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We present a framework for devising discretely energy-stable schemes for general 
dissipative systems based on a generalized auxiliary variable. The auxiliary variable, a 
scalar number, can be defined in terms of the energy functional by a general class of 
functions, not limited to the square root function adopted in previous approaches. The 
current method has another remarkable property: the computed values for the generalized 
auxiliary variable are guaranteed to be positive on the discrete level, regardless of the time 
step sizes or the external forces. This property of guaranteed positivity is not available in 
previous approaches. A unified procedure for treating the dissipative governing equations 
and the generalized auxiliary variable on the discrete level has been presented. The discrete 
energy stability of the proposed numerical scheme and the positivity of the computed 
auxiliary variable have been proved for general dissipative systems. The current method, 
termed gPAV (generalized Positive Auxiliary Variable), requires only the solution of linear 
algebraic equations within a time step. With appropriate choice of the operator in the 
algorithm, the resultant linear algebraic systems upon discretization involve only constant 
and time-independent coefficient matrices, which only need to be computed once and 
can be pre-computed. Several specific dissipative systems are studied in relative detail 
using the gPAV framework. Ample numerical experiments are presented to demonstrate 
the performance of the method, and the robustness of the scheme at large time step sizes.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Dissipative systems are of immense interest to science and engineering. Physical systems encountered in the real world 
are dissipative, thanks to the second law of thermodynamics. In dissipative systems there exists a storage function that 
is bounded from below [40]. We will refer to this function as the energy in the current work. Dissipative systems are 
distinguished from general dynamical systems by the dissipation inequality, which basically states that the increase in 
storage of the system over a time interval cannot exceed the supply to the system during that interval [40,41]. The governing 
partial differential equations (PDE) describing dissipative systems are typically nonlinear, and they satisfy a balance equation 
for the energy (or entropy) as an embodiment of the dissipation inequality [11,35,2,32,1,15].
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A highly desirable property for numerical algorithms for dissipative systems is the preservation of the energy dissipation 
(or conservation) on the discrete level. This not only preserves one important aspect of the underlying structure of the con-
tinuous system [23], but more practically also provides a control on the numerical stability in actual computer simulations. 
The history for such strategies is long and they can be traced to at least the work of [9] on discrete energy conservation for 
finite difference approximations in the 1920s. While energy-stable schemes for specific domains of science and engineer-
ing have been under intensive studies and these efforts have borne invaluable fruits, the schemes and methods developed 
usually have only limited applicability across domains. The energy-stable schemes for one area are hardly transferable to a 
different field, and they can hardly shed light on the development of such types of schemes in new unexplored domains. 
Unified techniques that can be broadly applied to treat different PDEs from different domains for devising energy-stable 
schemes are generally lacking. The metaphor used in [24] (page 139) to compare the motley collection of PDEs to a huge 
unhappy family (each unhappy in its own way; Tolstoy, “Anna Karenina”) seems fitting in describing this situation (see 
also [6]).

Occasionally, certain methods appear and seem to be broadly applicable to a wide class of problems spanning different 
areas. The average vector field (AVF) method [6,36] and the discrete variational derivative method (DVDM) [19], both of 
which can be traced to the idea of discrete gradients [22,33], are two such examples. For gradient systems that can be 
expressed into the form ∂u

∂t = L · δH
δu , where L is an anti-symmetric or negative semi-definite matrix, u is the field variable, 

H(u) is the energy functional and δH
δu denotes the variational derivative, the AVF and DVDM methods can preserve the 

energy conservation (resp. energy dissipation) discretely. We refer the reader to e.g. [18,10,34,5,17] (among others) for 
related and variants of these methods. A potential drawback of these methods is their computational cost. Because these are 
fully implicit schemes and the governing PDEs are in general nonlinear, these methods will entail the solution of nonlinear 
algebraic equations on the discrete level. Consequently, some nonlinear algebraic solver (e.g. Newton’s method) will be 
required for computing the field functions, and the associated computational cost can be substantial.

In the current work we present a framework for devising energy-stable schemes for general dissipative systems that can 
potentially be useful and applicable to different domains. Our method does not require the governing PDEs to be in any 
particular form, as long as they are dissipative (or conserving). When devising the energy-stable numerical schemes, we 
are particularly mindful of the computational cost involved therein. The resultant energy-stable schemes from our method 
involve only the solution of linear algebraic equations when computing the field functions within a time step, and no 
nonlinear algebraic solver is needed. Furthermore, with appropriate choice of the operator in the scheme, the resultant linear 
algebraic systems upon discretization can involve only constant and time-independent coefficient matrices, which only need 
to be computed once and can be pre-computed during pre-processing. Thanks to these properties, the presented method 
and the resultant energy-stable schemes are computationally very competitive and attractive. In terms of the computational 
cost the presented method enjoys a notable advantage when compared with the aforementioned methods.

The key to achieving the above useful properties for general dissipative systems in the presented method lies in the 
introduction of a generalized auxiliary variable. The generalized auxiliary variable introduced here is inspired by the scalar 
auxiliary variable (SAV) approach proposed by [38], and to a lesser extent, by the invariant energy quadratization (IEQ) 
method [44], both of which are devised for gradient flows; see also e.g. [37,20,8,49,27,28,47,45] (among others) for exten-
sions and applications of these techniques. In SAV a scalar-valued auxiliary variable is defined, as the square root of the 
shifted potential energy integral. In IEQ an auxiliary field variable is defined, as the square root of the shifted potential 
energy density function. With these auxiliary variables, energy-stable schemes can be devised for gradient flows and their 
discrete energy stability can be proven in the SAV and IEQ methods. In both SAV and IEQ, the use of the square root function 
is critical to the proof of the discrete energy stability of the resultant numerical schemes, due to the interesting property 
that the square root is the only function form that satisfies the relation

2 f (x) f ′(x) = 1.

In the current work we will show that the square root function is not essential to devising energy-stable schemes. In the 
generalized auxiliary variable method developed here, the auxiliary variable (a scalar number) can be defined by a rather 
general class of functions (conditions specifically given in Section 2.1) in terms of the energy functional, which is why the 
method is termed “generalized”, and the resultant numerical schemes can be proven to be discretely energy stable.

The method presented here is applicable to general dissipative systems, which is another key difference from previous 
auxiliary-variable approaches. The ability to deal with general dissipative systems hinges on how the governing PDEs are 
treated based on the generalized auxiliary variable and how the generalized auxiliary variable is numerically treated on the 
discrete level. A unified procedure for treating discretely the dissipative governing equations and the generalized auxiliary 
variable has been presented. These numerical treatments have drawn inspirations from the recent developments in [29,
46] for incompressible Navier-Stokes equations and for the incompressible two-phase flows, which are not gradient-type 
systems.

The generalized auxiliary variable method proposed herein has another remarkable property: The computed values for 
the auxiliary variable are guaranteed to be positive on the discrete level. Such a property is not available in the SAV (or IEQ) 
method. In both SAV and IEQ, as well as in the current method, the auxiliary variable is computed discretely by solving an 
associated dynamic equation, which is derived based on the definition of the auxiliary variable in terms of the square root 
function in SAV and IEQ or a general function in the current method. The auxiliary variable physically should be positive 
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according to its definition. However, this positivity property is in general not guaranteed in the computed values for the 
auxiliary variable, because they are obtained by numerically solving a differential equation. Indeed, in numerical experiments 
we have observed negative values for the computed auxiliary variable using the previous methods, especially at large time 
step sizes. With the current method, on the other hand, we can prove that the computed values for the generalized auxiliary 
variable are guaranteed to be positive, regardless of the time step sizes or the external forces. The guaranteed positivity of 
the auxiliary variable in the current method is intimately related to and is critical to the proof of discrete energy stability 
of the proposed numerical schemes.

Because of these crucial properties, we will refer to the framework proposed herein as “gPAV”, which stands for the 
generalized Positive Auxiliary Variable method.

In this paper we consider general dissipative systems and outline the gPAV procedure for devising discretely energy-
stable schemes. The discrete energy stability of the proposed numerical scheme and the positivity property of the computed 
auxiliary variable will be proven for general dissipative systems. As already mentioned, the gPAV method requires only 
the solution of linear algebraic equations within a time step, and with appropriate choice of the operator in the algo-
rithm, the resultant linear algebraic systems involve only constant and time-independent coefficient matrices that can be 
pre-computed. We demonstrate the gPAV procedure by looking into three specific dissipative systems: a chemo-repulsion 
model [21], the Cahn-Hilliard equation [4] with constant and variable mobility, and the nonlinear Klein-Gordon equa-
tion [39]. Ample numerical experiments are provided for each system to demonstrate the performance of the algorithm 
and the effects of the parameters.

