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We present an efficient algorithm within the phase field framework for simulating the 
motion of a mixture of N (N � 2) immiscible incompressible fluids, with possibly very 
different physical properties such as densities, viscosities, and pairwise surface tensions. 
The algorithm employs a physical formulation for the N-phase system that honors the 
conservations of mass and momentum and the second law of thermodynamics. We present 
a method for uniquely determining the mixing energy density coefficients involved in the 
N-phase model based on the pairwise surface tensions among the N fluids. Our numerical 
algorithm has several attractive properties that make it computationally very efficient: 
(i) it has completely de-coupled the computations for different flow variables, and has 
also completely de-coupled the computations for the (N − 1) phase field functions; (ii) the 
algorithm only requires the solution of linear algebraic systems after discretization, and 
no nonlinear algebraic solve is needed; (iii) for each flow variable the linear algebraic 
system involves only constant and time-independent coefficient matrices, which can be 
pre-computed during pre-processing, despite the variable density and variable viscosity of 
the N-phase mixture; (iv) within a time step the semi-discretized system involves only 
individual de-coupled Helmholtz-type (including Poisson) equations, despite the strongly-
coupled phase–field system of fourth spatial order at the continuum level; (v) the 
algorithm is suitable for large density contrasts and large viscosity contrasts among the 
N fluids. Extensive numerical experiments have been presented for several problems 
involving multiple fluid phases, large density contrasts and large viscosity contrasts. In 
particular, we compare our simulations with the de Gennes theory, and demonstrate 
that our method produces physically accurate results for multiple fluid phases. We also 
demonstrate the significant and sometimes dramatic effects of the gravity, density ratios, 
pairwise surface tensions, and drop sizes on the N-phase configurations and dynamics. 
The numerical results show that the method developed herein is capable of dealing with 
N-phase systems with large density ratios, large viscosity ratios, and pairwise surface 
tensions, and that it can be a powerful tool for studying the interactions among multiple 
types of fluid interfaces.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The current work concerns the simulation of a mixture of N (N � 2) immiscible incompressible fluids, with possibly 
very different physical properties such as densities, viscosities and inter-fluid surface tensions. Such incompressible N-phase 
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flows admit multiple types of fluid interfaces and three-phase lines or junctures, and they underline many phenomena and 
processes of practical engineering significance and fundamental physical interest.

From the applications perspective, the N-phase problem has particular relevance and importance in light of the present 
issues on the environment and energy. A dramatic example in this regard is the BP oil spill in the Gulf of Mexico in 
2010 (involving at least three fluid phases: oil, water, gas/air), which released an estimated 4.9 million barrels of oil into 
the ocean [1], causing enormous and extensive damage to the environment, marine and wild life habitats, fishing and 
tourism industries. Another example is in the enhanced oil recovery and geological CO2 storage in depleted oil/gas reservoirs. 
Most enhanced oil-recovery techniques involve multiple fluid phases, where a gas, which could be air, natural gas or CO2, 
is injected into a reservoir containing oil and water. The use of CO2 injected into mature oil fields is likely to become 
increasingly common and important not only to improve oil recovery but for carbon sequestration. Emulsions and foams are 
other examples of applications, where one or more fluid phases are dispersed in another continuous phase [49,54]. These 
problems are also encountered in our everyday environment such as showers, kitchens, pharmaceutical sprays, rain drops, 
air bubbles and ocean waves. Oftentimes the bubble/droplet generation, coalescence, and breakup are involved.

From the fundamental physics perspective, the dynamics of N-phase flows probes a wide range of fundamental physical 
properties such as multiple pairwise surface tensions, three-phase lines, viscosity contrasts, and density contrasts. It involves 
the interactions among multiple types of fluid interfaces, and the formation of contact angles among multiple materials. 
N-phase flows are associated with many important physical phenomena such as wetting, spreading, and contact lines [15].

While the method developed herein equally applies to two-phase systems, our main focus in the paper will be on 
situations involving more than two fluid phases (N � 3). For two-phase flows, we will refer to e.g. [3,32,44,48,51,52,55] and 
the references therein for related reviews and more detailed expositions.

While we concentrate on the hydrodynamic interactions of multiple fluid components or phases, some of the issues 
encountered can be analogous to those facing the materials community for multi-component materials, whose history can 
be traced to the early work in the 1960s; we refer to e.g. [4,6,12–14,21–23,28,29,47] and the references therein for the work 
in multicomponent materials. For N-phase (N � 3) flows, while a significant portion of the existing work is based on the 
phase field (or diffuse interface) approach [9–11,34–37,40], there also exist sizable efforts utilizing other techniques such as 
level set or volume of fluids [8,30,46,50,53,56,58,59,61]. We focus on the phase field approach in the current paper.

With the phase field approach, the sharp interface between two immiscible incompressible fluids is replaced by a thin 
smooth transition layer (diffuse interface). The state of the system is represented by one or more phase field variables (or 
order parameters), which vary continuously over the thin transition layer and are mostly uniform in the bulk phases. The 
system is characterized by, besides the kinetic energy, the free energy density function, which represents the effects due to 
the interfacial tensions between the fluids. The free energy density function contains component terms whose effect tends 
to mix the fluids, and other component terms whose effect tends to separate the fluids [43,44]. The interplay between these 
two opposite tendencies determines the dynamic profiles of the interfaces. The chemical potentials characterize the change 
in the system free energy as the phase field variables are varied, and play an important role in the evolution of the phase 
field variables.

A foremost issue confronting N-phase simulations is how to formulate the system in a physically consistent manner. 
Most existing efforts have largely avoided this question and just combined e.g. the Navier–Stokes equations with a system 
of phase field equations. Thermodynamic consistency in the physical formulation has been taken to heart in only a handful 
of studies, most notably [27,38] (for two-phase systems, see also e.g. [2,44]). In these works the governing equations for 
the N-phase system have been derived based on the conservations of mass, momentum and energy, and the constitutive 
relations involved therein are determined based on a thermodynamic framework such as the second law of thermodynamics 
or the maximization of the rate of entropy production. We would also like to mention [45], in which a set of governing 
equations for multiple phases, without the dissipation terms, have been obtained based on a variational principle.

Another crucial outstanding issue with regard to phase field formulations, for situations with more than three fluid 
phases, concerns how to determine the mixing energy density coefficients (see Section 2 for definition) involved in the 
model from the pairwise surface tensions. In the case of two-phase flows, the mixing energy density coefficient can be 
determined by relating the surface tension to the integral of the free energy over the equilibrium interfacial profile; see 
[57] for details. For three fluid phases, in existing studies the three pairwise surface tensions are usually decomposed 
symmetrically into three phase-specific surface-tension coefficients (or equivalently the mixing energy density coefficients); 
see e.g. [9,10,34–36,38]. However, this decomposition encounters difficulties in cases of four or more fluid phases, because 
the number of pairwise surface tensions ( N(N−1)

2 ) would be greater than the number of mixing energy density coefficients 
(N) to be determined [35,38]. To avoid this solvability problem, a phenomenological continuum surface tension force is 
discussed in [35].

Apart from the above issues regarding the physical formulations, one also faces several significant algorithmic challenges 
when numerically simulating the N-phase system. First, the density and the dynamic viscosity of the N-phase mixture are 
both field variables and vary over time. With usual algorithmic formulations, these field variables go inside the coefficient 
matrices for the linear algebraic systems for the pressure and the velocity after discretization (see e.g. [10,36,40]). Conse-
quently, these coefficient matrices will be time-dependent and need to be re-computed every time step. This creates a severe 
performance bottleneck, because of the high cost associated with the coefficient matrix re-computation. This is perhaps in 
part why matched density or matched viscosity among the multitude of fluids has been assumed in a number of exist-
ing simulations [34,36,38,40]. The computational challenges induced by the variable density and variable viscosity of the 
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N-phase mixture are analogous to those encountered for two-phase flows [20]. Second, different flow variables (velocity, 
pressure, and phase field functions) are coupled with one another, which poses solution difficulties. Third, the (N − 1) phase 
field functions are strongly coupled with one another (see Section 2). Usual algorithmic formulations will result in a set 
of 4th-order semi-discretized nonlinear equations, which may further be coupled with one another, and each 4th-order 
equation would give rise to two coupled 2nd-order nonlinear equations. These will result in a set of coupled nonlinear 
algebraic equations after discretization, and require expensive Newton-type nonlinear algebraic solvers; see e.g. [9–11,34,38,
40]. Fourth, large density ratios (e.g. air/water ∼ 1000) and large viscosity ratios among the multitude of fluids will pose 
significant stability difficulties.

In the current paper, we aim to overcome the above issues with several techniques. Specifically, we present the following 
three aspects:

• A physical formulation for incompressible N-phase flows. The formulation (iso-thermal) honors the conservations of 
mass and momentum, and the second law of thermodynamics. In such a sense, it is thermodynamically consistent. Our 
physical formulation differs from those of [27,38] in an essential way: the velocity in our formulation is the volume-
averaged mixture velocity and therefore is divergence free, while those of [27,38] are the mass-averaged mixture velocity
and therefore are not divergence free. Our physical formulation is a generalization of the approach of [2] (for two-phase 
flows) to N fluid phases.

• A method to uniquely determine the mixing energy density coefficients involved in the N-phase model based on the 
N(N−1)

2 pairwise surface tensions. Our method consists of two key components: (i) a free-energy form for the N-phase 
system that involves N(N−1)

2 mixing energy density coefficients, and (ii) the requirement on the N-phase formulation 
that, if only a pair of two fluids (for any such pair) is present in the N-phase system, then the N-phase formulation shall 
reduce to an equivalent two-phase formulation consisting of these two fluids. Our method leads to an explicit form of 
a system of N(N−1)

2 linear algebraic equations, with the pairwise surface tensions on the right hand sides. This linear 
algebraic system can be solved for the N(N−1)

2 mixing energy density coefficients.
• An efficient numerical algorithm for simulating incompressible N-phase flows that has overcome the several afore-

mentioned algorithmic issues. For example, with our algorithm the computations for different flow variables (velocity, 
pressure, phase field functions) are completely de-coupled, and the computations for the (N − 1) phase field functions 
have also been completely de-coupled. Only linear algebraic equations need to be solved after discretization, and no 
nonlinear algebraic solver is needed. In addition, for each flow variable the linear algebraic system involves only con-
stant and time-independent coefficient matrices, which can be pre-computed during pre-processing, despite the variable 
and time-dependent nature of the mixture physical properties such as density and dynamic viscosity. The algorithm 
therefore effectively overcomes the performance bottleneck in N-phase flows caused by variable coefficient matrices 
associated with variable mixture density and variable mixture viscosity. Moreover, our algorithm is suitable for large 
density ratios and large viscosity ratios among the multitude of fluids, which will be demonstrated using numerical 
simulations.

The novelties of this paper lie in the following aspects: the physical formulation for the incompressible N-phase flows, 
the method for determining the mixing energy density coefficients based on the pairwise surface tensions, and the algorithm 
for solving the (N − 1) strongly-coupled phase field equations. Our algorithm for dealing with the variable mixture density 
and variable mixture viscosity is also new in the context of N-phase flows. But the essential strategies for achieving this are 
developed previously in two-phase flows [20]. On the other hand, the rotational velocity-correction type strategy employed 
here to de-couple the pressure and velocity computations for N-phase flows has been used previously in other contexts; see 
e.g. [19,25].

For spatial discretizations we employ the spectral element technique [33,60] in the current paper. However, we would 
like to point out that the numerical algorithm presented here is general, and can also be used with other spatial discretiza-
tion schemes such as finite difference, finite element, or finite volume.

The structure of the rest of this paper is as follows. Section 2.1 and Appendix A describe the physical formulations of N-
phase flows. In particular, Appendix A outlines the derivation of a general phase-field formulation for N fluid phases based 
on the mass conservation, momentum conservation, the second law of thermodynamics, and Galilean invariance. Section 2.1, 
on the other hand, presents a specific N-phase formulation obtained from the general formulation by choosing a specific 
form for the free energy density function and by assuming constant model parameters. This specific N-phase formulation 
serves as the starting point for the algorithmic development in later sections. Section 2.2 describes a method on how to 
compute the mixing energy density coefficients from the pairwise surface tensions among the N fluids. Sections 2.3 to 2.5
describe our numerical algorithm for simulating the incompressible N-phase flows. In particular, Section 2.3 provides the 
overall algorithmic formulation, while Sections 2.4 and 2.5 provide more details on the implementation and on how to 
compute the phase field functions and the flow variables. In Section 3 we present numerical tests for several equilibrium 
or dynamic problems involving three to five fluid phases, to demonstrate the capabilities and performance of the presented 
physical model and numerical algorithm. In particular, we compare our simulation results with de Gennes’ theory to demon-
strate that our method produces physically accurate results for multiple fluid phases. Finally, in Section 4 we summarize 
our discussions and provide some concluding remarks.



694 S. Dong / Journal of Computational Physics 276 (2014) 691–728
2. Algorithm for incompressible N-phase flows

2.1. Physical formulation

Consider a mixture of N (N � 2) immiscible incompressible fluids. One can formulate the governing equations that 
describe the motion of this mixture by considering the mass balance of the N individual fluid phases, the momentum 
balance, Galilean invariance, and the second law of thermodynamics. In Appendix A of this paper, we present a detailed 
discussion of this process, and derive a general formulation within the phase field framework for describing the motion of 
the N-phase mixture. The general formulation involves (N − 1) order parameters (or interchangeably, phase field variables) 
and the free energy density function of the system that are yet to be specified.

We employ a special set of order parameters in order to simplify the phase field equations in the general formulation. 
Then, by choosing a specific form for the free energy density function and by assuming constant model parameters, we 
arrive at a specific formulation for describing the N-phase system. Presented in the following is this specific N-phase formu-
lation. It is the basis for the algorithmic development in the subsequent sections. The development discussed in Appendix A
is an essential part of this paper, and we refer the reader to Appendix A for detailed derivations of the general N-phase 
formulation, on which the following specific formulation is based.

Let Ω denote the flow domain in two or three dimensions, and ∂Ω denote the domain boundary. Consider the mixture 
of N immiscible incompressible fluids contained in Ω . Let ρ̃i (1 � i � N) denote the constant densities of the N pure fluids 
(no mixing), and μ̃i (1 � i � N) denote the constant dynamic viscosities of these pure fluids. Then the motion of the mixture 
can be described by the following system of equations (see Appendix A for details),

ρ

(
∂u

∂t
+ u · ∇u

)
+ J̃ · ∇u = −∇p + ∇ · [μD(u)

]− N−1∑
i, j=1

∇ · (λi j∇φi∇φ j) + f(x, t) (1a)

∇ · u = 0 (1b)

∂φi

∂t
+ u · ∇φi = mi∇2

[
−

N−1∑
j=1

λi j∇2φ j + β2

η2
hi( �φ)

]
+ gi(x, t), 1 � i � N − 1, (1c)

where u(x, t) is the velocity, p(x, t) is pressure, D(u) = ∇u + ∇uT , f is an external body force, and x denotes the spatial 
coordinate and t denotes time. φi(x, t) (1 � i � N − 1) denotes the (N − 1) independent phase field variables (or order 
parameters) that characterize this N-phase system, and −1 � φi � 1. �φ = (φ1, φ2, . . . , φN−1) denotes the vector of these 
(N − 1) phase field functions. The constants mi (mi > 0), 1 � i � N − 1, are the mobilities associated with φi . The constant 
β2 denotes a characteristic energy scale, and η > 0 denotes a characteristic scale of the interfacial thickness. The parameters 
λi j (1 � i, j � N − 1) are the mixing energy density coefficients and are assumed to be constant in the current paper. These 
parameters are such that the matrix

A = [λi j](N−1)×(N−1) (2)

is symmetric positive definite (SPD). λi j can be determined from the pairwise surface tensions among the N fluids, which 
will be discussed subsequently in Section 2.2. gi (1 � i � N − 1) in Eq. (1c) are prescribed source terms for the purpose of 
numerical testing only, and they will be set to gi = 0 in actual simulations.

