f and g are
prescribed source terms. u(x) is an unknown scalar field, where x denotes the coordinates. αi (1 � i � n) are n unknown
constants. The case with any αi being an unknown field distribution will be dealt with later in a remark (Remark 2.7).
We assume that the highest derivative term in (1a) is linear with respect to u, while the nonlinear terms with respect
to u involve only lower derivatives (if any). B is a linear differential or algebraic operator, and Bu denotes the boundary
condition(s) on the domain boundary ∂�. M is a linear algebraic or differential operator representing the measurement
operations. Mu(ξ) denotes the measurement of Mu at the point ξ , and S(ξ) denotes the measurement data. �s denotes
the set of measurement points. Given S(ξ), the goal here is to determine the parameters αi (1 � i � n) and the solution field
u(x). Hereafter we will refer to the parameters α = (α1, . . . , αn)T as the inverse parameters. Suppose the inverse parameters
are given. The boundary value problem consisting of the equations (1a)–(1b) will be referred to as the associated forward
PDE problem, with u(x) as the unknown. We assume that the formulation is such that the forward PDE problem is well-
posed.

Remark 2.1. We assume that the operators Li (1 � i � n) or F may contain time derivatives (e.g. ∂
∂t , ∂2

∂t2 , where t denotes
time), thus leading to an initial-boundary value problem on a spatial-temporal domain �. In this case, we treat t in the
same way as the spatial coordinate x, and use the last dimension in x = (x1, x2, . . . , xd) to denote t (i.e. xd ≡ t). Accordingly,
we assume that the equation (1b) should include conditions on the appropriate initial boundaries from ∂�. The point here is
that the system (1) may refer to time-dependent problems, and we will not distinguish this case in subsequent discussions.

We devise numerical algorithms to compute a least squares solution to the system (1) based on local randomized neural
networks (or ELM). We decompose the domain � into sub-domains, and represent u(x) on each sub-domain by a local ELM
in a way analogous to in [16]. Let � = �1 ∪ �2 ∪ · · · ∪ �N , where �i (1 � i � N) denote N non-overlapping sub-domains
(see Fig. 1 for an illustration). Let

u(x) =

⎧⎪⎪⎨
⎪⎪

u1(x), x ∈ �1,

u2(x), x ∈ �2,

. . .
(2)
⎩ uN(x), x ∈ �N ,

4

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
where ui(x) (1 � i � N) denotes the solution field restricted to the sub-domain �i . On the interior sub-domain boundaries
shared by adjacent sub-domains we impose Ck continuity conditions on u(x), where k = (k1, . . . , kd) denotes a set of
appropriate non-negative integers related to the order of the PDE (1a). If the PDE order (highest derivative) is mi along the
xi (1 � i � d) direction, we would in general impose Cmi−1 (i.e. ki = mi − 1) continuity conditions in this direction on the
shared sub-domain boundaries.

On �i (1 � i � N) we employ a local FNN, whose hidden-layer coefficients are randomly assigned and fixed, to represent
ui(x). More specifically, the local neural network is set as follows. The input layer consists of d nodes, representing the input
coordinate x = (x1, x2, . . . , xd) ∈ �i . The output layer consists of a single node, representing ui(x). The network contains
(L − 1) (with integer L � 2) hidden layers in between. Let σ : R → R denote the activation function for all the hidden
nodes. Hereafter we use the following vector (or list) M of (L + 1) positive integers to represent the architecture of the local
NN,

M = [
m0,m1, . . . ,mL−1,mL

]
, (architectural vector) (3)

where m0 = d and mL = 1 denote the number of nodes in the input/output layers respectively, and mi is the number of
nodes in the i-th hidden layer (1 � i � L − 1). We refer to M as an architectural vector.

We make the following assumptions:

• The output layer should contain (i) no bias, and (ii) no activation function (or equivalently, the activation function be
σ(x) = x).

• The weights/biases in all the hidden layers are pre-set to uniform random values on [−Rm, Rm], where Rm > 0 is a
user-provided constant. The hidden-layer coefficients are fixed once they are set.

• The output-layer weights constitute the trainable parameters of the local neural network.

We employ the same architecture, same activation function, and the same Rm for the local neural networks on different
sub-domains.

In light of these settings, the logic in the output layer of the local NNs leads to the following relation on the sub-domain
�i (1 � i � N),

ui(x) =
M∑

j=1

βi jφi j(x) = �i(x)β i, (4)

where M = mL−1 denotes the width of the last hidden layer of the local NN, φi j(x) (1 � j � M) denote the set of output
fields of the last hidden layer on �i , βi j (1 � j � M) denote the set of output-layer coefficients (trainable parameters) on �i ,
and �i = (φi1, φi2, . . . , φiM) and β i = (βi1, βi2, . . . , βiM)T . Note that, once the random hidden-layer coefficients are assigned,
�i(x) in (4) denotes a set of random (but fixed and known) nonlinear basis functions. Therefore, with local ELMs the output
field on each sub-domain is represented by an expansion of a set of random basis functions as given by (4).

With domain decomposition and local ELMs, the system (1) is symbolically transformed into the following form, which
includes the continuity conditions across shared sub-domain boundaries:

α1L1(ui) + α2L2(ui) + · · · + αnLn(ui) +F(ui) = f (x), x ∈ �i, 1 � i � N; (5a)

Bui(x) = g(x), x ∈ ∂� ∩ �i, 1 � i � N; (5b)

Mui(ξ) = S(ξ), ξ ∈ �s ∩ �i, 1 � i � N; (5c)

Cui(x) − Cu j(x) = 0, x ∈ ∂�i ∩ ∂� j, for all adjacent sub-domains (�i,� j), 1 � i, j � N. (5d)

In this system ui(x) is given by (4), and the operator Cu denotes the set of Ck continuity conditions imposed across the
shared sub-domain boundaries on u or its derivatives. Define the residual of this system as,

R(α,β,x, ξ) =

⎡
⎢⎢⎢⎣

α1L1(ui) + α2L2(ui) + · · · + αnLn(ui) +F(ui) − f (x), x ∈ �i, 1 � i � N

Bui(x) − g(x), x ∈ ∂� ∩ �i, 1 � i � N

Mui(ξ) − S(ξ), ξ ∈ �s ∩ �i, 1 � i � N

Cui(x) − Cu j(x), x ∈ ∂�i ∩ ∂� j, for all adjacent (�i,� j), 1 � i, j � N

⎤
⎥⎥⎥⎦ , (6)

where β is the vector of all trainable parameters, β = (βT
1 , . . . , βT

N)T = (β11, β12, . . . , β1M , β21, . . . , βN M)T .
The system (5) is what we would solve numerically by least squares for the inverse parameters α and the trainable

network parameters β . After (α, β) are determined, the field solution u(x) is computed by (2) and (4). In what follows we
present three algorithms, one based on the nonlinear least squares method with perturbations and the other two based on

the variable projection idea, for determining the α and β .

5

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Fig. 2. Sub-domains and collocation/measurement points: (a) Sketch of adjacent sub-domains. (b) Sketch of uniform grid points as collocation points (5 × 5
here) on two adjacent sub-domains. (c) Sketch of 20 random measurement points (shown as “+” symbols) in each sub-domain on two adjacent sub-domains.

2.2. Nonlinear least squares (NLLSQ) method for network training

We first outline a basic algorithm for computing (α, β) by the nonlinear least squares (NLLSQ) method with perturba-
tions [16]. It forms the basis for the variable projection algorithms presented in the next subsection.

For the simplicity of presentation we focus on rectangular domains, i.e. � = [a1, b1] × [a2, b2] × · · · × [ad, bd], where ai
and bi (1 � i � d) denote the lower/upper bounds of � in the xi direction, and assume that � is partitioned into Ni (Ni � 1)
sub-domains along xi (1 � i � d).

To make the discussion more concrete, we specifically consider a second-order PDE in two dimensions (d = 2, x =
(x1, x2) = (x, y)) as an example in this and the next subsections. In the following discussions we assume that equation (1a)
is of second order with respect to both x and y, and we impose C1 continuity conditions across the sub-domain boundaries
in both x and y directions.

Let the vectors X = (X0, X1, . . . , XN1) and Y = (Y0, Y1, . . . , Y N2) denote the sub-domain boundary points along the two
directions, respectively, where (X0, XN1) = (a1, b1) and (Y0, Y N2) = (a2, b2). The total number of sub-domains is N = N1N2.
We assume that the sub-domain �e (1 � e � N) is characterized by the partition indices (i, j) along the x and y directions
(see Fig. 2(a)), with the following relation,

�e = �e(i, j) = [Xi−1, Xi] × [Y j−1, Y j], e = e(i, j) = (i − 1)N2 + j, for 1 � (i, j)� (N1, N2), (7)

where “1 � (i, j) � (N1, N2)” or “(1, 1) � (i, j) � (N1, N2)” stands for 1 � i � N1 and 1 � j � N2. We will use this and
similar notations hereafter for conciseness.

With these settings the boundary conditions in (5b) are reduced to,

Bue(1, j)(a1, y) = g(a1, y), Bue(N1, j)(b1, y) = g(b1, y), for 1 � j � N2; (8a)

Bue(i,1)(x,a2) = g(x,a2), Bue(i,N2)(x,b2) = g(x,b2), for 1 � i � N1. (8b)

Here ue(i, j) denotes u on �e(i, j) , and e(i, j) is given by (7). The C1 continuity conditions in (5d) reduce to,

ue(i, j)(Xi, y) − ue(i+1, j)(Xi, y) = 0, for 1 � (i, j) � (N1 − 1, N2); (9a)

∂ue(i, j)

∂x

∣∣∣∣
(Xi ,y)

− ∂ue(i+1, j)

∂x

∣∣∣∣
(Xi ,y)

= 0, for 1 � (i, j)� (N1 − 1, N2); (9b)

ue(i, j)(x, Y j) − ue(i, j+1)(x, Y j) = 0, for 1 � (i, j)� (N1, N2 − 1); (9c)

∂ue(i, j)

∂ y

∣∣∣∣
(x,Y j)

− ∂ue(i, j+1)

∂ y

∣∣∣∣
(x,Y j)

= 0, for 1 � (i, j)� (N1, N2 − 1). (9d)

The equations (9a) and (9c) are the C0 conditions on the horizontal/vertical sub-domain boundaries, and the equations (9b)
and (9d) are the corresponding C1 conditions.

The system to solve now consists of equations (5a), (8), (5c), and (9). This is a continuous system. We next enforce this
system on a set of collocation points and measurement points to arrive at a discrete system about the parameters α and β .

We choose a set of Q (Q � 1) collocation points on each sub-domain �e (1 � e � N), denoted by xe
p = (xe

p, ye
p) (1 �

p � Q), among which Q b (1 � Q b < Q) points reside on ∂�e . Let Xe denote the set of collocation points on �e , and
Xb

e = Xe ∩ ∂�e denote the set of collocation points residing on the sub-domain boundaries. The boundary collocation
points on adjacent sub-domains are required to be compatible. That is, for any two adjacent sub-domains (�e1 , �e2), those
boundary collocation points from �e1 that reside on the shared boundary ∂�e1 ∩ ∂�e2 are required to be identical to those

boundary collocation points from �e2 that reside on the same boundary.

6

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
The collocation points can in principle be chosen based on various distributions (e.g. random, uniform). In this paper we
focus on using uniform grid points as the collocation points; see Fig. 2(b) for an illustration with a 5 ×5 uniform grid points
as the collocation points on two neighboring sub-domains. Let Q 1 and Q 2 denote the number of uniform grid points along
x and y, with Q = Q 1 Q 2. The uniform collocation points on the sub-domain �e = �e(m,l) (1 � (m, l) � (N1, N2)) are given
by ⎧⎪⎪⎨

⎪⎪⎩

xe
p = xe(m,l)

p(i, j) =
(

xe(m,l)
p(i, j) , ye(m,l)

p(i, j)

)
, xe(m,l)

p(i, j) = Xm−1 + (i − 1)(Xm − Xm−1)/(Q 1 − 1),

ye(m,l)
p(i, j) = Yl−1 + (j − 1)(Yl − Yl−1)/(Q 2 − 1), for 1 � (m, l, i, j)� (N1, N2, Q 1, Q 2);

p = p(i, j) = (i − 1)Q 2 + j, for 1 � (p, i, j)� (Q , Q 1, Q 2).

(10)

We assume that the measurement data is given on a set of Q s (Q s � 1) random measurement points (with a uniform
distribution) on each �e (1 � e � N), denoted by ξ e

p = (ξ e
p, ηe

p) (1 � p � Q s). Fig. 2(c) shows an example of Q s = 20 random
measurement points in each sub-domain on two adjacent sub-domains. We use Ye to denote the set of measurement points
on �e (1 � e � N).

Once the hidden-layer coefficients of local NNs are randomly assigned and the collocation and measurement points are
chosen, we compute the last hidden-layer field data �e(xe

p) and their derivatives (up to a certain order), and the data for
M�e(ξ

e
p), by forward evaluations of the neural network and by automatic differentiations. We then store these data for

subsequent use. In light of (4), for any given β = (βT
1 , . . . , βT

N)T , we have

ue(xe
p) = �e(xe

p)βe, Due(xe
p) = D�e(xe

p)βe, Mue(ξ
e
q) = M�e(ξ

e
q)βe, 1 � (e, p,q)� (N, Q , Q s), (11)

where D is a linear differential operator and M is the measurement operator.

Remark 2.2. To compute �e(xe
p), D�e(xe

p) and M�e(ξ
e
p), in the implementation we create a Keras sub-model, referred to

as the last-hidden-layer-model, to the local NN for each sub-domain. The input nodes to this sub-model are identical to
those of the original local NN, and the output nodes of this sub-model consist of those nodes in the last hidden layer of the
original local NN. We compute �e(xe

p) (1 � p � Q) and �e(ξ
e
p) (1 � p � Q s) by a forward evaluation of the last-hidden-

layer-model for �e on the input data (collocation points, or measurement points). We compute the derivatives of �e on xe
p

or on ξ e
p by a forward-mode auto-differentiation of the last-hidden-layer-model, implemented by the “ForwardAccumulator”

in the Tensorflow library. The forward-mode auto-differentiation is crucial to the performance of the ELM method (see [19]).

To derive the discrete system we enforce (5a) on all the collocation points in Xe (1 � e � N), enforce (8) on all the
boundary collocation points in Xb

e ∩ ∂� for 1 � e � N , enforce (5c) on all the measurement points in Ye (1 � e � N), and
enforce (9) on those collocation points from Xb

e (1 � e � N) that reside on the shared boundaries of adjacent sub-domains.
The discrete system corresponding to (5a) enforced on the collocation points is,

α1L1
(
ue(xe

p)
) + · · · + αnLn

(
ue(xe

p)
) +F

(
ue(xe

p)
) − f

(
xe

p

) = 0, for xe
p ∈Xe, 1 � (e, p) � (N, Q). (12)

The discrete system corresponding to (8) on the boundary collocation points is given by,

Bue(1,l)(a1, ye(1,l)
p(1, j)) − g(a1, ye(1,l)

p(1, j)) = 0, for 1 � (l, j)� (N2, Q 2); (13a)

Bue(N1,l)(b1, ye(N1,l)
p(Q 1, j)) − g(b1, ye(N1,l)

p(Q 1, j)) = 0, for 1 � (l, j)� (N2, Q 2); (13b)

Bue(m,1)(xe(m,1)
p(i,1)

,a2) − g(xe(m,1)
p(i,1)

,a2) = 0, for 1 � (m, i) � (N1, Q 1); (13c)

Bue(m,N2)(xe(m,N2)
p(i,Q 2)

,b2) − g(xe(m,N2)
p(i,Q 2)

,b2) = 0, for 1 � (m, i) � (N1, Q 1). (13d)

Here the functions e(·, ·) and p(·, ·) are defined in (7) and (10), respectively. The discrete system corresponding to (5c)
enforced on the measurement points is given by

Mue(ξ
e
p) − S(ξ e

p) = 0, for ξ e
p ∈ Ye, 1 � (e, p) � (N, Q s). (14)

The discrete system corresponding to (9) enforced on the interior sub-domain boundary points is,

ue(m,l)(Xm, ye(m,l)
p(Q 1, j)) − ue(m+1,l)(Xm, ye(m+1,l)

p(1, j)) = 0, for 1 � (m, l, j)� (N1 − 1, N2, Q 2); (15a)

∂ue(m,l)

∂x

∣∣∣∣
(Xm,ye(m,l)

p(Q 1, j))

− ∂ue(m+1,l)

∂x

∣∣∣∣
(Xm,ye(m+1,l)

p(1, j))

= 0, for 1 � (m, l, j)� (N1 − 1, N2, Q 2); (15b)

ue(m,l)(xe(m,l)
p(i,Q 2)

, Yl) − ue(m,l+1)(xe(m,l+1)
p(i,1)

, Yl) = 0, for 1 � (m, l, i) � (N1, N2 − 1, Q 1); (15c)

∂ue(m,l)

∂ y

∣∣∣∣ e(m,l)
− ∂ue(m,l+1)

∂ y

∣∣∣∣ e(m,l+1)
= 0, for 1 � (m, l, i) � (N1, N2 − 1, Q 1). (15d)
(xp(i,Q 2)
,Yl) (xp(i,1)

,Yl)

7

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Algorithm 1: Computing the residual R(α, β) for NLLSQ algorithm.

input : vector θ = (α, β); �e(xe
p) and derivatives (1 � (e, p) � (N, Q)); M�e(ξ

e
p) (1 � (e, p) � (N, Q s)).

output : residual vector R(θ)

1 if θ = θ s then
2 retrieve ue(xe

p) (1 � (e, p) � (N, Q)) and their derivatives, and Mue(ξ
e
p) (1 � (e, p) � (N, Q s))

3 else
4 compute ue(xe

p) (1 � (e, p) � (N, Q)), their derivatives (up to a necessary order), and Mue(ξ
e
p) (1 � (e, p) � (N, Q s)) by (11)

5 set θ s = θ , and save ue(xe
p) (1 � (e, p) � (N, Q)), their derivatives, and Mue(ξ

e
p) (1 � (e, p) � (N, Q s))

6 end

7 compute Rpde(θ), Rbc(θ), Rmea(θ), Rck(θ) by the LHSs of (12)–(15d), as given in (56) of Appendix B
8 form R(θ) according to (17)

In the above equations xe
p , xe(m,l)

p(i, j) and ye(m,l)
p(i, j) are defined in (10), and ue(x) is given by (4) and (11).

