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Enabled initially by the development of microelectromechanical
systems, current microfluidic pumps still require advanced micro-
fabrication techniques to create a variety of fluid-driving mecha-
nisms. Here we report a generation of micropumps that involve no
moving parts and microstructures. This micropump is based on a
principle of photoacoustic laser streaming and is simply made of
an Au-implanted plasmonic quartz plate. Under a pulsed laser exci-
tation, any point on the plate can generate a directional long-lasting
ultrasound wave which drives the fluid via acoustic streaming. Ma-
nipulating and programming laser beams can easily create a single
pump, a moving pump, and multiple pumps. The underlying pump-
ing mechanism of photoacoustic streaming is verified by high-speed
imaging of the fluid motion after a single laser pulse. As many light-
absorbing materials have been identified for efficient photoacoustic
generation, photoacoustic micropumps can have diversity in their
implementation. These laser-driven fabrication-free micropumps
open up a generation of pumping technology and opportunities
for easy integration and versatile microfluidic applications.
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Amicropump is the heart of any microfluidic device and has
wide applications in basic research and technological ad-

vancement (1–4). Based on their operating principle, micropumps
can be divided into two groups: mechanical and nonme-chanical
(1, 4). Developed in the 1980s with the emergence of micro-
electromechanical systems, a mechanical micropump is a minia-
turized version of a macroscopic pump, made of moving parts such
as valves and membranes that can displace fluid directly. Although
nonmechanical micropumps have no moving parts, they still re-
quire carefully fabricated microstructures and electrical contacts
to generate thermal, electrical, magnetic, or acoustic stimulus to
drive the fluids (1–4). While the performance of micropumps
improved as the fabrication technique evolved, the principle and
design of micropumps have remained almost the same over past
decades (1–4). Here we report a micropump and an operating
principle and design. It has no moving parts or electrodes, thus
requires no micro- or nanofabrication. Furthermore, unlike pre-
vious micropumps, the size, number, location, and timing of our
micropumps can be remotely controlled, reconfigured, and pro-
grammed in real time, which make them more accessible for a
wide range of fluid applications.
This pump is a semitransparent plasmonic quartz window; it

is based on our recently discovered principle of photoacoustic
laser streaming: an ultrasound wave generated by a resonant
laser pulse drives fluid through acoustic streaming (5–9). Be-
cause the whole surface of the quartz window is covered with a
plasmonic layer, an ultrasound wave can be generated from any
point on the window, making it a micropump launch pad. This
photoacoustic window overcomes major shortcomings of pre-
vious photoacoustic cavities which had to be created individu-
ally by the same laser beam (5); it has allowed us to verify the

underlying pumping mechanism and to explore the interaction
of fluids with laser and ultrasound in an unprecedented time–
space regime (5–11).

Results and Discussion
The photoacoustic launch pad was created by Au ion implantation
in a 0.5-mm-thick quartz window at 60 keV to a dose of 6 ×1016

per cm square (12–16). The acceleration voltage was chosen so
that Au ions are implanted within 50 nm below the surface (12). A
relatively high dose was used so that a sufficient Au nanoparticle
concentration and corresponding optical absorption can be
obtained. Fig. 1A (Inset) shows an optical picture of the quartz with
the reddish implanted region in the center, the characteristic color
of gold nanoparticles. The absorption spectrum in Fig. 1A indi-
cates a clear peak absorption near 530 nm due to surface plasmon
resonance of Au clusters and nanoparticles (16–18). To use the
window as a micropump launch pad, we filled the cuvette with the
deionized water without Au nanoparticles (5), and placed the
quartz in a 1-cm square glass cuvette with a tunable tilt angle (Fig. 1
B and C). A 527-nm pulsed laser (150-ns pulse width) was focused
(10-cm focal length lens) on the quartz window instead of the cu-
vette wall to generate photoacoustic waves and jets (5). Red fluo-
rescent polymer microspheres (catalog no. R0300, 3.2 μm, emission
wavelength: 612 nm; Thermo Scientific) and a 633-nm HeNe laser
were used to image the motion of water with a high-speed color
camera (PixeLINK PL-B742U). Photoacoustic waves were
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detected by a hydrophone (V312-SU-F0.46-IN-PTF from Olym-
pus, 10-MHz bandwidth), and then amplified by a preamplifier
before being recorded by a high-speed oscilloscope (Tektronix
TDS3052) (5). Unless otherwise stated, a long-pass filter was used
to block 527-nm light for flow imaging; the laser repetition rate is
1,000 Hz (5).
Surprisingly, micropumps are ready to work when the jets are