The current work contains several new aspects: (i) the framework for developing discretely energy-stable schemes for 
general dissipative systems; (ii) the generalized auxiliary variable introduced herein; and (iii) the guaranteed positivity of 
the computed auxiliary variable on the discrete level. Some other aspects, such as the generalization of the numerical 
algorithm as discussed in Remarks 2.5 and 2.6, are also potentially useful to other researchers and the community.

The remainder of this paper is structured as follows. In Section 2 we introduce a generalized auxiliary variable and 
present the gPAV framework for devising discretely energy-stable schemes for general dissipative systems. The discrete en-
ergy stability of the presented algorithm and the positivity of the computed auxiliary variable will be proven. The solution 
algorithm for implementing the proposed energy-stable scheme will be presented. An alternative formulation for the energy-
stable scheme will also be discussed in this section. Then in the three subsequent sections (Sections 3–5) we apply the gPAV 
framework to three specific dissipative systems (a chemo-repulsion model, Cahn-Hilliard equation with constant and vari-
able mobility, and Klein-Gordon equation). Ample numerical experiments are provided to demonstrate the performance of 
the method for each system, and numerical results with large time step sizes are presented to show the robustness of the 
proposed scheme. Section 6 concludes the discussions with some closing remarks. In Appendix A we provide a method for 
approximating the variables for the first time step, which guarantees the positivity of the computed auxiliary variable to 
start off. This startup procedure is important for the proof of discrete energy stability of the presented numerical scheme.

2. The gPAV framework for energy-stable schemes for dissipative systems

Consider a domain � in two or three dimensions and a dissipative system on this domain, whose dynamics is described 
by,

∂u

∂t
= F (u) + f (x, t) (2.1)

where x and t denote the spatial coordinate and time, u(x, t) denotes the state variables of the system and can be a scalar-
or vector-valued field function, and f (x, t) is an external source term (hereafter referred to as the external force). F (u)

is an operator that gives rise to the dissipative dynamics of the system and can be nonlinear in general. Equation (2.1) is 
supplemented by the boundary condition

B(u) = f b, on � (2.2)

where � denotes the domain boundary, f b is an external source term on the boundary, which will be referred to as the 
external boundary force hereafter, and B is assumed to be a linear operator for the sake of simplicity. The initial condition 
is

u(x, t = 0) = uin(x) (2.3)

where uin(x) is the initial distribution of the state variable.
Because the system is dissipative, there exists a storage function that is bounded from below [40], which hereafter will 

be referred to as the energy,

Etot(t) = Etot[u] =
∫

e(u)d�, (2.4)
�
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where e(u) is the energy density function. The evolution of the energy is described by

dEtot

dt
=

∫
�

e′(u) · ∂u

∂t
d� =

∫
�

e′(u) · [F (u) + f ] d�, (2.5)

where e′(u) is the partial derivative of e(u) with respect to u (e′(u) = ∂e
∂u ) and we have used equation (2.1). With integration 

by part, the right-hand-side (RHS) of equation (2.5) can be transformed into∫
�

e′(u) · [F (u) + f ]d� = −
∫
�

V (u)d� +
∫
�

V s( f , u)d� +
∫
�

Bs( f b, u)d�, (2.6)

where V s( f , u) = e′(u) · f denotes the volume terms involving the external force f , which satisfies the property

V s( f , u) = 0, if f = 0. (2.7)

The rest of the volume terms are denoted by −V (u), not involving f . Bs( f b, u) denotes the boundary terms, which may 
involve the boundary source term ( f b) through the boundary conditions.

Substituting equation (2.6) into equation (2.5), we arrive at the following energy balance equation for the system,

dEtot

dt
= −

∫
�

V (u)d� +
∫
�

V s( f , u)d� +
∫
�

Bs( f b, u)d�. (2.8)

We assume that the boundary conditions (2.2) satisfy the following property,

Bs( f b, u) = 0 if f b = 0, on �. (2.9)

The dissipative nature of the system ensures that dEtot
dt � 0 in the absence of the external forces (i.e. f = 0 and f b = 0). 

Because the domain � can be arbitrary, it follows that V (u) must be non-negative, i.e.

V (u) � 0. (2.10)

2.1. Reformulated equivalent system

To facilitate energy-stable numerical approximations of the system (2.1), we define a shifted energy of the following form

E(t) = E[u] =
∫
�

e(u)d� + C0, (2.11)

where C0 is a chosen energy constant such that E(t) > 0 for 0 � t � T , and T is the time interval on which the computation 
is to be carried out. Note that for a physical system the energy is bounded from below, and thus C0 can always be found.

Let F denote a one-to-one increasing differentiable function, with its inverse F−1 = G , satisfying the property{
F (χ) > 0, for χ > 0;
G (χ) > 0, for χ > 0.

(2.12)

We define a scalar variable R(t) by

R(t) = G (E), (2.13a)

E(t) = F (R), (2.13b)

where E(t) is the shifted energy given by (2.11). R(t) then satisfies the following evolution equation,

F ′(R)
dR

dt
=

∫
�

e′(u) · ∂u

∂t
d� (2.14)

which is obtained by taking the time derivative of equation (2.13b) and using equation (2.11).

Remark 2.1. The choice for F and G is rather general. Some examples are,

F (χ) = χm, G (χ) = χ1/m, m ∈ Z+ = {1,2,3, ...}; (2.15)
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or

F (χ) = e0

2
ln

(κ0 + χ

κ0 − χ

)
, G (χ) = κ0 tanh

(
χ

e0

)
, (2.16)

where κ0 and e0 are positive constants. It is important to notice that a function like F (χ) = χ2m+1 (with an integer m � 0) 
or F (χ) = ln(1 + χ) does not automatically guarantee that F (χ) > 0 with arbitrary χ . However, if one can ensure that 
the argument satisfies χ > 0, the property F (χ) > 0 can be guaranteed with such choices of functions when defining R(t). 
This point is critical in the subsequent development of the numerical algorithm.

Noting that F (R)
E = 1, we rewrite equation (2.1) into an equivalent form

∂u

∂t
= F L(u) + F (R)

E

(
F (u) − F L(u)

)
+ f , (2.17)

where F L(u) is a chosen linear operator about u. F L(u) should be of the same spatial order as F (u). For improved ac-
curacy F L(u) should be an approximation of F (u) in some way, such as the linear component of F (u) or a linearized 
approximation of F (u). For improved numerical efficiency F L(u) should be easy to compute and implement.

Remark 2.2. F (u) often consists of linear components and nonlinear components for many systems, and oftentimes one 
can choose the linear components as the F L operator. One can also add/subtract certain linear operators, and treat one 
part freely and the other part together with F (R)

E as in equation (2.17). By choosing an F L operator that involves only 
time-independent (or constant) coefficients, the resultant method will become computationally very efficient, because the 
coefficient matrices for the linear algebraic systems upon discretization will be time-independent and therefore can be 
pre-computed when solving the field variables. This point will become clearer from later discussions.

We reformulate equation (2.14) as follows,

F ′(R)
dR

dt
=

∫
�

e′(u) · ∂u

∂t
d� +

[
F (R)

E
− 1

]∫
�

e′(u) · [F L(u) + f ] d�

+ F (R)

E

⎛
⎝∫

�

e′(u) · [F (u) − F L(u)] d� −
∫
�

e′(u) · [F (u) − F L(u)] d�

⎞
⎠

+
[

1 − F (R)

E

] ∣∣∣∣∣∣
∫
�

V s( f , u)d� +
∫
�

Bs( f b, u)d�

∣∣∣∣∣∣
=

∫
�

e′(u) · ∂u

∂t
d� −

∫
�

e′(u) ·
(

F L(u) + F (R)

E
[F (u) − F L(u)] + f

)
d�

+ F (R)

E

∫
�

e′(u) · [F (u) + f ] d� +
[

1 − F (R)

E

] ∣∣∣∣∣∣
∫
�

V s( f , u)d� +
∫
�

Bs( f b, u)d�

∣∣∣∣∣∣

(2.18)

where it can be noted that a number of zero terms have been incorporated. In the above equation 
∣∣(·)∣∣ denotes the absolute 

value of (·). In light of (2.6), we transform equation (2.18) into the final reformulated equivalent form

F ′(R)
dR

dt
=

∫
�

e′(u) · ∂u

∂t
d� −

∫
�

e′(u) ·
(

F L(u) + F (R)

E
[F (u) − F L(u)] + f

)
d�

+ F (R)

E

⎡
⎣−

∫
�

V (u)d� +
∫
�

V s( f , u)d� +
∫
�

Bs( f b, u)d�

⎤
⎦

+
[

1 − F (R)

E

] ∣∣∣∣∣∣
∫
�

V s( f , u)d� +
∫
�

Bs( f b, u)d�

∣∣∣∣∣∣ .