The equations (12)–(15d) form the system we would solve to determine the inverse parameters α = (α1, . . . , αn)T and
the trainable network parameters β = (β11, . . . , βN M)T . This is a system of nonlinear algebraic equations about (α, β). Note
that the functions �e(x) (1 � e � N) and their derivatives evaluated on the collocation/measurement points, which are
involved in the operators such as Li(ue), F(ue), Bue , Mue , and Cue , are computed by evaluations of the neural network
and auto-differentiations (see Remark 2.2). This system consists of Nc equations and a total of Na unknowns, where

Nc = N(Q + Q s + 2Q 1 + 2Q 2), Na = NL + n = N M + n, (16)

and NL = N M is the total number of trainable parameters in the neural network.
We seek a least squares solution to this system, and solve this system for (α, β) by the nonlinear least squares (NLLSQ)

method [3,16]. In our implementation we take advantage of the quality implementations of the nonlinear least squares
method in the scientific libraries, specifically the “least_squares()” routine from the scipy.optimize package in Python for the
current work. This library routine implements the Gauss-Newton method [3] together with a trust region algorithm [6,8].

Since the nonlinear least squares method is a local optimization algorithm, it can be trapped to a local-minimum solution
that is unacceptable. It is therefore crucial to combine the nonlinear least squares method with some perturbation strategy
when solving the nonlinear least squares problem, in order to prevent the method from being trapped to the worst local-
minimum solutions. In this paper we adopt the strategy for the initial guess perturbation and sub-iteration procedure
developed in [16], with some modifications, and combine it with the nonlinear least squares method for solving the current
system arising from the inverse PDE problem. We refer to the combined algorithm as the nonlinear least squares method
with perturbations (NLLSQ-perturb). The NLLSQ-perturb algorithm is listed in the Appendix A of this paper (as Algorithm 7),
which contains explanations of the various input parameters to the algorithm.

The NLLSQ-perturb algorithm (Algorithm 7) requires two routines, one for computing the residual vector and the other
for computing the Jacobian matrix for an arbitrary given approximation to the solution. When the system (5) is enforced on
the collocation points, the residual function in (6) is reduced to the vector,

R(α,β) =

⎡
⎢⎢⎣

Rpde(α,β)

Rbc(β)

Rmea(β)

Rck(β)

⎤
⎥⎥⎦

Nc×1

. (17)

The vectors Rpde, Rbc, Rmea and Rck in this expression are related to the left hand side (LHS) of the equations (12)–(15d)
and their specific forms are provided in the equation (56) of Appendix B.

We therefore compute the residual vector R(α, β) as follows. Given arbitrary (α, β), we compute ue(xe
p) (xe

p ∈ Xe) for
1 � e � N , and their derivatives by (11). Then we compute the LHSs of the equations (12), (13a)–(13d), (14), and (15a)–(15d),
and assemble them to form the vectors Rpde, Rbc, Rmea and Rck according to equation (56) of Appendix B. The residual vector
R(α, β) is finally assembled according to (17). The procedure for computing R(α, β) is summarized in Algorithm 1.

Remark 2.3. On line 4 of Algorithm 1, the “necessary order” refers to the order of all the derivative terms of ue involved in
the system consisting of (12)–(15d). For example, if ∂2ue

∂ y2 and ∂ue
∂x are involved in this system, one would need to compute

2

these derivatives based on ∂ �e

∂ y2 and ∂�e
∂x on line 4 of this algorithm.

8

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Algorithm 2: Computing the Jacobian matrix ∂R
∂(α,β)

for NLLSQ algorithm.

input : vector θ = (α, β); �e(xe
p) and derivatives (1 � (e, p) � (N, Q)); M�e(ξ

e
p) (1 � (e, p) � (N, Q s)).

output : Jacobian matrix ∂R
∂θ

1 if θ = θ s then
2 retrieve ue(xe

p) (1 � (e, p) � (N, Q)) and their derivatives, and Mue(ξ
e
p) (1 � (e, p) � (N, Q s))

3 else
4 compute ue(xe

p) (1 � (e, p) � (N, Q)), their derivatives (up to a necessary order), and Mue(ξ
e
p) (1 � (e, p) � (N, Q s)) by (11)

5 set θ s = θ , and save ue(xe
p) (1 � (e, p) � (N, Q)), their derivatives, and Mue(ξ

e
p) (1 � (e, p) � (N, Q s))

6 end

7 compute ∂Rpde

∂α , ∂Rpde

∂β , ∂Rbc

∂β , ∂Rmea

∂β , ∂Rck

∂β by equations (57)–(61) of Appendix B

8 form ∂R
∂θ = ∂R

∂(α,β)
by (18)

The Jacobian matrix is given by

∂R

∂(α,β)
=

[
∂R
∂α

∂R
∂β

]
=

⎡
⎢⎢⎢⎢⎢⎣

∂Rpde

∂α
∂Rpde

∂β

0 ∂Rbc

∂β

0 ∂Rmea

∂β

0 ∂Rck

∂β

⎤
⎥⎥⎥⎥⎥⎦

Nc×NL

. (18)

The specific forms for the matrices ∂Rpde

∂α , ∂Rpde

∂β , ∂Rbc

∂β , ∂Rmea

∂β and ∂Rck

∂β involved in the above expression are specified in the
equations (57)–(61) of Appendix B.

Therefore the Jacobian matrix can be computed as follows. Given arbitrary (α, β), we compute ue(xe
p) (1 � (e, p) �

(N, Q)), their derivatives, and Mue(ξ
e
p) (1 � (e, p) � (N, Q s)) based on β and the pre-computed �e(xe

p), their deriva-
tives, and the M�e(ξ

e
p) data. Then we compute the Jacobian and related matrices by the equations (18) and (57)–(61).

Algorithm 2 summarizes the routine for computing the Jacobian matrix.

Remark 2.4. In Algorithms 1 and 2 we have stored the data for u, its derivatives, and Mu on the collocation/measurement
points corresponding to the θ = (α, β) value last computed (denoted by θ s); see lines 1 to 6 in both algorithms. This saves
computations, because in the nonlinear least squares iterations Algorithm 1 is typically invoked first to compute the residual
corresponding to some (α, β), and then Algorithm 2 is invoked to compute the Jacobian for the same (α, β). Again please
note that θ s in these two algorithms is used to save the last θ = (α, β) value for which the data have been computed. θ s
should be initialized to “None” at the beginning of the computation.

Remark 2.5. In this work the hidden-layer coefficients are assigned to uniform random values generated on the interval
[−Rm, Rm], where Rm > 0 is a constant. The Rm value influences the accuracy of the simulation results of inverse PDE
problems, similar to what has been observed in forward problems (see [16,19]). In this paper we compute a near-optimal
Rm using the method from [19] based on the differential evolution algorithm, and employ this value (or a value nearby) in
numerical simulations of inverse PDEs.

Remark 2.6. For noisy measurement data S(ξ), we observe that scaling the residual vector associated with the measurement
(Rmea) by a constant factor can improve the accuracy of the results (more robust to noise). Let λmea > 0 denote a prescribed
constant. We scale the equation (14) by λmea ,

λmeaMue(ξ
e
p) − λmea S(ξ e

p) = 0, for ξ e
p ∈ Ye, 1 � (e, p)� (N, Q s). (19)

Then in the presented method we replace equation (14) by the scaled equation (19), with corresponding changes to the
computation of the residual vector and the Jacobian matrix. The scaling factor λmea will cause some change to the least
squares solution to (α, β). When the data S(ξ) is noisy, numerical experiments indicate that employing a constant 0 <
λmea < 1 can in general improve the accuracy of the computed α and u(x) markedly, compared with the case without
scaling (i.e. λmea = 1). Note that employing the scaled equation (19) is equivalent to using a scaled term 1

2 λ2
mea‖Rmea‖2 in

the underlying loss function for the nonlinear least squares method.

Remark 2.7. The method developed here can be applied to inverse PDEs in which the inverse parameters may be an un-
known field distribution. Consider for example,
γ (x)L(u) +F(u) = f (x), (20)

9

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
where the coefficient γ (x) is an unknown field and u(x) is the unknown solution to the forward problem. In this case we
can expand γ (x) in terms of a set of basis functions and transform (20) into a form similar to (1a), in which the expansion
coefficients of γ (x) become the inverse parameters. Therefore the inverse problem can be computed using the method
presented above. In this work we employ the same bases in the expansion for u(x) (see (4)) and for γ (x). This translates
into two nodes in the output layer of the neural network architecture, one representing u(x) and the other representing
γ (x). When more inverse coefficient fields are involved, one can correspondingly increase the number of nodes in the
output layer of the neural network. We will present a numerical example for an inverse PDE similar to (20) in Section 3.

2.3. Variable projection algorithms for network training

This subsection outlines two algorithms for computing (α, β), both based on the variable projection (VarPro) idea [23,24,
18] but with different formulations. In the first formulation (VarPro-F1), the inverse parameters (α) are eliminated from the
problem to attain a reduced problem about β only. The reduced problem is solved by the nonlinear least squares method
first for β , and then α is computed by the linear least squares method. In the second formulation (VarPro-F2), the field
solution (equivalently, the β parameters) is eliminated from the problem to attain a reduced problem about α only. The
reduced problem is solved first by the nonlinear least squares method for α, and then β is computed based on the α
already obtained. The problem settings and notations here follow those of Section 2.2.

2.3.1. Formulation #1 (VarPro-F1): eliminating the inverse parameters
We start with the discrete system consisting of equations (12)–(15d). We re-arrange this system symbolically into a

matrix equation about the parameters α = (α1, . . . , αn)T ,

H(β)α = b(β), (21)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(β) =

⎡
⎢⎢⎣

Hpde(β)

0
0
0

⎤
⎥⎥⎦

Nc×n

,b(β) =

⎡
⎢⎢⎣

bpde(β)

−Rbc(β)

−Rmea(β)

−Rck(β)

⎤
⎥⎥⎦

Nc×1

,Hpde(β) =

⎡
⎢⎢⎣

...
...

L1
(
ue(xe

p)
) · · · Ln

(
ue(xe

p)
)

...
...

⎤
⎥⎥⎦

N Q ×n

,

bpde(β) =
[

bpde
ep

]
N Q ×1

=

⎡
⎢⎢⎣

...

f
(
xe

p

) −F
(
ue(xe

p)
)

...

⎤
⎥⎥⎦

N Q ×1

.

(22)

In these expressions, Rbc, Rmea and Rck are defined in (56) of Appendix B.
For any given β , the least squares solution to (21) with the minimum norm is given by

α = H+(β)b(β), (23)

where H+(β) denotes the Moore-Penrose inverse of H(β). Substituting this expression into (21) gives rise to a reduced
system about β only. The residual of this reduced system (see also (17)) is given by

r(β) = R(α,β) = H(β)α − b(β) = H(β)H+(β)b(β) − b(β). (24)

We determine the optimum β∗ by minimizing the Euclidean norm of this residual,

β∗ = arg min
β

1

2
‖r(β)‖2 = arg min

β

1

2
‖H(β)H+(β)b(β) − b(β)‖2 (25)

where ‖ · ‖ denotes the Euclidean norm. With β determined by (25), we solve the system (21) for α by the linear least
squares method with the minimum-norm solution (or by directly using (23)).

Equation (25) represents a nonlinear least squares problem about β . We solve this problem by the NLLSQ-perturb algo-
rithm (Algorithm 7 in Appendix A). As noted previously, two routines are required for this algorithm, one for computing the
reduced residual r(β) and the other for computing the Jacobian matrix of the reduced problem, ∂r

∂β , for any given β .
We compute the reduced residual as follows. For any given β , we solve equation (21) for α (with minimum norm) by

the linear least squares method. Let αL S denote this solution. Then the residual is given by

r(β) = H(β)αL S − b(β). (26)
Algorithm 3 summarizes the procedure for computing the reduced residual.

10

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Algorithm 3: Computing reduced residual r(β) for VarPro-F1.

input : β; �e(xe
p) and derivatives (1 � (e, p) � (N, Q)); M�e(ξ

e
p) (1 � (e, p) � (N, Q s)).

output : reduced residual r(β)

1 if β = βs then
2 retrieve H(βs), b(βs), αL S

3 set H(β) = H(βs) and b(β) = b(βs)

4 else
5 compute ue(xe

p) (1 � (e, p) � (N, Q)), their derivatives (up to a necessary order), and Mue(ξ
e
p) (1 � (e, p) � (N, Q s)) by (11)

6 compute H(β) and b(β) by (22) and (56) of Appendix B
7 solve equation (21) for α by the linear least squares method, and let αL S = α

8 set βs = β , and save H(β), b(β), αL S

9 end

10 compute r(β) by equation (26)

To compute the Jacobian of the reduced residual, we note the following formula owing to [23],

∂

∂θ

[
H(θ)H+(θ)

] = [
I − H(θ)H+(θ)

] ∂H

∂θ
H+(θ) +

[
HT (θ)

]+ ∂HT

∂θ

[
I − H(θ)H+(θ)

]

≈ [
I − H(θ)H+(θ)

] ∂H

∂θ
H+(θ),

(27)

where I is the identity matrix and on the second line we have kept only the first term in the formula as an approximation
to the LHS, thanks to the suggestion of [32]. In light of (24) and (27), we have

∂r

∂β
=

(
∂

∂β

[
H(β)H+(β)

])
b(β) + [

H(β)H+(β)
] ∂b

∂β
− ∂b

∂β

≈ ∂H

∂β
H+(β)b(β) − H(β)H+(β)

∂H

∂β
H+(β)b(β) + H(β)H+(β)

∂b

∂β
− ∂b

∂β

=
(

∂H

∂β
H+(β)b(β) − ∂b

∂β

)
− H(β)H+(β)

(
∂H

∂β
H+(β)b(β) − ∂b

∂β

)

= J1(β) − J2(β),

(28)

where

J1(β) = J0(β) − ∂b

∂β
, J2(β) = H(β)H+(β)J1(β), J0(β) = ∂H

∂β
H+(β)b(β). (29)

Therefore, we need a procedure for computing J0(β), ∂b
∂β and J2(β). J0(β) can be computed as follows,

J0(β) = ∂H

∂β
H+(β)b(β) = ∂H

∂β
αL S = ∂

[
H(β)αL S

]
∂β

=

⎡
⎢⎢⎢⎣

∂RpdeI

∂β

0
0
0

⎤
⎥⎥⎥⎦

Nc×N M

. (30)

In this equation, αL S = (αL S
1 , . . . , αL S

n)T is the minimum-norm solution to (21) computed by the linear least squares method,
and

RpdeI(β) =
[

RpdeI
ep

]
N Q ×1

=

⎡
⎢⎢⎣

...

αL S
1 L1(ue(xe

p)) + · · · + αL S
n Ln(ue(xe

p))

...

⎤
⎥⎥⎦

N Q ×1

, (31a)

∂RpdeI

∂β
=

[
∂ RpdeI

ep
∂βi j

]
N Q ×N M

. (31b)

In the matrix ∂RpdeI

∂β the only non-zero terms are,

∂ RpdeI
ep L S ′ e e L S ′ e e
∂βej
= α1 L1(ue(xp))φej(xp) + · · · + αn Ln(ue(xp))φej(xp), for 1 � (e, p, j)� (N, Q , M). (32)

11

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Algorithm 4: Computing Jacobian matrix ∂r
∂β for VarPro-F1.

input : β; �e(xe
p) and derivatives (1 � (e, p) � (N, Q)); M�e(ξ

e
p) (1 � (e, p) � (N, Q s)).

output : Jacobian matrix ∂r
∂β

1 if β = βs then
2 retrieve H(βs), b(βs), αL S

3 set H(β) = H(βs) and b(β) = b(βs)

4 else
5 compute ue(xe

p) (1 � (e, p) � (N, Q)), their derivatives (up to a necessary order), and Mue(ξ
e
p) (1 � (e, p) � (N, Q s)) by (11)

6 compute H(β) and b(β) by (22) and (56) of Appendix B
7 solve equation (21) for α by the linear least squares method, and let αL S = α

8 set βs = β , and save H(β), b(β), αL S

9 end

10 compute J0(β) by equations (30)–(32)

11 compute ∂b
∂β by (33), (34), (57), and (59)–(61) of Appendix B

12 compute J1(β) by (29)
13 compute J2(β) by (35)–(36)

14 compute ∂r
∂β by (28)

It is important to note that, when computing ∂RpdeI

∂β , we treat αL S as a constant vector independent of β .
∂b
∂β is computed as follows,

∂b

∂β
=

⎡
⎢⎢⎢⎢⎢⎣

∂bpde

∂β

− ∂Rbc

∂β

− ∂Rmea

∂β

− ∂Rck

∂β

⎤
⎥⎥⎥⎥⎥⎦

,
∂bpde

∂β
=

[
∂bpde

ep
∂βi j

]
N Q ×N M

, (33)

where ∂Rbc

∂β , ∂Rmea

∂β and ∂Rck

∂β are given in (57) and (59)–(61) of Appendix B. The only non-zero terms in ∂bpde

∂β are,

∂bpde
ep

∂βej
= −F ′ (ue(xe

p)
)
φej(xe

p), for 1 � (e, p, j)� (N, Q , M). (34)

With J0(β) and ∂b
∂β determined, we can compute J1(β) by (29).

In light of (29), we compute J2(β) by the following equations,

H(β)K = J1(β), (35)

J2(β) = H(β)K. (36)

We first solve equation (35) for the n × N M matrix K by the linear least squares method, and then compute J2(β) by
equation (36) with a matrix multiplication.

Therefore, given an arbitrary β , we compute J0(β) by (30)–(32), ∂b
∂β by (33) and (34), and J1(β) by (29). Then we compute

J2(β) by (35)–(36). The (approximate) Jacobian matrix of the reduced problem is then given by (28). The procedure for
computing the Jacobian matrix is summarized in the Algorithm 4. In Algorithms 3 and 4, it should be noted that β s denotes
the last β value for which the data H(β), b(β) and αL S have been computed. β s should be initialized to “None” at the
beginning of the computation.

The overall VarPro-F1 algorithm for solving the inverse problem consists of two steps: (i) Invoke the NLLSQ-perturb al-
gorithm (Algorithm 7 in Appendix A) to compute β from the reduced problem (25), with the routines given in Algorithms 3
and 4 as input. (ii) Solve (21) for α by the linear least squares method.