created by incident laser pulses from an arbitrary point on the
window. Fig. 1 D–G shows snapshots of jets of the quartz

substrate for four different tilt angles. Unlike previous jets cre-
ated by self-formed photoacoustic cavities (5), the jets launched
by this micropump from the quartz window always flow normal
to the window surface regardless of the direction of laser beams.
A simple conclusion from this observation is that the jets are not
driven by momentum transfer from incident photons (19, 20).
Because the laser-induced heating and subsequent photothermal
expansion of Au-implanted quartz layer do not depend on the
angle of incident lasers, the observation of jets perpendicular to
the surface agrees with the mechanism of photoacoustic streaming
and does not contradict previous observations (5). On the other
hand, this window–jet relationship makes it easy for the micro-
pump to pump fluids in the same direction without worrying about
the direction of a laser beam; the direction of pumping can be
simply changed with the direction of the window.
According to our demonstration, there is a threshold of laser

power to initiate a jet (5). This is confirmed by observations shown
in Fig. 2 A–C. No streaming was observed at a low power of 6.3
mW, but a substantial streaming can be seen at a power of 10 mW,
and becomes even stronger at 40 mW. Our previous study also
indicates that the jet size is weakly dependent on laser spot size (5).
That observation is still valid, but the size and shape of a jet are
clearly affected by more factors. First, from Fig. 2 B and C, we can
see that jet speed is an important factor: Jets with high speeds start
off with a smaller initial diameter and are less divergent as they
move forward. Second, a large laser spot or micropump, as in-
dicated by a wide yellow fluorescence path in Fig. 2D, can make a
jet less divergent and more collimated in the far field, but the initial
jet size can still be as small as in Fig. 2C. These observations can be
roughly understood from the stream lines of the jets as well as the
interplay between fluid mass conservation, inertia, and acoustic
radiation forces. When a fast jet is launched from the window, the
water must be supplied from its surrounding region, which makes
the jet originate from the center of a laser spot and have an initial
size much smaller than the laser spot. Once the jet leaves the
window, its motion is governed by the inertia of the fluid and
acoustic radiation forces. Because a larger laser spot produces a
more collimated ultrasound wave (8), the streaming becomes less
divergent.
The instantaneous action of a micropump without photoacoustic

cavity preparation has given us unprecedented freedom to create
micropump patterns and various fluid movements (21). We can

Fig. 1. Au-ion–implanted quartz window and jets launched from the win-
dow. (A) UV-visible absorption spectrum of the implanted window. (Inset)
Optical picture of the quartz window. Reddish area in the center is the
implanted region. (B and C) Schematics of the experimental setup to gen-
erate jets at different angles between an excitation laser beam and the
quartz window. (D–G) Snapshots of jets at the incident angles of 0°, 30°, 40°,
and 50°. Dashed white lines indicate the window surface in contact with
water; the horizontal yellow rays are laser beams due to fluorescence from
microspheres under 527-nm green light excitation.

Fig. 2. Jet-stream pattern by micropumps under different laser powers and
spot sizes. (A–C) Laser spot size of 50-μm diameter and laser power of (A) 6.3
mW, (B) 10 mW, and (C) 40 mW. (D) Laser power of 330 mW and spot size of
300 μm × 50 μm.
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create a sweeping micropump as we sweep a laser beam (Fig. 3 A–
C). Because of the inertia of the fluid, a moving jet cannot reach as
far as a steady jet does. To generate two micropumps/jets at the
same time, we simply split the beam into two. Fig. 3 D–F shows
that two jets are generated by two beams, and the strength of each
jet can be independently controlled by each beam. However, due
to proximity of the two jets, they either merge into a wider jet
when both are equally strong (Fig. 3E), or a weaker jet is swal-
lowed by a stronger one as in Fig. 3 D and F. If we consider each
jet as one fountain, we can create all kinds of dancing fountains
simply by playing with laser beams.
The on-demand jet generation and controlled generation of