The free energy density of this N-phase system is

W ( �φ,∇ �φ) =
N−1∑
i, j=1

λi j

2
∇φi · ∇φ j + β2

2η2
H( �φ) =

N−1∑
i, j=1

λi j

2
∇φi · ∇φ j + β2

2η2

N∑
k=1

c2
k (1 − ck)

2, (3)

where ck( �φ) (1 � k � N) denotes the volume fraction of the k-th fluid, and is given by

ck( �φ) = γ̃kρk( �φ), 1 � k � N, (4)

and ρk( �φ) is the density of the k-th fluid in the mixture,

ρk( �φ) =
{

1
Γ

−∑N−1
i=1

γ̃i
Γ

[ 1
2 (ρ̃i − ρ̃N) + 1

2 (ρ̃i + ρ̃N)φi], k = N,

ρN( �φ) + [ 1
2 (ρ̃k − ρ̃N) + 1

2 (ρ̃k + ρ̃N)φk], 1 � k � N − 1
(5)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ̃k = 1

ρ̃k
, 1 � k � N

Γ =
N∑

γ̃k.

(6)
k=1
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Note that the above volume fractions satisfy the relation

N∑
k=1

ck = c1 + c2 + . . . + cN = 1. (7)

hi( �φ) in Eq. (1c) is given by

hi( �φ) = 1

2

∂ H

∂φi
= ρ̃i + ρ̃N

2

N∑
k=1

(
γ̃kδki − γ̃kγ̃i

Γ

)
ck(1 − ck)(1 − 2ck), 1 � i � N − 1, (8)

where δi j is the Kronecker delta. In Eq. (1a), J̃ is given by

J̃ = −
N−1∑
i=1

(
1 − N

Γ
γ̃i

)
ρ̃i + ρ̃N

2
mi∇

[
−

N−1∑
j=1

λi j∇2φ j + β2

η2
hi( �φ)

]
. (9)

The mixture density ρ( �φ) in Eq. (1a) is given by

ρ( �φ) =
N∑

k=1

ρk( �φ) = N

Γ
+

N−1∑
i=1

(
1 − N

Γ
γ̃i

)[
1

2
(ρ̃i − ρ̃N) + 1

2
(ρ̃i + ρ̃N)φi

]
. (10)

The dynamic viscosity of the mixture, μ( �φ), is given by

μ( �φ) =
N∑

k=1

μ̃kck( �φ). (11)

In the above system, Eqs. (1a)–(1c) correspond to Eqs. (157a)–(157c) in the general N-phase formulation in Appendix A. 
Among them, Eq. (1a) reflects the momentum balance of the N-phase mixture. The phase field equations (1c) (with gi = 0) 
reflect the mass balance of the individual fluid phases. The velocity u denotes the volume-averaged mixture velocity, which 
can be shown to be divergence free (see Appendix A). The term J̃ · ∇u results from the requirement for Galilean invariance 
of the formulation.

The set of (N − 1) phase field variables φi in the above system are not arbitrary order parameters. They are particularly 
chosen to simplify the form of the resulting phase field equations. Specifically, they are chosen such that

ρi( �φ) − ρN( �φ) = 1

2
(ρ̃i − ρ̃N) + 1

2
(ρ̃i + ρ̃N)φi, φi ∈ [−1,1], 1 � i � N − 1, (12)

where ρi( �φ) (1 � i � N) is the density of fluid i within the mixture. Other order parameters (e.g. volume fractions) can also 
be used to formulate the system. But the resulting form of the phase field equations (reflecting mass balance relations) will 
be considerably more complicated.

A prominent feature of the phase field equations (1c) is in the terms 
∑N−1

j=1 λi j∇2φ j , which, together with the hi( �φ)

term, strongly couple together the (N − 1) phase field functions. Therefore, 1
2 N(N − 1) independent mixing energy density 

coefficients λi j are involved in the N-phase system. This is a major difference of our formulation from those of the existing 
studies of N-phase flows [9–11,34–38,40]. The coupling terms λi j∇2φ j result from the free energy form (3); see Appendix A
for details. We note that similar free-energy forms have previously been used in literature for multicomponent materials 
(see e.g. [12–14,21,23,29]).

In the N-phase system represented by (1a)–(1c), the region of the fluid k (1 � k � N − 1) corresponds to the phase field 
variable values

φi =
{

1, i = k,
ρ̃N −ρ̃i
ρ̃N +ρ̃i

, i �= k,
1 � i � N − 1. (13)

The region of the fluid N corresponds to the phase field variable values

φi = −1, 1 � i � N − 1. (14)

We will use the iso-surface

ck( �φ) = 1

2
, (15)

where ck is the volume fraction of fluid k given by (4), to mark the boundary of the region occupied by the fluid k
(1 � k � N).

It can be shown that ρ( �φ) and J̃ satisfies the relation (see Appendix A), assuming gi = 0 in (1c),
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∂ρ

∂t
+ u · ∇ρ = −∇ · J̃. (16)

The above system admits the following energy relation, assuming that all surface flux terms vanish on the domain boundary 
and that gi = 0 in (1c),

∂

∂t

∫
Ω

[
1

2
ρ|u|2 + W ( �φ,∇ �φ)

]
= −

∫
Ω

μ

2

∥∥D(u)
∥∥2 −

∫
Ω

N−1∑
i=1

mi
∥∥∇Ci( �φ)

∥∥2 +
∫
Ω

f · u, (17)

where W ( �φ, ∇ �φ) is the free energy density function given by (3), and

Ci( �φ) = δW

δφi
= −

N−1∑
j=1

λi j∇2φ j + β2

η2
hi( �φ), 1 � i � N − 1, (18)

is the chemical potential associated with φi .
The system of equations, (1a)–(1c), needs to be supplemented by appropriate boundary conditions for the velocity and 

the phase field functions. For the simplicity of algorithm development, on the domain boundary ∂Ω we will impose the 
Dirichlet condition for the velocity,

u = w(x, t), on ∂Ω, (19)

where w is the boundary velocity. For the phase field functions, we impose the conditions

n · ∇φi = 0, on ∂Ω, 1 � i � N − 1, (20)

n · ∇(∇2φi
)= 0, on ∂Ω, 1 � i � N − 1, (21)

where n is the outward-pointing unit vector normal to ∂Ω . The boundary conditions (20) and (21) correspond to the 
requirement that, if the interface between any two fluids i and j intersects the domain boundary ∂Ω , then the contact 
angle between the fluid interface and the boundary shall be 90◦ .

In addition to the boundary conditions, appropriate initial conditions for the velocity and the phase field functions also 
need to be specified to supplement the system of equations.

2.2. How to determine λi j based on pairwise surface tensions

We next present a method for computing the mixing energy density coefficients λi j (1 � i, j � N − 1) based on the 
pairwise surface tensions among the N different fluids.

Let σkl (1 � k < l � N) denote the surface tension associated with the interface formed between the fluid k and fluid l. 
There is a total of 1

2 N(N − 1) such pairwise surface tensions in the N-phase system. Suppose that all the pairwise surface 
tensions σkl are known. Our task is to determine the mixing energy density coefficients λi j . Note that there are 1

2 N(N − 1)

independent λi j values due to symmetry of the matrix A defined in (2). We assume that the constants β2 and η are also 
known in the free-energy density function W ( �φ, ∇ �φ) defined by (3).

Our overall strategy is as follows. Given the N-phase system, we consider the configuration in which only a pair of 
fluids k and l is present (all other fluids are absent), assuming k < l without loss of generality. Equivalently, this particular 
N-phase system can be regarded as a two-phase system consisting of fluids k and l. We impose the following requirement 
to the N-phase formulation: for such an N-phase system the N-phase formulation shall reduce to the equivalent two-phase 
formulation. In particular, the free energy density function for the N-phase system shall reduce to that for the equivalent 
two-phase system. We consider all such (k, l) fluid pairs in the N-phase system, and obtain a set of linear algebraic equations 
about λi j , which can be solved for the mixing energy density coefficients.

2.2.1. Two fluid phases
Let us first consider the two-phase system (N = 2). Then φ1 is the only phase field variable, which is chosen such that 

(see Eq. (12))

ρ1(φ1) − ρ2(φ1) = 1

2
(ρ̃1 − ρ̃2) + 1

2
(ρ̃1 + ρ̃2)φ1. (22)

The densities and volume fractions of the two fluids are, according to Eqs. (5) and (4),⎧⎪⎨
⎪⎩

ρ1(φ1) = ρ̃1
1 + φ1

2
, ρ2(φ1) = ρ̃2

1 − φ1

2
,

c1(φ1) = 1 + φ1

2
, c2(φ1) = 1 − φ1

2
.

(23)

Based on (3), the free energy density function of the two-phase system is
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W (φ1,∇φ1) = λ11

2
∇φ1 · ∇φ1 + β2

2η2

[
c2

1(1 − c1)
2 + c2

2(1 − c2)
2]. (24)

In light of (23), the free energy density can be written as

W (φ1,∇φ1) = λ11

2
∇φ1 · ∇φ1 + β2

16η2

(
1 − φ2

1

)2 = λ11

2
∇φ1 · ∇φ1 + λ11

4ε2

(
1 − φ2

1

)2
, (25)

where

ε = 2η

β

√
λ11. (26)

The free energy density in (25) has exactly the same form as those for two-phase flows well-developed in previous work; 
see e.g. [32,43,57].

Following the idea of [57], in a one-dimensional (1D) setting, we can derive the relationship between λ11 and the surface 
tension σ12 between the two fluids, by requiring that at equilibrium the integral of the free energy density function across 
the interface should equal the surface tension. This relation is given by [57],

λ11 = 3

2
√

2
σ12ε. (27)

By combining Eqs. (26) and (27), we can determine λ11,

λ11 = 9

2

η2

β2
σ 2

12. (28)

Therefore, for a two-phase system with the free energy density given by Eq. (24), the mixing energy density coefficient is 
related to the surface tension between the two fluids by Eq. (28). This relation for two-phase systems will be used when 
determining the relationship between the mixing energy density coefficients λi j and the pairwise surface tensions σkl in the 
N-phase system.

2.2.2. N fluid phases
Let us now consider N fluid phases. We consider the following configuration. In this N-phase system only two fluids, 

fluid k and fluid l (assuming k < l), are present, that is,{
ρi( �φ) ≡ 0,

ci( �φ) ≡ 0,
if i �= k and i �= l, for 1 � i � N. (29)

Therefore, the free energy density of this system becomes, based on (3),

W ( �φ,∇ �φ) =
N−1∑
i, j=1

λi j

2
∇φi · ∇φ j + β2

2η2

[
c2

k (1 − ck)
2 + c2

l (1 − cl)
2]. (30)

Because this configuration is equivalent to a two-phase system, there exists only one independent phase field variable. 
In light of Eq. (22) and the discussions of Section 2.2.1, we choose this independent phase field variable (denoted by φa) 
such that

ρk( �φ) − ρl( �φ) = 1

2
(ρ̃k − ρ̃l) + 1

2
(ρ̃k + ρ̃l)φa. (31)

Our goal is to re-formulate the free energy density function (30) in terms of φa into the following form

W ( �φ,∇ �φ) = Λkl

2
∇φa · ∇φa + β2

2η2

[
c2

k (1 − ck)
2 + c2

l (1 − cl)
2], (32)

where Λkl is a function of the mixing energy density coefficients λi j (1 � i, j � N − 1). Then by comparing the above form 
with (24), one can use Eq. (28) to relate Λkl to the surface tension σkl between fluid k and fluid l.

To find the relations between φi (1 � i � N − 1) and φa , we differentiate two cases: (1) l = N , and (2) l < N . In the first 
case (l = N), we have φa ≡ φk in light of (31) and (12). We have the following linear algebraic system about ρi( �φ),

γ̃kρk + γ̃NρN = 1 (33a)

ρk − ρN = 1

2
(ρ̃k − ρ̃N) + 1

2
(ρ̃k + ρ̃N)φa (33b)

−ρN = 1
(ρ̃i − ρ̃N) + 1

(ρ̃i + ρ̃N)φi, 1 � i � N − 1, i �= k. (33c)

2 2
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In the above system, Eq. (33a) comes from the condition (7) that the sum of the N volume fractions must be unity, and has 
taken into account the conditions (29). Eqs. (33b) and (33c) come from Eq. (12) by taking into account the conditions (29). 
The combination of Eqs. (33a) and (33b) leads to⎧⎪⎪⎨

⎪⎪⎩
ρk = 1

γ̃k + γ̃N
+ γ̃N

γ̃k + γ̃N

[
1

2
(ρ̃k − ρ̃N) + 1

2
(ρ̃k + ρ̃N)φa

]

ρN = 1

γ̃k + γ̃N
− γ̃k

γ̃k + γ̃N

[
1

2
(ρ̃k − ρ̃N) + 1

2
(ρ̃k + ρ̃N)φa

]
.

(34)

In light of (33c) and (34), we obtain the following relation

∇φi = LkN
i ∇φa, 1 � i � N − 1, (35)

where

LkN
i =

{
1, if i = k,

ρ̃N
ρ̃i+ρ̃N

, if i �= k,
1 � k < l = N. (36)

In light of (34), the volume fractions are⎧⎪⎨
⎪⎩

ck = γ̃kρk = 1

2
(1 + φa)

cl = cN = γ̃NρN = 1

2
(1 − φa).

(37)

For the second case (i.e. l < N), we have a linear algebraic system consisting of Eq. (31) and the following equations,

γ̃kρk + γ̃lρl = 1 (38a)

ρk = 1

2
(ρ̃k − ρ̃N) + 1

2
(ρ̃k + ρ̃N)φk (38b)

ρl = 1

2
(ρ̃l − ρ̃N) + 1

2
(ρ̃l + ρ̃N)φl (38c)

0 = 1

2
(ρ̃i − ρ̃N) + 1

2
(ρ̃i + ρ̃N)φi, 1 � i � N − 1, i �= k and i �= l. (38d)

In this system, Eq. (38a) comes from the condition (7) and has taken into account the conditions (29). Eqs. (38b)–(38d) are 
a reformulation of Eq. (12) by taking into account the conditions (29). A combination of (38a) and (31) leads to⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ρk = 1

γ̃k + γ̃l
+ γ̃l

γ̃k + γ̃l

[
1

2
(ρ̃k − ρ̃l) + 1

2
(ρ̃k + ρ̃l)φa

]

ρl = 1

γ̃k + γ̃l
− γ̃k

γ̃k + γ̃l

[
1

2
(ρ̃k − ρ̃l) + 1

2
(ρ̃k + ρ̃l)φa

]
.

(39)

In light of (39) and Eqs. (38b)–(38d), we have the following relation

∇φi = Lkl
i ∇φa, 1 � i � N − 1, (40)

where

Lkl
i =

⎧⎪⎪⎨
⎪⎪⎩

ρ̃k
ρ̃k+ρ̃N

, i = k,

− ρ̃l
ρ̃l+ρ̃N

, i = l,

0, otherwise,

1 � k < l < N. (41)

In light of Eq. (39), the volume fractions for this case are⎧⎪⎨
⎪⎩

ck = γ̃kρk = 1

2
(1 + φa)

cl = γ̃lρl = 1

2
(1 − φa).

(42)

In light of Eqs. (35) and (40), the free energy density function (30) can be transformed into the form of (32), where

Λkl =
N−1∑

λi j L
kl
i Lkl

j , (43)

i, j=1
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and Lkl
i are given by (36) and (41). Comparing Eqs. (32) and (24), and in light of Eq. (28), we have the following relation

N−1∑
i, j=1

Lkl
i Lkl

j λi j = Λkl = 9

2

η2

β2
σ 2

kl, (44)

where σkl is the surface tension between fluid k and fluid l. This is a linear algebraic equation about λi j .
We consider all such fluid pairs (k, l), 1 � k < l � N , in the N-phase system, and therefore obtain the following system of 

linear algebraic equations about λi j ,

N−1∑
i=1

(
Lkl

i

)2
λii +

N−1∑
j=1

j−1∑
i=1

2Lkl
i Lkl

j λi j = 9

2

η2

β2
σ 2

kl, 1 � k < l � N, (45)

where we have taken into account the symmetry, λi j = λ ji . This system has N(N−1)
2 equations about N(N−1)

2 unknowns. 
It can be solved for the mixing energy density coefficients λi j , given all the pairwise surface tensions σkl in this N-phase 
system.