(2.19)

The reformulated system consists of equations (2.17) and (2.19), the boundary conditions (2.2), the initial condition (2.3)
for u, and the following initial condition for R(t),

R(0) = G (E(0)), where E(0) =
∫

e(uin)d� + C0. (2.20)
�
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In the reformulated system, the dynamic variables are u and R(t), which are coupled in the equations (2.17) and (2.19). E(t)
is given by equation (2.11). Note that in this system R(t) is determined by solving the coupled system of equations, not by 
using the equation (2.13a).

2.2. An energy-stable scheme

We next present an energy-stable scheme for the reformulated system consisting of (2.17) and (2.19), together with the 
boundary condition (2.2) and the initial conditions (2.3) and (2.20).

Let n � 0 denote the time step index, and (·)n represent the variable (·) at time step n, corresponding to the time 
t = n�t , where �t is the time step size. If a real-valued parameter θ is involved, (·)n+θ represents the variable (·) at time 
step (n + θ ), corresponding to the time (n + θ)�t .

Let χ denote a generic scalar or vector-valued variable. We consider the following second-order approximations:

χn+ 3
2 = 3

2
χn+1 − 1

2
χn, χn+ 1

2 = 3

2
χn − 1

2
χn−1, (2.21a)

∂χ

∂t

∣∣∣n+1 = χn+ 3
2 − χn+ 1

2

�t
= 1

�t

(3

2
χn+1 − 2χn + 1

2
χn−1

)
, (2.21b)

χ̄n+1 = 2χn − χn−1, (2.21c)

where (2.21b) is the second-order backward differentiation formula (BDF) and χ̄n+1 is an explicit approximation of χn+1. 

We also consider the following second-order approximation of dF (χ)
dχ

∣∣∣n+1 = F ′(χ)

∣∣∣n+1
based on the discrete directional 

derivative [22]

DF (χ)
∣∣n+1 = F (χn+ 3

2 ) − F (χn+ 1
2 ) − F ′(χn+1) · (χn+ 3

2 − χn+ 1
2 )

‖χn+ 3
2 − χn+ 1

2 ‖2
(χn+ 3

2 − χn+ 1
2 ) + F ′(χn+1), (2.22)

which satisfies the property

DF (χ)

∣∣∣n+1 ·
(

3

2
χn+1 − 2χn + 1

2
χn−1

)
= DF (χ)

∣∣∣n+1 ·
(
χn+ 3

2 − χn+ 1
2

)
= F (χn+ 3

2 ) − F (χn+ 1
2 ). (2.23)

Note that in these equations χn+3/2 and χn+1/2 are given by (2.21a). If χ represents a scalar-valued variable, one can also 

approximate F ′(χ)

∣∣∣n+1
by

DF (χ)
∣∣n+1 = F (χn+ 3

2 ) − F (χn+ 1
2 )

χn+ 3
2 − χn+ 1

2

= F (χn+ 3
2 ) − F (χn+ 1

2 )

3
2χn+1 − 2χn + 1

2χn−1
, (2.24)

which satisfies the same property (2.23).
We propose the following scheme to approximate the reformulated system:

∂u

∂t

∣∣∣n+1 = F L(un+1) + ξ
[

F (ūn+1) − F L(ūn+1)
]
+ f n+1, (2.25a)

ξ = F (Rn+3/2)

E[ũn+3/2] , (2.25b)

E[ũn+3/2] =
∫
�

e(ũn+3/2
)d� + C0, (2.25c)

B(un+1) = f n+1
b , on �, (2.25d)



Z. Yang, S. Dong / Journal of Computational Physics 404 (2020) 109121 7
DF (R)
∣∣n+1 dR

dt

∣∣∣∣
n+1

=
∫
�

e′(un+1) · ∂u

∂t

∣∣∣∣
n+1

d�

−
∫
�

e′(un+1) ·
(

F L(un+1) + ξ
[

F (ūn+1) − F L(ūn+1)
]
+ f n+1

)
d�

+ ξ

⎡
⎣−

∫
�

V (ũn+1
)d� +

∫
�

V s( f n+1, ũn+1
)d� +

∫
�

Bs( f n+1
b , ũn+1

)d�

⎤
⎦

+ (1 − ξ)

∣∣∣∣∣∣
∫
�

V s( f n+1, ũn+1
)d� +

∫
�

Bs( f n+1
b , ũn+1

)d�

∣∣∣∣∣∣ .

(2.25e)

In the above equations, ∂u
∂t

∣∣n+1
and dR

dt

∣∣∣n+1
are defined by (2.21b), DF (R)|n+1 is defined by (2.22) (or (2.24)), ūn+1 is 

defined by (2.21c), and Rn+3/2 is defined by (2.21a). ũn+1 and ũn+3/2 are second-order approximations of un+1 and un+3/2, 
respectively, to be specifically defined later in (2.42).

Remark 2.3. It is critical to note that in the scheme (2.25a)–(2.25e), F (R)
E[u] is approximated at step (n + 3

2 ) while the 
other variables are approximated at step (n + 1). This feature, together with the approximation (2.24), allows Rn+1 to 
be computed from a linear algebraic equation (no nonlinear algebraic solver), and endows the scheme with the property 
that the computed Rn+1 and F (Rn+1) (resp. Rn+3/2 and F (Rn+3/2), for all n � 0) are guaranteed to be positive. These 
points will become clear from later discussions. It should be noted that the approximation F (Rn+3/2)

E[ũn+3/2] at step (n + 3/2) is a 

second-order approximation of F (R)
E = 1. In fact, the approximation involving any real parameter θ ,

F (Rn+θ )

E[ũn+θ ] = 1 +O(�t)2, (2.26)

is a second-order approximation of F (R)
E = 1, as long as Rn+θ and ũn+θ are second-order approximations of R(t) and u(t)

at time (n + θ)�t . Therefore, the approximation in (2.25b) does not affect the second-order accuracy of the scheme.

The scheme given by (2.25a)–(2.25e) has the following property.

Theorem 2.1. In the absence of the external force and external boundary force (i.e. f = 0 and f b = 0), the following relation holds 
with the scheme (2.25):

F (Rn+ 3
2 ) − F (Rn+ 1

2 ) = −�t
F (Rn+ 3

2 )

E[ũn+3/2]
∫
�

V (ũn+1
) � 0, for n � 0, (2.27)

if the approximation of R(t) at time step 1
2 is positive, i.e. Y0 = Rn+1/2

∣∣∣
n=0

> 0.

Proof. By equations (2.21b) and (2.22), we have

DF (R)

∣∣∣n+1 dR

dt

∣∣∣∣
n+1

= F (Rn+ 3
2 ) − F (Rn+ 1

2 )

�t
. (2.28)

Taking the L2 inner product between equation (2.25a) and e′(un+1), and adding the resultant equation to equation (2.25e)
and noting equation (2.28), we arrive at

F (Rn+ 3
2 ) − F (Rn+ 1

2 ) = −�t
F (Rn+ 3

2 )

E[ũn+3/2]
∫
�

V (ũn+1
) +

(
1 − F (Rn+ 3

2 )

E[ũn+3/2]

)
|S0|�t + F (Rn+ 3

2 )

E[ũn+3/2] S0�t, (2.29)

where we have used equation (2.25b), and S0 is defined by

S0 =
∫

V s( f n+1, ũn+1
)d� +

∫
Bs( f n+1

b , ũn+1
)d�. (2.30)
� �
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Then it follows that, if f = 0 and f b = 0,

F (Rn+3/2) = F (Rn+ 1
2 )

1 + �t
E[ũn+3/2]

∫
�

V (ũn+1
)d�

(2.31)

where we have used the relations (2.7) and (2.9).
Note that E[ũn+3/2] > 0 and V (ũn+1

) � 0, in light of (2.11) and (2.10). If Y0 = Rn+1/2|n=0 > 0, then F (Y0) > 0 based on 
the property (2.12). By induction, we can conclude from equation (2.31) that F (Rn+3/2) > 0 for all n � 0. The inequality in 
(2.27) then holds. We therefore conclude that, if Rn+1/2|n=0 > 0,

0 < F (Rn+ 3
2 ) � F (Rn+ 1

2 ), for n � 0. (2.32)

Thus, the scheme is unconditionally energy stable with respect to the modified energy F (R), if the approximation of 
R(t) at time step 1

2 is positive. �
There are many ways to approximate R(t) to ensure that it is positive at time step 1

2 and that the overall scheme is 
second-order accurate in time. One such method is given in the Appendix A. Therefore we have the following result:

Theorem 2.2. With u1 and R1 approximated using the method from Appendix A, in the absence of external forces ( f = 0 and f b = 0), 
the scheme represented by (2.25a)–(2.25e) is unconditionally energy-stable in the sense of the relation (2.32).