laser pulses further allow us to explore the mechanism of pumping
by examining a single laser pulse’s jet. Fig. 4 shows a sequence of
high-speed images of fluid at every 20 ms before and after the
striking of a laser pulse. It can be seen from Fig. 4A that the fluid
is almost stationary initially. The fluid begins to move only after
the arrival of a laser pulse, as indicated by the green color of some
tracing particles in Fig. 4B. However, unlike movement near the
window in a continuous streaming, the water near the window
remains motionless. The region with the highest fluid speed is
about ∼1 mm away from the window, as marked by the green box
in Fig. 4B. Fig. 4 E and F further shows that the fluid speed quickly
decreases and becomes very small after 40 ms. Such a detailed
picture of the dynamics of acoustic streaming, or Eckart streaming
to be precise (22), has not been reported, although some studies
on transient acoustic streaming have appeared (10, 11).
In addition to steady-state stream lines and average flow

speed, detailed inspection of the trajectories of tracing particles
provides us more information about the local instantaneous
speed of particle along its trajectory. This is because during the
10-ms exposure time for each image, the camera is constantly
recoding the position of particles. The fluorescent intensity of a
pixel is proportional to the time a particle spends in one position.
For a motionless particle, it appears as a bright spot in the image;

for a fast-moving particle, the trace is dimmer because of low
exposure time, but for a slowly moving particle, the trace appears
brighter because of increased exposure time for each pixel. In
principle, the integrated fluorescent intensity from a particle
trajectory is the same no matter if it is moving or not because the
total fluorescent- or scattered light is the same for the same
exposure time. Such a correlation can be verified by trajectories
in Fig. 4 A, E, and F. The tracer particles appear bright when
they are not moving. Because of the decelerating stream in Fig. 4
E and F, the trajectories become dimmer at the left side (be-
ginning) but brighter on the right side (end).
With this correlation in mind, let us take a closer look at the

traces in Fig. 4B, and especially at two trajectories indicated by
yellow arrows. The trajectories begin with green spots and bright-
red color, become dimmer in the first 1/5 of their paths (indicated
by the tips of yellow arrows), but after that, the trajectories be-
come stronger and stronger. These color and intensity codes give
us a vivid picture of the dynamics of a jet: The fluid begins to
accelerate shortly after the strike of the laser pulse and quickly
reaches its maximum speed, as revealed by a weaker trajectory.
After that, the speed of fluid begins to decrease, as indicated by
stronger trajectories. This picture agrees well with our current
understanding of photoacoustic laser streaming (5). An ultrasound
pulse will be generated immediately when the laser hits the quartz
window, but it will take about 0.5 μs to reach the two tracing
particles. This time delay can be neglected compared with the 10-
ms total exposure time. According to the principles of acoustic
streaming, the volumetric force exerted on fluid is proportional to
the ultrasound intensity and is in the same direction as ultrasound
propagation. Because the ultrasound will last for about 0.5 ms (5),
it is safe to assume that the fluid gets accelerated during this pe-
riod and reaches the highest speed at the end of ultrasound. The
damping of fluid begins after the passing of the ultrasound; that is
why we see the green laser first, followed by a short period of
acceleration, and then a longer period of deceleration.