Two questions call for attention at this point. The first question concerns whether the coefficient matrix for the linear 
algebraic system (45) is non-singular. For a three-phase system (N = 3), one can show that the coefficient matrix for the 
system (45) has a determinant given by

2

(
1 − ρ̃3

ρ̃1 + ρ̃3

ρ̃3

ρ̃2 + ρ̃3

)3

> 0

and therefore the system is non-singular. For a general N-phase system, it is difficult to prove the non-singularity of the 
coefficient matrix for this linear algebraic system. However, we have implemented the above method by solving the system 
using LAPACK, and performed a large number of numerical experiments with different combinations of density ratios and 
for various numbers of fluid phases. We observe that according to LAPACK this linear algebraic system has a unique solution 
in every case. It therefore seems reasonable to assume that, powered by the numerical experiments, this is a well-posed 
linear system. Very recently, an inquiry into a related but more general problem sheds light on the unique solvability of the 
linear system (45) from an unexpected perspective. We will fully address the unique solvability of (45) for general N-phase 
systems in a subsequent paper.

The other question concerns the positive-definiteness of the matrix A (see (2)) formed with the λi j values computed 
from the linear algebraic system (45). Note that, by requirement, the matrix A obtained from (45) will automatically be 
symmetric. Given an arbitrary set of positive values for the pairwise surface tensions σkl > 0 (1 � k < l � N), the matrix A
so obtained is not necessarily positive definite. An important question is the following. For an N-phase system, under what 
conditions on the pairwise surface tensions σkl , and also possibly on the density ratios ρ̃i

ρ̃N
(1 � i � N − 1), will the matrix A

be positive definite? This is an open question at the moment, and much future research will be required for its resolution. 
The following observations seem to be true based on our numerical experiments:

• In the N-phase system, if there exists any 3-tuple of fluids, (i, j, k) (1 � i, j, k � N), whose pairwise surface tensions 
(σi j , σik and σ jk) violate the triangle inequality,

|σi j − σ jk| < σik < σi j + σ jk, (46)

then the matrix A will contain a zero or negative eigenvalue and thus will not be positive definite. Physically, the 
situation with σik > σi j +σ jk corresponds to the total wetting [15], where the fluid j spreads completely on the interface 
between fluids i and k and its thickness becomes infinitely thin in a large enough domain.

• Change in the density ratio values, ρ̃i
ρ̃N

(1 � i � N − 1), will modify the eigen-value magnitudes of the matrix A, but 
does not seem to change its positive-definiteness. It is however also observed in practice that, when there exists a zero 
eigen-value, its numerically computed values (while all below machine zero) may sometimes appear to change sign due 
to roundoff errors as the density ratio is varied.

For all the test problems in Section 3, the A matrices formed by λi j computed from the linear system (45) are symmetric 
positive definite.

2.3. Algorithm formulation

In this section we present an algorithm for simulating the N-phase system. The governing equations (1a)–(1c), the 
boundary conditions (19)–(21), and the appropriate initial conditions for the velocity and the (N − 1) phase field functions, 
together constitute the system that needs to be solved in numerical simulations.
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We re-write (1a) into an equivalent form,

∂u

∂t
+ u · ∇u + 1

ρ
J̃ · ∇u = − 1

ρ
∇ P + μ

ρ
∇2u + 1

ρ
∇μ · D(u) − 1

ρ

N−1∑
i, j=1

λi j∇2φ j∇φi + 1

ρ
f, (47)

where

P = p +
N−1∑
i, j=1

λi j

2
∇φi · ∇φ j (48)

is an auxiliary pressure and will also be loosely called pressure where no confusion arises.
A comparison between the N-phase governing equations, (47), (1b) and (1c), and those for two-phase systems [16,17,

20] indicates that the primary difference lies in the set of phase field equations. On the other hand, the variable-density 
Navier–Stokes equation (1a) for N fluid phases is quite similar in form to that for two phases. This suggests that one might 
be able to deal with the computational challenges posed by the variable density and variable viscosity of the N-phase 
mixture in a similar fashion to the two-phase flows.

The following algorithm is for the N-phase system consisting of Eqs. (47), (1b) and (1c), together with the boundary 
conditions (19)–(21). Let (φn

i , Pn, un) denote the (N − 1) phase field functions, pressure, and velocity at time step n, where 
n denotes the time step index. We successively solve for the phase field functions, the pressure, and the velocity at time 
step (n + 1) in a de-coupled fashion as follows.

For phase field functions φn+1
i :

γ0φ
n+1
i − φ̂i

�t
+ u∗,n+1 · ∇φ

∗,n+1
i

= mi∇2

[
−

N−1∑
j=1

λi j∇2φn+1
j +

N−1∑
j=1

Sij

η2

(
φn+1

j − φ
∗,n+1
j

)+ β2

η2
hi
( �φ∗,n+1)]+ gn+1

i , 1 � i � N − 1, (49a)

n · ∇φn+1
i = 0, on ∂Ω, 1 � i � N − 1, (49b)

n · ∇(∇2φn+1
i

)= 0, on ∂Ω, 1 � i � N − 1. (49c)

In the above equations (and also the subsequent equations), if we use χ to denote a generic variable, then χn denotes χ
at time step n. χ∗,n+1 represents a J -order explicit approximation, where J = 1 or 2 is the temporal order of accuracy, of 
χn+1 defined by

χ∗,n+1 =
{

χn, J = 1,

2χn − χn−1, J = 2.
(50)

The expression 1
�t (γ0χ

n+1 − χ̂ ) represents an approximation of ∂χ
∂t

∣∣n+1
by the J -th order backward differentiation formula, 

where �t is the time step size and χ̂ and γ0 are given by

χ̂ =
{

χn, J = 1

2χn − 1
2χn−1, J = 2,

γ0 =
{

1, J = 1,
3
2 , J = 2.

(51)

In Eq. (49a), �φ∗,n+1 = (φ
∗,n+1
1 , φ∗,n+1

2 , . . . , φ∗,n+1
N−1 ), and Sij (1 � i, j � N − 1) are a set of (N − 1)2 constants to be determined 

later in Section 2.4.

For pressure Pn+1:
γ0ũn+1 − û

�t
+ un · ∇un + 1

ρn+1
J̃n+1 · ∇un + 1

ρ0
∇ Pn+1 =

(
1

ρ0
− 1

ρn+1

)
∇ Pn − μn+1

ρn+1
∇ × ∇ × un

+ 1

ρn+1
∇μn+1 · D

(
un)− 1

ρn+1

N−1∑
i, j=1

λi j∇2φn+1
j ∇φn+1

i + 1

ρn+1
fn+1 (52a)

∇ · ũn+1 = 0 (52b)

n · ũn+1 = n · wn+1, on ∂Ω. (52c)

In these equations, ũn+1 is an auxiliary velocity and is an approximation of un+1. J̃n+1 is an approximation of J̃ at time step 
(n + 1) given by
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J̃n+1 = −
N−1∑
i=1

(
1 − N

Γ
γ̃i

)
ρ̃i + ρ̃N

2
mi∇

[
−

N−1∑
j=1

λi j∇2φn+1
j + β2

η2
hi
( �φn+1)], (53)

where hi( �φn+1) is computed based on Eq. (8). The density ρn+1 and the dynamic viscosity μn+1 are computed based on 
Eqs. (10) and (11) once the phase field functions φn+1

i (1 � i � N −1) are known. ρ0 is a chosen positive constant that must 
satisfy the condition

0 < ρ0 � min(ρ̃1, ρ̃2, . . . , ρ̃N ). (54)

For velocity un+1:
γ0un+1 − γ0ũn+1

�t
+ u∗,n+1 · ∇u∗,n+1 + 1

ρn+1
J̃n+1 · ∇u∗,n+1 − ν0∇2un+1

= un · ∇un + 1

ρn+1
J̃n+1 · ∇un +

(
1

ρ0
− 1

ρn+1

)
∇(Pn+1 − Pn)+ ν0∇ × ∇ × u∗,n+1

+ μn+1

ρn+1
∇ × ∇ × (un − u∗,n+1)+ 1

ρn+1
∇μn+1 · [D(u∗,n+1)− D

(
un)] (55a)

un+1 = wn+1, on ∂Ω, (55b)

where ν0 is a chosen positive constant that is sufficiently large, and a conservative condition for ν0 is

ν0 �
1

2

max(μ̃1, μ̃2, . . . , μ̃N )

min(ρ̃1, ρ̃2, . . . , ρ̃N)
. (56)

We would like to make several comments on the formulations of the above algorithm, consisting of (49a)–(49c), 
(52a)–(52c), and (55a)–(55b). One can first note that the computations for the phase field functions are de-coupled from 
those for the pressure and the velocity, because of the explicit treatments of the convection terms in the discretized phase 
field equations (49a).

A prominent feature in the treatment of the coupled system of phase field equations lies in the (N − 1)2 extra terms, ∑N−1
j=1

Si j

η2 (φn+1
j − φ

∗,n+1
j ) for 1 � i � N − 1, in the discrete form (49a). These extra terms are a crucial algorithmic con-

struction. They will enable us to reformulate the (N − 1) semi-discretized fourth-order phase-field equations, which are 
strongly-coupled with one another, into (N − 1) individual fourth-order equations that are completely de-coupled from one 
another; see Section 2.4 for details. Then they further allow us to reformulate each individual fourth-order equation into 
two de-coupled Helmholtz-type equations using a technique developed previously for two-phase flows. Therefore, the dis-
crete formulation in (49a) ultimately allows one to reformulate the (N − 1) coupled 4th-order phase field equations into 
2(N − 1) individual Helmholtz-type equations that are completely de-coupled from one another. This enables a successful 
treatment of the original fourth-order coupled system using C0-continuous spectral elements (or finite elements); see Sec-
tion 2.4 below for detailed discussions.

The computations for the pressure and for the velocity are also de-coupled in the above algorithm. One can recognize 
that the schemes in the discrete formulations of (52a) and (55a) for achieving this is a rotational velocity-correction type 
strategy; see [18,19,25]. The treatment for the variable density ρ( �φ) follows a strategy first developed in [20] for two-
phase flows, by introducing a constant ρ0 in the discrete formulation. The condition on ρ0, (54), is critical to the stability 
of the algorithm. This treatment of the variable density eventually gives rise to a pressure linear-algebraic system with a 
constant and time-independent coefficient matrix after discretization. Consequently, the pressure coefficient matrix can be 
pre-computed during pre-processing. This leads to an extremely efficient procedure for pressure computation, and effec-
tively overcomes the performance bottleneck in N-phase flows caused by the variable coefficient matrix associated with the 
variable density.

The strategy for treating the variable dynamic viscosity μ( �φ) in the discrete formulation (55a) can be traced to the early 
ideas for variable diffusion coefficients in the 1970s (see e.g. [24]); see also the use of similar strategies in later studies 
[5,20] for two-phase flows. This treatment of the variable viscosity eventually gives rise to a velocity linear-algebraic system 
with a constant and time-independent coefficient matrix after discretization. This provides an efficient procedure for velocity 
computation. The lower bound on ν0 in the condition (56) is a conservative estimation, and appears overly conservative 
based on numerical experiments. This condition can be relaxed. In the numerical simulations in Section 3, we will employ 
a value

ν0 = max

(
μ̃1

ρ̃1
,
μ̃2

ρ̃2
, . . . ,

μ̃N

ρ̃N

)
. (57)

Let us next briefly comment on the treatments of different terms in the discrete formulation (52a). In particular, while 
the time derivative and the 1

ρ0
∇ P term are approximated at time step (n + 1), the rest of terms are approximated at 

time step n. These approximations will not compromise the temporal accuracy of the velocity, due to the correction terms 
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in (55a), such as (u∗,n+1 · ∇u∗,n+1 − un · ∇un) and 1
ρn+1 ∇μn+1 · [D(u∗,n+1) − D(un)]. On the other hand, according to the 

analysis in [25], they may slightly reduce the temporal accuracy of the pressure for certain error norms. This effect is 
however not quite obvious from our numerical experiments; see Section 3.2. Alternatively, one can also approximate all 
terms at time step (n + 1), which will improve the temporal accuracy of the pressure. Such an alternative scheme has been 
discussed in [20] for two-phase flows.

2.4. Solving coupled system of phase field equations

We employ high-order spectral elements [33,60] for spatial discretizations in the current paper. Let us now look into 
how to implement the algorithm with C0 spectral elements. The formulations discussed below without any change also 
applies to low-order C0 finite elements.

We first consider how to solve for the phase field functions φn+1
i . Eq. (49a) represents a system of (N − 1) coupled 

fourth-order equations about φn+1
i . We next present a method to reformulate this coupled system into (N − 1) individual 

fourth-order equations that are completely de-coupled from one another. We further reformulate each individual fourth-
order equation into two de-coupled Helmholtz-type equations.

Re-write (49a) into

N−1∑
j=1

λi j∇2(∇2φn+1
j

)− 1

η2

N−1∑
j=1

Sij∇2φn+1
j + γ0

mi�t
φn+1

i = Q i = Q (1)
i + ∇2 Ri, 1 � i � N − 1, (58)

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q (1)
i = 1

mi

(
gn+1

i − u∗,n+1 · ∇φ
∗,n+1
i + φ̂i

�t

)
,

Ri = β2

η2
hi
( �φ∗,n+1)− 1

η2

N−1∑
j=1

Sijφ
∗,n+1
j .

(59)

Note that Sij are (N − 1)2 chosen constants to be determined below.
Let

Φ =

⎡
⎢⎢⎢⎣

φn+1
1

φn+1
2
...

φn+1
N−1

⎤
⎥⎥⎥⎦ , Q =

⎡
⎢⎢⎣

Q 1
Q 2
...

Q N−1

⎤
⎥⎥⎦ , S = [Sij](N−1)×(N−1), E = diag

(
γ0

m1�t
,

γ0

m2�t
, · · · , γ0

mN−1�t

)
. (60)

Then Eq. (58) can be written into a compact matrix form

A∇2(∇2Φ
)− 1

η2
S∇2Φ + EΦ = Q = Q(1) + ∇2R (61)

where the symmetric positive definite (SPD) matrix A is defined in Eq. (2), and

Q(1) =

⎡
⎢⎢⎢⎣

Q (1)
1

Q (1)
2
...

Q (1)
N−1

⎤
⎥⎥⎥⎦ , R =

⎡
⎢⎢⎣

R1
R2
...

R N−1

⎤
⎥⎥⎦ . (62)

Multiplying both sides of Eq. (61) by the matrix

E− 1
2 = diag

(√
m1�t

γ0
,

√
m2�t

γ0
, · · · ,

√
mN−1�t

γ0

)
,

we have

B∇2(∇2Ψ
)− 1

η2
SB∇2Ψ + Ψ = E− 1

2 Q, (63)

where

Ψ = E
1
2 Φ, B = E− 1

2 AE− 1
2 , SB = E− 1

2 SE− 1
2 . (64)
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One can note that matrix B is also SPD. Consequently, it can be diagonalized as follows,

P−1BP = K = diag(λ̂1, λ̂2, · · · , λ̂N−1), B = PKP−1, (65)

where K is the diagonal matrix of the eigenvalues, λ̂i (which are all positive), of the matrix B, and P is a non-singular 
matrix consisting of the eigen-vectors of matrix B. We can then transform Eq. (63) into

K∇2[∇2(P−1Ψ
)]− 1

η2

(
P−1SB P

)∇2(P−1Ψ
)+ P−1Ψ = P−1E− 1

2 Q, (66)

where we have used Eq. (65).
We choose SB such that

P−1SB P = Ŝ = diag(ŝ1, ŝ2, · · · , ŝN−1), (67)

where ŝi (1 � i � N − 1) are constants to be determined below. Therefore, Eq. (66) is transformed into

K∇2(∇2X
)− 1

η2
Ŝ∇2X + X = P−1E− 1

2 Q = P−1E− 1
2 Q(1) + P−1E− 1

2 ∇2R, (68)

where X = P−1Ψ .
Eq. (68) represents a system of (N − 1) fourth-order equations that are completely de-coupled from one another. Let

X =

⎡
⎢⎢⎢⎣

ξn+1
1

ξn+1
2
...