Remark 2.8. In the VarPro-F1 algorithm, one only needs to solve linear systems by the linear least squares method. The
Moore-Penrose inverse of the coefficient matrix is not explicitly computed. In our implementation we employ the linear
least squares routine scipy.linalg.lstsq() from the scipy package in Python, which in turn uses the linear least squares imple-
mentation in the LAPACK library.

2.3.2. Formulation #2 (VarPro-F2): eliminating the field function
We next present an alternative formulation (VarPro-F2) of variable projection, which is reciprocal to the VarPro-F1 al-
gorithm of Section 2.3.1. In this formulation, we eliminate the field function u (or the parameters β) from the problem to

12

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
attain a reduced problem about α only. We then solve the reduced problem first for α , and compute the parameters β
afterwards.

This formulation applies to cases in which the operators Li (1 � i � n) and F are all linear with respect to u. We first
present the algorithm with regard to this case below. Then we outline an extension in a remark (Remark 2.9) by combining
this algorithm with a Newton iteration to deal with cases in which these operators are nonlinear with respect to u.

Let us now assume that Li (1 � i � n) and F are all linear operators, and we again start with the discrete system consist-
ing of the equations (12)–(15d). We re-arrange this system into a matrix equation about the trainable network parameters
β = (βT

1 , . . . , βT
N)T = (β11, . . . , βN M)T ,

H(α)β = b, (37)

where

H(α) =

⎡
⎢⎢⎣

Hpde(α)

Hbc

Hmea

Hck

⎤
⎥⎥⎦

Nc×N M

, b =

⎡
⎢⎢⎣

bpde

bbc

bmea

0

⎤
⎥⎥⎦

Nc×1

, Hbc =

⎡
⎢⎢⎣

Hbc1

Hbc2

Hbc3

Hbc4

⎤
⎥⎥⎦ , Hck =

⎡
⎢⎢⎣

Hck1

Hck2

Hck3

Hck4

⎤
⎥⎥⎦ , bbc =

⎡
⎢⎢⎣

bbc1

bbc2

bbc3

bbc4

⎤
⎥⎥⎦ , (38)

and the specific forms for these matrices are provided in the equations (62)–(65) of Appendix B.
For any given α the least squares solution (with minimum norm) to the system (37) is,

β = H+(α)b. (39)

Substitution of this expression into (37) results in a reduced system about α only, with a residual given by

r(α) = H(α)H+(α)b − b. (40)

We determine the optimum α∗ by minimizing the Euclidean norm of this residual,

α∗ = arg min
α

1

2
‖r(α)‖2 = arg min

α

1

2
‖H(α)H+(α)b − b‖2. (41)

After α is obtained, we compute β by solving the system (37) with the linear least squares method.
The problem (41) is a nonlinear least squares problem about α . We employ the NLLSQ-perturb algorithm (Algorithm 7)

to solve this problem. In light of (27), we can obtain the Jacobian matrix for this problem,

∂r

∂α
≈ J0(α) − J1(α), J0(α) = ∂H

∂α
H+(α)b, J1(α) = H(α)H+(α)J0(α). (42)

J0(α) can be computed as follows. For any given α , let β L S = H+(α)b = ((β L S
1)T , . . . , (β L S

N)T)T denote a constant vector.
Then ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J0(α) = ∂
[
H(α)β L S]

∂α
= ∂

∂α

⎡
⎢⎢⎣

Hpde(α)β L S

Hbcβ L S

Hmeaβ L S

Hckβ L S

⎤
⎥⎥⎦

Nc×1

=

⎡
⎢⎢⎢⎣

∂
[

Hpde(α)β L S
]

∂α
0
0
0

⎤
⎥⎥⎥⎦

Nc×n

,

∂

∂α

[
Hpde(α)β L S

]
= ∂

∂α

⎡
⎢⎢⎣

...

α1L1uL S
e (xe

p) + · · · + αnLnuL S
e (xe

p) +FuL S
e (xe

p)

...

⎤
⎥⎥⎦

N Q ×1

=

⎡
⎢⎢⎣

...
...

L1uL S
e (xe

p) · · · LnuL S
e (xe

p)

...
...

⎤
⎥⎥⎦

N Q ×n

,

(43)

where uL S
e (x) = �e(x)β L S

e for 1 � e � N . We compute J1(α) by the following two equations,

H(α)K = J0(α) (44a)

J1(α) = H(α)K. (44b)

We first solve (44a) for the n × n matrix K by the linear least squares method, and then compute J1(α) by (44b) with a

matrix multiplication.

13

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Algorithm 5: Computing reduced residual r(α) for VarPro-F2.

input : α; �e(xe
p) and derivatives (1 � (e, p) � (N, Q)); M�e(ξ

e
p) (1 � (e, p) � (N, Q s)).

output : reduced residual r(α)

1 if α = αs then
2 retrieve H(αs), b, β L S

3 set H(α) = H(αs)

4 else
5 compute H(α) and b by (38) and the equations (62)–(65) in Appendix B

6 solve equation (37) for β by the linear least squares method, and let β L S = β

7 set αs = α, and save H(α), b, and β L S

8 end

9 compute r(α) by r(α) = H(α)β L S − b

Algorithm 6: Computing Jacobian matrix ∂r
∂α for VarPro-F2.

input : α; �e(xe
p) and derivatives (1 � (e, p) � (N, Q)); M�e(ξ

e
p) (1 � (e, p) � (N, Q s)).

output : Jacobian matrix ∂r
∂α

1 if α = αs then
2 retrieve H(αs), b, β L S

3 set H(α) = H(αs)

4 else
5 compute H(α) and b by (38) and the equations (62)–(65) in Appendix B

6 solve equation (37) for β by the linear least squares method, and let β L S = β

7 set αs = α, and save H(α), b, and β L S

8 end

9 compute uL S
e (xe

p) (1 � (e, p) � (N, Q)) and their derivatives by (11) based on β L S

10 compute J0(α) by (43)
11 compute J1(α) by (44a)–(44b)

12 compute ∂r
∂α by (42)

The procedures for computing the residual r(α) and the Jacobian matrix ∂r
∂α for the reduced problem (41) are summa-

rized in the Algorithms 5 and 6. In these two algorithms, it should be noted that αs denotes the last α value for which the
data H(α), b and β L S have been computed. αs should be initialized to “None” at the beginning of the computation.

The overall VarPro-F2 algorithm consists of two steps: (i) Invoke the NLLSQ-perturb algorithm (Algorithm 7 in Ap-
pendix A) to solve the problem (41) for α, with the routines in Algorithms 5 and 6 as input arguments. (ii) Solve
equation (37) for β by the linear least squares method.

Remark 2.9. Let us now discuss an extension of the above algorithm to deal with the case in which some (or all) of the
operators of Li (1 � i � n) and F are nonlinear with respect to u. In this case, we can first use a Newton iteration to
linearize the nonlinear operators, and then solve the linearized system by the VarPro-F2 algorithm as discussed above. Upon
convergence of the Newton iteration, the solution for (α, β) to the original system will be attained. To make the discussion
more concrete and without loss of generality, let us assume that L1 and F are nonlinear while the other operators are
linear. Let uk

e(x) (1 � e � N) denote the approximation of ue(x) at the k-th Newton step. Equation (12) is nonlinear with
respect to u, and its linearized form is given by,

α1L′
1(uk

e(xe
p))uk+1

e (xe
p) + α2L2uk+1

e (xe
p) + · · · + αnLnuk+1

e (xe
p) +F ′(uk

e(xe
p))uk+1

e (xe
p)

−
[

f (xe
p) − α1L1(uk

e(xe
p)) + α1L′

1(uk
e(xe

p))uk
e(xe

p) −F(uk
e(xe

p)) +F ′(uk
e(xe

p))uk
e(xe

p)
]

= 0,

for 1 � (e, p)� (N, Q).

(45)

Notice that this equation is linear with respect to uk+1
e . The equations (13)–(15) are linear with respect to ue , and we

enforce them on the (k + 1)-th Newton step (i.e. replacing ue by uk+1
e in these equations). The system consisting of (45) and

the equations (13)–(15) (written in terms of uk+1
e) are linear with respect to the updated approximation field uk+1

e . With
the expansion uk+1

e (x) = �e(x)βk+1
e , we can solve this system for (α, βk+1) by the VarPro-F2 algorithm as discussed above.

Upon convergence of the Newton iteration, the solution to (α, β) is given by the converged result, and the neural network
coefficients contain the representation for the field solution u(x) to the original nonlinear system. For inverse nonlinear

PDEs with respect to u, the combination of the Newton iteration and the VarPro-F2 algorithm in general works quite well.

14

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
We have also observed from numerical experiments that for certain problems it appears to be somewhat less robust than
the VarPro-F1 and NLLSQ methods, leading to less accurate results than VarPro-F1 and NLLSQ.

3. Numerical examples

In this section we test the presented method and algorithms using several inverse PDE problems in two dimensions (2D)
or in one spatial dimension (1D) plus time. The Gaussian activation function, σ(x) = e−x2

, is employed in all the neural
networks. We fix the seed value at 25 in the random number generator for all the test problems, so that the reported
results here are exactly reproducible. Note that λmea denotes the scaling coefficient for the measurement residual (see
Remark 2.6), with λmea = 1 corresponding to the case of no scaling. The network training time reported in the following
subsections includes the preprocessing time (generation of the input collocation points, the random measurement points
and the measurement data with noise) and the actual computation time with the nonlinear least squares iterations or the
variable-projection iterations. It does not include the time for evaluating the neural network to generate the solution data,
after the neural network is trained, for comparison with the exact solution to compute the errors. We refer the reader to
the Appendix C and Appendix D for additional numerical tests of the current algorithms, and Appendix E for a comparison
between the current method and the PINN method.

3.1. Parametric Poisson equation

Consider the domain (x, y) ∈ � = [0, 1.4] × [0, 1.4], and the inverse problem,

∂2u

∂x2
+ α

∂2u

∂ y2
= f (x, y), (46a)

u(0, y) = g1(y), u(1.4, y) = g2(y), u(x,0) = g3(x), u(x,1.4) = g4(x), (46b)

u(ξi, ηi) = S(ξi, ηi), (ξi, ηi) ∈ Y , 1 � i � N Q s, (46c)

where f and gi (1 � i � 4) denote a source term and the boundary data respectively, Y ⊂ � denotes the set of random
measurement points, α and u(x, y) are the unknowns to be solved for, N denotes the number of sub-domains, and Q s is
the number of measurement points per sub-domain. We use the following manufactured solution to this problem,

αex = 1, uex(x, y) = sin(πx2) sin(π y2). (47)

The source term and the boundary data are chosen such that the expressions in (47) satisfy (46a)–(46b). The measurement
data are taken to be

S(ξi, ηi) = uex(ξi, ηi)(1 + εζi), 1 � i � N Q s, (48)

where ζi denotes a uniform random number from [−1, 1] representing the noise and the constant ε � 0 denotes the relative
level of the noise.

Henceforth Q denotes the number of uniform collocation points per sub-domain, Q s denotes the number of random
measurement points per sub-domain, ε denotes the noise level, and M denotes the number of trainable parameters of each
local NN. Rm denotes a constant, and the hidden-layer coefficients are assigned to uniform random values generated on
[−Rm, Rm]. The Rm values employed in the tests are obtained by the method from [19], as noted in Remark 2.5. After the
NN is trained, it is evaluated on another set of Q eval = 101 × 101 uniform grid points (evaluation points) on each sub-
domain to obtain u, which is compared with (47) to compute the errors. The relative errors of α (eα) and u (l∞ and l2

norms) are defined as,

eα = |α − αex|
|αex| , l∞-u = max {|u(xi) − uex(xi)|}N Q eval

i=1√
1

N Q eval

∑N Q eval
i=1 u2

ex(xi)

, l2-u =
√

1
N Q eval

∑N Q eval
i=1 [u(xi) − uex(xi)]2

√
1

N Q eval

∑N Q eval
i=1 u2

ex(xi)

, (49)

where N is the number of sub-domains and xi denotes the evaluation points.
Fig. 3 illustrates u(x, y) and its point-wise absolute error obtained by the NLLSQ algorithm with 2 sub-domains. The cap-

tion lists the main simulation parameters. In particular, the random measurement points (100 total) are shown in Fig. 3(a),
and there is no noise in the measurement data. The NLLSQ solution for u is quite accurate, with a maximum error on the
order of 10−7 in the domain. The relative (or absolute) error of the computed α is 9.03 × 10−9.

The convergence of the computation results with respect to Q (number of collocation points) is illustrated by Table 1
and Fig. 4. Table 1 lists the computed α values versus Q by the NLLSQ, VarPro-F1 and VarPro-F2 methods. Fig. 4 shows the
relative errors of α and u with respect to Q 1 (where Q = Q 1 × Q 1) from the three methods. The main parameter values

for these tests are provided in the table and figure captions. The α and the u errors decrease approximately exponentially

15

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Fig. 3. Inverse Poisson problem: distributions of (a) the NLLSQ solution and (b) its point-wise absolute error, with the random measurement points shown
in (a) as “+” symbols. Two uniform sub-domains (along x), local NN [2, 400, 1], Q = 25 × 25, Q s = 50, Rm = 2.0, λmea = 1, ε = 0 (no noise in measurement
data).

Table 1
Inverse Poisson problem: computed α by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms
versus Q (number of collocation points). Single sub-domain, NN [2, 600, 1], Q s = 100,
λmea = 1, ε = 0; Rm = 3.0 with NLLSQ, Rm = 2.8 with VarPro-F1, and Rm = 2.0 with
VarPro-F2.

Q α (NLLSQ) α (VarPro-F1) α (VarPro-F2)

5×5 1.076466245043E+0 9.982719409724E-1 0.000000000000E+0
10×10 9.999867935849E-1 9.999965494049E-1 -3.188390321381E-5
15×15 1.000000029498E+0 9.999999954822E-1 9.999999998978E-1
20×20 9.999999999701E-1 9.999999999592E-1 9.999999999536E-1
25×25 9.999999987249E-1 1.000000000817E+0 1.000000001279E+0
30×30 1.000000002811E+0 1.000000000906E+0 1.000000000002E+0
35×35 1.000000001708E+0 1.000000000670E+0 1.000000000237E+0
40×40 1.000000001552E+0 1.000000000717E+0 1.000000000183E+0

Fig. 4. Inverse Poisson problem: relative errors of α and u versus Q 1 (Q = Q 1 × Q 1) computed by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single
sub-domain, NN [2, 600, 1], Q s = 100, λmea = 1, ε = 0; Rm = 3.0 with NLLSQ, Rm = 2.8 with VarPro-F1, and Rm = 2.0 with VarPro-F2.

with increasing Q , until Q reaches a certain level. The errors generally stagnate as Q further increases beyond that point.
It is observed that the convergence behavior of VarPro-F2 is not as regular as those of NLLSQ and VarPro-F1.

The convergence of the NLLSQ, VarPro-F1 and VarPro-F2 algorithms with respect to the number of trainable parameters
M is illustrated by Fig. 5. A single sub-domain and a single hidden layer in the neural network are employed in the
simulations, where the number of hidden nodes (M) is varied. The figure caption lists the crucial parameter values. It is
evident that the errors for α and u decrease exponentially (or approximately exponentially) with increasing number of
training parameters.

Fig. 6 illustrates the computational cost of the NLLSQ, VarPro-F1 and VarPro-F2 algorithms for solving the inverse Poisson
problem. It shows the network training time as a function of the number of collocation points per direction (Fig. 6(a)) and
the number of training parameters in the neural network (Fig. 6(b)) for the three algorithms. The problem settings and
the simulation parameters employed in NLLSQ, VarPro-F1 and VarPro-F2 in Figs. 6(a) and (b) follow those of Fig. 4 and
Fig. 5, respectively. The network training time for all three algorithms appears to grow approximately linearly with respect
to the number of collocation points per direction and to the number of training parameters in the network. The VarPro-F1
algorithm is more costly than NLLSQ and VarPro-F2 for this problem, while the cost of NLLSQ seems to be larger than or

comparable to that of VarPro-F2. Fig. 6(b) indicates that the training time exhibits some irregularity with respect to the

16

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Fig. 5. Inverse Poisson problem: α and u relative errors versus M (number of training parameters) obtained by the NLLSQ, VarPro-F1 and VarPro-F2
algorithms. Single sub-domain, NN [2, M, 1], Q = 25 × 25, Q s = 100, λmea = 1, ε = 0; Rm = 3.0 with NLLSQ, Rm = 2.8 with VarPro-F1, and Rm = 2.0 with
VarPro-F2.

Fig. 6. Inverse Poisson problem: Network training time as a function of (a) the number of collocation points per direction, and (b) the number of training
parameters, for the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. The test settings and parameters in (a) follow those of Fig. 4, and in (b) follow those of
Fig. 5.

Table 2
Inverse Poisson problem: α and u relative errors versus Q s (number of measurement points) for the NLLSQ, VarPro-F1 and
VarPro-F2 algorithms. Single sub-domain, neural network [2, 500, 1], Q = 30 × 30; Rm = 3.0 with NLLSQ, Rm = 2.8 with
VarPro-F1, and Rm = 2.0 with VarPro-F2; λmea = 1, ε = 0.

Q s NLLSQ VarPro-F1 VarPro-F2

eα l∞-u l2-u eα l∞-u l2-u eα l∞-u l2-u

1 1.02E+0 1.01E+0 3.27E-1 1.63E+0 2.09E+1 7.27E+0 6.61E-4 1.19E-3 3.59E-4
2 5.01E-7 3.67E-6 3.80E-7 1.70E+0 3.10E+1 1.15E+1 1.67E-8 5.60E-7 3.49E-8
3 5.06E-8 3.67E-6 2.64E-7 9.64E-8 9.11E-7 9.59E-8 4.17E-9 5.46E-7 3.26E-8
5 3.06E-8 3.67E-6 2.62E-7 2.81E-8 8.88E-7 8.26E-8 7.30E-9 5.33E-7 3.25E-8
10 1.39E-8 3.67E-6 2.61E-7 1.34E-8 9.05E-7 8.12E-8 4.72E-8 5.39E-7 4.16E-8
20 5.14E-8 3.67E-6 2.63E-7 1.19E-8 9.04E-7 8.10E-8 2.62E-9 5.47E-7 3.46E-8
50 1.07E-8 3.67E-6 2.62E-7 6.63E-9 8.56E-7 8.02E-8 4.81E-10 5.33E-7 3.23E-8
100 3.26E-8 3.72E-6 2.62E-7 3.15E-9 9.29E-7 7.95E-8 1.17E-8 5.48E-7 3.27E-8

number of training parameters for NLLSQ and VarPro-F1. This is due to the triggering of sub-iterations in Algorithm 7 and
the irregularity in the actual number of nonlinear least squares iterations to meet the stopping criteria.