Remark 2.4. If the functional form of F (χ) is such that F (χ) � 0 for all χ ∈ (−∞, ∞), e.g. F (χ) = χ2m (with an integer 
m � 1), then the scheme given by (2.25a)–(2.25e) is unconditionally energy stable regardless of the approximation of R(t)
at the time step 1

2 .

Remark 2.5. The scheme (2.25) is devised by enforcing the system of equations consisting of (2.17), (2.19) and (2.2) at time 
step (n + 1), approximating F (R)

E at time step (n + 3
2 ), and employing the approximations (2.21a)–(2.22). Inspired by the 

recent work [47], we can generalize this scheme by enforcing the system of equations at time step (n + θ ), where θ is a 
real-valued parameter, to arrive at a family of energy-stable schemes.

In brief, let us consider the following second-order approximations at time step (n +θ ) with θ � 1
2 : (χ denoting a generic 

variable, and β � 0 denoting a real parameter below)

χn+θ+ 1
2 =

(
θ + 1

2

)
χn+1 −

(
θ − 1

2

)
χn, χn+θ− 1

2 =
(

θ + 1

2

)
χn −

(
θ − 1

2

)
χn−1; (2.33a)

χn+θ =1

2
(χn+θ+ 1

2 + χn+θ− 1
2 ) + β(χn+1 − 2χn + χn−1)

=
(

β + θ

2
+ 1

4

)
χn+1 +

(
1

2
− 2β

)
χn +

(
β − θ

2
+ 1

4

)
χn−1; (implicit approximation)

(2.33b)

χ̄n+θ = (1 + θ)χn − θχn−1; (explicit approximation) (2.33c)

∂χ

∂t

∣∣∣∣
n+θ

= χn+θ+ 1
2 − χn+θ− 1

2

�t
= 1

�t

[(
θ + 1

2

)
χn+1 − 2θχn +

(
θ − 1

2

)
χn−1

]
; (2.33d)

and the following approximation of dF (χ)
dχ

∣∣∣n+θ = F ′(χ)
∣∣n+θ

based on discrete directional derivative,

DF (χ)|n+θ =F (χn+θ+ 1
2 ) − F (χn+θ− 1

2 ) − F ′(χn+θ ) · (χn+θ+ 1
2 − χn+θ− 1

2 )

‖χn+θ+ 1
2 − χn+θ− 1

2 ‖2
(χn+θ+ 1

2 − χn+θ− 1
2 )

+ F ′(χn+θ ).

(2.34)

These approximations satisfy the following properties:

χn+θ

[(
θ + 1

2

)
χn+1 − 2θχn +

(
θ − 1

2

)
χn−1

]
= 1

2

(∣∣∣χn+θ+ 1
2

∣∣∣2 −
∣∣∣χn+θ− 1

2

∣∣∣2
)

+ β

2

(∣∣χn+1 − χn
∣∣2 − ∣∣χn − χn−1

∣∣2
)

+ θβ
∣∣χn+1 − 2χn + χn−1

∣∣2 ;
(2.35a)

DF (χ)|n+θ

[(
θ + 1)

χn+1 − 2θχn +
(
θ − 1)

χn−1
]

= F (χn+θ+ 1
2 ) − F (χn+θ− 1

2 ). (2.35b)

2 2
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Note that the parameter β � 0 in (2.33b) can often be used to control the numerical dissipation of the approximations, 
which will be useful for approximating energy-conserving systems. An example will be given with the Klein-Gordon equa-
tion in a later section. The scheme given in (2.25) corresponds to θ = 1 and β = 1

4 .

By approximating the terms in equations (2.17), (2.19) and (2.2) at time step (n + θ ), except for the term F (R)
E , which 

will be approximated at time step (n + θ + 1
2 ), and employing the approximations (2.33a)–(2.34), one can prove that the 

resultant family of schemes (with θ and β as parameters) is unconditionally energy-stable. The details will not be provided 
here.

2.3. Solution algorithm

Let us now consider how to implement the algorithm represented by equations (2.25a)-(2.25e). We first introduce some 
notations (χ again denoting a generic variable):

γ0 = 3

2
, χ̂ = 2χn − 1

2
χn−1. (2.36)

Then the approximation in (2.21b) can be written as

∂χ

∂t

∣∣∣∣
n+1

= γ0χ
n+1 − χ̂

�t
. (2.37)

Inserting notation (2.37) into equation (2.25a), we have

γ0

�t
un+1 − F L(un+1) = ξ

[
F (ūn+1) − F L(ūn+1)

]
+ f n+1 + û

�t
. (2.38)

Note that ūn+1 and û are both explicitly known, and ξ is an unknown depending on un+1. Taking advantage of the fact 
that ξ is a scalar number instead of a field function and the linearity of the operator B in the boundary condition (2.2), we 
introduce two field functions (un+1

1 , un+1
2 ) as solutions to the following two linear systems:

γ0

�t
un+1

1 − F L(un+1
1 ) = û

�t
+ f n+1, (2.39a)

B(un+1
1 ) = f n+1

b , on �. (2.39b)
γ0

�t
un+1

2 − F L(un+1
2 ) = F (ūn+1) − F L(ūn+1). (2.40a)

B(un+1
2 ) = 0, on �. (2.40b)

Since the operator F L is chosen to be a linear operator and relatively easy to compute, un+1
1 and un+1

2 can be solved 
efficiently from these equations. Then we have the following result.

Theorem 2.3. Given scalar value ξ , the following function solves the system consisting of equations (2.25a) and (2.25d):

un+1 = un+1
1 + ξun+1

2 , (2.41)

where un+1
1 and un+1

2 are given by the equations (2.39a)-(2.40b).

The scalar value ξ still needs to be determined. Define⎧⎨
⎩

ũn+1 = un+1
1 + un+1

2 ,

ũn+3/2 = 3

2
ũn+1 − 1

2
un,

(2.42)

which are second-order approximations of un+1 and un+3/2. These field variables can be explicitly computed after un+1
1 and 

un+1
2 are obtained. By equation (2.25b), we have

F (Rn+ 3
2 ) = ξ E[ũn+ 3

2 ]. (2.43)

Note that equation (2.25e) can be transformed into equation (2.29). Inserting equation (2.43) into equation (2.29) leads to 
the solution for ξ ,

ξ = F (Rn+1/2) + �t|S0|
E[ũn+ 3

2 ] + �t
∫
�

V (ũn+1
) + �t(|S0| − S0)

, (2.44)

where ũn+1 and ũn+3/2 are given by (2.42), S0 is given by equation (2.30), and E[ũn+3/2] is computed by equation (2.25c).
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In light of equations (2.43) and (2.21a), we can then compute Rn+1 by⎧⎪⎨
⎪⎩

Rn+3/2 = G
(
ξ E[ũn+3/2]

)
, n � 0;

Rn+1 = 2

3
Rn+3/2 + 1

3
Rn, n � 0.

(2.45)

The following result holds.

Theorem 2.4. The scalar value ξ computed by equation (2.44) and the variable Rn+1 (n � 0) computed by equation (2.45) are always 
positive, if the approximation of R(t) at time step 1

2 is positive, i.e. Y0 = Rn+1/2|n=0 > 0.

Proof. If Y0 = Rn+1/2|n=0 > 0, then F (Y0) > 0 based on (2.12). Since E(u) is a positive function, V (u) � 0 and |S0| − S0 � 0, 
we conclude by induction ξ computed from (2.44) is always positive.

Note that R0 = R(0) > 0 according to equation (2.20). In light of the property (2.12), we conclude that Rn+3/2 and Rn+1

computed from equation (2.45) are both positive. �
Using the method from the Appendix A can ensure the positiveness of the approximation of R(t) at the time step 1

2 . We 
have the following result.

Theorem 2.5. With u1 and R1 computed based on the method from Appendix A, the ξ given by (2.44) and Rn+1 and Rn+3/2 given 
by (2.45) satisfy the property

ξ > 0, Rn+1 > 0, and Rn+3/2 > 0, (2.46)

for all n � 0, regardless of the external forces f and f b and the time step size �t.

Combining the above discussions, we arrive at the solution procedure for solving the system consisting of equa-
tions (2.25a)-(2.25e). Given (un, Rn), we compute (un+1, Rn+1) through the following steps:

1. Solve equations (2.39a)–(2.39b) for un+1
1 ;

Solve equations (2.40a)–(2.40b) for un+1
2 .

2. Compute ũn+1 and ũn+3/2 based on equation (2.42);

Compute E[ũn+ 3
2 ], ∫

�
V (ũn+1

) and S0 based on equations (2.11), (2.6) and (2.30).
3. Compute ξ based on equation (2.44).
4. Compute un+1 based on equation (2.41). Compute Rn+1 based on equation (2.45).