Fig. 3. A moving micropump and double micropumps. (A–C) Snapshots of streaming at 0, 1, and 2 s when a laser beam is moving downward at a speed of
∼1 mm/s. Green arrows indicate the positions of laser spots, and white arrows show the laser spot’s velocity direction. (D–F) Streaming by two laser beams
with different up/down laser powers.
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Fig. 5 summarizes our observation and understanding of
photoacoustic micropumping from the Au quartz window. The
mechanism is the same photoacoustic streaming as before except
that Au nanoparticles/clusters are now embedded in the quartz
surface layer instead of being attached to the cuvette cavity
surface. Again, the key to the success of laser streaming is that a
long-lasting ultrasound wave can be generated by a single laser
pulse (5). Laser-induced heating and photothermal expansion of
the embedded Au particles induces a stress inside the quartz
plate and causes ultrasonic vibrations of the quartz plate. Such
a local surface vibration and heating will induce vibration of
water in two directions: longitudinal vibration normal to the
quartz surface and shear vibration parallel to the surface.
However, the shear motion of the plate cannot be effectively
propagated into the liquid because this motion decays expo-
nentially in the liquid and the penetration distance is typically
less than 1 μm at room temperature (23). Only the longitudinal
vibrations of the quartz plate can be effectively propagated

through the liquid. This vibration induces a longitudinal ul-
trasonic wave in the liquid, leading to a liquid jet normal to the
plate surface (24, 25).
A clear picture of the formation of a jet by a single pulse has

given us strong evidence to disqualify alternative theories for laser-
induced pumping or streaming. The possibility of jet by bubble
cavitation, laser ablation, or laser-induced forward transfer can be
immediately eliminated because no microbubble, no cavitation,
and no plume is observed (26–31). Most importantly, all these
theories imply that a jet should be launched from the surface of
the quartz window; in other words, the fluid near the window
surface should have the highest speed. This implication clearly
contradicts our observation that the fluid remains motionless
there despite it being in direct contact with the vibrating quartz
surface. The same argument of single pulse jet formation can be
applied to acoustophoresis, photophoresis, and other phenomena
by which tracing microspheres should be pushed forward first and
then will drag fluid along (6, 7, 32–36). Since neither the

Fig. 4. Creation of a jet by a single laser pulse. The long-pass filter was removed so that green light from laser pulses can also be observed. (A, B, E, and F)
Time-sequenced snapshots of fluid motion before and after a laser pulse. Exposure time is 10 ms. The green arrow in B indicates the laser’s focused spot on the
quartz plate. The bright-white color of microspheres is due to strong fluorescence and CCD saturation. (C and D) Zoomed-in images of the regions indicated
by boxes in A and B. Laser pulse energy: 0.5 mJ.
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microspheres nor the fluid near the windows exhibit any obvious
movement, those theories do not hold true.
Although the principle of photoacoustic microfluidic pumps has

been established, the technique was not ready for microfluidic ap-
plication (5). First, plasmonic nanoparticle aqueous suspension has
to be used to fabricate a photoacoustic cavity and must be removed
once the cavity is finished. Second, such a fabricated cavity cannot
be used with a different laser beam because of potentially poor
optical alignment. Finally, only one cavity is created each time at
specific position; multiple cavities will require multiple beams to
avoid optical misalignment between a cavity and the laser beam that
creates it. It would be convenient to simply coat a quartz plate with
Au film by thermal evaporation; however, due to the weak at-
tachment to the substrate, the Au film will be quickly removed by
laser ablation or laser-induced forward transfer (5, 28–31). All of
the above limitations are overcome by implanting Au into a quartz
plate to create a launch pad for long-lasting photoacoustic
microfluidic pumps.

Conclusions
To summarize, we fabricated a photoacoustic window by Au
implantation in a quartz substrate and used it as a launch pad for
micropumps to drive liquid flows. A static pump, a moving

pump, and two alternating micropumps are demonstrated as
simple examples of reconfigurable and programmable control
by laser. The fabrication-free micropumps allowed us to further
understand the pumping mechanism and complicated interac-
tions between laser pulses, plasmonic structures, ultrasound,
and fluid dynamics. Note that the principle of photoacoustic
streaming is generalizable; many light-absorbing materials are
available for the generation of photoacoustic waves such as
carbon-nanotubes or carbon-based composites (37, 38), Au
nanoparticles (39–43), graphene (44), MoS2 nanocomposite
(45), semiconducting polymers (46), and dye molecules (47).
For compact integration, semiconductor laser diodes can be
used to excite photoacoustic materials (48–50). As such, our
demonstration marks the beginning of a generation of micro-
pumps, opens up their broader applications in optofluidics and
microfluidics (22, 51–55).
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