Table 2 illustrates the effect of the number of random measurement points (Q s) on the α and u errors computed by the
NLLSQ, VarPro-F1 and VarProf-F2 algorithms. When Q s is very small, the computed α and u are inaccurate or less accurate.
On the other hand, when Q s reaches a certain value (Q s = 3 for this problem) and beyond, the three algorithms produce
highly accurate results. This seems to be a common characteristic of these algorithms for all the test problems considered
in this work.

In the foregoing tests no noise is considered in the measurement data (ε = 0). Tables 3 and 4 and Fig. 7 demonstrate
the effect of noisy measurement data on the computation results. Table 3 shows the computed α values by the NLLSQ
algorithm corresponding to different noise levels, ranging from ε = 0 (0%) to ε = 1.0 (100%). Table 4 lists the α errors
and the u errors corresponding to several noise levels obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Fig. 7
provides the α and u relative errors as a function of ε for several λmea (scaling factor of measurement residual) values with
the NLLSQ algorithm. The presence of noise degrades the simulation accuracy. But the current method and these algorithms
appear to be quite robust. For example, with 10% (ε = 0.1) noise in the measurement data the relative error of α is around

1% for the three methods. With 100% (ε = 1.0) noise in the data, the computed α exhibits a relative error around 10% with

17

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Table 3
Inverse Poisson problem: α obtained by the NLLSQ algorithm corresponding to sev-
eral noise levels (ε). Single sub-domain, NN [2, 500, 1], Q = 25 × 25, Q s = 50,
Rm = 3.0, λmea = 1.

ε computed-α ε computed-α ε computed-α

0.0 9.99999993208E-1 0.01 9.9875752E-1 0.1 9.8779390E-1
0.001 9.9987537E-1 0.03 9.9630066E-1 0.2 9.7602056E-1
0.002 9.9975066E-1 0.05 9.9383633E-1 0.5 9.4329282E-1
0.005 9.9937764E-1 0.07 9.9139103E-1 0.7 9.2316247E-1
0.007 9.9912874E-1 0.09 9.8897497E-1 1.0 8.9557261E-1

Table 4
Inverse Poisson problem: α and u relative errors versus ε (noise level) computed by the NLLSQ, VarPro-F1 and VarPro-
F2 algorithms. Single sub-domain, NN [2, 500, 1], Q = 25 × 25, Q s = 50, λmea = 1; Rm = 3.0 with NLLSQ, Rm = 2.8 with
VarPro-F1, and Rm = 2.0 with VarPro-F2.

ε NLLSQ VarPro-F1 VarPro-F2

eα l∞-u l2-u eα l∞-u l2-u eα l∞-u l2-u

0.0 6.79E-9 1.81E-6 1.93E-7 5.93E-8 7.59E-7 1.38E-7 4.20E-10 4.50E-7 2.31E-8
0.001 1.25E-4 2.79E-4 8.04E-5 1.33E-4 2.82E-4 8.50E-5 1.23E-4 2.81E-4 7.85E-5
0.005 6.22E-4 1.39E-3 4.01E-4 6.73E-4 1.42E-3 4.29E-4 6.10E-4 1.41E-3 3.92E-4
0.01 1.24E-3 2.79E-3 8.02E-4 1.35E-3 2.85E-3 8.61E-4 1.22E-3 2.81E-3 7.82E-4
0.05 6.16E-3 1.39E-2 4.00E-3 6.63E-3 1.42E-2 4.26E-3 6.49E-3 1.41E-2 4.07E-3
0.1 1.22E-2 2.79E-2 7.98E-3 1.33E-2 2.86E-2 8.58E-3 1.19E-2 2.81E-2 7.75E-3
0.5 5.67E-2 1.42E-1 3.90E-2 6.08E-2 1.44E-1 4.17E-2 5.52E-2 1.43E-1 3.78E-2
1.0 1.04E-1 2.88E-1 7.63E-2 1.11E-1 2.93E-1 8.14E-2 1.08E-1 2.90E-1 7.62E-2

Fig. 7. Inverse Poisson problem: α and u (l∞-u and l2-u) relative errors versus ε for several λmea (scaling coefficient of measurement residual) values
computed by the NLLSQ algorithm. Single sub-domain, NN [2, 500, 1], Q = 25 × 25, Q s = 50, Rm = 3.0.

these algorithms. For noisy data, scaling the measurement residual by λmea can improve the accuracy of computation results
and make the method more robust (see Fig. 7), compared with the case of no scaling. A smaller λmea in general leads to a
better accuracy.

3.2. Parametric nonlinear Helmholtz equation

Consider the 2D domain, (x, y) ∈ � = [0, 1.4] × [0, 1.4], and the inverse problem on �,

∂2u

∂x2
+ ∂2u

∂ y2
− α1u + α2 cos(2u) = f (x, y), (50a)

u(0, y) = g1(y), u(1.4, y) = g2(y), u(x,0) = g3(x), u(x,1.4) = g4(x), (50b)

u(ξi, ηi) = S(ξi, ηi), (ξi, ηi) ∈ Y ⊂ �, 1 � i � N Q s, (50c)

where f and gi (1 � i � 4) are prescribed source term and boundary data, Y denotes the set of random measurement points
in �, and the parameters (α1, α2) and the field u(x, y) are the unknowns to be determined. We consider the following
manufactured solution to this problem in the tests,

αex
1 = 100, αex

2 = 5, uex(x, y) = cos(πx2) cos(π y2). (51)

The measurement data S(ξi, ηi) (1 � i � N Q s) are given by (48), in which uex is given by (51). The u errors are computed
on a set of 101 × 101 uniform grid points in each sub-domain after the neural network is trained. The notations below

follow those of the previous sub-section.

18

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Fig. 8. Inverse nonlinear Helmholtz problem: distributions of (a) the VarPro-F1 solution for u(x, y) and (b) its point-wise absolute error, with the random
measurement points shown in (a) as “+” symbols. Four uniform sub-domains (2 in each direction), local NN [2, 300, 1], Q = 20 × 20, Q s = 30, Rm = 1.5,
λmea = 1, ε = 0 (no noise in measurement data).

Table 5
Inverse nonlinear Helmholtz problem: α1 and α2 versus Q (num-
ber of collocation points) obtained by the NLLSQ algorithm. Single
sub-domain, NN [2, 500, 1], Q s = 100, Rm = 2.25, ε = 0, λmea = 1.

Q computed α1 computed α2

5×5 9.946591149073E+1 5.169760481373E+0
10×10 9.999987125506E+1 4.999987933629E+0
15×15 9.999999986638E+1 5.000000027512E+0
20×20 9.999999982078E+1 4.999999813483E+0
25×25 1.000000001774E+2 4.999999946859E+0
30×30 1.000000001832E+2 4.999999843159E+0
35×35 9.999999989070E+1 5.000000059829E+0
40×40 9.999999957958E+1 5.000001280912E+0

Fig. 9. Inverse nonlinear Helmholtz problem: relative errors of α1, α2 and l2-u versus Q 1 (Q = Q 1 × Q 1) obtained by the NLLSQ, VarPro-F1 and VarPro-F2
algorithms. Single sub-domain, NN [2, 500, 1], Q s = 100; Rm = 2.25 with NLLSQ and VarPro-F1, and Rm = 2.5 with VarPro-F2; λmea = 1, ε = 0. eα1 and eα2

denote the relative errors of α1 and α2.

Fig. 8 shows distributions of the u(x, y) solution and its point-wise absolute error computed by the VarPro-F1 algorithm
on 4 uniform sub-domains, with the 120 random measurement points in total (Q s = 30 points per sub-domain) displayed in
Fig. 8(a). The figure caption lists the crucial simulation parameters for this test. VarPro-F1 exhibits a high accuracy, with the
maximum u error on the order of 10−8. The relative errors of the computed α1 and α2 are 3.52 × 10−11 and 4.76 × 10−10,
respectively, in this test.

The convergence of the simulation results with respect to the number of collocation points (Q) is illustrated by Table 5
and Fig. 9. Table 5 lists the computed α1 and α2 by the NLLSQ algorithm corresponding to a range of Q values. Fig. 9
shows the relative α1 and α2 errors and the l2 norm of the relative u error corresponding to different Q obtained by
the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. The crucial simulation parameter values are provided in the table/figure
captions. A general exponential convergence in the errors with respect to Q can be observed. One can also observe that
the convergence of the VarPro-F2 algorithm appears to be less regular. The VarPro-F2 results are inaccurate with a small Q
(Q = 15 × 15 or less), and its errors abruptly drop to 10−7 ∼ 10−8 as the collocation points reach Q = 20 × 20 and beyond.

Fig. 10 illustrates the convergence of the α1, α2 and u errors, obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algo-
rithms, with respect to the training parameters (M). The figure caption lists values of the main simulation parameters. The

relative errors of α1, α2 and u decrease exponentially with increasing M .

19

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Fig. 10. Inverse nonlinear Helmholtz problem: relative errors of α1, α2 and l2-u versus M (number of training parameters) obtained by the NLLSQ, VarPro-
F1 and VarPro-F2 algorithms. Single sub-domain, NN [2, M, 1], Q s = 100, Q = 30 ×30; Rm = 2.25 with NLLSQ and VarPro-F1, and Rm = 2.5 with VarPro-F2;
ε = 0, λmea = 1.

Fig. 11. Inverse nonlinear Helmholtz problem: Network training time as a function of (a) the number of collocation points per direction, and (b) the number
of training parameters, for the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. The test settings and parameters in (a) follow those of Fig. 9, and in (b) follow
those of Fig. 10.

Table 6
Inverse nonlinear Helmholtz problem: the relative-errors of α1

and α2, and the u relative errors, versus the number of random
measurement points (Q s), computed by the NLLSQ algorithm. Sin-
gle sub-domain, NN [2, 500, 1], Q = 30 × 30, Rm = 2.25, λmea = 1,
ε = 0.

Q s eα1 eα2 l∞-u l2-u

5 5.41E-9 1.03E-6 7.79E-8 4.13E-8
10 7.30E-10 1.24E-7 6.03E-8 8.65E-9
20 1.18E-9 5.71E-9 9.67E-8 8.94E-9
30 6.74E-10 7.83E-8 7.97E-8 8.18E-9
50 1.99E-9 1.32E-7 7.56E-8 1.05E-8
100 1.83E-9 3.14E-8 9.37E-8 1.00E-8

Fig. 11 shows the network training time with the NLLSQ, VarPro-F1 and VarPro-F2 algorithms as a function of the
number of collocation points per direction (plot (a)) and the number of training parameters (plot (b)) for the inverse
nonlinear Helmholtz problem. The problem settings and the simulation parameters employed in the three algorithms for
these two plots correspond to those of Figs. 9 and 10, respectively. We observe a quasi-linear growth in the network training
time with the increase of the collocation points or the training parameters. In general, the cost of NLLSQ appears a little
larger than that of VarPro-F1, which in turn appears a little larger than VarPro-F2 for this problem. We observe an outlier in
Fig. 11(a) with VarPro-F2 (corresponding to 15 × 15 collocation points), and in Fig. 11(b) with VarPro-F1 (corresponding to
300 training parameters). This is caused by the larger number of actual Newton iterations in VarPro-F2 for the outlier case
in Fig. 11(a), and by the triggering of subiterations in Algorithm 7 with VarPro-F1 for the case in Fig. 11(b).

Table 6 shows the computed α1 and α2 relative errors, and the u relative errors (l∞ and l2 norms) obtained by the
NLLSQ algorithm corresponding to a range of Q s (number of random measurement points). The effect of Q s on the errors
appears to be not significant, unless Q s is very small. This is similar to what has been observed with linear forward PDEs
(see e.g. Section 3.1).

No noise is considered in the measurement data in the foregoing tests. Fig. 12 illustrates the effect of the noise level (ε)
on the accuracy of the computed α1, α2 and u by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. The main parameters for

these simulations are listed in the figure caption. The simulation errors generally increase with increasing noise level in the

20

Fig. 12. Inverse nonlinear Helmholtz problem: relative errors of α1, α2 and l2-u versus the noise level (ε) in the measurement data, obtained by the
NLLSQ, VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN [2, 500, 1], Q = 30 × 30, Q s = 50, λmea = 1; Rm = 2.25 with NLLSQ and VarPro-F1, and
Rm = 2.5 with VarPro-F2.

measurement data. However, the α2 error appears to be somewhat less regular for a range of noise levels (around ε ≈ 0.06)
for this problem. The accuracy of these algorithms appears quite robust to the noise. For example, with 1% noise (ε = 0.01)
in the measurement data the relative errors for α1 and α2 obtained by the three methods are on the order of 0.1%, and
with 10% noise (ε = 0.1) in the measurement data the relative errors for α1 and α2 are on the order of 1 ∼ 4%.

3.3. Parametric viscous Burgers equation

Consider the spatial-temporal domain, (x, t) ∈ � = [0, 2] × [0, 1.5], and the inverse problem with the parametric Burgers’
equation,

∂u

∂t
+ α1u

∂u

∂x
= α2

∂2u

∂x2
+ f (x, t), (52a)

u(0, t) = g1(t), u(2, t) = g2(t), u(x,0) = h(x), (52b)

u(ξi, ηi) = S(ξi, ηi), (ξi, ηi) ∈ Y ⊂ �, 1 � i � N Q s, (52c)

where f is a prescribed source term, g1 and g2 are prescribed Dirichlet boundary data, h is the initial distribution, the
constants αi (i = 1, 2) and the field u(x, t) are the unknowns to be solved for, Y denotes the set of random measurement
points, N is the number of sub-domains, and Q s is the number of measurement points per sub-domain. We employ the
following manufactured solution in the tests,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αex
1 = 0.1, αex

2 = 0.01,

uex(x, t) =
(

1 + x

20

)(
1 + t

20

)[
3

2
cos

(
πx + 7π

20

)
+ 27

20
cos

(
2πx − 3π

5

)][
3

2
cos

(
πt + 7π

20

)

+27

20
cos

(
2πt − 3π

5

)]
.

(53)

The source term f and the boundary/initial data are chosen such that the expressions in (53) satisfy the equa-
tions (52a)–(52b). The measurement data S(ξi, ηi) is assumed to be given by (48), in which uex is given by (53). In the
following the u errors are computed on a 101 × 101 uniform grid points in each sub-domain, and we adopt the same
notations (e.g. Q , Q s , M , Rm and ε) as in previous sub-sections.

Fig. 13 illustrates the u(x, t) solution and its point-wise absolute error computed by the NLLSQ algorithm with two
uniform sub-domains along t , and the 100 random measurement points (50 points per sub-domain) in the domain are
shown in Fig. 13(a). The figure caption provides the main parameter values in this simulation. The results signify a high
accuracy for the computed u solution, with the maximum error on the order of 10−8. The relative errors of the computed
α1 and α2 are 1.30 × 10−9 and 1.48 × 10−8, respectively, for this simulation.

Table 7 and Fig. 14 illustrate the convergence behavior of the NLLSQ, VarPro-F1 and VarPro-F2 algorithms with respect
to the number of collocation points (Q). Table 7 shows the computed α1 and α2 values by the NLLSQ algorithm for several
Q . Fig. 14 shows the relative errors of α1 and α2 and the l2 norm of relative u error corresponding to different Q . We
refer the reader to the table/figure captions for the simulation parameter values. One can observe the familiar exponential
convergence with respect to Q (before stagnation when Q reaches a certain level). The VarPro-F2 algorithm appears not as
accurate as NLLSQ/VarPro-F1 with a small number of collocation points (below Q = 20 × 20). But its errors drop to a level
similar to those of NLLSQ and VarPro-F1 for Q = 20 × 20 and beyond.

The exponential convergence of the simulation results with respect to the number of training parameters (M) for the
S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
NLLSQ, VarPro-F1 and VarPro-F2 algorithms is illustrated by Fig. 15. This figure shows the relative errors of the computed

21

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263

Fig. 13. Inverse Burgers’ problem: distributions of (a) the NLLSQ solution and (b) its point-wise absolute error, with the random measurement points shown
by the “+” symbols in (a). Two uniform sub-domains (along t), local NN [2, 300, 1], Q = 25 × 25, Q s = 50, Rm = 1.5, ε = 0 (no noise in measurement data),
λmea = 1.

Table 7
Inverse Burgers’ problem: the computed α1 and α2 versus Q
(number of collocation points) obtained with the NLLSQ algo-
rithm. Single sub-domain, NN [2, 400, 1], Q s = 100, Rm = 1.9,
λmea = 1, ε = 0.

Q α1 α2

5×5 9.999660775275E-2 9.994514983290E-3
10×10 9.999998874379E-2 9.999992607237E-3
15×15 1.000000000074E-1 1.000000000018E-2
20×20 1.000000000060E-1 1.000000000487E-2
25×25 9.999999999967E-2 9.999999999698E-3
30×30 1.000000000049E-1 9.999999998052E-3

Fig. 14. Inverse Burgers’ problem: relative errors of (a) α1, (b) α2, and (c) l2-u versus Q 1 (Q = Q 1 × Q 1) obtained by the NLLSQ, VarPro-F1 and VarPro-F2
algorithms. Single sub-domain, NN [2, 400, 1], Q s = 100; Rm = 1.9 with NLLSQ and VarPro-F1, and Rm = 2.0 with VarPro-F2; ε = 0, λmea = 1.

Fig. 15. Inverse Burgers’ problem: relative errors of (a) α1, (b) α2, and (c) u versus M (number of training parameters) obtained by the NLLSQ, VarPro-F1
and VarPro-F2 algorithms. Single sub-domain, NN [2, M, 1] (M varied), Q s = 150, Q = 30 × 30, ε = 0, λmea = 1; Rm = 1.9 with NLLSQ and VarPro-F1, and
Rm = 2.0 with VarPro-F2.
22

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Fig. 16. Inverse Burgers’ problem: Network training time as a function of (a) the number of collocation points per direction, and (b) the number of training
parameters, for the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. The test settings and parameters in (a) follow those of Fig. 14, and in (b) follow those of
Fig. 15.