It can be noted that the numerical scheme and the solution algorithm developed in this section has several attractive 
properties: (i) Only linear systems need to be solved for the field variables u within a time step. Moreover, with appropriate 
choice for the F L operator, the system can involve only constant and time-independent coefficient matrices, which can be 
pre-computed. Therefore, the solution for u will be computationally very efficient. (ii) The auxiliary variables R and ξ can 
be computed by a well-defined explicit formula, and no nonlinear algebraic solver is involved. Their computed values are 
guaranteed to be positive. (iii) The auxiliary variable R can be defined by a rather general class of functions (F and G ) 
using the method developed here. (iv) The scheme is unconditionally energy-stable for general dissipative systems.

2.4. An alternative formulation and energy-stable scheme

The numerical formulation presented in the previous subsections is not the only way to devise energy-stable schemes 
for dissipative systems. In this subsection we outline an alternative formulation and associated energy-stable scheme. The 
process is analogous to the developments in the sections 2.1–2.3. So many details will be omitted in the following discus-
sions.

The main idea with the alternative formulation is to realize that R(t)
G (E)

= 1 with the auxiliary variable R(t) defined 
in (2.13a). Therefore, one can potentially employ R

G (E)
, instead of F (R)

E , in the numerical formulations. With appropriate 
reformulation and treatments of different terms, it turns out that a discretely energy-stable scheme can be obtained with 
similar attractive properties, such as the guaranteed positiveness of the computed values for the variable R(t).

Note that R(t) is defined by (2.13a), where G is a one-to-one increasing differentiable function with G (χ) > 0 and 
G ′(χ) > 0 for χ > 0. R(t) satisfies the following dynamic equation

dR

dt
= G ′(E)

∫
�

e′(u) · ∂u

∂t
d�, (2.47)

where E(t) is defined by (2.11).
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We reformulate equation (2.1) into

∂u

∂t
= F L(u) + R

G (E)

(
F (u) − F L(u)

)
+ f , (2.48)

where the notations follow those defined in previous subsections. Analogously, by incorporating appropriate zero terms we 
can transform (2.47) into

dR

dt
=G ′(E)

∫
�

e′(u) · ∂u

∂t
d� − G ′(E)

∫
�

e′(u) ·
(

F L(u) + R

G (E)
[F (u) − F L(u)] + f

)
d�

+ R

G (E)
G ′(E)

⎡
⎣−

∫
�

V (u)d� +
∫
�

V s( f , u)d� +
∫
�

Bs( f b, u)d�

⎤
⎦

+
[

1 − R

G (E)

]
G ′(E)

∣∣∣∣∣∣
∫
�

V s( f , u)d� +
∫
�

Bs( f b, u)d�

∣∣∣∣∣∣ .

(2.49)

The reformulated system now consists of equations (2.48) and (2.49), the boundary condition (2.2), and the initial conditions 
(2.3) and (2.20).

We discretize the reformulated system as follows:

1

�t

(
3

2
un+1 − 2un + 1

2
un−1

)
= F L(un+1) + ξ

[
F (ūn+1) − F L(ūn+1)

]
+ f n+1, (2.50a)

ξ = Rn+3/2

G (E[ũn+3/2]) , (2.50b)

E[ũn+3/2] =
∫
�

e(ũn+3/2
)d� + C0, (2.50c)

B(un+1) = f n+1
b , on �, (2.50d)

Rn+3/2 − Rn+1/2

�t
=G ′(E[ũn+1])

⎧⎨
⎩
∫
�

e′(un+1) ·
3
2 un+1 − 2un + 1

2 un−1

�t
d�

−
∫
�

e′(un+1) ·
(

F L(un+1) + ξ
[

F (ūn+1) − F L(ūn+1)
]
+ f n+1

)
d�

+ ξ

⎡
⎣−

∫
�

V (ũn+1
)d� +

∫
�

V s( f n+1, ũn+1
)d� +

∫
�

Bs( f n+1
b , ũn+1

)d�

⎤
⎦

+ (1 − ξ)

∣∣∣∣∣∣
∫
�

V s( f n+1, ũn+1
)d� +

∫
�

Bs( f n+1
b , ũn+1

)d�

∣∣∣∣∣∣
⎫⎬
⎭ .

(2.50e)

In these equations ūn+1 is defined by (2.21c), Rn+3/2 and Rn+1/2 are defined by (2.21a), and ũn+1 and ũn+3/2 are second-
order approximations of un+1 and un+3/2 respectively to be specified later.

Taking the L2 inner product between G ′(E[ũn+1])e′(un+1) and equation (2.50a), and summing up the resultant equation 
and equation (2.50e), we get

Rn+3/2 − Rn+1/2 = �tG ′(E[ũn+1])
⎡
⎣−ξ

∫
�

V (ũn+1)d� + (1 − ξ)|S0| + ξ S0

⎤
⎦ (2.51)

where S0 is given by the equation (2.30). In the absence of external forces ( f = 0 and f b = 0), S0 = 0 and equation (2.51)
leads to

Rn+3/2 = Rn+1/2

1 + �t G ′(E[ũn+1])
n+3/2

∫
V (ũn+1

)d�
(2.52)
G (E[ũ ]) �
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where we have used (2.50b). Note that E[ũn+3/2] > 0, E[ũn+1] > 0, V (ũn+1
) � 0, and that G (χ) > 0 and G ′(χ) > 0 for 

χ > 0. By induction we can conclude from (2.52) that Rn+3/2 � 0 (for all n � 0) if the approximation of R(t) at time step 1
2

is non-negative. Equation (2.51) then leads to the following result.

Theorem 2.6. In the absence of external forces ( f = 0 and f b = 0), if the approximation of R(t) at time step 1
2 is non-negative, the 

scheme given by (2.50a)–(2.50e) is unconditionally energy-stable in the sense that

0 � Rn+3/2 � Rn+1/2, for all n � 0. (2.53)

In the Appendix A, we have presented a method for computing the first time step, which can ensure that the approxi-
mation of R(t) at step 1

2 is positive. This leads to the following result.

Theorem 2.7. In the absence of external forces ( f = 0 and f b = 0), when the first time step is approximated using the method from 
Appendix A, the numerical scheme given by (2.50a)–(2.50e) is unconditionally energy-stable in the sense of equation (2.53).

The scheme represented by (2.50a)–(2.50e) can be implemented in a similar way to that of Section 2.3, with the following 
steps:

• Compute un+1
1 and un+1

2 by solving equations (2.39a)–(2.40b).

• Define ũn+1 and ũn+3/2 again by equations (2.42). These variables can be computed.
• Compute ξ based on equation (2.51), specifically by

ξ = Rn+1/2 + �t|S0|G ′(E[ũn+1])
G (E[ũn+3/2]) + �tG ′(E[ũn+1])

[∫
�

V (ũn+1
)d� + (|S0| − S0)

] (2.54)

where S0 is given by (2.30).
• Compute un+1 by equation (2.41). Compute Rn+1 by⎧⎨

⎩
Rn+3/2 = ξG (E[ũn+3/2]),
Rn+1 = 2

3
Rn+3/2 + 1

3
Rn,

(2.55)

where we have used equations (2.50b) and (2.21a).

Noting the positiveness of energy E(t) and the other functions involved in equations (2.54) and (2.55), we have the 
following result.

Theorem 2.8. If the first time step is approximated using the method from Appendix A, regardless of the external forces f and f b and 
the time step size �t, the computed values for ξ and Rn+1 with the scheme (2.50a)–(2.50e) satisfy the property,

ξ > 0, and Rn+1 > 0 (2.56)

for all time steps.

Remark 2.6. In the current paper we have used the total energy (shifted) Etot(t) (see equation (2.11)) to define the auxiliary 
variable R(t). One can also define an auxiliary variable based on a part of the total energy. Suppose the total energy of the 
system can be written as

Etot(t) = E1(t) + E2(t), with E1(t) = E1[u] =
∫
�

e1(u)d�, E2(t) = E2[u] =
∫
�

e2(u)d� (2.57)

where each of the energy components E1[u] and E2[u] is bounded from below. One can define an auxiliary variable R(t)
based on e.g. E2(t) (shifted appropriately),⎧⎪⎨

⎪⎩
F (R) = Es(t) = E2(t) + C0 =

∫
�

e2(u)d� + C0,

R(t) = G (Es),

(2.58)

where the chosen energy constant C0 is to ensure that Es(t) > 0. By appropriate reformulation of the system one can devise 
energy-stable schemes in an analogous way. We refer the reader to [46] for such an energy-stable scheme for incompressible 
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two-phase flows with different densities and viscosities for the two fluids, which corresponds to a specific mapping function 
F (R) = R2. A drawback with this lies in that one needs to solve a nonlinear algebraic equation (or a quadratic equation), 
albeit about a scalar number, when computing the auxiliary variable, and that the property for guaranteed positiveness of 
the computed auxiliary-variable values will be lost.