ξn+1
N−1

⎤
⎥⎥⎥⎦ , P−1E− 1

2 Q =

⎡
⎢⎢⎣

q1
q2
...

qN−1

⎤
⎥⎥⎦ , P−1E− 1

2 Q(1) =

⎡
⎢⎢⎢⎣

q(1)
1

q(1)
2
...

q(1)
N−1

⎤
⎥⎥⎥⎦ , P−1E− 1

2 R =

⎡
⎢⎢⎣

r1
r2
...

rN−1

⎤
⎥⎥⎦ . (69)

Then Eq. (68) is equivalent to,

∇2(∇2ξn+1
i

)− ŝi

λ̂iη2
∇2ξn+1

i + 1

λ̂i
ξn+1

i = 1

λ̂i
qi, 1 � i � N − 1, (70)

where λ̂i (1 � i � N − 1) are the eigenvalues of matrix B, ŝi (1 � i � N − 1) are chosen constants to be determined, and

qi = q(1)
i + ∇2ri, 1 � i � N − 1. (71)

We have now transformed the (N − 1) coupled equations about φn+1
i , (58), into (N − 1) individual equations about ξn+1

i
that are de-coupled from one another, (70).

Let us now consider the boundary conditions for the phase field functions. The conditions (49b) and (49c) can be written 
as

n · ∇Φ = 0, on ∂Ω, (72)

n · ∇(∇2Φ
)= 0, on ∂Ω, (73)

where Φ is defined in (60). These two conditions can be transformed into

n · ∇X = 0, on ∂Ω, (74)

n · ∇(∇2X
)= 0, on ∂Ω, (75)

or equivalently

n · ∇ξn+1
i = 0, on ∂Ω, 1 � i � N − 1, (76)

n · ∇(∇2ξn+1
i

)= 0, on ∂Ω, 1 � i � N − 1, (77)

due to the relations

X = P−1E
1
2 Φ, Φ = E− 1

2 PX, (78)

and the fact that E− 1
2 P is a constant non-singular matrix.

Now let us consider how to solve the (N − 1) individual fourth-order equation (70). Each equation in (70) is similar 
in nature to the phase field equation encountered in two-phase flows [20]. Therefore we can reformulate this fourth-order 
equation into two de-coupled Helmholtz type equations using the technique developed previously; see [20,57].

Re-write (70) as

∇2
(

∇2ξn+1
i + αi

λ̂i
ξn+1

i

)
− 1

λ̂i

(
αi + ŝi

η2

)(
∇2ξn+1

i − 1

αi + ŝi
2

ξn+1
i

)
= 1

λ̂i
qi, (79)
η
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where αi is a constant to be determined. By requiring that

αi

λ̂i
= − 1

αi + ŝi
η2

, (80)

we can determine the αi value

αi = ŝi

2η2

(
−1 −

√
1 − 4λ̂i

η4

ŝ2
i

)
, or αi = ŝi

2η2

(
−1 +

√
1 − 4λ̂i

η4

ŝ2
i

)
, (81)

and obtain the following condition about the chosen constant ŝi ,

ŝi � 2η2
√

λ̂i, 1 � i � N − 1. (82)

Consequently, Eq. (79) can be reformulated into

∇2ψn+1
i − 1

λ̂i

(
αi + ŝi

η2

)
ψn+1

i = 1

λ̂i
qi, 1 � i � N − 1 (83a)

∇2ξn+1
i + αi

λ̂i
ξn+1

i = ψn+1
i , 1 � i � N − 1, (83b)

where ψn+1
i (1 � i � N − 1) are auxiliary phase-field variables. Eqs. (83a) and (83b) can be solved successively in an 

un-coupled fashion.
The boundary condition (77) can be transformed into, in light of (83b),

n · ∇ψn+1
i = 0, on ∂Ω, 1 � i � N − 1, (84)

where we have used the condition (76).
In order to compute ξn+1

i from (70), we can successively solve (83a) for ψn+1
i , together with the boundary condition 

(84), and then solve (83b) for ξn+1
i , together with the boundary condition (76).

To facilitate the implementation with spectral elements, we next derive the weak forms for the phase field variables 
ξn+1

i and ψn+1
i . Let ϕ ∈ H1(Ω) denote the test function. By taking the L2 inner product between ϕ and Eq. (83a), we obtain 

the weak forms about ψn+1
i ,∫

Ω

∇ψn+1
i · ∇ϕ + 1

λ̂i

(
αi + ŝi

η2

)∫
Ω

ψn+1
i ϕ = − 1

λ̂i

∫
Ω

q(1)
i ϕ + 1

λ̂i

∫
Ω

∇ri · ∇ϕ, ∀ϕ ∈ H1(Ω), 1 � i � N − 1, (85)

where we have used integration by part, boundary condition (84), and the fact that

n · ∇Ri =
N−1∑
j=1

∂ Ri

∂φ j
n · ∇φ j = 0, on ∂Ω, 1 � i � N − 1, (86)

because of the boundary condition (20). By taking the L2 inner product between ϕ and Eq. (83b), we obtain the weak forms 
about ξn+1

i ,∫
Ω

∇ξn+1
i · ∇ϕ − αi

λ̂i

∫
Ω

ξn+1
i ϕ = −

∫
Ω

ψn+1
i ϕ, ∀ϕ ∈ H1(Ω), 1 � i � N − 1, (87)

where we have used integration by part and the boundary condition (76). Eqs. (85) and (87) can be discretized in space 
using C0 spectral elements (or finite elements) in a straightforward fashion.

To summarize, in the pre-processing stage we need to compute the matrices P and S and the eigenvalues λ̂i through the 
following procedure:

1. Compute matrix B in (64) based on the matrix A defined in (2) and the matrix E in (60).
2. Compute the eigenvalues λ̂i and the eigenvectors of matrix B; Form the matrix P in (65) using the eigenvectors.
3. Choose (N − 1) constants ŝi (1 � i � N − 1) that satisfy the conditions (82). Form the diagonal matrix Ŝ defined in (67).
4. Compute matrix S in (60) as follows

S = [Sij] = E
1
2 PŜP−1E

1
2 . (88)

At each time step, given (φn
i , un), we compute (φn+1

i , ∇2φn+1
i ) using the following procedure. We will refer to this 

procedure as Advance-Phase in subsequent sections. It consists of several steps.
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Advance-Phase procedure:

1. Compute Q (1)
i and Ri (1 � i � N − 1) from Eq. (59); Form vectors Q(1) and R in (62).

2. Compute vectors P−1E− 1
2 Q(1) and P−1E− 1

2 R in (69). These will provide q(1)
i and ri (1 � i � N − 1).

3. Solve Eq. (85) for ψn+1
i (1 � i � N − 1).

4. Solve Eq. (87) for ξn+1
i (1 � i � N − 1).

5. Compute Φ based on Eq. (78). This will provide φn+1
i (1 � i � N − 1).

6. Compute ∇2Φ based on the following, in light of Eq. (83b),

⎡
⎢⎢⎢⎣

∇2φn+1
1

∇2φn+1
2
...

∇2φn+1
N−1

⎤
⎥⎥⎥⎦= ∇2Φ = E− 1

2 P∇2X = E− 1
2 P

⎡
⎢⎢⎢⎢⎣

ψn+1
1 − α1

λ̂1
ξn+1

1

ψn+1
2 − α2

λ̂2
ξn+1

2

...

ψn+1
N−1 − αN−1

λ̂N−1
ξn+1

N−1

⎤
⎥⎥⎥⎥⎦ . (89)

This will provide the data for ∇2φn+1
i (1 � i � N − 1), which will be needed for pressure and velocity computations.

2.5. Solving variable-density Navier–Stokes equations

Let us now assume that the phase field functions φn+1
i (1 � i � N −1) have been computed and consider how to compute 

the pressure and velocity from the algorithm (52a)–(52c) and (55a)–(55b).
Apart from the term J̃ · ∇u and the surface tension terms 

∑N−1
i, j=1 λi j∇2φ j∇φi , the issues encountered here for N-phase 

flows are similar to those encountered in two-phase flows [20]. The main difficulty lies in how to treat the second-derivative 
terms, such as ∇2φi∇φ j , ∇ × ∇ × u, which cannot be computed directly using C0 spectral elements or finite elements. The 
numerical treatment of the ∇2φi terms has been provided in Eq. (89) in the previous section. The strategy for treating 
the ∇ × ∇ × u term using spectral elements was originally developed in [19,20] for single-phase and two-phase flows. We 
employ the same strategy here for N-phase implementations.

We will derive the weak forms for the pressure and the velocity in order to facilitate the implementation with C0

spectral elements. In the process, the second-derivative terms will be dealt with in a natural way.
We re-write (52a) as

γ0

�t
ũn+1 + 1

ρ0
∇ Pn+1 = Gn+1 − μn+1

ρn+1
∇ × ∇ × un, (90)

where

Gn+1 = 1

ρn+1
fn+1 −

(
un + 1

ρn+1
J̃n+1

)
· ∇un + û

�t
+
(

1

ρ0
− 1

ρn+1

)
∇ Pn + 1

ρn+1
∇μn+1 · D

(
un)

− 1

ρn+1

N−1∑
i, j=1

λi j∇2φn+1
j ∇φn+1

i , (91)

and J̃n+1 is given by (53). Note that in both (91) and (53) the terms ∇2φn+1
j (1 � j � N − 1) shall be computed using 

Eq. (89). Therefore, Gn+1 and J̃n+1 can be directly computed based on these expressions using C0 elements.
Let ϕ ∈ H1(Ω) denote the test function. Taking the L2 inner product between Eq. (90) and ∇ϕ , we obtain the weak form 

about the pressure Pn+1,∫
Ω

∇ Pn+1 · ∇ϕ = ρ0

∫
Ω

[
Gn+1 + ∇

(
μn+1

ρn+1

)
× ωn

]
· ∇ϕ

− ρ0

∫
∂Ω

μn+1

ρn+1
n × ωn · ∇ϕ − γ0ρ0

�t

∫
∂Ω

n · wn+1ϕ, ∀ϕ ∈ H1(Ω), (92)

where n is the outward-pointing unit vector normal to ∂Ω , ω = ∇ × u is the vorticity, and we have used the integration by 
part, Eqs. (52b) and (52c), and the identity

μ

ρ
∇ × ω · ∇ϕ = ∇ ·

[
μ

ρ
ω × ∇ϕ

]
− ∇

(
μ

ρ

)
× ω · ∇ϕ.
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Sum up Eqs. (55a) and (52a), and we obtain the following equation about un+1,

γ0

ν0�t
un+1 − ∇2un+1 = 1

ν0
Tn+1 − 1

ν0

(
μn+1

ρn+1
− ν0

)
∇ × ω∗,n+1, (93)

where

Tn+1 = 1

ρn+1
fn+1 −

(
u∗,n+1 + 1

ρn+1
J̃n+1

)
· ∇u∗,n+1 + û

�t
− 1

ρn+1
∇ Pn+1

+ 1

ρn+1
∇μn+1 · D

(
u∗,n+1)− 1

ρn+1

N−1∑
i, j=1

λi j∇2φn+1
j ∇φn+1

i . (94)

Note again that the ∇2φn+1
i involved in the above expression shall be computed based on Eq. (89). Therefore, Tn+1 can be 

directly computed using C0 spectral elements (or finite elements).
Let H1

0(Ω) = {χ ∈ H1(Ω) : χ |∂Ω = 0}, and ϑ ∈ H1
0(Ω) denote the test function. Taking the L2 inner product between 

Eq. (93) and ϑ , we obtain the weak form about un+1,∫
Ω

∇ϑ · ∇un+1 + γ0

ν0�t

∫
Ω

ϑun+1 = 1

ν0

∫
Ω

[
Tn+1 + ∇

(
μn+1

ρn+1

)
× ω∗,n+1

]
ϑ

− 1

ν0

∫
Ω

(
μn+1

ρn+1
− ν0

)
ω∗,n+1 × ∇ϑ, ∀ϑ ∈ H1

0(Ω), (95)

where we have used integration by part, and the identity (χ denoting a scalar function)∫
Ω

χ∇ × ωϑ =
∫

∂Ω

χn × ωϑ −
∫
Ω

∇χ × ωϑ +
∫
Ω

χω × ∇ϑ. (96)

The weak forms for the pressure and velocity, (92) and (95), involve no derivatives of order two or higher, noting that 
the ∇2φn+1

i terms in (91) and (94) shall be computed based on Eq. (89). These weak forms can be directly discretized in 
space using C0 spectral elements (or finite elements). On can observe that both the pressure and velocity weak forms, after 
spatial discretization, give rise to linear algebraic systems with constant and time-independent coefficient matrices, which 
can be pre-computed during pre-processing. Note also that in Eq. (95) different velocity components are not coupled and 
therefore can be computed individually. In addition, one can observe that the auxiliary velocity ũn+1 is absent from the 
final weak-form formulations. Therefore, it is not necessary to compute ũn+1 in the implementation.

We finally briefly comment on the computations of the mixture density ρn+1 and the mixture dynamic viscosity μn+1. 
Once φn+1

i (1 � i � N − 1) are known, the density will be computed based on Eq. (10) and the dynamic viscosity will 
be computed based on Eq. (11). In practice we observe that the numerical values for φi may slightly go out of range 
(−1 � φi � 1) at certain spatial points. If the maximum density ratio among the N fluids is large, this may give rise to 
unphysical (negative) density values at certain spatial points and thus cause numerical difficulties. Similar situation has 
also been observed in two-phase flows; see the discussions in this regard in [20] for two-phase flows. Therefore, when the 
maximum density ratio among the N fluids is large (typically beyond about 102), we will further use the following equation 
to clamp the values for the mixture density and mixture dynamic viscosity,

ρn+1 =
⎧⎨
⎩

ρn+1, if ρ̃min � ρn+1 � ρ̃max

ρ̃max, if ρn+1 > ρ̃max

ρ̃min, if ρn+1 < ρ̃min

μn+1 =
⎧⎨
⎩

μn+1, if μ̃min �μn+1 � μ̃max

μ̃max, if μn+1 > μ̃max

μ̃min, if μn+1 < μ̃min,

(97)

where ρ̃max = max(ρ̃1, · · · , ρ̃N), ρ̃min = min(ρ̃1, · · · , ρ̃N ), μ̃max = max(μ̃1, · · · , μ̃N ), and μ̃min = min(μ̃1, · · · , μ̃N ).

Overall Solution procedure:
By combining the discussions from this section and the previous section, we arrive at the overall solution procedure for 

N-phase flow simulations. Given (φn
i , Pn, un), our final algorithm consists of the following steps:

1. Employ the Advance-Phase procedure from Section 2.4 to compute φn+1
i and ∇2φn+1

i for 1 � i � N − 1.

2. Compute ρn+1 based on Eq. (10), μn+1 based on (11), and J̃n+1 based on (53). If the maximum density ratio among the 
N fluids is large, further apply Eq. (97) to ρn+1 and μn+1.

3. Solve Eq. (92) for Pn+1.
4. Solve Eq. (95), together with the velocity Dirichlet condition (55b) on ∂Ω , for un+1.

One can observe that the above algorithm for N-phase flows has several characteristics that make it computationally 
very efficient:
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• The computations for the (N − 1) phase field functions are completely de-coupled.
• The computations for different flow variables – pressure, velocity, and phase field functions – are completely de-coupled.
• The computations for different components of the velocity are completely de-coupled.
• Only linear algebraic systems are involved after discretization. No nonlinear algebraic solver is needed.
• The algorithm results in, after discretization, pressure and velocity linear algebraic systems with constant and time-

independent coefficient matrices, which can be pre-computed during pre-processing.
• The algorithm results in, after discretization, constant and time-independent coefficient matrices for all the phase field 

functions φn+1
i and auxiliary phase field functions ψn+1

i . These coefficient matrices can be pre-computed.
• The algorithm involves the solution of only Helmholtz type (including Poisson) equations within a time step.

In addition, the resultant weak-form formulations can be directly implemented using C0-continuous spectral elements or 
finite elements.

3. Representative numerical examples

We employ several numerical examples in this section in two dimensions, involving three to five fluid phases, to demon-
strate the capabilities and performance of the N-phase algorithm we developed in the previous section. These test problems 
involve air, water, oil, and oil-like fluids with large density contrasts and large viscosity contrasts. We first briefly discuss 
the normalization of the flow variables, governing equations and boundary conditions. Then we demonstrate the spatial and 
temporal convergence rates of our algorithm using an analytic solution to the N-phase system. After that we consider the 
equilibrium configurations of oil drops or oil puddles floating on the air–water interface involving three or four fluid phases, 
and in particular we compare simulations results with the de Gennes theory. Finally, we simulate the dynamics of fluid 
drops and fluid interfaces with five fluid phases.