Fig. 17. Inverse Burgers’ problem: relative errors of (a) α1, (b) α2, and (c) l2-u versus ε (noise level) obtained with the NLLSQ, VarPro-F1 and VarPro-F2
algorithms. Single sub-domain, NN [2, 400, 1], Q = 30 × 30, Q s = 100, λmea = 1; Rm = 1.9 with NLLSQ and VarPro-F1, and Rm = 2.0 with VarPro-F2.

α1, α2 and u obtained by the three algorithms. One should again refer to the caption for the main settings and simulation
parameters.

Fig. 16 shows the network training time of the NLLSQ/VarPro-F1/VarPro-F2 algorithms as a function of the number of
collocation points per direction and the number of training parameters for the inverse Burgers’ problem. The settings here
correspond to those of Figs. 14 and 15, respectively. One can again observe a near-linear growth in the computational cost.
The network training time of VarPro-F2 is significantly larger than those of NLLSQ/VarPro-F1, while the cost of NLLSQ and
VarPro-F1 appears to be comparable. Some irregularity is observed in the training time with VarPro-F2 in Fig. 16(a), due to
the irregularity in the actual number of outer Newton iterations with VarPro-F2 for this problem.

Fig. 17 illustrates the effect of the noisy measurement data (ε) on the simulation accuracy of the NLLSQ, VarPro-F1 and
VarPro-F2 algorithms for the inverse Burgers problem. It shows the relative errors of α1, α2 and l2-u as a function of the
noise level ε in the measurement data. It is observed that the accuracy of these algorithms is quite robust to the noise. For
example, with 1% noise in the measurement data the relative errors of these methods are around 0.026% for the computed
α1 and around 0.2% for the computed α2; with 10% noise in the measurement the relative errors are around 0.27% for α1
and around 2.7% for α2.

3.4. Helmholtz equation with inverse variable coefficient

In this example, we use our method to study a problem involving an inverse coefficient field. Consider the domain
(x, y) ∈ � = [0, 1.5] × [0, 1.5] and the inverse problem on �,

∂2u

∂x2
+ ∂2u

∂ y2
− γ (x, y)u = f (x, y), (54a)

u(a1, y) = g1(y), u(b1, y) = g2(y), u(x,a2) = g3(x), u(x,b2) = g4(x), (54b)

u(ξi, ηi) = S(ξi, ηi), (ξi, ηi) ∈ Y ⊂ �, 1 � i � N Q s, (54c)

where f is a prescribed source term, gi (1 � i � 4) denote the prescribed boundary data, Y is the set of measurement
points, S(ξi, ηi) denotes the measurement data at the random point (ξi , ηi), and γ (x, y) and u(x, y) are two field functions

to be determined. We employ the following manufactured solutions,

23

Fig. 18. Inverse variable-coefficient Helmholtz problem: distributions of (a) the NLLSQ solution for u(x, y) and (b) its point-wise absolute error, (c) the
NLLSQ solution for γ (x, y) and (d) its point-wise absolute error, with the Q s = 300 random measurement points shown in (a) as “+” symbols. Single
sub-domain, NN [2, 400, 1], Q = 30 × 30, Rm = 1.5, λmea = 1, ε = 0 (no noise), λ1 = λ2 = 0 (no regularization).

⎧⎪⎪⎨
⎪⎪⎩

γex(x, y) = 100

[
1 + 1

4
sin(2πx) + 1

4
sin(2π y)

]
,

uex(x, y) =
[

5

2
sin

(
πx − 2π

5

)
+ 3

2
cos

(
2πx + 3π

10

)][
5

2
sin

(
π y − 2π

5

)
+ 3

2
cos

(
2π y + 3π

10

)]
.

(55)

f and gi (1 � i � 4) are chosen accordingly such that the expressions in (55) satisfy the equations (54a)–(54b). The mea-
surement data S(ξi, ηi) are given by equation (48), in which the uex is given in (55). The relative errors for u(x, y) are
defined in (49), and the relative errors for γ (x, y) are defined analogously. The γ (x, y) and u(x, y) errors reported be-
low are computed on a uniform Q eval = 101 × 101 grid in each sub-domain. The notations here follow those of previous
subsections.

We employ the algorithm modification as outlined in Remark 2.7 for solving this problem. Compared with previous
subsections, the main change here lies in that the local neural network on each sub-domain contains two nodes in the
output layer, one representing u(x, y) and the other γ (x, y). The output-layer coefficients contributing to γ (x, y) play
the role of the inverse parameters. We also find it preferable to regularize the output-layer coefficients that contribute
to γ (x, y) (or u(x, y)) for this problem. For regularization we employ the extra terms for the underlying loss function,
λ2

1
2 ‖α‖2 + λ2

2
2 ‖β‖2, where α and β denote the vectors of output-layer coefficients for γ (x, y) and u(x, y), respectively, and

the prescribed non-negative constants λ1 and λ2 are the corresponding regularization coefficients.
Fig. 18 shows distributions of the solutions for u(x, y) and γ (x, y), and their point-wise absolute errors, obtained by the

NLLSQ algorithm. The random measurement points are also shown in Fig. 18(a). The figure caption lists the main parameter
values for this simulation. We observe a fairly high accuracy, with the maximum u error on the order of 10−8 and the
maximum γ error on the order of 10−5 in the domain.

Table 8 lists the relative errors for γ and u (l∞ and l2 norms) computed by the NLLSQ algorithm in several sets of tests,
with respect to Q (number of collocation points), M (number of training parameters), Q s (number of random measurement
points), and ε (noise level). The settings and the simulation parameter values are provided in the table caption for each
set of tests. One can observe an approximately exponential decrease in the γ and u errors with respect to Q , M and Q s

(before saturation). One can also observe the deterioration in the simulation accuracy with increasing noise level in the
measurement data. Note that no regularization is employed in these simulations. The noise appears to affect the γ results
more significantly than u. For example, with 1% noise (ε = 0.01) in the measurement data, the maximum (l∞) relative error
for γ (x, y) is around 43% and the l2 relative error is around 5%, while for u(x, y) these errors are around 4% and 0.6%
respectively.

Fig. 19 illustrates the effect of noise in the measurement data on the accuracy of the NLLSQ, VarPro-F1 and VarPro-F2
algorithms. The relative errors for γ and u corresponding to different noise levels have been shown. In these simulations
the output-layer coefficients for γ (x, y) (and also for u(x, y) with NLLSQ) have been regularized, with the regularization
coefficients and the other simulation parameter values given in the table caption. The regularization generally improves the
accuracy in the presence of noise. For γ (x, y), the NLLSQ results appear to be generally more accurate than those obtained
with VarPro-F1 and VarPro-F2. On the other hand, the u(x, y) results obtained with the three methods appear to have a
comparable accuracy (with VarPro-F2 slightly better).

Fig. 20 shows the network training time of the NLLSQ/VarPro-F1/VarPro-F2 algorithms as a function of the noise level ε
in the same group of tests as Fig. 19. The increase in the noise level in the measurement data appears to have little effect
on the network training time, or appears to cause the training time to slightly increase (see e.g. the curves with NLLSQ and
VarPro-F2 in Fig. 20).

4. Concluding remarks

In this paper we have presented a method for solving inverse parametric PDE problems based on randomized neural
networks. This method extends the local extreme learning machine (locELM) technique to inverse PDEs. The field solution
S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
is represented by a set of local random-weight neural networks (randomly assigned but fixed hidden-layer coefficients,

24

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Table 8
Inverse variable-coefficient Helmholtz problem: relative l∞ and l2 errors of γ (x, y) and u(x, y) in several
tests with the NLLSQ algorithm. Single sub-domain, NN [2, M, 2]. In collocation point test, M = 400,
Q s = 100, ε = 0, Q is varied. In training parameter test, Q = 30 × 30, Q s = 300, ε = 0, M is varied. In
measurement point test, Q = 25 × 25, M = 300, ε = 0, Q s is varied. In noise level test, Q = 35 × 35,
M = 400, Q s = 100, ε is varied. Rm = 1.5 and λmea = 1 in all tests. No regularization (λ1 = λ2 = 0).
l∞-γ and l2-γ denote the relative errors (l∞ and l2 norms) of γ (x, y), respectively.

l∞-γ l2-γ l∞-u l2-u

collocation Q = 5×5 9.84E-2 3.15E-2 7.94E-3 4.38E-4
point test 10×10 4.05E-3 2.90E-4 1.63E-4 1.02E-5

15×15 1.15E-4 4.94E-6 3.38E-6 2.99E-7
20×20 4.99E-6 4.84E-7 2.65E-7 2.70E-8
25×25 4.42E-6 3.57E-7 3.34E-7 2.90E-8
30×30 1.56E-6 1.46E-7 1.19E-7 1.08E-8
35×35 1.61E-6 1.73E-7 1.26E-7 1.15E-8

training M = 50 6.79E+0 1.67E+0 1.63E+0 5.67E-1
parameter 100 8.64E-2 1.10E-2 8.44E-3 2.00E-3
test 200 1.98E-4 2.08E-5 6.46E-6 6.42E-7

300 2.07E-6 1.26E-7 3.13E-8 2.46E-9
400 5.08E-7 2.95E-8 5.76E-9 5.29E-10
500 1.61E-7 1.18E-8 1.95E-9 1.91E-10

measurement Q s = 10 1.36E-3 3.11E-4 2.49E-4 6.60E-5
point test 30 1.93E-4 3.69E-5 2.03E-5 4.24E-6

50 2.69E-5 4.08E-6 2.03E-6 3.83E-7
100 3.18E-6 2.95E-7 2.25E-7 1.78E-8
200 5.30E-6 2.53E-7 8.21E-8 5.48E-9
300 1.45E-6 9.93E-8 2.45E-8 2.00E-9
400 2.65E-6 8.80E-8 1.40E-8 1.79E-9

noise level ε = 0.0 1.61E-6 1.73E-7 1.26E-7 1.15E-8
test 0.0005 5.15E-2 5.54E-3 3.32E-3 4.54E-4

0.001 7.57E-2 7.31E-3 5.46E-3 6.63E-4
0.005 2.69E-1 2.92E-2 2.28E-2 3.12E-3
0.01 4.26E-1 4.96E-2 3.94E-2 5.98E-3
0.05 1.50E+0 2.00E-1 1.44E-1 2.71E-2
0.1 1.85E+0 2.97E-1 2.26E-1 4.97E-2

Fig. 19. Inverse variable-coefficient Helmholtz problem: relative l∞ and l2 errors of γ (x, y) and u(x, y) versus ε (noise level) by the NLLSQ, VarPro-F1
and VarPro-F2 algorithms. Single sub-domain, NN [2,400,2], Q = 30 × 30, Q s = 300, λmea = 1; Rm = 1.5 with NLLSQ, Rm = 2.5 with VarPro-F1, Rm = 3.0
with VarPro-F2; Regularization coefficients: (λ1, λ2) = (1E − 8, 1E − 8) with NLLSQ, (λ1, λ2) = (1E − 7, 0) with VarPro-F1, and (λ1, λ2) = (1E − 6, 0) with
VarPro-F2.
25

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Fig. 20. Inverse variable-coefficient Helmholtz problem: Network training time as a function of the noise level ε for the NLLSQ, VarPro-F1 and VarPro-F2
algorithms. The test settings and parameters follow those of Fig. 19.

trainable output-layer coefficients), one for each sub-domain. The local neural networks are coupled through the Ck (with
k related to the PDE order) continuity conditions on the shared sub-domain boundaries. The inverse parameters of the PDE
and the trainable parameters of the local neural networks are the unknowns to be determined in the system.

Three algorithms are developed for training the neural network to solve the inverse problem. The first algorithm (NLLSQ)
computes the inverse parameters and the trainable network parameters all together by the nonlinear least squares method
and is an extension of the nonlinear least squares method with perturbations (NLLSQ-perturb) of [16] (developed for for-
ward PDEs) to inverse PDE problems. The second and the third algorithms are based on the variable projection idea. The
second algorithm (VarPro-F1) employs variable projection to eliminate the inverse parameters from the problem and attain
a reduced problem about the trainable network parameters only. Then the reduced problem is solved first by the NLLSQ-
perturb algorithm for the trainable network parameters, and the inverse parameters are computed afterwards by the linear
least squares method. The third algorithm (VarPro-F2) provides a reciprocal formulation with variable projection. It elim-
inates the trainable network parameters (or equivalently the field solution) from the problem first to arrive at a reduced
problem about the inverse parameters only. Then the inverse parameters are computed first by solving the reduced problem
with the NLLSQ-perturb algorithm, and afterwards the trainable network parameters are computed based on the inverse
parameters already obtained. The VarPro-F2 algorithm is suitable for parametric PDEs that are linear with respect to the
field solution. For PDEs that are nonlinear with respect to the field solution, this algorithm needs to be combined with a
Newton iteration.

The presented method is numerically tested using several inverse parametric PDE problems. (We refer the reader to the
Appendices C and D for additional test problems.) It is also compared with the PINN method (see Appendix E). For smooth
solutions and noise-free data, the errors for the inverse parameters and the field solution computed by the NLLSQ, VarPro-
F1 and VarPro-F2 algorithms decrease exponentially with respect to the number of collocation points and the number
of training parameters. When these parameters become large the errors can reach a level close to the machine accuracy.
These characteristics are in some sense analogous to those observed for the forward PDE problems in [16,19]. For noisy
measurement data, these algorithms can produce computation results with good accuracy, indicating robustness of the
method. We observe that, in the presence of noise, by scaling the measurement residual by a factor λmea (0 < λmea < 1) one
can in general improve the simulation accuracy of the current method markedly, while this scaling only slightly degrades
the accuracy for the noise-free data. The comparison with PINN shows that the current method has an advantage in terms of
both accuracy and the network training time. In particular, for the noise-free data the current method exhibits an accuracy
significantly higher than PINN.

In terms of the computational cost, the predominant operations of all three algorithms lie in the nonlinear least squares
computation (Algorithm 7) of either the overall inverse problem (with NLLSQ) or the reduced problem (with VarPro-F1
and VarPro-F2). The nonlinear least squares computation (as implemented in the Scipy library and adopted in the current
method) consists of the Gauss-Newton iterations, and each iteration generally involves the computation of the residual
vector and the Jacobian matrix, the solution of a linear least squares problem and the approximate solution of a trust-
region problem. In addition, if the perturbation/sub-iteration is triggered in Algorithm 7, which occurs when the returned
cost of the Gauss-Newton iteration fails to meet a tolerance, this will increase the computational cost. We have looked
into the network training time, which includes the cost for the nonlinear least squares and associated computations, with
the NLLSQ, VarPro-F1 and VarPro-F2 algorithms for different test problems. In general, the network training time grows
approximately linearly as the number of collocation points or the number of training parameters increases for all three
algorithms. In terms of the relative cost of these three algorithms, the picture seems to be mixed. Among the three, no
single algorithm is consistently faster than the others for all the test problems considered here. For the test problems with
an associated forward PDE that is linear, the VarPro-F2 algorithm seems to be generally faster than NLLSQ and VarPro-F1.
We note that for the test problems and the problem sizes considered in the current paper, the network training time ranges
from a few seconds to dozens of seconds with the three algorithms.

These test results suggest that the method developed herein is an effective and promising technique for computing

inverse PDEs. The exponential convergence exhibited by the method is especially interesting, suggesting a high accuracy of

26

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
this technique. We anticipate that this technique will be a useful and meaningful addition to the arsenal for tackling this
class of problems and be instrumental in computational science and engineering applications.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential com-
peting interests: Suchuan Dong reports financial support was provided by National Science Foundation.

Data availability

Data will be made available on request.

Acknowledgement

This work was partially supported by NSF (DMS-2012415).

Appendix A. Nonlinear least squares algorithm with perturbations (NLLSQ-perturb)

We summarize the nonlinear least squares algorithm with perturbations (NLLSQ-perturb) below in Algorithm 7, which
is adapted from the one developed in [16] with certain modifications.

In this algorithm, δ controls the maximum magnitude of each component of the random perturbation vector �θ . The
vector θ0 provides the initial guess to the solution of the nonlinear least squares problem. If the returned solution from the
scipy least_squares() routine corresponding to θ0 is not acceptable (i.e. the returned cost exceeding the tolerance ε), then a
sub-iteration procedure is triggered in which new initial guesses (ϑ0) are generated by perturbing either the origin or the
best approximation to the solution obtained so far with a random vector. The scipy least_squares() routine is invoked with
the new initial guesses until an acceptable solution is obtained or until the maximum number of sub-iterations is reached.
The integer flag η controls around which point the perturbation is performed. If η = 0 the new initial guess is generated by
perturbing the origin. Otherwise, the current best approximation to the solution is perturbed to generate a new initial guess.
The parameter “max-nllsq-iterations” controls the maximum number of iterations (e.g. the maximum number of residual

Algorithm 7: NLLSQ-perturb (nonlinear least squares with perturbations) algorithm.
input : max perturbation magnitude δ > 0; initial guess vector θ0; routine for computing residual; routine for computing Jacobian

matrix; perturbation flag η (integer, 0 or 1); tolerance ε > 0; max-nllsq-iterations (positive integer); max-sub-iterations
(non-negative integer).

output : solution vector θ , associated cost c
1 invoke the scipy.optimize.least_squares routine, with the inputs (initial guess θ0, routines for residual/jacobian-matrix calculations,

and max-nllsq-iterations)
2 set θ ← returned solution, and set c ← returned cost
3 if c is below ε then
4 return θ and c
5 end

6 for i ← 1 to max-sub-iterations do
7 generate a uniform random number ξ on the interval [0, 1]
8 set δ1 ← ξδ

9 generate a uniform random vector �θ of the same shape as θ on the interval [−δ1, δ1]

10 if η is 0 then
11 ϑ0 ← �θ

12 else
13 ϑ0 ← θ + �θ

14 end

15 invoke the scipy.optimize.least_squares routine, with the inputs (initial guess ϑ0, routines for residual/jacobian-matrix
calculations, and max-nllsq-iterations)

16 if the returned cost is less than c then
17 set θ ← the returned solution, and set c ← the returned cost
18 if c is below ε then
19 break
20 end
21 end
22 end
23 return θ and c
27

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
function evaluations) in the scipy least_squares() routine. The parameter “max-sub-iterations” controls the maximum num-
ber of sub-iterations for the initial guess perturbation. One can turn off the perturbation in the NLLSQ-perturb algorithm
by setting max-sub-iterations to zero. Note that the scipy least_squares() function requires two routines in the input, one
for computing the residual and the other for computing the Jacobian matrix for an arbitrary given approximation to the
solution.