In the subsequent sections, we consider three dissipative (or conserving) systems (a chemotaxis model, Cahn-Hilliard 
equation, and Klein-Gordon equation) as specific applications and demonstrations of the gPAV method developed in this 
section.

3. A chemo-repulsion model

3.1. Model and numerical scheme

Consider the following repulsive-productive chemotaxis model with a quadratic production term (see e.g. [21]) in a 
domain � (with boundary �):

∂u

∂t
= ∇2u + ∇ · (u∇v) + f1(x, t), (3.1a)

∂v

∂t
= ∇2 v − v + p(u) + f2(x, t), (3.1b)

n · ∇u = da(x, t), n · ∇v = db(x, t), on �, (3.1c)

u(x,0) = uin(x), v(x,0) = vin(x), (3.1d)

where p(u) = u2 is the quadratic production term, u(x, t) ≥ 0 is the cell density, and v(x, t) ≥ 0 is the chemical concentra-
tion. f1, f2, da and db denote the volume and boundary source terms, respectively. uin and vin are the initial distributions 
of the field variables. This system is dissipative in the absence of the source terms, with the total energy given by (see [21])

Etot =
∫
�

(1

2
|u|2 + 1

4
|∇v|2

)
d�. (3.2)

By taking the L2 inner products between (3.1a) and u, and between (3.1b) and −1

2
∇2 v , summing them up and performing 

integration by part and imposing boundary conditions in (3.1c), we can obtain the following energy balance equation:∫
�

∂

∂t

(1

2
|u|2 + 1

4
|∇v|2

)
d� = −

∫
�

(
|∇u|2 + 1

2
|∇2 v|2 + 1

2
|∇v|2

)
d� +

∫
�

(
f1u + 1

2
∇ f2 · ∇v

)
d�

+
∫
�

(
dau + 1

2
dbu2 + 1

2
db

∂v

∂t
+ 1

2
db v − 1

2
db f2

)
d�.

(3.3)

Following the gPAV procedure from section 2, we define a shifted energy according to equation (2.11)

E(t) = E[u, v] =
∫
�

(1

2
|u|2 + 1

4
|∇v|2

)
d� + C0, (3.4)

where C0 is a chosen energy constant such that E(t) > 0. Define a scalar auxiliary variable R(t) according to equation 
(2.13a). Thus, equation (2.14) becomes

F ′(R)
dR

dt
=

∫
�

(
u

∂u

∂t
+ 1

2
∇v · ∇ ∂v

∂t

)
d� =

∫
�

(
u

∂u

∂t
− 1

2
∇2 v

∂v

∂t

)
d� + 1

2

∫
�

(n · ∇v)
∂v

∂t
d�. (3.5)

Following equations (2.17)-(2.19), we reformulate equations (3.1a)-(3.1b) into the following equivalent form:

∂u

∂t
= ∇2u + F (R)

E
∇ · (u∇v) + f1, (3.6a)

∂v

∂t
= ∇2 v − v + F (R)

E
p(u) + f2. (3.6b)
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By incorporating the following zero terms into the right hand side of equation (3.5),(
F (R)

E
− 1

)∫
�

u(∇2u + f1)d� + F (R)

E

⎡
⎣∫

�

u∇ · (u∇v)d� −
∫
�

u∇ · (u∇v)d�

⎤
⎦

−
(

F (R)

E
− 1

)∫
�

1

2
∇2 v(∇2 v − v + f2)d� + F (R)

E

⎡
⎣∫

�

1

2
(∇2 v)p(u)d� −

∫
�

1

2
(∇2 v)p(u)d�

⎤
⎦

+
(

F (R)

E
− 1

)∫
�

1

2
(n · ∇v)

∂v

∂t
d�

+
(

1 − F (R)

E

)∣∣∣∣∣∣
∫
�

f1ud� + 1

2

∫
�

∇ f2 · ∇vd� +
∫
�

daud� +
∫
�

db

2

(
∂v

∂t
+ v + u2 − f2

)
d�

∣∣∣∣∣∣ ,
we can transform this equation into

F ′(R)
dR

dt
=

∫
�

(
u

∂u

∂t
− 1

2
∇2 v

∂v

∂t

)
d�

+ F (R)

E

⎡
⎣−

∫
�

(
|∇u|2 + 1

2
|∇2 v|2 + 1

2
|∇v|2

)
d� +

∫
�

(
f1u + 1

2
∇ f2 · ∇v

)
d�

+
∫
�

(
dau + 1

2
dbu2 + 1

2
db

∂v

∂t
+ 1

2
db v − 1

2
db f2

)
d�

⎤
⎦

+
(

1 − F (R)

E

)∣∣∣∣∣∣
∫
�

(
f1u + 1

2
∇ f2 · ∇v

)
d� +

∫
�

(
dau + 1

2
dbu2 + 1

2
db

∂v

∂t
+ 1

2
db v − 1

2
db f2

)
d�

∣∣∣∣∣∣
−

∫
�

u

(
∇2u + F (R)

E
∇ · (u∇v) + f1

)
d� +

∫
�

1

2
∇2 v

(
∇2 v − v + F (R)

E
p(u) + f2

)
d�,

(3.7)

where we have used the fact F (R)
E = 1 and the boundary conditions (3.1c).

The reformulated equivalent system consists of equations (3.6a)-(3.7) and (3.1c)-(3.1d). The energy-stable scheme for this 
system is as follows:

∂u

∂t

∣∣∣n+1 = ∇2un+1 + ξ∇ · (ūn+1∇ v̄n+1) + f n+1
1 ; (3.8a)

∂v

∂t

∣∣∣n+1 = ∇2 vn+1 − vn+1 + ξ p(ūn+1) + f n+1
2 ; (3.8b)

ξ = F (Rn+ 3
2 )

E[ũn+3/2, ṽn+3/2] ; (3.8c)

E[ũn+3/2, ṽn+3/2] =
∫
�

(1

2
|ũn+3/2|2 + 1

4
|∇ ṽn+3/2|2

)
d� + C0; (3.8d)

n · ∇un+1 = dn+1
a , n · ∇vn+1 = dn+1

b ; (3.8e)

and

DF (R)
∣∣n+1 dR

dt

∣∣∣∣
n+1

=
∫
�

(
un+1 ∂u

∂t

∣∣∣n+1 − 1

2
∇2 vn+1 ∂v

∂t

∣∣∣n+1)
d�

− ξ

∫
�

(
|∇ũn+1|2 + 1

2
|∇2 ṽn+1|2 + 1

2
|∇ ṽn+1|2

)
d� + ξ S0 + (1 − ξ)|S0|

−
∫
�

un+1
(
∇2un+1 + ξ∇ · (ūn+1∇ v̄n+1) + f n+1

1

)
d�

+
∫

1

2
∇2 vn+1

(
∇2 vn+1 − vn+1 + ξ p(ūn+1) + f n+1

2

)
d�.

(3.9)
�
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In these equations, ∂u
∂t

∣∣n+1
, ∂v

∂t

∣∣n+1
and dR

dt

∣∣∣n+1
are defined by equation (2.21b). ūn+1 and v̄n+1 are defined by (2.21c). 

ũn+1 and ṽn+1 are second-order approximations of un+1 and vn+1 to be specified later in (3.21). ũn+3/2 and ṽn+3/2 are 
second-order approximations of un+3/2 and vn+3/2 to be specified later in (3.22). S0 in equation (3.9) is given by

S0 =
∫
�

(
f n+1
1 ũn+1 + 1

2
∇ f n+1

2 · ∇ ṽn+1
)

d�

+
∫
�

(
dn+1

a ũn+1 + 1

2
dn+1

b (ũn+1)2 + 1

2
dn+1

b

∂v

∂t

∣∣∣∗,n+1 + 1

2
dn+1

b ṽn+1 − 1

2
dn+1

b f n+1
2

)
d�,

(3.10)

where

∂v

∂t

∣∣∣∣
∗,n+1

=
3
2 ṽn+1 − 2vn + 1

2 vn−1

�t
. (3.11)

These equations are supplemented by the following initial conditions

u0 = uin(x), v0 = v in(x), R0 = G (E0), with E0 =
∫
�

(1

2
|uin|2 + 1

4
|∇v in|2

)
d� + C0. (3.12)

Theorem 3.1. In the absence of the external force f1 = f2 = 0, and with homogeneous boundary conditions da = db = 0, the scheme 
consisting of (3.8a)-(3.9) is unconditionally energy stable in the sense that:

F (Rn+ 3
2 ) − F (Rn+ 1

2 ) = −ξ�t

∫
�

(
|∇ũn+1|2 + 1

2
|∇2 ṽn+1|2 + 1

2
|∇ ṽn+1|2

)
d� � 0, (3.13)

if the approximation of R(t) at the time step 1
2 is non-negative.