3.1. Normalization of flow variables and governing equations

To facilitate discussions in subsequent sections, we first briefly discuss the normalization of the flow variables, physical 
and numerical parameters, governing equations, and the boundary conditions.

Let L denote a characteristic length scale, and U0 denote a characteristic velocity scale. We use the superscript in (·)∗ to 
denote the non-dimensionalization of the variable (·). We normalize the flow variables and physical parameters as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗ = x

L
, t∗ = t

L/U0
, p∗ = p

ρ̃1U 2
0

, u∗ = u

U0
, η∗ = η

L
, β∗ = β√

ρ̃1U0L
, g∗

r = gr

U 2
0/L

ρ̃∗
i = ρ̃i

ρ̃1
, μ̃∗

i = μ̃i

ρ̃1U0L
, m∗

i = miρ̃1U0

L
, γ̃ ∗

i = ρ̃1γ̃i, ρ∗
i ( �φ) = ρi( �φ)

ρ̃1
, 1 � i � N

σ ∗
i j = σi j

ρ̃1U 2
0 L

, 1 � i < j � N

λ∗
i j = λi j

ρ̃1U 2
0 L2

, 1 � i, j � N − 1

ρ∗( �φ) = ρ(φ)

ρ̃1
, μ∗( �φ) = 1

Re

μ( �φ)

μ̃1
= μ̃1

ρ̃1U0L

μ( �φ)

μ̃1

(98)

where gr is the gravitational acceleration, and Re = ρ̃1U0 L
μ̃1

is the Reynolds number based on the properties of the first fluid.
Consequently, the governing equations (1a)–(1c) are transformed into the following non-dimensional form:

ρ∗
(

∂u∗

∂t∗ + u∗ · ∇∗u∗
)

+ J̃∗ · ∇∗u∗

= −∇∗ p∗ + ∇∗ · [μ∗D∗(u∗)]− N−1∑
i, j=1

λ∗
i j∇∗ · (∇∗φi∇∗φ j

)+ f∗
(
x∗, t∗) (99a)

∇∗ · u∗ = 0 (99b)

∂φi

∂t∗ + u∗ · ∇∗φi = m∗
i ∇∗2

[
−

N−1∑
j=1

λ∗
i j∇∗2φ j + β∗2

η∗2
h∗

i (
�φ)

]
+ g∗

i

(
x∗, t∗), 1 � i � N − 1, (99c)

where ∇∗ = ∂
∂x∗ , D∗(u∗) = ∇∗u∗ + (∇∗u∗)T , and

f∗ = fL

ρ̃ U 2
, g∗

i = L

U
gi, 1 � i � N − 1. (100)
1 0 0
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h∗
i (

�φ) is given by

h∗
i (

�φ) = ρ̃∗
i + ρ̃∗

N

2

N∑
k=1

(
γ̃ ∗

k δki − γ̃ ∗
k γ̃ ∗

i

Γ ∗

)
ck(1 − ck)(1 − 2ck), 1 � i � N − 1,

where Γ ∗ =∑N
i=1 γ̃ ∗

k . J̃∗ is given by

J̃∗ = −
N−1∑
i=1

(
1 − N

Γ ∗ γ̃ ∗
i

)
ρ̃∗

i + ρ̃∗
N

2
m∗

i ∇∗
[
−

N−1∑
j=1

λ∗
i j∇∗2φ j + β∗2

η∗2
h∗

i (
�φ)

]
.

The boundary conditions for the velocity and phase field functions, (19)–(21), are transformed into⎧⎪⎨
⎪⎩

u∗ = w∗(x∗, t∗), on ∂Ω,

n · ∇∗φi = 0, on ∂Ω, 1 � i � N − 1,

n · ∇∗(∇∗2φi
)= 0, on ∂Ω, 1 � i � N − 1,

(101)

where w∗ = w
U0

is the normalized boundary velocity.
It is evident that, when the flow variables and parameters are normalized as given in (98) and (100), the forms for the 

non-dimensionalized governing equations and boundary conditions will remain the same. Therefore, hereafter we will drop 
the superscript (·)∗ in the non-dimensionalized forms, with the understanding that all the flow variables and parameters 
have been appropriately normalized.

3.2. Convergence rates

The goal of this section is to demonstrate the spatial and temporal convergence rates of the N-phase algorithm from 
Section 2 using a contrived analytic solution to the system of N-phase governing equations.

Consider the flow domain, 0 � x � 2 and −1 � y � 1, and the following analytic solutions to the governing equations, 
(47) and (1b)–(1c), with four fluid phases (N = 4):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = A cosπ y sin ax sinωt

v = − Aa

π
sinπ y cos ax sinωt

P = A sinπ y sin ax cosωt

φ1 = A1 cos a1x cos b1 y sinω1t

φ2 = A2 cos a2x cos b2 y sinω2t

φ3 = A3 cos a3x cos b3 y sinω3t

(102)

where (u, v) are the two components of velocity u, and A, A1, A2, A3, a, a1, a2, a3, b1, b2, b3, ω, ω1, ω2, and ω3 are 
prescribed constants. In the governing equations we choose the body force f and the source terms gi (1 � i � 3) in such a 
way that the analytic expressions of (102) satisfy the system of governing equations of (47), (1b) and (1c). On the domain 
boundaries we impose the Dirichlet condition (19) for the velocity, and the boundary velocity w is chosen according to the 
analytic expressions from (102). For the phase field functions φi (1 � i � 3), we choose the constants a1, a2, a3, b1, b2 and 
b3 such that the boundary conditions (20) and (21) are satisfied. The initial conditions for the velocity u and the phase field 
functions φi (1 � i � 3) are chosen by setting t = 0 to the analytic expressions in (102).

We discretize the domain using two equal-sized quadrilateral spectral elements (partitioned along the x direction), while 
the element order is varied in the tests. The algorithm from Section 2 is employed to integrate the governing equations 
in time from t = 0 to a final time t = t f , and then the error of the numerical solution is computed at t = t f against the 
analytic expression given in (102).

We have employed the following parameter values for this problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = 2.0, A1 = A2 = A3 = 1.0, a = a1 = a2 = a3 = π, b1 = b2 = b3 = π,

ω = ω1 = 1.0, ω2 = 1.2, ω3 = 0.8,

ρ̃1 = 1.0, ρ̃2 = 3.0, ρ̃3 = 2.0, ρ̃4 = 4.0,

μ̃1 = 0.01, μ̃2 = 0.02, μ̃3 = 0.03, μ̃4 = 0.04,

m1 = 10−3, m2 = 2 × 10−3, m3 = 3 × 10−3, η = 0.1, β = 0.05,

σ12 = 4.656 × 10−3, σ13 = 4.472 × 10−3, σ14 = 1.356 × 10−2,

σ23 = 6.110 × 10−3, σ24 = 1.559 × 10−2, σ34 = 1.609 × 10−2,

(integration order) J = 2,

ν0 = max

(
μ̃1

,
μ̃2

,
μ̃3

,
μ̃4
)

, ρ0 = min(ρ̃1, ρ̃2, ρ̃3, ρ̃4).

(103)
ρ̃1 ρ̃2 ρ̃3 ρ̃4
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Fig. 1. Convergence rates (4 fluid phases): (a) Numerical errors as a function of element order (fixed �t) showing spatial exponential convergence rate and 
error saturation at large element orders due to temporal truncation error. (b) Numerical errors as a function of �t (fixed element order) showing temporal 
2nd-order convergence rate.

In the first set of tests, we fix the time step size at �t = 0.001 and the final integration time at t f = 0.1 (i.e. 100 time 
steps), and vary the element order systematically between 2 and 20. Fig. 1(a) shows the numerical errors in L∞ and L2

norms at t = t f for the velocity, pressure, and the three phase field functions, as a function of the element order. It can be 
observed that, as the element order increases (when below order 10 or 12), the numerical errors decrease exponentially, 
indicative of a spatial exponential convergence rate. As the element order increases beyond 12, the error curves level off 
with increasing element order, due to the saturation by the temporal truncation error.

In the second set of tests, we fix the final integration time at t f = 0.5 and the element order at a high value 18, and 
then vary the time step size systematically between �t = 0.003125 and �t = 0.1. Fig. 1(b) shows the numerical errors 
of different flow variables at t = t f as a function of the time step size in logarithmic scales. The results clearly exhibit a 
second-order convergence rate in time.

The above results indicate that our algorithm presented in Section 2 has a spatial exponential convergence rate and a 
temporal second-order accuracy for different flow variables.

3.3. Floating liquid lens for three fluid phases and comparison with de Gennes theory

The goal of this section is to demonstrate the capability and accuracy of our method with the “floating liquid lens” 
problem involving three fluid phases by comparing with the theory of de Gennes [15].

We consider a drop of oil floating on the surface of water in ambient air. Depending on the relative importance of the 
gravity and the surface tensions, the oil may form a lens or a puddle on the water surface. The competition between the 
gravity and the surface tensions involves three characteristic length scales [15],⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

κo =
√

σao

ρo gr
(capillary length associated with air/oil interface)

κw =
√

σaw

ρw gr
(capillary length associated with air/water interface)

κow =
√

σow

(ρw − ρo)gr
(capillary length associated with oil/water interface)

(104)

where gr is the gravitational acceleration, ρa , ρw and ρo are respectively the densities of air, water and oil. σao , σaw and 
σow are respectively the surface tensions associated with the air/oil, air/water, and oil/water interfaces. Let R denote the 
characteristic size of the oil drop. If R 
 κo and R 
 κow , then the surface tension effect is dominant, and the oil-drop 
shape is made of two spherical caps (or in 2-D circular caps). If R � κo and R � κow , then the gravity effect is dominant, 
and the oil forms a puddle [15]. In this problem we simulate the equilibrium configurations of the oil drop floating on the 
air–water interface, and compare with the de Gennes theory.

The problem setup is as follows (Fig. 2). We consider a rectangular domain, −L � x � L and 0 � y � 4
5 L, where L is the 

characteristic length to be specified later. The gravity is assumed to be along the vertical (−y) direction. The bottom and top 
sides of the domain (y = 0 and 4

5 L) are two solid walls. In the horizontal direction (x = ±L) we assume that the problem is 
periodic. Initially, the bottom half the domain is filled with water and the top half is filled with air. In addition, a circular oil 
drop with radius R0 = L

5 is placed on the air–water interface, with its center located at xc = (xc, yc) = (0, 25 L). We assume 
that there is no initial flow. This three-phase system is then released, and it eventually evolves to an equilibrium state.
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Fig. 2. Initial configuration of 3-phase air/water/oil problem.

We employ the following values for the physical parameters involved in this problem:⎧⎪⎪⎨
⎪⎪⎩

density [kg/m3]: air – 1.2041, water – 998.207, oil –577 (or varied)

dynamic viscosity [kg/(m · s)]: air – 1.78 × 10−5, water – 1.002 × 10−3, oil – 9.15 × 10−2

surface tensions [kg/s2]: air/water – 0.0728, air/oil – 0.055, oil/water – 0.04 (or varied),

gravity [m/s2]: 9.8 (or varied).

(105)

The problem is non-dimensionalized with the characteristic length L and a characteristic velocity U0 = √
gr0L, where gr0 =

1 m/s2, using the procedure outlined in Section 3.1.
In the simulations we treat air, water and oil respectively as the first, second, and third fluid. We discretize the domain 

with 160 quadrilateral spectral elements, with 20 elements in the x direction and 8 elements in the y direction. We use 
an element order 14 within each element. On the top and bottom walls, we impose the Dirichlet boundary condition (19)
with w = 0 for the velocity, and the boundary conditions (20) and (21) for the phase field functions. In the horizontal 
direction we impose the periodic boundary conditions. The initial velocity is set zero. The initial conditions for the phase 
field functions are set as follows,

φi(x, t = 0) = ρ̃i

ρ̃i + ρ̃N
(2ci − 1) − ρ̃N

ρ̃i + ρ̃N
(2cN − 1), 1 � i � N − 1, (106)

where N = 3 and the initial volume fractions ci are

c1 = [1 − θ(x, xc − R0) + θ(x, xc + R0)
]1

2

(
1 + tanh

y − yc√
2η

)

+ [θ(x, xc − R0) − θ(x, xc + R0)
]1

2

(
1 + tanh

|x − xc| − R0√
2η

)
θ(y, yc),

c2 = [1 − θ(x, xc − R0) + θ(x, xc + R0)
]1

2

(
1 − tanh

y − yc√
2η

)

+ [θ(x, xc − R0) − θ(x, xc + R0)
]1

2

(
1 + tanh

|x − xc| − R0√
2η

)[
1 − θ(y, yc)

]
,

c3 = 1

2

(
1 − tanh

|x − xc| − R0√
2η

)
,

and θ(x, a) is the Heaviside step function, taking unit value if x � a and vanishing otherwise.
In the simulations we choose β in the free energy density expression (3) in a way such that η will correspond to 

the characteristic interfacial thickness of the interface between the pair of fluids with the smallest surface tension. Let 
σmin = min{σi j}1�i< j�N denote the smallest value among the 1

2 N(N − 1) surface tensions. Then this condition gives rise to

β =
√

3
√

2σminη. (107)

Therefore, once η is chosen, β can be determined from Eq. (107). The mixing energy density coefficients λi j (1 � i, j � 2) 
are computed from the pair-wise surface tensions σi j (1 � i < j � 3) using the method presented in Section 2.2.

We have employed the following numerical parameter values in the simulations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η

L
= 0.0075,

m1ρ̃1U0

L
= m2ρ̃1U0

L
= 10−7

λ∗
max

, where λ∗
max = 1

ρ̃1U 2
0 L2

max{λi j}i, j=1,2,

ν0 = max

(
μ̃1

ρ̃1
,
μ̃2

ρ̃2
,
μ̃3

ρ̃3

)
,

(108)
ρ0 = min(ρ̃1, ρ̃2, ρ̃3).
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Fig. 3. Effect of gravity on the equilibrium configuration of an oil drop on air–water interface (3 fluid phases): (a) no gravity, (b) gr = 2 m/s2, (c) gr =
9.8 m/s2. In (a), dashed and dashed-dot curves are circular, showing that the oil drop consists of two circular caps in this case.

The time step size is �t = 10−5 in non-dimensional unit.
We now look into the case with a characteristic length L = 4 cm. This corresponds to an 8 cm × 3.2 cm domain, with an 

initial diameter 1.6 cm for the oil drop.
Let us first consider the effects of the gravity on the equilibrium oil-drop configurations. We systematically vary the value 

of the gravitational acceleration while fixing all the other physical parameters. In particular, the oil density is 577 kg/m3

(air–oil density ratio ∼ 479), the oil–water surface tension is 0.04 kg/s2, and the other parameters are provided in (105). 
Due to the competition between the gravity and surface tension effects, the oil drop configuration changes dramatically 
as the gravity changes. Fig. 3 shows the equilibrium configurations of the oil drop corresponding to three gravitational 
acceleration values, gr = 0, 2.0 m/s2 and 9.8 m/s2, from our simulations. Plotted are the contour levels ci = 1

2 (1 � i � 3) 
for the three fluids, where ci is the volume fraction of fluid i. At the three-phase contact lines in these plots, a “star-shaped” 
region can be observed. The presence of these regions is due to the fact that within them none of the three fluids has a 
volume fraction larger than 1

2 . Fig. 3(a) shows the oil drop configuration in the absence of gravity, where the surface tensions 
dominate. The dashed curve and the dashed-dot curve are two circles that respectively coincide with the upper and lower 
pieces that form the oil drop profile. They clearly show that the drop shape consists of two circular caps in this case. As the 
gravity magnitude increases, the oil drop becomes flatter (Fig. 3(b)). When the gravity is sufficiently large, the oil forms a 
puddle on the water surface (Fig. 3(c)). These simulation results are qualitatively consistent the de Gennes theory [15].