Appendix B. Matrices in the NLLSQ and VarPro-F2 algorithms

NLLSQ Algorithm:
The vectors in the expression (17) are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rpde =

⎡
⎢⎢⎣

...

Rpde
ep
...

⎤
⎥⎥⎦

N Q ×1

; Rmea =

⎡
⎢⎢⎣

...

Rmea
ep
...

⎤
⎥⎥⎦

N Q s×1

; Rbc =

⎡
⎢⎢⎣

Rbc1

Rbc2

Rbc3

Rbc4

⎤
⎥⎥⎦ ; Rck =

⎡
⎢⎢⎣

Rck1

Rck2

Rck3

Rck4

⎤
⎥⎥⎦ ; Rbc1 =

⎡
⎢⎢⎣

...

Rbc1
l j
...

⎤
⎥⎥⎦

N2 Q 2×1

,

Rbc2 =

⎡
⎢⎢⎣

...

Rbc2
l j
...

⎤
⎥⎥⎦

N2 Q 2×1

, Rbc3 =

⎡
⎢⎢⎣

...

Rbc3
mi
...

⎤
⎥⎥⎦

N1 Q 1×1

, Rbc4 =

⎡
⎢⎢⎣

...

Rbc4
mi
...

⎤
⎥⎥⎦

N1 Q 1×1

; Rck1 =

⎡
⎢⎢⎣

...

Rck1
mlj
...

⎤
⎥⎥⎦

(N−N2)Q 2×1

,

Rck2 =

⎡
⎢⎢⎣

...

Rck2
mlj
...

⎤
⎥⎥⎦

(N−N2)Q 2×1

, Rck3 =

⎡
⎢⎢⎣

...

Rck3
mli
...

⎤
⎥⎥⎦

(N−N1)Q 1×1

, Rck4 =

⎡
⎢⎢⎣

...

Rck4
mli
...

⎤
⎥⎥⎦

(N−N1)Q 1×1

.

(56)

In the above expressions, Rpde
ep is the left hand side (LHS) of (12), and Rmea

ep is the LHS of (14). Rbc1
l j , Rbc2

l j , Rbc3
mi and Rbc4

mi are
the LHSs of (13a)–(13d), respectively. Rck1

mlj , Rck2
mlj , Rck3

mli and Rck4
mli are the LHSs of (15a)–(15d), respectively.

The matrices in the expression (18) are given by,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Rpde

∂α
=

[
∂ Rpde

ep
∂αi

]
N Q ×n

= [
L1(ue(xe

p)) . . . Ln(ue(xe
p))

]
N Q ×n ,

∂Rpde

∂β
=

[
∂ Rpde

ep
∂βi j

]
N Q ×N M

,

∂Rmea

∂β
=

[
∂ Rmea

ep
∂βi j

]
N Q s×N M

,
∂Rbc

∂β
=

⎡
⎢⎢⎢⎢⎢⎣

∂Rbc1

∂β

∂Rbc2

∂β

∂Rbc3

∂β

∂Rbc4

∂β

⎤
⎥⎥⎥⎥⎥⎦

,
∂Rck

∂β
=

⎡
⎢⎢⎢⎢⎢⎣

∂Rck1

∂β

∂Rck2

∂β

∂Rck3

∂β

∂Rck4

∂β

⎤
⎥⎥⎥⎥⎥⎦

,
∂Rbc1

∂β
=

[
∂ Rbc1

l j
∂βik

]
N2 Q 2×N M

,

∂Rbc2

∂β
=

[
∂ Rbc2

l j
∂βik

]
N2 Q 2×N M

,
∂Rbc3

∂β
=

[
∂ Rbc3

mi
∂βlk

]
N1 Q 1×N M

,
∂Rbc4

∂β
=

[
∂ Rbc4

mi
∂βlk

]
N1 Q 1×N M

,

∂Rck1

∂β
=

[
∂ Rck1

mlj
∂βiq

]
(N−N2)Q 2×N M

,
∂Rck2

∂β
=

[
∂ Rck2

mlj
∂βiq

]
(N−N2)Q 2×N M

,
∂Rck3

∂β
=

[
∂ Rck3

mli
∂β jq

]
(N−N1)Q 1×N M

,

∂Rck4

∂β
=

[
∂ Rck4

mli
∂β jq

]
(N−N1)Q 1×N M

.

(57)

In the matrix ∂Rpde

∂β the only non-zero terms are

∂ Rpde
ep

∂βej
= α1L′

1(ue(xe
p))φej(xe

p) + · · · + αnL′
n(ue(xe

p))φej(xe
p) +F ′(ue(xe

p))φej(xe
p),

for 1 � (e, p, j)� (N, Q , M), (58)

where L′
i(u) (1 � i � n) denote the derivatives of Li(u) with respect to u, and F ′(u) denotes the derivative of F(u) with

respect to u. In the matrix ∂Rmea

∂β the only non-zero terms are

∂ Rmea
ep e
∂βej
= Mφej(ξ p), for 1 � (e, p, j)� (N, Q s, M). (59)

28

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
In the matrices ∂Rbc1

∂β , ∂Rbc2

∂β , ∂Rbc3

∂β and ∂Rbc4

∂β the only non-zero terms are,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ Rbc1
l j

∂βlq
= Bφeq(a1, ye

p), where e = e(1, l), p = p(1, j), for 1 � (l, j,q)� (N2, Q 2, M);

∂ Rbc2
l j

∂βlq
= Bφeq(b1, ye

p), where e = e(N1, l), p = p(Q 1, j), for 1 � (l, j,q)� (N2, Q 2, M);

∂ Rbc3
mi

∂βmq
= Bφeq(xe

p,a2), where e = e(m,1), p = p(i,1), for 1 � (m, i,q) � (N1, Q 1, M);

∂ Rbc4
mi

∂βmq
= Bφeq(xe

p,b2), where e = e(m, N2), p = p(i, Q 2), for 1 � (m, i,q) � (N1, Q 1, M).

(60)

In the matrices ∂Rck1

∂β , ∂Rck2

∂β , ∂Rck3

∂β and ∂Rck4

∂β the only non-zero terms are,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ Rck1
mlj

∂βe1q
= φe1q(Xm, ye1

p1),
∂ Rck1

mlj

∂βe2q
= −φe2q(Xm, ye2

p2), where e1 = e(m, l), e2 = e(m + 1, l),

p1 = p(Q 1, j), p2 = p(1, j), for 1 � (m, l, j,q)� (N1 − 1, N2, Q 2, M);
∂ Rck2

mlj

∂βe1q
= ∂φe1q

∂x

∣∣∣∣
(Xm,y

e1
p1

)

,
∂ Rck2

mlj

∂βe2q
= − ∂φe2q

∂x

∣∣∣∣
(Xm,y

e2
p2

)

, where e1 = e(m, l), e2 = e(m + 1, l),

p1 = p(Q 1, j), p2 = p(1, j), for 1 � (m, l, j,q)� (N1 − 1, N2, Q 2, M);
∂ Rck3

mli

∂βe1q
= φe1q(xe1

p1 , Yl),
∂ Rck3

mli

∂βe2q
= −φe2q(xe2

p2 , Yl), where e1 = e(m, l), e2 = e(m, l + 1),

p1 = p(i, Q 2), p2 = p(i,1), for 1 � (m, l, i,q) � (N1, N2 − 1, Q 1, M);
∂ Rck4

mli

∂βe1q
= ∂φe1q

∂ y

∣∣∣∣
(x

e1
p1

,Yl)

,
∂ Rck4

mli

∂βe2q
= − ∂φe2q

∂ y

∣∣∣∣
(x

e2
p2

,Yl)

, where e1 = e(m, l), e2 = e(m, l + 1),

p1 = p(i, Q 2), p2 = p(i,1), for 1 � (m, l, i,q) � (N1, N2 − 1, Q 1, M).

(61)

Var-F2 Algorithm:
The matrices in the expression (38) are given by,

bpde =

⎡
⎢⎢⎣

...

f (xe
p)

...

⎤
⎥⎥⎦

N Q ×1

, bmea =

⎡
⎢⎢⎣

...

S(ξ e
p)

...

⎤
⎥⎥⎦

N Q s×1

, bbc1 =

⎡
⎢⎢⎢⎣

...

g(a1, ye(1,l)
p(1, j))

...

⎤
⎥⎥⎥⎦

N2 Q 2×1

,

bbc2 =

⎡
⎢⎢⎢⎣

...

g(b1, ye(N1,l)
p(Q 1, j))

...

⎤
⎥⎥⎥⎦

N2 Q 2×1

, bbc3 =

⎡
⎢⎢⎢⎣

...

g(xe(m,1)
p(i,1)

,a2)

...

⎤
⎥⎥⎥⎦

N1 Q 1×1

, bbc4 =

⎡
⎢⎢⎢⎣

...

g(xe(m,N2)
p(i,Q 2)

,a2)

...

⎤
⎥⎥⎥⎦

N1 Q 1×1

,

Hpde =
[

hpde
i j

]
N Q ×N M

, Hmea = [
hmea

i j

]
N Q s×N M

, Hbc1 =
[

hbc1
i j

]
N2 Q 2×N M

, Hbc2 =
[

hbc2
i j

]
N2 Q 2×N M

,

Hbc3 =
[

hbc3
i j

]
N1 Q 1×N M

, Hbc4 =
[

hbc4
i j

]
N1 Q 1×N M

, Hck1 =
[

hck1
i j

]
(N−N2)Q 2×N M

,

Hck2 =
[

hck2
i j

]
(N−N2)Q 2×N M

, Hck3 =
[

hck3
i j

]
(N−N1)Q 1×N M

, Hck4 =
[

hck4
i j

]
(N−N1)Q 1×N M

.

(62)

In the matrices Hpde and Hmea the only non-zero terms are,⎧⎪⎪⎨
⎪⎪

hpde
i j =α1L1φeq(xe

p) + · · · + αnLnφeq(xe
p) +Fφeq(xe

p),

i = (e − 1)Q + p, j = (e − 1)M + q, for 1 � (e, p,q) � (N, Q , M); (63)

⎩hmea

i j =Mφeq(ξ
e
p), i = (e − 1)Q s + p, j = (e − 1)M + q, for 1 � (e, p,q) � (N, Q s, M).

29

In the matrices Hbc1, Hbc2, Hbc3 and Hbc4 the only non-zero terms are,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

hbc1
i j =Bφeq(a1, ye

p), e = e(1, l), p = p(1,k), i = (l − 1)Q 2 + k, j = (e − 1)M + q, for 1 � (l,k) � (N2, Q 2);
hbc2

i j =Bφeq(b1, ye
p), e = e(N1, l), p = p(Q 1,k), i = (l − 1)Q 2 + k, j = (e − 1)M + q, for 1 � (l,k) � (N2, Q 2);

hbc3
i j =Bφeq(xe

p,a2), e = e(m,1), p = p(k,1), i = (m − 1)Q 1 + k, j = (e − 1)M + q, for 1 � (m,k)� (N1, Q 1);
hbc4

i j =Bφeq(xe
p,b2), e = e(m, N2), p = p(k, Q 2), i = (m − 1)Q 1 + k, j = (e − 1)M + q, for 1 � (m,k)� (N1, Q 1),

(64)

where the functions e(·, ·) and p(·, ·) are given by (7) and (10). In the matrices Hck1, Hck2, Hck3 and Hck4 the only non-zero
terms are,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hck1
i j1

=φe1q(Xm, ye1
p1), hck1

i j2
= −φe2q(Xm, ye2

p2), e1 = e(m, l), p1 = p(Q 1,k), e2 = e(m + 1, l),

p2 = p(1,k), i = (m − 1)N2 Q 2 + (l − 1)Q 2 + k, j1 = (e1 − 1)M + q, j2 = (e2 − 1)M + q,

for 1 � (m, l,k,q) � (N1 − 1, N2, Q 2, M);
hck2

i j1
= ∂φe1q

∂x

∣∣∣∣
(Xm,y

e1
p1

)

, hck2
i j2

= − ∂φe2q

∂x

∣∣∣∣
(Xm,y

e2
p2

)

, e1 = e(m, l), p1 = p(Q 1,k), e2 = e(m + 1, l),

p2 = p(1,k), i = (m − 1)N2 Q 2 + (l − 1)Q 2 + k, j1 = (e1 − 1)M + q, j2 = (e2 − 1)M + q,

for 1 � (m, l,k,q) � (N1 − 1, N2, Q 2, M);
hck3

i j1
=φe1q(xe1

p1 , Yl), hck3
i j2

= −φe2q(xe2
p2 , Yl), e1 = e(m, l), p1 = p(k, Q 2), e2 = e(m, l + 1),

p2 = p(k,1), i = (l − 1)N1 Q 1 + (m − 1)Q 1 + k, j1 = (e1 − 1)M + q, j2 = (e2 − 1)M + q,

for 1 � (m, l,k,q) � (N1, N2 − 1, Q 1, M);
hck4

i j1
= ∂φe1q

∂ y

∣∣∣∣
(x

e1
p1

,Yl)

, hck4
i j2

= − ∂φe2q

∂ y

∣∣∣∣
(x

e2
p2

,Yl)

, e1 = e(m, l), p1 = p(k, Q 2), e2 = e(m, l + 1),

p2 = p(k,1), i = (l − 1)N1 Q 1 + (m − 1)Q 1 + k, j1 = (e1 − 1)M + q, j2 = (e2 − 1)M + q,

for 1 � (m, l,k,q) � (N1, N2 − 1, Q 1, M).

(65)

Appendix C. Parametric advection equation

This appendix provides a further test of the algorithms developed herein with the inverse parametric advection equation.
Consider the spatial-temporal domain, (x, t) ∈ � = [0, 3] × [0, 1], and the following inverse problem,

∂u

∂t
− c

∂u

∂x
= 0, (66a)

u(0, t) = u(3, t), u(x,0) = 10 sinh

[
1

10
sin

2π

3

(
x − 5

2

)]
, (66b)

u(ξi, ηi) = S(ξi, ηi), (ξi, ηi) ∈ Y ⊂ �, 1 � i � N Q s, (66c)

where Y denotes the set of measurement points in �. The wave speed c and the field u(x, t) are the unknowns to be
determined in this problem. We employ the following exact solution to this problem in the tests,

cex = 3, uex(x, t) = 10 sinh

[
1

10
sin

2π

3

(
x + 3t − 5

2

)]
. (67)

We employ random measurement points in �, and the measurement data are given by (48), in which uex is given by (67).
The notations adopted below (e.g. Q , M , N , Q s , Rm , ε) are the same as in Section 3.1. The l∞ and l2 norms of the u relative
error reported below are computed on a set of Q eval = 101 × 101 uniform grid points in each sub-domain after the network
is trained.

Fig. 21 illustrates the distributions of the NLLSQ solution for u(x, t) and its point-wise absolute error in �. The crucial
simulation parameters are listed in the figure caption. The solution is highly accurate, with a maximum error on the level
10−8 in the domain. The computed wave speed c has a relative error 2.82 × 10−10 for this case.

The convergence behaviors of the computed c and u with respect to the collocation points (Q) and to the training
parameters (M) are illustrated in Table 9 and Figs. 22 and 23 (without noise). Table 9 and Fig. 22 show the computed c
values, and the relative errors of c and u, for several sets of uniform collocation points obtained by the NLLSQ, VarPro-F1
and VarPro-F2 algorithms. Fig. 23 shows the c errors and the u errors for several sets of training parameters with the three
S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
algorithms. One can observe the general exponential convergence of the c and u errors with respect to Q and to M . Table 9

30

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263

Fig. 21. Inverse advection problem: distributions of (a) the NLLSQ solution for u(x, t) and (b) its point-wise absolute error, with the random measurement
points shown in (a) as “+” symbols. Single sub-domain, NN [2, 400, 1], Q = 25 × 25 (collocation points), Q s = 100 (measurement points), Rm = 2.5,
λmea = 1, ε = 0 (no noise in measurement).

Table 9
Inverse advection problem: the computed c versus Q obtained by the NLLSQ, VarPro-F1
and VarPro-F2 algorithms. Single sub-domain, NN [2, 400, 1], Q s = 100; Rm = 2.5 with
NLLSQ and VarPro-F1, and Rm = 2.0 with VarPro-F2; λmea = 1, ε = 0.

Q c (NLLSQ) c (VarPro-F1) c (VarPro-F2)

5×5 3.000074167561E+0 2.999935510214E+0 6.785575335360E-1
10×10 2.999998340831E+0 3.000000635012E+0 6.785578125741E-1
15×15 2.999999999982E+0 2.999999999967E+0 -7.284017530389E-2
20×20 3.000000000029E+0 3.000000000041E+0 3.000000000378E+0
25×25 3.000000000845E+0 3.000000000869E+0 3.000000000025E+0
30×30 3.000000000534E+0 3.000000000542E+0 3.000000001047E+0
35×35 3.000000000596E+0 3.000000000596E+0 3.000000001295E+0
40×40 3.000000000771E+0 3.000000000770E+0 3.000000001534E+0

Fig. 22. Inverse Advection problem: c and u (l∞-u, l2-u) relative errors versus Q 1 (Q = Q 1 × Q 1) obtained by the NLLSQ, VarPro-F1 and VarPro-F2
algorithms. Single sub-domain, NN [2, 400, 1], Q s = 100, λmea = 1, ε = 0; Rm = 2.5 with NLLSQ and VarPro-F1, and Rm = 2.0 with VarPro-F2.

Fig. 23. Inverse advection problem: c and u (l∞-u, l2-u) relative errors versus M (number of training parameters) obtained with the NLLSQ, VarPro-F1 and
VarPro-F2 algorithms. Single sub-domain, NN [2, M, 1], Q = 25 × 25, Q s = 50, λmea = 1, ε = 0; Rm = 2.5 with NLLSQ and VarPro-F1, and Rm = 2.0 with
VarPro-F2.
31

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Fig. 24. Inverse advection problem: Network training time as a function of (a) the number of collocation points per direction, and (b) the number of training
parameters, for the NLLSQ, VarPro-F1 and VarPro-F2 algorithms. The test settings and parameters in (a) follow those of Fig. 22, and in (b) follow those of
Fig. 23.

Table 10
Inverse advection problem: c computed by the NLLSQ algorithm corresponding to several noise
levels ε . Single sub-domain, NN [2, 400, 1], Q = 30 × 30, Q s = 100, Rm = 2.5, λmea = 1.