This theorem can be proved in a way analogous to Theorem 2.1. We can apply the method from Appendix A to this 
chemo-repulsion model for the first time step, and this ensures that Rn+1/2|n=0 > 0.

3.2. Solution algorithm and implementation

Using the notation (2.37), we rewrite equations (3.8a)-(3.8b) into

γ0

�t
un+1 − ∇2un+1 = û

�t
+ f n+1

1 + ξ∇ · (ūn+1∇ v̄n+1), (3.14)

( γ0

�t
+ 1

)
vn+1 − ∇2 vn+1 = v̂

�t
+ f n+1

2 + ξ p(ūn+1). (3.15)

Barring the unknown scalar ξ , (3.14) and (3.15) are two decoupled Helmholtz-type equations about un+1 and vn+1, respec-
tively.

Note that ξ is a scalar number instead of a field function, we define two sets of variables (un+1
i , vn+1

i ) (i = 1, 2) as the 
solutions to the following equations:

γ0

�t
un+1

1 − ∇2un+1
1 = û

�t
+ f n+1

1 , n · ∇un+1
1 = dn+1

a ; (3.16)

γ0

�t
un+1

2 − ∇2un+1
2 = ∇ · (ūn+1∇ v̄n+1), n · ∇un+1

2 = 0; (3.17)

( γ0

�t
+ 1

)
vn+1

1 − ∇2 vn+1
1 = v̂

�t
+ f n+1

2 , n · ∇vn+1
1 = dn+1

b ; (3.18)( γ0

�t
+ 1

)
vn+1

2 − ∇2 vn+1
2 = p(ūn+1), n · ∇vn+1

2 = 0. (3.19)

Then we have the following result: Given the scalar number ξ , the following field functions solve the system consisting of 
equations (3.14)-(3.15):

un+1 = un+1
1 + ξun+1

2 , vn+1 = vn+1
1 + ξ vn+1

2 , (3.20)

where (un+1, vn+1) i = 1, 2 is given by equations (3.16)-(3.19), respectively.
i i
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Once (un+1
i , vn+1

i ) i = 1, 2 are known, we determine ũn+1, ṽn+1, ũn+3/2 and ṽn+3/2 according to (2.42), specifically by

ũn+1 = un+1
1 + un+1

2 , ṽn+1 = vn+1
1 + vn+1

2 ; (3.21)

ũn+3/2 = 3

2
ũn+1 − 1

2
un, ṽn+3/2 = 3

2
ṽn+1 − 1

2
vn. (3.22)

In light of equations (3.1b), (3.21) and (3.11), we compute ∇2 ṽn+1 in equation (3.9) by

∇2 ṽn+1 = ∂v

∂t

∣∣∣∗,n+1 + ṽn+1 − p(ũn+1) − f n+1
2 , (3.23)

where ∂v
∂t

∣∣∗,n+1
is given by (3.11).

Combining equations (3.8a)–(3.8b) and (3.9), and using the property (2.23), we have

F (Rn+ 3
2 ) − F (Rn+ 1

2 )

�t
= −ξ

∫
�

(
|∇ũn+1|2 + 1

2
|∇2 ṽn+1|2 + 1

2
|∇ ṽn+1|2

)
d� + ξ S0 + (1 − ξ)|S0|. (3.24)

This gives rise to

ξ = F (Rn+1/2) + �t|S0|
E[ũn+3/2, ṽn+3/2] + �t

[∫
�

(
|∇ũn+1|2 + 1

2 |∇2 ṽn+1|2 + 1
2 |∇ ṽn+1|2

)
d� + (|S0| − S0)

] , (3.25)

in which S0 is given by (3.10), ∇2 ṽ is to be computed by (3.23), and E[ũn+3/2, ̃vn+3/2] is given by (3.8d). With ξ known, 
Rn+1 and (un+1, vn+1) can be evaluated directly by (2.45) and (3.20), respectively.

We employ C0-continuous high-order spectral elements for spatial discretizations in our implementation. Note that equa-
tions (3.16)–(3.19) involve Helmholtz type equations with Neumann type boundary conditions. The weak formulations of 
these equations are: Find un+1

i and vn+1
i ∈ H1(�) for i = 1, 2, such that

(∇un+1
1 ,∇ϕ

)
�

+ γ0

�t

(
un+1

1 ,ϕ
)
�

= ( û

�t
+ f n+1

1 ,ϕ
)
�

+ 〈
dn+1

a ,ϕ
〉
�
,

(∇un+1
2 ,∇ϕ

)
�

+ γ0

�t

(
un+1

2 ,ϕ
)
�

= −(
ūn+1∇ v̄n+1,∇ϕ

)
�

+ 〈
n · ∇ v̄n+1ūn+1,ϕ

〉
�
,

(∇vn+1
1 ,∇ϕ

)
�

+ ( γ0

�t
+ 1

)(
vn+1

1 ,ϕ
)
�

= ( v̂

�t
+ f n+1

2 ,ϕ
)
�

+ 〈
dn+1

b ,ϕ
〉
�
,

(∇vn+1
2 ,∇ϕ

)
�

+ ( γ0

�t
+ 1

)(
vn+1

2 ,ϕ
)
�

= (
p(ūn+1),ϕ

)
�
,

for ∀ϕ ∈ H1(�), where

( f , g)� =
∫
�

f (x)g(x)d�, 〈 f , g〉� =
∫
�

f (x)g(x)d�. (3.26)

These weak forms can be discretized using C0 spectral elements in the standard way [25].

3.3. Numerical results

3.3.1. Convergence rate
We first employ a manufactured analytical solution to the chemo-repulsion model to demonstrate the spatial and tem-

poral convergence rates of the proposed algorithm.
Consider the computational domain � = [0, 1]2 and the following contrived solution to the system (3.1) on this domain

u = exp(−t)
(

cos(2πx) cos(2π y) + 2
)
, v = (

1 + sin(t)
)(

cos(2πx) cos(2π y) + 2
)
. (3.27)

The external forces f1(x, t), f2(x, t) and boundary forces da(x, t), db(x, t) therein are chosen such that the expressions in 
(3.27) satisfy (3.1).

The domain is discretized with four equal-sized quadrilateral elements. The initial cell density uin and initial chemical 
concentration vin are given according to the analytic expressions in (3.27) by setting t = 0. We simulate this problem from 
t = 0 to t = t f . Then we compare the numerical solutions of u and v at t = t f with the analytic solutions in (3.27) and 
various norms of the errors are computed. The element order and time step sizes are varied systematically in order to 
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Fig. 3.1. Spatial/temporal convergence tests for chemo-repulsion model: L2 and L∞ errors of u and v versus (a) element order (fixed �t = 0.001 and 
t f = 0.1), and (b) �t (fixed element order 18 and t f = 1).

Fig. 3.2. Spatial/temporal convergence tests for the chemo-repulsion model obtained using several mapping functions F (R) as given in the legend: L2

errors versus element order (a) (fixed �t = 0.001 and t f = 0.1), and L2 errors versus �t (b) (fixed element order 18 and t f = 1).

investigate their effects on the numerical errors. We employ the function F (R) = R for defining the auxiliary variable R(t)
and the energy constant C0 = 1 in the following convergence tests.

We first study the spatial convergence rate. A fixed t f = 0.1 and �t = 0.001 is employed and the element order is varied 
systematically between 2 and 20. We record the errors at t = t f between the numerical solution and the contrived solution 
(3.27) in both L∞ and L2 norms with respect to the element orders. Fig. 3.1(a) shows these numerical errors as a function 
of the element order. We observe an exponential decrease of the numerical errors with increasing element order, and a 
level-off of the error curves beyond element order 10 and 8, respectively for u and v , due to the saturation of temporal 
errors.

The study of the temporal convergence rate is summarized by the results in Fig. 3.1(b). Here we fix the integration time 
t f = 1.0 and the element order at a large value 18, and vary �t systematically between 0.2 and 1.953125 × 10−4. This 
figure demonstrates the L∞ and L2 errors of u and v as a function of �t . It is evident that the proposed scheme has a 
second-order convergence rate in time.