We next show quantitative comparisons with the de Gennes theory. Let us define the thickness of the oil drop/puddle 
as the largest distance between the upper and lower boundaries of the drop/puddle profile in the vertical direction. When 
the gravity effect dominates, the asymptotic thickness of the oil puddle can be obtained analytically by minimizing the total 
energy due to the surface tensions and the gravity [15]. Let ec denote the asymptotic thickness of the oil puddle. Then it is 
given by [15,39],

ec =
√

2(σao + σow − σaw)
ρo
ρw

(ρw − ρo)gr
. (109)

Fig. 4 shows the oil drop/puddle thickness as a function of the gravitational acceleration obtained from our simulations 
(symbols). For comparison, the dashed curve in the plot shows the asymptotic puddle thickness (ec ) versus gravity (gr ) 
from the theory, see Eq. (109), where the gravity has been normalized by gr0 = 1 m/s2. It can be observed that at large 
gravity values (beyond about 5 m/s2 for this case), when the oil forms a puddle, the simulated puddle thickness agrees 
very well with that from the theory. At small gravity values, the drop shape markedly deviates from that of a puddle, and 



712 S. Dong / Journal of Computational Physics 276 (2014) 691–728
Fig. 4. Comparison of oil-drop/oil-puddle thickness (air–water–oil 3 phases) as a function of normalized gravity between current simulation and the de 
Gennes theory [15]. Gravity is varied while all other physical parameters are fixed.

Fig. 5. Effect of oil–water surface tension on the equilibrium configuration of an oil drop floating on the air–water interface (3 fluid phases): (a) σow =
0.035 kg/s2, (b) σow = 0.055 kg/s2. Gravity is 9.8 m/s2.

the theoretical asymptotic puddle thickness expression (109) is no longer valid. Therefore we observe a large discrepancy 
between the simulated drop thickness and the asymptotic theoretical thickness.

We next look into the effect of surface tensions on the equilibrium oil drop configurations. In this set of tests, we vary the 
surface tension of the oil–water interface (σow) systematically, while fixing the gravitational acceleration at gr = 9.8 m/s2, 
the oil density at 577 kg/m3, and the other physical parameters at those values given in (105). Fig. 5 shows the oil drop 
configurations corresponding to σow = 0.035 kg/s2 and σow = 0.055 kg/s2. One can observe that the oil forms a puddle in 
these cases, but the puddle size (diameter) and the puddle thickness strongly depend on the surface tension value. The 
puddle shrinks as the oil/water surface tension increases. These plots can be compared with Fig. 3(c), which corresponds to 
an oil/water surface tension σow = 0.04 kg/s2 while the other physical parameters are the same.

In Fig. 6 we show the puddle-thickness squared as a function of the oil/water surface tension obtained from our simula-
tions (symbols). The asymptotic relation, e2

c ∼ σow , from the de Gennes theory (see Eq. (109)) is also shown in the plot as 
the dashed line for comparison. The simulation results are in good agreement quantitatively with the de Gennes theory.

Let us next consider the effect of the oil-drop size on the equilibrium configurations. We consider three characteristic 
length values: L = 2 cm, 4 cm and 5 cm. Respectively, they correspond to the domains 4 cm × 1.6 cm, 8 cm × 3.2 cm and 
10 cm × 4 cm, with initial oil drop diameters 8 mm, 1.6 cm and 2 cm. In this set of tests, the oil density is 870 kg/m3

(air–oil density ratio ∼ 723), the oil/water surface tension and the gravity are respectively 0.04 kg/s2 and 9.8 m/s2, and 
the other physical parameter values are given in (105). Fig. 7 shows the equilibrium configurations of the oil for these three 
cases. Note that the length has been normalized in these plots. For a small drop size, the oil forms a bi-convex lens floating 
on the water surface (Fig. 7(a)). As the drop size increases, the oil may form a plano-convex lens, see Fig. 7(b), in which 
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Fig. 6. Comparison of oil-puddle thickness squared (air–water–oil 3 phases) as a function of normalized oil–water surface tension between current simula-
tions and the de Gennes theory [15]. The oil–water surface tension is varied while all other physical parameters are fixed.

Fig. 7. Effect of oil drop size on equilibrium configurations (3 fluid phases): initial oil drop diameter: (a) 8 mm, (b) 1.6 cm, (c) 2 cm. Other parameters are 
fixed.

the air–oil interface is essentially flat while the oil–water interface is convex. For a sufficiently large drop size, the oil forms 
a puddle (Fig. 7(c)). Which type of floating lens the oil forms depends on the drop size relative to the capillary lengths 
κo and κow defined in (104). For these three cases, we have κo = 2.54 mm and κow = 5.64 mm. In the case of Fig. 7(a), 
the drop radius (4 mm) is larger, but not that significantly, than the air/oil capillary length (κo ), and it is smaller than the 
oil/water capillary length (κow). Consequently, both the air–oil interface and the oil–water interface are convex, and the 
air–oil interface is relatively flat. For Fig. 7(b), the drop radius (8 mm) is much larger than κo , but not that much larger than 
κow . Consequently, the air–oil interface becomes essentially flat, while the oil–water interface is convex. For a sufficiently 
large oil drop, when the drop radius is much larger than both κo and κow , both the air–oil interface and the oil–water 
interface will become flat and the oil will form a puddle.
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Fig. 8. Effect of density ratios (3 fluid phases): Equilibrium oil drop on air–water interface, with the air–oil density ratio (a) 166, (b) 332, (c) 498, and 
(d) 723. Gravity is 9.8 m/s2.

Fig. 9. Initial configuration of 4-phase air/water/oil-A/oil-B problem.

We next consider the effect of the oil density on the equilibrium configuration. In this set of tests, the characteristic 
length is L = 2 cm (domain: 4 cm × 1.6 cm; initial oil-drop diameter: 8 mm), and we vary the oil density systematically. 
We use a fixed gravitational acceleration gr = 9.8 m/s2 and oil–water surface tension σow = 0.04 kg/s2, and the other 
physical parameters are given in (105). We have simulated four oil density values, 200 kg/m3, 400 kg/m3, 600 kg/m3 and 
870 kg/m3, which respectively correspond to the air–oil density ratios 166, 332, 498 and 723. Fig. 8 shows the equilibrium 
configurations of the oil drop for these cases. Both the drop shape and the depth of oil immersed under water have been 
affected by the density change. The oil-density change affects the drop shape because it modifies the capillary lengths κo

and κow . As a result, at a small oil density the oil–water interface becomes flatter (Fig. 8(a)), while at a large oil density the 
air–oil interface is flatter (Fig. 8(d)). The immersed depth of the oil is affected by the oil density due to the change in the 
density contrast between the oil and water.

The results of this section for three fluid phases, in particular the qualitative and quantitative comparisons with the de 
Gennes theory, show that the physical formulation and the numerical algorithm we presented in Section 2 have accurately 
captured the flow physics of the multiphase system. They also demonstrate that our method is suitable for large density 
contrasts and large viscosity contrasts among the multitude of fluids.

3.4. Equilibrium oil drops on air–water interface with four fluid phases

The goal of this section is to demonstrate the capability of our method with a flow problem involving four fluid phases. 
In particular, we will demonstrate the effects of the pair-wise surface tensions and the density contrasts on the four-phase 
system.

The problem setup has some similarity to the three-phase problem in the previous section. We consider the equilibrium 
drops of two types of immiscible oils floating on the water surface in ambient air. The initial configuration of this system 
is shown in Fig. 9. We consider the flow domain, −L � x � L and 0 � y � 4

5 L, where L = 2 cm. The domain has two 
solid walls on its bottom and top sides (y = 0 and 4

5 L). In the horizontal direction, we assume that all flow variables are 
periodic at x = ±L. The domain is initially filled with water at the bottom half and air at the top half, and two circular 
drops of two different oils, referred to respectively as “oil-A” and “oil-B”, reside on the air–water interface. The two oil 
drops initially both have a radius R0 = L

5 , and their centers are located respectively at xA = (xA, y A) = (−0.21L, 0.4L) and 
xB = (xB , yB) = (0.21L, 0.4L). The gravity is assumed to be in the vertical direction, pointing downward. Upon release, the 
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two oil drops, air and water interact with one another, and evolve under the influence of the gravity and surface tensions. 
The objective of this problem is to study the equilibrium configurations of this four-phase system.

The physical parameters involved in this problem take the following values:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

density [kg/m3]: air – 1.2041, water – 998.207, oil-A – 870, oil-B – 400 (or varied)

dynamic viscosity [kg/(m · s)]: air – 1.78 × 10−5, water – 1.002 × 10−3,

oil-A – 9.15 × 10−2, oil-B – 5.0 × 10−2

surface tensions [kg/s2]: air/water – 0.0728, air/oil-A – 0.055, water/oil-A – 0.04,

air/oil-B – 0.06 (or varied), water/oil-B – 0.045, oil-A/oil-B – 0.032

gravity [m/s2]: 9.8.

(110)

We choose a characteristic velocity U0 = √
gr0L, where gr0 = 1 m/s2, and use L and U0 to non-dimensionalize the flow 

variables and the governing equations with the procedure discussed in Section 3.1.
To simulate this four-phase problem, we assign air, water, oil-A and oil-B respectively as the first, second, third and 

fourth fluids. We partition the domain using 160 quadrilateral spectral elements, with 20 elements in the x direction and 8
elements in the y direction. The element order is 14 for all elements in the simulations. We impose the velocity Dirichlet 
condition (19) with w = 0, and the boundary conditions (20) and (21) for the phase field functions φi (1 � i � 3), on the 
upper and lower walls. At x = ±L we impose periodic conditions for all flow variables. We set the initial velocity to zero, 
and the initial phase field functions according to Eq. (106) with N = 4 and the following initial volume fractions ci ,

c1 = 1

2

(
1 + tanh

y − y A√
2η

)[
1 − 1

2

(
1 − tanh

|x − xA | − R0√
2η

)
− 1

2

(
1 − tanh

|x − xB | − R0√
2η

)]
,

c2 = 1

2

(
1 − tanh

y − y A√
2η

)[
1 − 1

2

(
1 − tanh

|x − xA | − R0√
2η

)
− 1

2

(
1 − tanh

|x − xB | − R0√
2η

)]
,

c3 = 1

2

(
1 − tanh

|x − xA | − R0√
2η

)
,

c4 = 1

2

(
1 − tanh

|x − xB | − R0√
2η

)
.

The numerical parameter values are as follows in the simulations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η

L
= 0.01,

β computed based on Eq. (107),

λi j, 1 � i, j � 3, computed based on linear system (45),

m1ρ̃1U0

L
= m2ρ̃1U0

L
= m3ρ̃1U0

L
= 10−7

λ∗
max

, where λ∗
max = 1

ρ̃1U 2
0 L2

max{λi j}1�i, j�3,

ν0 chosen based on Eq. (57),

ρ0 = min(ρ̃1, ρ̃2, ρ̃3, ρ̃4).

(111)

The non-dimensional time step size is �t = 10−5 in the simulations.
Let us first look into the effects of the surface tensions on the equilibrium configuration of this four-phase system. In 

this set of tests, we vary the surface tension associated with the air/oil-B interface systematically, while the density of oil-B 
is fixed at 400 kg/m3 and all the other physical parameters are given in (110). Fig. 10 shows the equilibrium configurations 
of the oil drops floating on the air/water interface, corresponding to five air/oil-B surface tensions: 0.04 kg/s2, 0.05 kg/s2, 
0.06 kg/s2, 0.07 kg/s2 and 0.08 kg/s2. Plotted are the contour levels of the volume fractions, ci = 1

2 (1 � i � 4), for the four 
fluids. We can make several observations. First, the two oil drops touch each other, and a common interface between oil-A 
and oil-B is formed. Second, while much of oil-A is immersed under the water surface, the sinking depth of oil-B is notably 
smaller. This is because the density contrast between oil-B and water is much more significant than that between oil-A 
and water. Third, the surface tensions significantly influence the four-phase configurations. As the air/oil-B surface tension 
decreases, the drop of oil-B tends to spread out on the water surface (Figs. 10(a)–(b)), and the air/oil-B interface and the 
water/oil-B interface become quite flat (Fig. 10(a)). On the other hand, as the air/oil-B surface tension increases, the drop 
of oil-B becomes “fatter” (Figs. 10(d)–(e)), and the drop shape of oil-A is also notably affected at a large air/oil-B surface 
tension (Fig. 10(e)).

In the next set of tests we investigate the effect of density ratios on the four-phase equilibrium configurations. We vary 
the density of oil-B systematically, while the air/oil-B surface tension is fixed at 0.06 kg/s2 and the other physical param-
eter values are given in (110). We have considered four oil-B density values, 240.82 kg/m3, 400 kg/m3, 602.05 kg/m3 and 
722.46 kg/m3. They respectively lead to air/oil-B density ratios 200, 332.2, 500 and 600. Fig. 11 shows the configurations of 
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Fig. 10. Effect of air/oil-B surface tension on the equilibrium configuration of two types of oil drops at the air–water interface (4 fluid phases). Air/oil-B 
surface tensions (kg/s2): (a) 0.04, (b) 0.05, (c) 0.06, (d) 0.07, (e) 0.08.

this four-phase system corresponding to these density ratios excluding 332.2, and Fig. 10(c) is the configuration correspond-
ing to air/oil-B density ratio 332.2. The results show that the change in the oil-B density has several effects. First, the drop 
shape of oil-B changes notably. At a small oil-B density the air/oil-B interface tends to be more convex and the water/oil-B 
interface tends to be relatively flat (Fig. 11(a)), while at a large oil-B density the opposite tends to be the case (Fig. 11(c)). 
Second, the sinking depth of oil-B increases as the oil-B density increases, while that of oil-A appears little affected. Third, 
the orientation of oil-A/oil-B interface changes noticeably.

3.5. Dynamics of drops, bubbles and interfaces with five fluid phases

The goal of this section is to demonstrate the capabilities of our method with a dynamic problem involving five fluid 
phases.

The configuration of this test problem is as follows; see Fig. 12(a). We consider the flow domain, − L
2 � x � L

2 and 
0 � y � 8

5 L, where L = 2 cm. The bottom and the top of the domain (y = 0 and 8
5 L) are two solid walls, and the domain 

is periodic in the horizontal direction (x = ± L
2 ). The gravity is along the vertical direction, pointing downward. At t = 0, the 

domain is filled with water at the bottom half and air at the top half. Two liquid drops (initially circular, both with radius 
R0 = 0.15L), of two different fluids referred to as “F1” and “F3”, are suspended in the air at a certain distance above the 
water surface. An air bubble, and a liquid drop of another fluid referred to as “F2”, both circular initially and also with radius 
R0 = 0.15L, are trapped in the water. The three fluids F1, F2 and F3 are assumed to be all immiscible with one another and 
with air and water. The centers of the four drops/bubble are initially located respectively at:⎧⎪⎪⎨

⎪⎪⎩
xF 1 = (xF 1, yF 1) = (−0.3L,1.4L) (drop F1),

xF 2 = (xF 2, yF 2) = (0.3L,0.2L) (drop F2),

xF 3 = (xF 3, yF 3) = (0.15L,1.4L) (drop F3),

xa = (xa, ya) = (−0.2L,0.2L) (air bubble).

(112)

The liquid drops/bubble are then released. They fall through the air or rise through the water, and impact the air–water 
interface. The objective of this problem is to simulate the dynamics of this five-phase system.

The physical parameters involved in this five-phase problem assume the following values:
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Fig. 11. Equilibrium configurations of two types of oil drops on air–water interface (4 fluid phases), with different air/oil-B density ratios (a) 200, (b) 500
and (c) 600. Other physical parameters are fixed. See Fig. 10(c) for the 4-phase configuration with air/oil-B density ratio 332.2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

density [kg/m3]: air – 1.2041, water – 998.207, F1 – 870, F2 – 400, F3 – 600

dynamic viscosity [kg/(m · s)]: air – 1.78 × 10−5, water – 1.002 × 10−3,

F1 – 9.15 × 10−2, F2 – 2.0 × 10−2, F3 – 1.0 × 10−2

surface tensions [kg/s2]: air/water – 0.0728, air/F1 – 0.055, water/F1 – 0.04,

air/F2 – 0.06, water/F2 – 0.045, F1/F2 – 0.032,

air/F3 – 0.05, water/F3 – 0.041, F1/F3 – 0.038, F2/F3 – 0.058

gravity [m/s2]: 9.8.