ε computed c ε computed c ε computed c

0.0 3.000000000534E+0 0.01 2.9997368E+0 0.1 2.9971795E+0
0.001 2.9999739E+0 0.03 2.9991975E+0 0.2 2.9937846E+0
0.002 2.9999477E+0 0.05 2.9986396E+0 0.5 2.9779459E+0
0.005 2.9998688E+0 0.07 2.9980677E+0 0.7 2.9570522E+0
0.007 2.9998158E+0 0.09 2.9974839E+0 1.0 2.8441808E+0

Table 11
Inverse advection problem: c and u relative errors versus ε obtained with the NLLSQ, VarPro-F1 and VarPro-F2 algorithms.
Single sub-domain, NN [2, 400, 1], Q = 30 × 30, Q s = 100, λmea = 1; Rm = 2.5 with NLLSQ and VarPro-F1, and Rm = 2.0 with
VarPro-F2.

ε NLLSQ VarPro-F1 VarPro-F2

ec l∞-u l2-u ec l∞-u l2-u ec l∞-u l2-u

0.0 1.78E-10 8.29E-8 3.23E-9 1.81E-10 8.29E-8 3.24E-9 3.49E-10 9.89E-8 5.13E-9
0.001 8.72E-6 4.91E-4 1.77E-4 8.73E-6 4.91E-4 1.77E-4 4.67E-6 6.91E-4 1.76E-4
0.005 4.37E-5 2.46E-3 8.85E-4 4.41E-5 2.46E-3 8.84E-4 2.26E-5 3.49E-3 8.80E-4
0.01 8.77E-5 4.91E-3 1.77E-3 8.81E-5 4.91E-3 1.77E-3 4.61E-5 7.00E-3 1.76E-3
0.05 4.53E-4 2.46E-2 8.84E-3 4.55E-4 2.45E-2 8.84E-3 2.49E-4 3.50E-2 8.79E-3
0.1 9.40E-4 4.92E-2 1.77E-2 9.54E-4 4.92E-2 1.77E-2 5.53E-4 6.95E-2 1.76E-2
0.5 7.35E-3 2.47E-1 8.90E-2 7.40E-3 2.47E-1 8.90E-2 5.42E-3 3.59E-1 8.86E-2
1.0 5.19E-2 5.04E-1 2.06E-1 5.19E-2 5.04E-1 2.06E-1 3.78E-2 8.03E-1 1.95E-1

and Fig. 22 indicate that the convergence of VarPro-F2 with respect to Q is not quite regular. If the set of collocation points
is too small (Q = 15 × 15 and below), the computed VarPro-F2 results are not accurate.

Fig. 24 illustrates the computational cost of the NLLSQ/VarPro-F1/VarPro-F2 algorithms for solving the inverse advection
problem by showing the network training time versus the number of collocation points and the number of training pa-
rameters. The test configurations and the simulation parameters in the two plots correspond to those of Figs. 22 and 23,
respectively. A near-linear growth in the network training time can be observed as the number of training parameters or
the number of collocation points increases. The cost of NLLSQ is significantly larger than those of VarPro-F1/VarPro-F2 for
this problem, while the cost of VarPro-F1 appears generally larger than that of VarPro-F2.

The effects of noisy measurement data on the computation accuracy are illustrated by Tables 10 and 11 and Fig. 25.
Table 10 lists the computed c by the NLLSQ algorithm corresponding to several noise levels ε in the measurement data.
Table 11 shows the c and u relative errors corresponding to different noise levels, computed by the NLLSQ, VarPro-F1 and
VarPro-F2 algorithms. Fig. 25 shows the relative errors for c and u as a function of the noise level ε for several λmea values,
illustrating the effect of scaling the measurement residual (see Remark 2.6). The computation results are observed to be
quite robust to the noise in the measurement. For example, with 10% noise (ε = 0.1) in the measurement, the relative
errors of c computed by these methods are generally on the level of 0.1% (see Table 11). Scaling the measurement residual
by λmea < 1 markedly improves the simulation accuracy in the presence of noise, while only slightly degrading the accuracy

for the noise-free data; see Fig. 25.

32

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Fig. 25. Inverse advection problem: c and u (l∞-u, l2-u) relative errors versus ε and λmea (scaling coefficient of measurement residual) obtained with
the NLLSQ algorithm. Single sub-domain, NN [2, 400, 1], Q = 30 × 30, Q s = 100, Rm = 2.5. These can be compared with the NLLSQ data in Table 11 for
λmea = 1.

Fig. 26. Inverse Sine-Gordon problem: distributions of (a) the VarPro-F2 solution for u(x, t) and (b) its point-wise absolute error, with the measurement
points shown as “+” symbols in (a). Single sub-domain, NN [2, 300, 1], Q = 25 × 25, Q s = 50, Rm = 1.3, λmea = 1, ε = 0 (no noise in measurement data).

Appendix D. Parametric Sine-Gordon equation

This appendix provides a further test of the proposed method with the parametric Sine-Gordon equation. Consider the
inverse parametric Sine-Gordon equation on the domain (x, t) ∈ � = [0, 1] × [0, 1],

∂2u

∂t2 − α1
∂2u

∂x2 + α2u + α3 sin(u) = f (x, t), (68a)

u(0, t) = g1(t), u(1, t) = g2(t), u(x,0) = h1(x),
∂u

∂t

∣∣∣∣
(x,0)

= h2(x), (68b)

u(ξi, ηi) = S(ξi, ηi), (ξi, ηi) ∈ Y ⊂ �, 1 � i � N Q s, (68c)

where f is a prescribed source term, gi (i = 1, 2) and hi (i = 1, 2) are prescribed boundary and initial conditions, Y is
the set of random measurement points, and the constants αi (i = 1, 2, 3) and the field u(x, t) are the unknowns to be
determined. We employ the following manufactured analytic solution in the tests,⎧⎪⎨

⎪⎩
αex

1 = αex
2 = αex

3 = 1,

uex(x, t) =
[

5

2
cos

(
πx − 2π

5

)
+ 3

2
cos

(
2πx + 3π

10

)][
5

2
cos

(
πt − 2π

5

)
+ 3

2
cos

(
2πt + 3π

10

)]
.

(69)

Accordingly, f , gi (i = 1, 2), and hi (i = 1, 2) are chosen such that the expressions in (69) satisfy (68a)–(68b). The measure-
ment data are given by equation (48), in which uex is given in (69). The u errors are computed on a uniform 101 × 101 grid
in each sub-domain. The notations here follow those of previous numerical examples.

Fig. 26 shows distributions of the u(x, t) solution and its point-wise absolute error in � obtained by the VarPro-F2
algorithm, with 50 random measurement points (no noise). The other parameter values are provided in the figure caption.
We can observe a high accuracy in the solution, with the maximum error on the order of 10−8 in the domain. In this
simulation the relative errors for the computed α1, α2 and α3 are 2.07 × 10−10, 7.54 × 10−9 and 2.39 × 10−8, respectively.

The convergence of the simulation results obtained by the NLLSQ, VarPro-F1 and VarPro-F2 algorithms is demonstrated
by the data in Table 12 and Fig. 27. In these tests the number of training parameters (M) is varied systematically (no noise

in measurement), while the other simulation parameters are fixed and their values are provided in the table/figure captions.

33

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Table 12
Inverse Sine-Gordon problem: αi (i = 1, 2, 3) versus M (number of training parameters) ob-
tained by the NLLSQ algorithm. Single sub-domain, NN [2, M, 1], Q = 25 × 25, Q s = 100,
Rm = 1.5, λmea = 1, ε = 0.

M α1 α2 α3

50 -3.525085809204E+1 -6.376776028198E+0 6.877670126056E+1
100 1.006414746681E+0 9.536423027578E-1 1.058573631607E+0
200 1.000000694463E+0 9.999830213887E-1 1.000056517879E+0
300 9.999999995066E-1 1.000000013620E+0 9.999999510014E-1
400 1.000000000001E+0 9.999999999962E-1 1.000000000096E+0

Fig. 27. Inverse Sine-Gordon problem: relative errors of α1, α2, α3 and u (l∞-u, l2-u) versus M (number of training parameters) obtained by the NLLSQ,
VarPro-F1 and VarPro-F2 algorithms. Single sub-domain, NN [2, M, 1], Q s = 100, Q = 25 × 25, λmea = 1, ε = 0; Rm = 1.5 with NLLSQ, Rm = 1.3 with
VarPro-F1 and VarPro-F2.

Fig. 28. Inverse Sine-Gordon problem: Network training time as a function of the number of training parameters for the NLLSQ, VarPro-F1 and VarPro-F2
algorithms. The test settings and parameters follow those of Fig. 27.

Table 12 lists the computed αi (i = 1, 2, 3) values by the NLLSQ algorithm corresponding to a set of M . Fig. 27 lists the
relative errors of α1, α2 and α3, as well as the l∞ and l2 norms of the relative error for u(x, t), computed by NLLSQ, VarPro-
F1 and VarPro-F2 corresponding to different M . It is evident that the errors decrease exponentially with increasing number
of training parameters with these algorithms.

Fig. 28 illustrates the computational cost of the three algorithms for solving the inverse Sine-Gordon problem by showing
the network training time as a function of the number of training parameters in the same set of tests as Fig. 27. The data

suggest a general quasi-linear growth in the training time with increasing number of training parameters. The VarPro-F2

34

Table 13
Inverse Sine-Gordon problem: α1, α2 and α3 relative errors versus the noise level (ε) obtained by the NLLSQ, VarPro-F1 and
VarPro-F2 algorithms. Single sub-domain, NN: [2, 400, 1], Q = 30 ×30, Q s = 50, λmea = 1; Rm = 1.5 with NLLSQ, Rm = 1.3 with
VarPro-F1 and VarPro-F2.

ε NLLSQ VarPro-F1 VarPro-F2

eα1 eα2 eα3 eα1 eα2 eα3 eα1 eα2 eα3

0.0 1.93E-12 4.90E-11 1.35E-10 1.50E-12 4.42E-12 2.23E-11 3.61E-11 9.72E-10 3.02E-9
0.001 6.90E-4 2.66E-3 3.00E-3 6.88E-4 2.64E-3 3.09E-3 6.86E-4 2.63E-3 3.08E-3
0.005 3.44E-3 1.31E-2 1.45E-2 3.44E-3 1.32E-2 1.54E-2 3.43E-3 1.32E-2 1.54E-2
0.01 6.88E-3 2.63E-2 2.93E-2 6.86E-3 2.63E-2 3.08E-2 6.84E-3 2.62E-2 3.04E-2
0.05 3.38E-2 1.27E-1 1.39E-1 3.38E-2 1.30E-1 1.53E-1 3.39E-2 1.32E-1 1.60E-1
0.1 6.65E-2 2.49E-1 2.76E-1 6.65E-2 2.55E-1 3.05E-1 6.65E-2 2.57E-1 3.12E-1
0.5 2.67E-1 8.07E-1 5.90E-1 2.65E-1 7.69E-1 4.39E-1 2.66E-1 7.95E-1 5.41E-1
1.0 4.09E-1 1.01E+0 2.18E-1 4.12E-1 1.07E+0 5.43E-1 4.15E-1 1.10E+0 6.27E-1

Table 14
Inverse Sine-Gordon problem: u relative errors versus ε obtained by the NLLSQ, VarPro-F1 and
VarPro-F2 algorithms. Simulation settings and parameters follow those of Table 13.

ε NLLSQ VarPro-F1 VarPro-F2

l∞-u l2-u l∞-u l2-u l∞-u l2-u

0.0 3.44E-11 4.16E-12 7.03E-11 5.01E-12 7.73E-10 1.57E-10
0.001 8.76E-4 3.71E-4 8.49E-4 3.70E-4 8.51E-4 3.69E-4
0.005 4.39E-3 1.86E-3 4.26E-3 1.85E-3 4.25E-3 1.85E-3
0.01 8.77E-3 3.71E-3 8.50E-3 3.70E-3 8.51E-3 3.70E-3
0.05 4.35E-2 1.87E-2 4.25E-2 1.87E-2 4.24E-2 1.86E-2
0.1 8.65E-2 3.78E-2 8.46E-2 3.77E-2 8.43E-2 3.76E-2
0.5 4.10E-1 1.95E-1 4.08E-1 1.95E-1 4.07E-1 1.95E-1
1.0 8.90E-1 3.83E-1 8.97E-1 3.84E-1 9.07E-1 3.86E-1

algorithm is more costly than VarPro-F1, which in turn is more costly than NLLSQ for this problem. The training time with
VarPro-F1 and VarPro-F2, especially VarPro-F2, is not quite regular. One can observe a fluctuation in the timing curves
corresponding to these methods.

The effect of noise in the measurement data on the simulation accuracy is illustrated by Tables 13 and 14 for the NLLSQ,
VarPro-F1 and VarPro-F2 algorithms. The relative errors of α1, α2, α3, and u(x, t) corresponding to a range of noise levels
are provided in these two tables. The other crucial simulation parameters are provided in the caption of Table 13. The
accuracy in the computation results deteriorates as the measurement data becomes more noisy. With 1% measurement
noise (ε = 0.01) the relative errors of the computed αi (i = 1, 2, 3) are around 0.7 ∼ 3%, and the relative error of u (l2

norm) is around 0.4% with the three algorithms. With 5% measurement noise (ε = 0.05) the relative errors of the computed
αi are around 3 ∼ 15% and the relative error of u (l2 norm) is less than 2%.

Appendix E. Comparison with PINN

This appendix provides a comparison of the simulation results obtained by the current method (NLLSQ algorithm) and
the physics-informed neural network (PINN) method [50] for several test problems. The PINN method is also implemented
in Python based on the Tensorflow and Keras libraries. The PINN loss function consists of those contributions from the
parametric PDE, the measurement, and the boundary/initial conditions (BC/IC). Let γbc ∈ (0, 1) denote the penalty coefficient
in front of the BC/IC loss term, and we employ (1 −γbc) as the penalty coefficient for the PDE and measurement loss terms.
We have varied γbc , the learning rate schedule, and the random initialization for the weights/biases of PINN systematically.
PINN is trained by the Adam optimizer. The PINN/Adam results reported below are the best we have obtained for these
problems using PINN. We have also tried the L-BFGS optimizer with PINN, and its results for these inverse problems are
quite poor and worse than the Adam results.

Tables 15 through 19 summarize the errors of the inverse parameters and the solution field, as well as the network
training time, obtained by the current and the PINN methods for the inverse Poisson, advection, nonlinear Helmholtz,
Burgers’, and the Sine-Gordon problems. The table captions provide the respective parameter values in these simulations
for the two methods. We observe that the current method produces more accurate results than PINN for both the inverse
parameters and the solution field, and that the network training time of the current method is markedly smaller than that
of PINN. For the noise-free data, the current method is significantly more accurate (typically by several orders of magnitude)
S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
than PINN.

35

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263

Table 15
Inverse Poisson problem: relative errors of α and u and the network training time (seconds) obtained by PINN (Adam)
and the current NLLSQ algorithm. In both PINN and NLLSQ, Q=30×30, Q s = 100, Gaussian activation function. In PINN,
neural network [2, 30, 30, 30, 1]; 20, 000 training epochs; γbc = 0.99; learning rate decreasing linearly from 0.01 to
1.0E-4 in first 10, 000 epochs, and fixed at 1.0E-4 afterwards. In NLLSQ, single sub-domain, neural network [2, 500, 1],
Rm = 3.0, λmea = 0.1.

method ε = 0 ε = 0.01

eα l∞-u l2-u time (sec) eα l∞-u l2-u time (sec)

PINN (Adam) 6.31E-3 1.08E-2 3.56E-3 134.5 5.53E-3 1.03E-2 3.30E-3 130.9
current (NLLSQ) 1.66E-8 3.66E-6 2.62E-7 11.5 9.72E-4 1.76E-3 5.26E-4 10.4

Table 16
Inverse advection problem: relative errors of c and u and the network training time (seconds) obtained by the PINN
(Adam) and the current NLLSQ algorithm. In both PINN and NLLSQ, Q=30×30, Q s = 100, Gaussian activation function.
In PINN, neural network [2, 30, 30, 30, 30, 1]; 20, 000 training epochs; γbc = 0.2; learning rate decreasing linearly from
0.01 to 1.0E-4 in first 10, 000 epochs, and fixed at 1.0E-4 afterwards. In NLLSQ, single sub-domain, neural network
[2, 400, 1], Rm = 2.5, λmea = 0.1.

method ε = 0 ε = 0.01

ec l∞-u l2-u time (sec) ec l∞-u l2-u time (sec)

PINN (Adam) 1.18E-5 7.18E-3 7.63E-4 133.5 1.47E-4 9.15E-3 1.67E-3 134.9
current (NLLSQ) 2.32E-10 8.51E-8 4.66E-9 29.6 2.61E-5 2.85E-4 1.10E-4 39.3

Table 17
Inverse nonlinear Helmholtz problem: relative errors of α1, α2 and u and the network training time (sec-
onds) obtained by PINN (Adam) and the current NLLSQ algorithm. In both PINN and NLLSQ, Q=30×30,
Q s = 100, Gaussian activation function. In PINN, neural network [2, 30, 30, 30, 30, 30, 30, 1]; 200, 000 train-
ing epochs; γbc = 0.99; learning rate decreasing linearly from 0.01 to 1.0E-4 in first 10, 000 epochs, and fixed
at 1.0E-4 afterwards. In NLLSQ, single sub-domain, neural network [2, 500, 1], Rm = 2.25, λmea = 0.25.

noise level method eα1 eα2 l∞-u l2-u training-time (sec)

ε = 0 PINN (Adam) 7.08E-1 2.68E-1 1.48E+0 5.65E-1 3049.2
current (NLLSQ) 5.71E-9 3.05E-7 5.98E-8 1.49E-8 10.3

ε = 0.01 PINN (Adam) 6.74E-1 7.76E-1 1.56E+0 6.79E-1 2742.9
current (NLLSQ) 4.34E-3 7.13E-4 5.25E-3 2.38E-3 10.0

Table 18
Inverse Burgers’ problem: relative errors of α1, α2 and u and the network training time (seconds) obtained
by PINN (Adam) and the current NLLSQ algorithm. In both PINN and NLLSQ, Q=30×30, Q s = 100, Gaussian
activation function. In PINN, neural network [2, 30, 30, 30, 30, 1]; 50, 000 training epochs; γbc = 0.9; learning
rate decreasing linearly from 0.01 to 1.0E-4 in first 10, 000 epochs, and fixed at 1.0E-4 afterwards. In NLLSQ,
single sub-domain, neural network [2, 400, 1], Rm = 1.9, λmea = 0.1.

noise level method eα1 eα2 l∞-u l2-u training-time (sec)

ε = 0 PINN (Adam) 2.40E-4 7.26E-4 1.59E-3 2.06E-4 529.0
current (NLLSQ) 4.31E-10 2.33E-9 3.31E-9 5.86E-10 4.2

ε = 0.01 PINN (Adam) 1.80E-3 2.66E-3 5.65E-3 7.83E-4 540.1
current (NLLSQ) 1.12E-5 1.23E-4 9.87E-5 3.75E-5 6.4

Table 19
Inverse Sine-Gordon problem: relative errors of αi (i = 1, 2, 3) and u and the network training time (seconds) obtained by
PINN (Adam) and the current NLLSQ algorithm. In both PINN and NLLSQ, Q=30×30, Q s = 100, Gaussian activation func-
tion. In PINN, neural network [2, 30, 30, 30, 30, 1]; 200, 000 training epochs; γbc = 0.99, learning rate decreasing linearly
from 0.01 to 1.0E-4 in first 10, 000 epochs, and fixed at 1.0E-4 afterwards. In NLLSQ, single sub-domain, neural network
[2, 400, 1], Rm = 1.5, λmea = 0.01.

noise level method eα1 eα2 eα3 l∞-u l2-u training-time (sec)

ε = 0 PINN (Adam) 9.21E-3 2.30E-1 7.33E-1 1.86E-2 3.32E-3 1853.3
current (NLLSQ) 7.65E-10 4.49E-9 6.60E-9 7.97E-10 3.50E-10 23.6

ε = 0.01 PINN (Adam) 1.16E-2 1.35E-1 3.51E-1 1.18E-2 2.97E-3 1833.2
current (NLLSQ) 5.45E-3 2.59E-2 5.09E-3 5.76E-3 2.63E-3 30.1
36

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
Appendix F. Parameter values in Algorithm 7 for numerical tests

Section 3.1 (Parametric Poisson Equation):
For NLLSQ:
In Fig. 3, Table 1, Figs. 4 and 5, Tables 3 and 4: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,2,1E-8,1.0,1,0).
In Table 2: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,5,1E-8,1.0,1,0).
For VarPro-F1:
In Fig. 4 and Table 4: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,2,1E-8,1.0,1,0).
In Fig. 5: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0)= (80,5,1E-8,1.0,1,0).
In Table 2: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (100,2,1E-8,4.0,1,0).
For VarPro-F2:
In Figs. 4 and 5, and Table 4: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,2,1E-8,1.0,1,0).
In Table 2: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,5,1E-8,1.0,1,0).

Section 3.2 (Parametric Nonlinear Helmholtz Equation):
For NLLSQ:
In Table 5, Figs. 9 and 10, Table 6, Fig. 12: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0)= (80,2,1E-8,0.5,1,0).
For VarPro-F1:
In Figs. 8, 9, 10 and 12: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,2,1E-8,0.5,1,0).
For VarPro-F2:
In Figs. 9, 10 and 12: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,0,1E-8,0.5,1,0); max-newton-iterations=15.

Section 3.3 (Parametric Viscous Burgers’ Equation):
For NLLSQ:
In Fig. 13, Table 7, Figs. 14, 15 and 17: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,2,1E-8,0.5,1,0).
For VarPro-F1:
In Figs. 14, 15 and 17: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,2,1E-8,1.0,1,0).
For VarPro-F2:
In Figs. 14, 15 and 17: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,2,1E-12,1.0,0,ξ0); max-newton-iterations=15.
Here ξ0 is a uniform random vector from [-1,1].

Section 3.4 (Helmholtz Equation with Inverse Variable Coefficient):
For NLLSQ:
In Fig. 18, Table 8 and Fig. 19: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,2,1E-8,1.0,1,0).
For VarPro-F1:
In Fig. 19: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,2,1E-8,0.01,1,0).
For VarPro-F2:
In Fig. 19: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (50,2,1E-8,0.5,1,0).

Appendix C (Parametric Advection Equation):
For NLLSQ:
In Figs. 21, 22, 23 and 25, Tables 9, 10, and 11: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,10,1E-8,10.0,0,ϑ0).
For VarPro-F1:
In Fig. 22: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,2,1E-8,5.0,0,ϑ0).
In Fig. 23 and Table 11: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (100,5,1E-8,5.0,0,ϑ0).
For VarPro-F2:
In Fig. 22: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,2,1E-8,5.0,0,ξ0).
In Fig. 23: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,2,1E-8,1.0,1,ξ0).
In Table 11: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,5,1E-8,1.0,1, ξ0).
In the above, ξ0 is a uniform random vector from [-1,1]. ϑ0 is a uniform random vector generated by the lines 7 through
14 of Algorithm 7 with the δ as specified above and η = 0.

Appendix D (Parametric Sine-Gordon Equation):
For NLLSQ:
In Tables 12, 13 and 14, and Fig. 27: (max-nllsq-iterations,max-sub-iterations,ε,δ,η,θ0) = (80,5,1E-8,5.0,0,0).
For VarPro-F1:
In Fig. 27, and Tables 13 and 14: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,5,1E-8,5.0,0,0).
For VarPro-F2:
In Figs. 26 and 27, and Tables 13 and 14: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,5,1E-8,1.0,0,0); max-
newton-iterations=15.

Appendix E (Comparison with PINN):
For NLLSQ:

In Table 15: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,5,1E-8,1.0,1,0).

37

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
In Table 16: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,10,1E-8,10.0,0,ϑ0). Here ϑ0 is a uniform random vector
generated by the lines 7 through 14 of Algorithm 7 with the δ as specified here and η = 0.
In Table 17: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,2,1E-8,0.5,1,0).
In Table 18: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,2,1E-8,0.5,1,0).
In Table 19: (max-nllsq-iterations,max-sub-iterations, ε,δ,η,θ0) = (80,5,1E-8,5.0,0,0).

References

[1] J. Berg, K. Nystrom, Neural network augmented inverse problems for PDEs, arXiv:1712 .09685, 2018.
[2] J. Berg, K. Nystrom, Data-driven discovery of PDEs in complex datasets, J. Comput. Phys. 384 (2019) 239–252.
[3] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM, 1996.
[4] J. Bongard, H. Lipton, Automated reverse engineering of nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA 104 (2007) 9943–9948.
[5] G.-J. Both, S. Choudhury, P. Sens, R. Kusters, DeepMoD: deep learning for model discovery in noisy data, J. Comput. Phys. 428 (2021) 109985.
[6] M.A. Branch, T.F. Coleman, Y. Li, A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems, SIAM

J. Sci. Comput. 21 (1999) 1–23.
[7] S.L. Brunton, J.L. Proctor, J.N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad.

Sci. USA 113 (2016) 3932–3937.
[8] R.H. Byrd, R.B. Schnabel, G.A. Shultz, Approximate solution of the trust region problem by minimization over two-dimensional subspaces, Math. Pro-

gram. 40 (1988) 247–263.
[9] S. Cai, Z. Wang, F. Fuest, Y.J. Jeon, C. Gray, G.E. Karniadakis, Flow over an espresso cup: inferring 3-d velocity and pressure fields from tomographic

background oriented Schileren via physics-informed neural networks, J. Fluid Mech. 915 (2021) A102.
[10] F. Calabro, G. Fabiani, C. Siettos, Extreme learning machine collocation for the numerical solution of elliptic PDEs with sharp gradients, Comput.

Methods Appl. Mech. Eng. 387 (2021) 114188.
[11] Y. Chen, L. Lu, G.E. Karniadakis, L.D. Negro, Physics-informed neural networks for inverse problems in nano-optics and metamaterials, Opt. Express 28

(2020) 11618–11633.
[12] S. Dong, An efficient algorithm for incompressible N-phase flows, J. Comput. Phys. 276 (2014) 691–728.
[13] S. Dong, Physical formulation and numerical algorithm for simulating N immiscible incompressible fluids involving general order parameters, J. Comput.

Phys. 283 (2015) 98–128.
[14] S. Dong, Wall-bounded multiphase flows of N immiscible incompressible fluids: consistency and contact-angle boundary condition, J. Comput. Phys.

338 (2017) 21–67.
[15] S. Dong, Multiphase flows of N immiscible incompressible fluids: a reduction-consistent and thermodynamically-consistent formulation and associated

algorithm, J. Comput. Phys. 361 (2018) 1–49.
[16] S. Dong, Z. Li, Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations, Comput.

Methods Appl. Mech. Eng. 387 (2021) 114129, also, arXiv:2012 .02895.
[17] S. Dong, Z. Li, A modified batch intrinsic plasticity method for pre-training the random coefficients of extreme learning machines, J. Comput. Phys. 445

(2021) 110585, also, arXiv:2103 .08042.
[18] S. Dong, J. Yang, Numerical approximation of partial differential equations by a variable projection method with artificial neural networks, Comput.

Methods Appl. Mech. Eng. 398 (2022) 115284, also, arXiv:2201.09989.
[19] S. Dong, J. Yang, On computing the hyperparameter of extreme learning machines: algorithms and applications to computational PDEs, and comparison

with classical and high-order finite elements, J. Comput. Phys. 463 (2022) 111290, also, arXiv:2110 .14121.
[20] V. Dwivedi, N. Parashar, B. Srinivasan, Distributed learning machines for solving forward and inverse problems in partial differential equations, Neuro-

computing 420 (2021) 299–316.
[21] V. Dwivedi, B. Srinivasan, Physics informed extreme learning machine (pielm) − a rapid method for the numerical solution of partial differential

equations, Neurocomputing 391 (2020) 96–118.
[22] G. Fabiani, F. Calabro, L. Russo, C. Siettos, Numerical solution and bifurcation analysis of nonlinear partial differential equations with extreme learning

machines, J. Sci. Comput. 89 (2021) 44.
[23] G.H. Golub, V. Pereyra, The differentiation of pseudo-inverse and nonlinear least squares problems whose variables separate, SIAM J. Numer. Anal. 10

(1973) 413–432.
[24] G.H. Golub, V. Pereyra, Separable nonlinear least squares: the variable projection method and its applications, Inverse Probl. 19 (2003) R1–R26.
[25] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications, Neurocomputing 70 (2006) 489–501.
[26] G.B. Huang, L. Chen, C.-K. Siew, Universal approximation using incremental constructive feedforward networks with random hidden nodes, IEEE Trans.

Neural Netw. 17 (2006) 879–892.
[27] B. Igelnik, Y.H. Pao, Stochastic choice of basis functions in adaptive function approximation and the functional-link net, IEEE Trans. Neural Netw. 6

(1995) 1320–1329.
[28] A.D. Jagtap, G.E. Karniadakis, Extended physics-informed neural network (XPINNs): a generalized space-time domain decomposition based deep learn-

ing framework for nonlinear partial differential equations, Comput. Phys. Commun. 28 (2020) 2002–2041.
[29] A.D. Jagtap, E. Kharazmi, G.E. Karniadakis, Conservative physics-informed neural networks on discrete domains for conservation laws: applications to

forward and inverse problems, Comput. Methods Appl. Mech. Eng. 365 (2020) 113028.
[30] A.D. Jagtap, Z. Mao, N. Adams, G.E. Karniadakis, Physics-informed neural networks for inverse problems in supersonic flows, J. Comput. Phys. 466

(2022) 111402.
[31] G.E. Karniadakis, G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning, Nat. Rev. Phys. 3 (2021) 422–440.
[32] L. Kaufman, A variable projection method for solving separable nonlinear least squares problems, BIT 15 (1975) 49–57.
[33] C.-T. Kim, J.-J. Lee, Training two-layered feedforward networks with variable projection method, IEEE Trans. Neural Netw. 19 (2008) 371–375.
[34] D. Li, K. Xu, J.M. Harris, E. Darve, Coupled time-lapse full-waveform inversion for subsurface flow problems using intrusive automatic differentiation,

Water Resour. Res. 56 (2020) e2019WR027032.
[35] Z. Long, Y. Lu, B. Dong, PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network, J. Comput. Phys. 399 (2019) 108925.
[36] L. Lu, X. Meng, Z. Mao, G.E. Karniadakis, DeepXDE: a deep learning library for solving differential equations, SIAM Rev. 63 (2021) 208–228.
[37] Z. Mao, A.D. Jagtap, G.E. Karniadakis, Physics-informed neural networks for high-speed flows, Comput. Methods Appl. Mech. Eng. 360 (2020) 112789.
[38] A. Mathews, M. Francisquez, J. Hghes, D. Hatch, Uncovering edge plasma dynamics via deep learning from partial observations, arXiv:2009 .05005, 2020.
[39] X. Meng, G.E. Karniadakis, A composite neural network that learns form multi-fidelity data: application to function approximation and inverse pde

problems, J. Comput. Phys. 401 (2020) 109020.
[40] D. Needell, A.A. Nelson, R. Saab, P. Salanevich, Random vector functional link networks for function approximation on manifolds, arXiv:2007.15776,
2020.

38

S. Dong and Y. Wang Journal of Computational Physics 489 (2023) 112263
[41] E. Newman, J. Chung, M. Chung, L. Ruthotto, SlimTrain – a stochastic approximation method for training separable deep neural networks, SIAM J. Sci.
Comput. 44 (2022) A2322–A2348.

[42] E. Newman, L. Ruthotto, J. Hart, B. van Bloemen Waanders, Train like a (Var)Pro: efficient training of neural networks with variable projection, SIAM J.
Math. Data Sci. 3 (2021) 1041–1066.

[43] N. Ni, S. Dong, Numerical computation of partial differential equations by hidden-layer concatenated extreme learning machine, J. Sci. Comput. 95
(2023) 35.

[44] D.P. O’Leary, B.W. Rust, Variable projection for nonlinear least squares problems, Comput. Optim. Appl. 54 (2013) 579–593.
[45] S. Panghal, M. Kumar, Optimization free neural network approach for solving ordinary and partial differential equations, Eng. Comput. 37 (2021)

2989–3002.
[46] Y.H. Pao, G.H. Park, D.J. Sobajic, Learning and generalization characteristics of the random vector functional-link net, Neurocomputing 6 (1994) 163–180.
[47] R.G. Patel, I. Manickam, N.A. Trask, M.A. Wood, M. Lee, I. Tomas, E.C. Cyr, Thermodynamically consistent physics-informed neural networks for hyper-

bolic systems, J. Comput. Phys. 449 (2022) 110754.
[48] V. Pereyra, G. Scherer, F. Wong, Variable projections neural network training, Math. Comput. Simul. 73 (2006) 231–243.
[49] M. Raissi, G.E. Karniadakis, Hidden physics models: machine learning of nonlinear partial differential equations, J. Comput. Phys. 357 (2018) 125–141.
[50] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[51] M. Raissi, A. Yazdani, G.E. Karniadakis, Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations, Science 367 (2020)

1026–1030.
[52] S. Rudy, A. Alla, S.L. Brunton, J.N. Kutz, Data-driven identification of parametric partial differential equations, SIAM J. Appl. Dyn. Syst. 18 (2019)

643–660.
[53] S.H. Rudy, S.L. Brunton, J.L. Proctor, J.N. Kutz, Data-driven discovery of partial differential equations, Sci. Adv. 3 (2017) e1602614.
[54] A. Ruhe, P.A. Wedin, Algorithms for separable nonlinear least squares problems, SIAM Rev. 22 (1980) 318–337.
[55] H. Schaeffer, Learning partial differential equations via data discovery and sparse optimization, Proc. R. Soc. A 473 (2017) 20160446.
[56] E. Schiassi, A. D’Ambrosio, M. De Florio, R. Furfaro, F. Curti, Physics-informed extreme theory of functional connections applied to data-driven parame-

ters discovery of epidemiological compartmental models, arXiv:2008 .05554, 2020.
[57] E. Schiassi, R. Furfaro, C. Leake, M. De Florio, H. Johnson, D. Mortari, Extreme theory of functional connections: a fast physics-informed neural network

method for solving ordinary and partial differential equations, Neurocomputing 457 (2021) 334–356.
[58] M. Schmidt, H. Lipton, Distilling free-form natural laws from experimental data, Science 324 (2009) 81–85.
[59] J. Sjoberg, M. Viberg, Separable nonlinear least squares minimization - possible improvements for neural net fitting, in: Neural Networks for Signal

Processing VII. Proceedings of IEEE Signal Processing Workshop, 1997.
[60] A.M. Tartakovsky, C.O. Marrero, P. Perdikaris, G.D. Tartakovsky, D. Barajas-Solano, Physics-informed deep neural networks for learning parameters and

constitutive relationships in subsurface flow problems, Water Resour. Res. 56 (2020) e2019WR026731.
[61] K. Weigl, M. Berthod, Neural networks as dynamical bases in function space, Report No 2124 INRIA, Sophis-Antipolis, France, 1993, https://hal .inria .fr /

inria -00074548 /document.
[62] K. Weigl, M. Berthod, Projection learning: alternative approach to the computation of the projection, in: Proc. European Symp. on Artificial Neural

Networks, Brussels, Belgium, 1994, pp. 19–24.
[63] K. Weigl, G. Giraudon, M. Berthod, Application of projection learning to the detection of urban areas in SPOT satellite images, Report No 2143 INRIA,

Sophia-Antipolis, France, 1993, https://hal .inria .fr /inria -00074529.
[64] K. Wu, D. Xiu, Data-driven deep learning of partial differential equations in modal space, J. Comput. Phys. 408 (2020) 109307.
[65] L. Yang, X. Meng, G.E. Karniadakis B-PINNs, Bayesian physics-informed neural networks for forward and inverse pde problems with noisy data, J.

Comput. Phys. 425 (2021) 109913.
[66] Y. Yang, M. Hou, J. Luo, A novel improved extreme learning machine algorithm in solving ordinary differential equations by Legendre neural network

methods, Adv. Differ. Equ. 469 (2018) 1–24.
[67] Z. Yang, S. Dong, Multiphase flows of N immiscible incompressible fluids: an outflow/open boundary condition and algorithm, J. Comput. Phys. 366

(2018) 33–70.
[68] L. Yuan, Y.-Q. Ni, X.-Y. Deng, S. Hao, A-PINN: auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-

differential equations, J. Comput. Phys. 462 (2022) 111260.

[69] S. Zhang, G. Lin, Robust data-driven discovery of governing physical laws with error bars, Proc. R. Soc. A 474 (2018) 20180305.

39