(113)

We choose a characteristic velocity U0 = √
gr0L, where gr0 = 1 m/s2, and use L and U0 to non-dimensionalize the problem.

In the simulations we assign air, water, F1, F2 and F3 respectively as fluids one to five. The flow domain is partitioned 
using 640 quadrilateral spectral elements, with 20 elements in the x direction and 32 elements in the y direction. The 
element order is 18 for all elements in the simulations. On the top and the bottom walls, the velocity Dirichlet condition 
(19) with w = 0 is imposed, and the boundary conditions (20) and (21) are imposed for the phase field functions φi

(1 � i � 4). At the horizontal boundaries x = ± L
2 , periodic boundary condition is imposed for all flow variables. The initial 

velocity field is set to zero. The initial phase field functions are set according to Eq. (106) with N = 5 and the following 
initial volume fractions ci ,

c1 = 1

2

(
1 + tanh

y − yI F√
2η

)[
1 − 1

2

(
1 − tanh

|x − xF 1| − R0√
2η

)
− 1

2

(
1 − tanh

|x − xF 3| − R0√
2η

)]

+ 1

2

(
1 − tanh

|x − xa| − R0√
2η

)
,

c2 = 1

2

(
1 − tanh

y − yI F√
2η

)[
1 − 1

2

(
1 − tanh

|x − xa| − R0√
2η

)
− 1

2

(
1 − tanh

|x − xF 2| − R0√
2η

)]
,

c3 = 1

2

(
1 − tanh

|x − xF 1| − R0√
)

,

2η
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Fig. 12. Temporal sequence of snapshots of 5-phase fluid interfaces: (a) t = 0.07, (b) t = 0.215, (c) t = 0.301, (d) t = 0.367, (e) t = 0.401, (f) t = 0.451, 
(g) t = 0.513, (h) t = 0.583, (i) t = 0.798, (j) t = 1.008, (k) t = 1.201, (l) t = 1.421, (m) t = 1.673, (n) t = 1.906, (o) t = 2.361, (p) t = 2.758.
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c4 = 1

2

(
1 − tanh

|x − xF 2| − R0√
2η

)
.

c5 = 1

2

(
1 − tanh

|x − xF 3| − R0√
2η

)
,

where yI F = 4
5 L is the initial position of the water surface.

The numerical parameters are set as follows in the simulations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η

L
= 0.005,

β computed based on Eq. (107),

λi j, 1 � i, j � 4, computed based on linear system (45),

miρ̃1U0

L
= 2 × 10−8

λ∗
max

, 1 � i � 4, where λ∗
max = 1

ρ̃1U 2
0 L2

max{λi j}1�i, j�4,

ν0 chosen based on Eq. (57),

ρ0 = min(ρ̃1, ρ̃2, · · · , ρ̃5).

(114)

We employ a non-dimensional time step size �t = 2.5 × 10−6 in the simulations.
Let us next look into the dynamics of this five-phase system. Fig. 12 shows a temporal sequence of snapshots of the fluid 

interfaces. Plotted are the contour levels of the volume fraction ci = 1
2 (1 � i � 5) for the five fluids. Upon release at t = 0, 

the fluid drops of F1 and F3 fall freely through the air, while the air bubble and the F2 drop rise through the water. The 
deformations of the air bubble and the F2 drop are evident (Figs. 12(b) and (c)). Around t = 0.3, the F1 and F3 drops are 
about to impact the water surface (Figs. 12(c)). Figs. 12(d)–(h) show the impact of the F1 and F3 fluids and the formation 
of floating drops on the water surface. The impact onto the water surface causes dramatic distortions in the F1 and F3 
drops (Figs. 12(d)–(e)). Both F1 and F3 have trapped a small amount of air between these fluids and the water (Fig. 12(d)), 
which subsequently becomes two small air bubbles trapped between F1 and water and between F3 and water. One can 
observe the oscillation in the shape of the F1 and F3 drops and the undulation of the water surface (Figs. 12(e)–(h)). The 
floating F1 and F3 drops have covered the most part of the water surface. Simultaneously, the air bubble continues its rise 
through the water, and the F2 drop appears to be still during this time while exhibiting marked distortions in its shape 
(Figs. 12(d)–(h)). Fig. 12(i) shows that the rising air bubble approaches the water surface, which is now almost completely 
covered by fluids F1 and F3. Subsequently, the air bubble merges into the bulk of air above the water, leaving a section of 
open water surface free of F1 and F3 fluids (Figs. 12(j)–(k)). Meanwhile, the F2 drop rises through the water (Figs. 12(i)–(k)), 
and approaches the water surface which is covered by the F1 and F3 fluids (Figs. 12(l)–(m)). As the F2 drop rises further, a 
pocket of water is trapped in the cavity bounded by the air and the F2, F3, and F1 drops (Figs. 12(n)–(o)). The water surface 
is eventually completely covered by the F1, F3 and F2 fluids, which form a layer insulating the bulk of water from the bulk 
of air (Fig. 12(p)). Two small air bubbles are trapped at the underside of this layer, and a water drop is trapped by the bulk 
of air, one of the small air bubbles, the F2 and F3 fluids.

Fig. 13 shows a temporal sequence of snapshots of the velocity field of this problem, at identical time instants as the 
interface plots of Fig. 12. Figs. 13(a)–(c) indicate that the falling F1 and F3 drops have induced a velocity field in the air. 
In particular, a strong jet of air is produced between the two falling drops. The air jet moves upward, generating pairs of 
vortices in the wake of the falling drops (Fig. 13(c)). The two vortex pairs in the air appear to further intensify after the 
F1 and F3 drops impact the water surface (Figs. 13(d)–(e)). But over time, the velocity field of the air gradually dies down 
(Figs. 13(f)–(p)). On the other hand, in the water the rising air bubble induces a pair of vortices in its wake (Figs. 13(c)–(i)). 
So does the F2 drop as it rises through water (Figs. 13(g)–(k)). After the F2 drop contacts the F3 and F1 fluids on the water 
surface and they together form an insulating layer between the bulk of air and the bulk of water, the velocity field in the 
entire domain gradually dies down (Figs. 13(m)–(p)).

We can estimate a characteristic Reynolds number for this flow problem. The vertical velocity at the center of the F3 
drop is V c ≈ 2.75U0 at t = 0.301 L

U0
(corresponding to Fig. 13(c)) when the drop is about to impact the water surface. Let 

D0 = 0.3L denote the initial diameter of the F3 drop, and ρa and μa denote the density and dynamic viscosity of the air 
respectively. Then the Reynolds number based on the above quantities is Re = ρa Vc D0

μa
≈ 158.

4. Concluding remarks

In this paper we have presented a physical formulation, and an efficient numerical algorithm, within the phase field 
framework for simulating the mixture consisting of N (N � 2) immiscible incompressible fluids. The physical formulation is 
developed by recourse to the conservations of mass and momentum, the second law of thermodynamics, and the Galilean 
invariance. In such a sense, this formulation is thermodynamically consistent.

We have also developed a method for computing the mixing energy density coefficients λi j (1 � i, j � N − 1) based 
on the 1

2 N(N − 1) pairwise surface tensions σi j (1 � i < j � N) among the N fluids. The basic idea lies in the following 
requirement for the N-phase formulation: if only two fluids i and j are present in the N-phase system, then the N-phase 
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Fig. 13. Temporal sequence of snapshots of velocity fields (5 fluid phases): (a) t = 0.07, (b) t = 0.215, (c) t = 0.301, (d) t = 0.367, (e) t = 0.401, (f) t = 0.451, 
(g) t = 0.513, (h) t = 0.583, (i) t = 0.798, (j) t = 1.008, (k) t = 1.201, (l) t = 1.421, (m) t = 1.673, (n) t = 1.906, (o) t = 2.361, (p) t = 2.758. Velocity vectors 
are plotted on every ninth quadrature point in each direction within each element.
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formulation should reduce to an equivalent two-phase formulation consisting of fluids i and j. Our method leads to a linear 
algebraic system about λi j , with the coefficient matrix depending only on the (N − 1) density ratios, ρ̃i

ρ̃N
(1 � i � N − 1). 

This system can be solved for λi j .
Our numerical algorithm for solving the N-phase system has several attractive properties that make it computationally 

very efficient. First, the computations for different flow variables (pressure, velocity, and phase field functions) are com-
pletely de-coupled. Second, the computations for the (N − 1) strongly-coupled phase field functions are also completely 
de-coupled. This is achieved by a combination of three ideas: (i) we introduce (N − 1)2 extra terms in the semi-discretized 
form of the coupled system of 4th-order phase field equations; (ii) we transform the coupled system, thanks to the extra 
terms, into (N − 1) 4th-order equations that are de-coupled from one another; (iii) we further re-formulate each individual 
4th-order equation into two de-coupled Helmholtz-type equations, using a technique developed previously for two-phase 
flows. Third, the algorithm only involves the solution of linear algebraic systems after discretization, and no nonlinear alge-
braic solver is needed. Fourth, the linear algebraic system for each flow variable involves only constant and time-independent
coefficient matrices, which can be pre-computed during pre-processing. The algorithm has therefore effectively overcome 
the performance bottleneck caused by the variable coefficient matrices associated with variable mixture density and variable 
mixture viscosity.

A comparison would be instructive between the current and several related works. In the literature there exist several 
studies involving three or more fluid components by other researchers; see e.g. [8–10,34,38,41], among others. For three 
fluid components, these simulations usually employ a decomposition of the three pairwise surface tensions in order to 
account for their effects on the flow [9,10,34]. See also [8] for an alternative form of the surface-tension force with three 
fluid phases for the volume of fluids approach. For more than three fluid components, a predominant issue lies in how 
to treat the multiple pairwise surface tensions, as mentioned in earlier sections. A phenomenological surface tension force 
is suggested in [35] for multiple fluid components; see its applications in e.g. [36,41]. The work of [50] assumes identical 
pairwise surface tensions for different fluid interfaces, and employs a surface-tension force in the level-set context that 
results in identical angles between fluid interfaces at triple junctions.

In contrast to the above works, the current formulation has implicitly incorporated the surface-tension effects through 
the free energy of the system. This naturally gives rise to the surface-tension terms in the momentum equation, thanks 
to the second law of thermodynamics. In addition, the mixing energy density coefficients are determined based on the 
pairwise surface tensions by solving a linear algebraic system. This linear system results from a consistency requirement 
on the N-phase formulation, namely, the N-phase formulation must reduce to the equivalent two-phase formulation if 
only a pair of fluids is present in the N-phase system. Thermodynamic consistency in the physical formulation is another 
distinguishing character of the current method, compared to the previous studies.

We have conducted extensive numerical experiments with problems involving multiple fluid phases to demonstrate the 
capabilities of the current method. In particular, for the three-phase floating liquid lens problem, we have performed qual-
itative and quantitative comparisons between our simulations and the de Gennes theory [15]. The results show that our 
N-phase formulation and algorithm have produced physically accurate results. We have also demonstrated the significant 
and sometimes dramatic effects of the gravity, pairwise surface tensions, fluid drop size, and fluid densities on the config-
urations of multi-phase systems. The numerical results have also shown the N-phase complex dynamics and the complex 
interactions among multiple fluid phases. They also show that our method is effective in dealing with large density ratios 
and large viscosity ratios among the multitude of fluid phases.

These results lend the confidence that our physical model and numerical algorithm can reasonably capture the physics 
of N-phase flows. The presented method can be a powerful tool for studying the interactions among multiple types of fluid 
interfaces, N-phase contact lines, and flows involving multiple immiscible incompressible components. On the other hand, 
we would also like to caution that, the usefulness of the model and the algorithm will ultimately be determined by the 
physical results and comparisons with experimental measurements. These all require much future research.
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Appendix A. Development of N-phase formulation

In this appendix we briefly discuss how the physical formulation presented in Section 2.1 for the N-phase flows is 
developed based on the mass and momentum conservations and the second law of thermodynamics. This development has 
much been inspired by the work of [2] for two-phase flows.

Mass Balance In order to facilitate subsequent developments it is necessary in the following to introduce several forms 
about certain physical quantities, e.g. the density and the mass flux. It is crucial to distinguish the different forms, which 
have different physical meanings.
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We take the same problem setting as outlined in Section 2.1. Consider the mixture of N (N � 2) immiscible incom-
pressible fluids. Let ρ̃i (1 � i � N) denote the constant density of pure fluid i without mixing. Consider an arbitrary control 
volume V of the mixture, with a mass M . Let Mi (1 � i � N) denote the mass of fluid i contained in this volume. Let ρi
denote the average density of the i-th fluid within the mixture, and ρ denote the average density of the mixture. Then, 
ρi = Mi

V , and

ρ = M

V
= M1 + M2 + · · · + MN

V
= ρ1 + ρ2 + · · · + ρN . (115)

We assume that, the volume occupied by a given amount of mass of any single fluid i (1 � i � N) does not change after 
mixing, in other words, there is no volume loss or volume addition after mixing of any of these N fluids. Let V i denote the 
volume of pure fluid i before mixing. This assumption leads to

V = V 1 + V 2 + · · · + V N . (116)

Let ci denote the volume fraction of fluid i in the mixture,

ci = V i

V
= Mi/ρ̃i

Mi/ρi
= ρi

ρ̃i
, 1 � i � N. (117)

Eq. (116) is equivalent to the condition (7) on the volume fractions.
Since the volume V is arbitrary, ρ(x, t), ρi(x, t), ci(x, t) defined above are field variables, while ρ̃i are constants. 

Eqs. (115), (117) and (7) will be extensively used in subsequent discussions.
Let Ĵi (1 � i � N) denote the mass flux of fluid i in the mixture. Then the mass balance for fluid i is given by

∂ρi

∂t
+ ∇ · Ĵi = 0, 1 � i � N. (118)

One can define the velocity of the individual fluids, ui (1 � i � N), based on the mass flux,

Ĵi = ρiui, 1 � i � N. (119)

Note that if fluid i does not exist at a point in space (i.e. ρi = 0 at that point), then Ĵi = 0 at that point, and we assume that 
ui = 0 at that point.

Following [2], we define the mixture velocity u as the volume-averaged velocities of the individual fluids,

u =
N∑

i=1

ciui =
N∑

i=1

ρi

ρ̃i
ui =

N∑
i=1

Ĵi

ρ̃i
. (120)

Note that this mixture velocity is divergence free,

∇ · u =
N∑

i=1

1

ρ̃i
∇ · Ĵi = − ∂

∂t

N∑
i=1

ρi

ρ̃i
= − ∂

∂t
(c1 + c2 + · · · + cN) = − ∂

∂t
1 = 0, (121)

where we have used Eqs. (118), (117) and (7). We would like to mention that the velocity in the formulations of [27,38] is 
the mass-averaged mixture velocity and is not divergence free. This is a key difference between our formulation and those of 
[27,38]. One notes that the mixture models of two-phase flows historically used density or mass-averaged equations, which 
led to non-zero velocity divergence; see e.g. [7,31]. We note that in the model of [42] the velocity also has a non-zero 
divergence.

Define the differential flux, Ji , of fluid i relative to the bulk mixture motion,

Ji = Ĵi − ρiu, 1 � i � N. (122)

Then the mass balance equation (118) can be transformed into

∂ρi

∂t
+ u · ∇ρi = −∇ · Ji, 1 � i � N, (123)

where we have used (121). Note that Ji (1 � i � N) satisfies the relation

N∑
i=1

Ji

ρ̃i
=

N∑
i=1

Ĵi

ρ̃i
−

N∑
i=1

ρi

ρ̃i
u = u −

(
N∑

i=1

ci

)
u = u − u = 0, (124)

where we have used (122), (120) and (7). This relation between Ji will be extensively used in subsequent discussions.
We now reformulate the set of N mass balance equations (123) into an equivalent set, in order to facilitate the subse-

quent discussions. In (123), subtract the N-th equation from the i-th one (1 � i � N − 1), and we can get

∂
(ρi − ρN) + u · ∇(ρi − ρN) = −∇ · Jai, 1 � i � N − 1, (125)
∂t
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where

Jai = Ji − JN . (126)

is the relative differential flux between fluids i and N . Summing up the N equations in (123), we get the mass balance 
about the mixture

∂ρ

∂t
+ u · ∇ρ = −∇ · J̃, (127)

where

J̃ = J1 + J2 + · · · + JN . (128)

The set of mass balance equations consisting of (125) and (127) are equivalent to the N mass balance equations of (123).
We next show that the mixture mass-balance equation (127) is redundant from the (N − 1) equations of (125), because 

of the relations (7) and (124). Define

ϕi ≡ ρi − ρN , 1 � i � N − 1. (129)

We will find the relation between ρ and ϕi (1 � i � N − 1), and also the relation between J̃ and Jai (1 � i � N − 1).
Consider the following linear algebraic system about Ji (1 � i � N):

γ̃1J1 + γ̃2J2 + · · · + γ̃N JN = 0 (130a)

Ji − JN = Jai, 1 � i � N − 1, (130b)

where γ̃i is defined in (6), Eq. (130a) is a restatement of (124), and Eq. (130b) is restatement of the definition for Jai in 
(126). One can obtain from this system

JN = − 1

Γ

N−1∑
i=1

γ̃iJai, and Ji = JN + Jai, 1 � i � N − 1, (131)

where Γ is defined in (6). Therefore, one can express J̃ in (127) in terms of Jai as follows,

J̃ =
N∑

i=1

Ji =
N−1∑
i=1

(
1 − N

Γ
γ̃i

)
Jai. (132)

Next we consider the following linear algebraic system about ρi (1 � i � N):

γ̃1ρ1 + γ̃2ρ2 + · · · + γ̃NρN = 1 (133a)

ρi − ρN = ϕi, 1 � i � N − 1, (133b)

where Eq. (133a) is a restatement of (7) by using the definition (117), and Eq. (133b) is a restatement of (129). One can 
obtain from this system

ρN = 1

Γ

(
1 −

N−1∑
i=1

γ̃iϕi

)
, and ρi = ρN + ϕi, 1 � i � N − 1. (134)

Therefore, one can express the mixture density ρ in terms of ϕi as follows

ρ =
N∑

i=1

ρi = N

Γ
+

N−1∑
i=1

(
1 − N

Γ
γ̃i

)
ϕi . (135)

It is straightforward to verify, with the relations (132) and (135), that the (N − 1) equations of (125) imply the mixture 
mass-balance equation (127). Therefore, the mass balance of this N-phase system can be represented by the (N − 1) equa-
tions of (125). We will determine the forms for the relative differential flux Jai (1 � i � N − 1) by invoking the second law 
of thermodynamics in subsequent discussions.

Momentum Balance Following [2], we assume that the inertia and kinetic energy due to the motion of the fluids relative 
to the bulk motion is negligible. So the mixture can be considered as a single fluid with velocity u, which satisfies the 
linear-momentum conservation with respect to the volume-averaged velocity. For simplicity we assume that there is no 
external body force.

The development for the momentum equation below closely follows [2] for two-phase flows. The momentum conserva-
tion leads to

∂
(ρu) + ∇ · (ρuu) = ∇ · T̃, (136)
∂t
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where ρ is the mixture density, u is the volume-averaged mixture velocity, and T̃ is a stress tensor whose form has to be 
specified based on constitutive assumptions.

Eq. (136) is equivalent to

ρ

(
∂u

∂t
+ u · ∇u

)
+
(

∂ρ

∂t
+ u · ∇ρ

)
u = ∇ · T̃. (137)

In the above equation, the stress tensor T̃ cannot be an objective stress tensor (i.e. invariant under Galilean transform), 
because otherwise the above equation will not be Galilean invariant due to the ( ∂ρ

∂t + u · ∇ρ)u term.
In light of Eq. (127), we can transform (137) into

ρ

(
∂u

∂t
+ u · ∇u

)
+ J̃ · ∇u = ∇ · (T̃ + J̃u) = ∇ · T, (138)

where we have used the relation (∇ · J̃)u = ∇ · (J̃u) − J̃ · ∇u. Now the momentum equation admits an objective stress tensor 
T = T̃ + J̃u.

While the term J̃ · ∇u in (138) mathematically results from the Galilean invariance requirement and the mixture mass 
balance equation (127), its physical meaning can be understood as follows. The mass flux of a phase consists of two contri-
butions: a transport due to the mixture bulk velocity u, and a transport at the scale of the diffuse interfacial layer driven by 
the effective chemical potentials between the phases (see subsequent discussions, and Eqs. (156), (157c) and (132)). There 
is a momentum flux associated with the latter mass transport, and the term J̃ · ∇u represents the effect of this momentum 
flux.

Thanks to the fact that u is divergence-free, see (121), we can introduce a pressure p,

T = −pI + S, (139)

where I is the identity tensor, and S is a trace-free stress tensor. The momentum equation then becomes

ρ

(
∂u

∂t
+ u · ∇u

)
+ J̃ · ∇u = −∇p + ∇ · S. (140)

The constitutive form for the stress tensor S will be determined subsequently by invoking the second law of thermodynam-
ics.

Specifying Constitutive Relations Let us now consider how to specify the forms for the flux vectors Jai (1 � i � N − 1) in 
(125) and the stress tensor S in (140) based on the second law of thermodynamics.

Suppose that we have chosen a set of (N − 1) order parameters �φ = (φ1, φ2, · · · , φN−1) to characterize this N-phase 
system, and then the relation

ρi − ρN = ϕi = ϕi( �φ) (141)

will be known. As a result, the relations ρ = ρ( �φ) and ρi = ρi( �φ) can be determined thanks to Eqs. (135) and (134).
We assume that the relative motion of any two fluids is diffusive. In the spirit of the phase field approach, we introduce 

a free energy density function W ( �φ, ∇ �φ), which plays the role of the interfacial energy for the diffuse interfaces. The total 
energy density function is then

e(u, �φ,∇ �φ) = 1

2
ρ( �φ)|u|2 + W ( �φ,∇ �φ), (142)

where the first term on the right hand side denotes the kinetic energy.
We invoke the following form of the second law of thermodynamics for isothermal systems [26],

d

dt

∫
Ω(t)

e(u, �φ,∇ �φ) � Pc (143)

where Ω(t) is an arbitrary volume that is transported with the mixture velocity u, and Pc is the conventional power 
expended on Ω(t). Intuitively, this means that not all conventional power expended on a system can be converted into 
changes in the net free- and kinetic-energy of the system, because a portion of that power must go into dissipation.

The power expended on Ω(t) consists of several components (see also [2]):

• Work done to the system due to the objective stress tensor T = −pI + S,∫
∂Ω(t)

n · T · udA

where n is the outward-pointing unit vector normal to ∂Ω(t), and dA denotes integration with respect to the surface.
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• Kinetic energy transport into Ω(t) due to the relative motion with respect to the mixture velocity,

−
∫

∂Ω(t)

N∑
i=1

1

2
|u|2n · JidA = −

∫
∂Ω(t)

1

2
|u|2n ·

(
N∑

i=1

Ji

)
dA = −

∫
∂Ω(t)

1

2
|u|2n · J̃dA,

where n · JidA represents the mass transport of fluid i in unit time due to relative motion with respect to the mixture 
velocity, and we have used Eq. (128).

• Free energy transport into Ω(t) due to diffusion. Note our assumption about the diffusiveness of the relative motion 
between any two fluids. The term n · (Ji − J j)dA represents the mass change due to diffusion between fluids i and j, 
assuming 1 � i < j � N . Let C̃i j denote the chemical potential associated with this diffusive flux. Then the total free 
energy transport due to diffusion is

−
∫

∂Ω(t)

N∑
i, j=1
i< j

n · (Ji − J j)C̃i jdA

In light of Eq. (126), we have

N∑
i, j=1
i< j

n · (Ji − J j)C̃i j =
N−1∑
i, j=1
i< j

n · (Jai − Jaj)C̃i j +
N−1∑
i=1

n · JaiC̃iN =
N−1∑
i=1

n · JaiCi,

where we have used Ji − J j = Jai − Jaj , and Ci denotes an effective chemical potential associated with Jai and is a linear 
combination of C̃i j . Therefore, the total free energy transport into Ω(t) due to diffusion can be represented by

−
∫

∂Ω(t)

N−1∑
i=1

n · JaiCidA. (144)

• Similar to [2], we assume the existence a generalized surface force Υ i (1 � i � N − 1) associated with φi such that

N−1∑
i=1

∫
∂Ω(t)

n · Υ i

(
∂φi

∂t
+ u · ∇φi

)
dA

represents the associated work done on the system.

Therefore, the inequality (143) becomes

d

dt

∫
Ω(t)

e(u, �φ,∇ �φ) �
∫

∂Ω(t)

n · T · udA −
∫

∂Ω(t)

1

2
|u|2n · J̃dA

−
∫

∂Ω(t)

N−1∑
i=1

n · JaiCidA +
N−1∑
i=1

∫
∂Ω(t)

n · Υ i

(
∂φi

∂t
+ u · ∇φi

)
dA (145)

Noting the Leibnitz theorem and the arbitrariness of Ω(t), one can obtain

−D ≡ ∂e

∂t
+ ∇ · (eu) +

N−1∑
i=1

∇ · (CiJai) + ∇ ·
(

1

2
|u|2 J̃

)
−

N−1∑
i=1

∇ · (φ̇iΥ i) − ∇ · (T · u) � 0, (146)

where D denotes a non-negative quantity, and φ̇i represents the material derivative ( ∂φi
∂t + u · ∇φi).

We transform (146) into

−D = ∂W

∂t
+ u · ∇W +

∑
i=1

∇ · (CiJai) −
N−1∑
i=1

∇ · (φ̇iΥ i) − TT : ∇u � 0 (147)

by noting (125), (138), and the relation

∂

∂t

(
1

2
ρ|u|2

)
+ u · ∇

(
1

2
ρ|u|2

)
= −(∇ · J̃)

1

2
ρ|u|2 + (∇ · T) · u − (J̃ · ∇u) · u.

Then by noting the relations
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (CiJai) = ∇Ci · Jai −
N−1∑
j=1

Ci
∂ϕi

∂φ j
φ̇ j

∂W

∂t
+ u · ∇W =

N−1∑
i=1

∂W

∂φi
φ̇i +

N−1∑
i=1

(∇φi)
• · ∂W

∂(∇φi)

Υ i · ∇φ̇i = Υ i · (∇φi)
• + (∇φi ⊗ Υ i) : ∇u

where (∇φi)
• = ∂

∂t (∇φi) + u · ∇(∇φi) and ⊗ denotes the tensor product, we can transform (147) into

−D =
N−1∑
i=1

(
∂W

∂φi
−

N−1∑
j=1

∂ϕ j

∂φi
C j − ∇ · Υ i

)
φ̇i +

N−1∑
i=1

(
∂W

∂(∇φi)
− Υ i

)
· (∇φi)

•

−
(

ST +
N−1∑
i=1

∇φi ⊗ Υ i

)
: ∇u +

N−1∑
i=1

∇Ci · Jai � 0 (148)

where we have used (125), (121), and (139).
Let us next consider specifying constitutive relations for Jai , S, Υ i , and Ci such that the inequality (148) will always be 

satisfied. We assume that Jai , S, Υ i (1 � i � N − 1) are functions of �φ , ∇ �φ, ∇u, Ck , and ∇Ck (1 � k � N − 1) only, and that 
Ci do not depend on φ̇k (1 � k � N − 1). Furthermore, we assume that S is a symmetric tensor. Since φ̇i and (∇φi)

• can 
attain arbitrary values, and that the expressions in the first and second parentheses behind the equality sign in (148) do 
not depend on φ̇i and (∇φi)

• respectively, we conclude that

∂W

∂(∇φi)
− Υ i = 0, 1 � i � N − 1, (149)

∂W

∂φi
−

N−1∑
j=1

∂ϕ j

∂φi
C j − ∇ · Υ i = 0, 1 � i � N − 1. (150)

Therefore, one obtains a linear algebraic system about the chemical potentials Ci ,

N−1∑
j=1

∂ϕ j

∂φi
C j = ∂W

∂φi
− ∇ · ∂W

∂(∇φi)
, 1 � i � N − 1, (151)

which can be solved for Ci (1 � i � N − 1) once the free energy W ( �φ, ∇ �φ) is chosen.
The inequality (148) is reduced to

−D = −
(

S +
N−1∑
i=1

∇φi ⊗ ∂W

∂∇φi

)
: 1

2
D(u)

− 1

2

(
N−1∑
i=1

∇φi ⊗ ∂W

∂∇φi
−

N−1∑
i=1

∂W

∂∇φi
⊗ ∇φi

)
: 1

2

(∇u − ∇uT )

+
N−1∑
i=1

∇Ci · Jai � 0, (152)

where D(u) = ∇u + ∇uT . Since 1
2 (∇u − ∇uT ) is independent of D(u) and can attain arbitrary values, we conclude that

N−1∑
i=1

∇φi ⊗ ∂W

∂∇φi
=

N−1∑
i=1

∂W

∂∇φi
⊗ ∇φi, (153)

which is a condition that the free energy density function W ( �φ, ∇ �φ) must satisfy.
The inequality (152) is then reduced to

−D = −
(

S +
N−1∑
i=1

∇φi ⊗ ∂W

∂∇φi

)
: 1

2
D(u) +

N−1∑
i=1

∇Ci · Jai � 0. (154)

Motivated by the constitutive relation for Newtonian fluids, we assume that
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S +
N−1∑
i=1

∇φi ⊗ ∂W

∂∇φi
= μ( �φ)D(u) (155)

where μ( �φ) � 0 plays the role of viscosity. We further assume that

Jai = −m̃i( �φ)∇Ci, 1 � i � N − 1 (156)

for some function mi( �φ) � 0.
Therefore, the constitutive relations given by (155) and (156), where the chemical potentials Ci are given by the linear 

algebraic system (151), satisfy the second law of thermodynamics. The free energy density function W ( �φ, ∇ �φ) for the 
N-phase system must be chosen in a form such that the condition (153) is satisfied.

Physical Formulation Substituting the constitutive relations (155) and (156) for S and Jai into Eqs. (140) and (125), we 
obtain the following phase field formulation for the N-phase system:

ρ

(
∂u

∂t
+ u · ∇u

)
+ J̃ · ∇u = −∇p + ∇ · [μ( �φ)D(u)

]− N−1∑
i=1

∇ ·
(

∇φi ⊗ ∂W

∂∇φi

)
, (157a)

∇ · u = 0, (157b)
N−1∑
j=1

∂ϕi

∂φ j

(
∂φ j

∂t
+ u · ∇φ j

)
= ∇ · [m̃i( �φ)∇Ci

]
, 1 � i � N − 1, (157c)

where ϕi( �φ) is defined in (141), Ci( �φ) is given by the linear algebraic system (151), and W ( �φ, ∇ �φ) is the free energy density 
function that satisfies the condition (153). This is the general form, in which the order parameters �φ and the free energy 
density function W ( �φ, ∇ �φ) still need to be specified.

In order to simplify the form of the phase field equations (157c), we choose the set of order parameters φi such that

ϕi = ρi − ρN = 1

2
(ρ̃i − ρ̃N) + 1

2
(ρ̃i + ρ̃N)φi, φi ∈ [−1,1], 1 � i � N − 1. (158)

This choice greatly simplifies the phase field equations because ∂ϕi
∂φ j

= 1
2 (ρ̃i + ρ̃N )δi j . Note that other quantities (e.g. volume 

fraction, mass fraction, density) can also be used as order parameters, but the resulting phase field equations will be 
considerably more complicated because of the matrix [ ∂ϕi

∂φ j
](N−1)×(N−1) . With the above set of order parameters, the chemical 

potential is given by, according to (151),

Ci = 2

ρ̃i + ρ̃N

[
∂W

∂φi
− ∇ · ∂W

∂(∇φi)

]
, 1 � i � N − 1. (159)

The mixture density ρ( �φ) is given by (10). We assume that the dynamic viscosity u( �φ) has a form given by (11).
We further choose the free energy density function W ( �φ, ∇ �φ) in a form given by (3). One can verify that it satisfies 

the condition (153) if the matrix A defined in (2) is symmetric. By assuming that all model parameters involved herein are 
constants and by re-scaling the parameters m̃i , one can arrive at the formulation given by Eqs. (1a)–(1c) in Section 2.1.
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