Note that a general mapping function F (R) can be employed for defining R(t) with the gPAV method. Fig. 3.2 shows 
the spatial and temporal convergence behaviors of the method in terms of the L2 errors of u and v corresponding to 
several mapping functions: F (R) = Rm (m = 1, 2, 3, 4, 6) and F (R) = e0

2 ln(
κ0+R
κ0−R ) with e0 = κ0 = 10. It is evident that the 

method exhibits a spatial exponential convergence rate and a second-order temporal convergence rate with various mapping 
functions F (R). We also observe that the difference among the errors corresponding to different F (R) is very small and 
basically negligible. The choice for the specific mapping F appears to have very little or essentially no influence on the 
simulation results using the current method.
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Fig. 3.3. Chemo-repulsion model: Temporal sequence of snapshots of the cell density u distribution visualized by its contours. The color map in (a) applies 
to all the plots. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.3.2. Study of unconditional stability and effect of algorithmic parameters
We next consider the test problem used in [21], and show the efficiency and unconditional stability of the method pro-

posed here. Consider the domain � = [0, 2]2 and the initial distributions for the cell density u and chemical concentration 
v in this domain given by

uin(x) = −10xy(2 − x)(2 − y)exp(−10(y − 1)2 − 10(x − 1)2) + 10.0001, (3.28a)

vin(x) = 100xy(2 − x)(2 − y)exp(−30(y − 1)2 − 30(x − 1)2) + 0.0001. (3.28b)

The external forces and boundary forces in (3.1) are set to f1 = f2 = da = db = 0. The computational domain is discretized 
with 400 equal-sized quadrilateral elements, and the element order is fixed to be 10.

Figs. 3.3 and 3.4 demonstrate the dynamics of the system. These results are obtained with �t = 10−5, F (R) = R and 
C0 = 1 in the numerical algorithm. Fig. 3.3 shows the evolution of the cell density u(x, t) with a temporal sequence of 
snapshots of the distribution visualized by the contour plots. The z coordinate corresponds to u in these plots. The system 
exhibits a very rapid dynamics. The initial cell density has a Gaussian type distribution, taking a minimal value 0.0001 at 
the domain center x0 = (1, 1) and gradually approaching the maximal value 10.0001 near the domain boundary. In a very 
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Fig. 3.4. Chemo-repulsion model: Temporal sequence of snapshots of the chemical concentration v visualized by its contours. The color map in (a) applies 
to all the plots herein.

short time t = 10−2, the maximal density increases to around 16, attained near the boundary of a circular region with 
radius 0.6 and center at x0; see Fig. 3.3(b). Then the maximal density gradually moves from the circular boundary to the 
domain boundary between t = 2 × 10−2 and t = 7.5 × 10−2; see Fig. 3.3(c)-(f). The high density near the domain boundary 
then appears to diffuse to the region with low density near the center x0, and the system finally reaches an equilibrium 
state between t = 0.1 and t = 0.5 with a constant density level; see Fig. 3.3(g)-(i). Fig. 3.4 illustrates the evolution of the 
chemical concentration v(x, t). Fig. 3.4(a) shows the distribution of the initial chemical concentration. It has also a Gaussian 
type distribution, with a maximal value 100.0001 at the origin x0 and decreasing to 0.0001 gradually near the domain 
boundary. The concentration diffuses rapidly between t = 0 to t = 5 × 10−2 (Figs. 3.4(a)-(e)), and the maximal concentration 
decreases to around 10 at the origin. From t = 7.5 × 10−2 to t = 0.2, the contrast in the concentration levels in the domain 
becomes even smaller (Fig. 3.4(f)-(h)), and the concentration reaches its equilibrium with a constant level around 36.6 
(Fig. 3.4(i)).

Fig. 3.5 shows time histories of three quantities: E(t), F (R), and ξ = F (R)
E(t) , corresponding to three time step sizes 

�t = 10−5, 10−4 and 10−3. Note that E(t) is computed based on equation (3.4), F (R) is computed based on the R(t)
obtained from the algorithm, and ξ is computed based on equation (3.25). These results are obtained with F (R) = R and 
C0 = 1 in the algorithm. It is observed from Fig. 3.5(a) that both E(t) and F (R) decrease over time and gradually level 
off at certain levels over time. A comparison of the E(t) histories obtained using different �t indicates that they are quite 
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Fig. 3.5. Chemo-repulsion model: time histories of (a) E(t) and F (R), and (b) ξ = F (R)/E(t), for several �t = 10−3,10−4,10−5.

Fig. 3.6. Chemo-repulsion model: time histories of (a) Etot (t) and (b) ξ = F (R)/E(t) obtained with several large time step sizes �t = 0.01,0.1,1,10.

close, with only some slight difference on the interval between t = 0.002 and t = 0.15. Note that F (R) is an approximation 
of E(t) in the current method, and the evolution equation for R(t) stems from this relation; see equations (2.13a)–(2.14). 
Therefore, the difference between E(t) and F (R), and also the quantity ξ = F (R)

E(t) , can serve as an indicator of the accuracy 
of the simulations. If the difference between E(t) and F (R) is small, or the deviation of ξ from the unit value is small, then 
the simulation tends to be more accurate. On the other hand, when the difference between E(t) and F (R) is pronounced, 
or the deviation between ξ and the unit value is significant, it implies that F (R) is no longer an accurate approximation 
of E(t) and the simulation will contain large numerical errors. Here it can be observed that E(t) and F (R) computed with 
�t = 10−5 essentially overlap with each other, indicating F (R) approximates well the quantity E(t). However, the time 
histories for E(t) and F (R) obtained with �t = 10−4 and 10−3 exhibit noticeable discrepancies. This suggests that in these 
cases F (R) is no longer an accurate approximation of E(t). We also observe from Fig. 3.5(b) that ξ computed by �t = 10−5

is essentially 1, while with larger values �t = 10−4 and �t = 10−3 the computed ξ attains values significantly smaller than 
1. These results indicate that with the larger time step sizes �t = 10−4 and 10−3 the simulation results contain pronounced 
errors and they are not accurate anymore. Because this problem exhibits very rapid dynamics (see Figs. 3.3 and 3.4), to 
capture such dynamics accurately the requirement on �t is very stringent.

Thanks to its energy-stable nature, our algorithm can produce stable simulation results even with very large �t values. 
This is demonstrated by Fig. 3.6 with several large time step sizes, ranging from �t = 0.01 to �t = 10, with F (R) = R and 
C0 = 1 in the algorithm. We show the time histories of the total energy Etot(t) (see equation (3.2)) and the ratio ξ = F (R)

E
for a much longer simulation (up to t = 1000). The long time histories demonstrate that the computations with these large 
�t values are indeed stable using the current algorithm. On the other hand, because these �t values are very large, we 
cannot expect that the results will be accurate. This is evident from the values of ξ in Fig. 3.6(b). These time histories for ξ
tend to level off at very small but positive values, with large deviations from the unit value. It is noted that the simulations 
are nonetheless stable, regardless of �t .
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Fig. 3.7. Chemo-repulsion model: time histories of Etot(t) (plots (a) and (c)) and ξ = F(R)
E(t) (plots (b) and (d)) attained with various C0 = 1, 1e3, 1e6, 1e10. 

The simulation results correspond to �t = 10−5 in (a) and (b), and �t = 10−4 in (c) and (d).

When defining the modified energy E(t) (see equation (3.4)) we have incorporated an energy constant C0. The goal of 
C0 is to ensure that E(t) > 0 for all time, even in certain extreme cases such as when Etot = 0, so that 1

E(t) (as in F (R)
E(t) ) is 

always well-defined. We observe that the choice of the C0 value seems to have some influence on the numerical results. This 
effect is illustrated by Fig. 3.7. Here we employ F (R) = R and �t = 10−5 and 10−4, and depict the time histories of Etot(t)
and ξ obtained with several C0 values (C0 = 1, 103, 106 and 1010). With the smaller �t = 10−5, the obtained Etot histories 
corresponding to different C0 values overlap with one another. The computed ξ values are essentially 1, with a discrepancy 
on the order of magnitude of 10−6. This discrepancy between the computed ξ and the unit value is associated with the 
smaller C0 = 1 and 103. With the larger C0 = 106 and 1010, no difference can be observed at this scale. This suggests that 
with a small �t (so that the simulation result is generally accurate) a larger C0 value tends to give rise to more accurate 
ξ in terms of its discrepancy from the unit value. Figs. 3.7(c) and (d) are the corresponding result obtained with a larger 
�t = 10−4, in which case the simulation result is no longer accurate. In this case it is observed that with the larger C0 = 106

and 1010, the energy Etot history curves exhibit a bump, apparently artificial; see Fig. 3.7(c). In contrast, with the smaller 
C0 = 1 and 103, such a bump is not quite obvious from the energy history curves. In addition, with the larger C0 = 106 and 
1010, the computed ξ attains a very small value (close to 0), while ξ attains a value around 0.2 with the smaller C0 = 1 and 
103. This indicates that, with larger �t (when simulation loses accuracy), the simulation results obtained with a smaller C0
may be better than those obtained with a larger C0, even though all the results become inaccurate. The results of this group 
of tests suggest the following. With small �t values, a larger C0 tends to give rise to more accurate results in the sense that 
the computed ξ tends to be closer to the unit value. However, a C0 that is very large seems to have an adverse effect when 
�t becomes large, because it can lead to computed ξ values that deviate from the unit value more severely. The majority 
of simulations in this section are performed using C0 = 1.

The method developed in the current work can employ a general function F (R) (with inverse G ) to define the auxiliary 
variable R(t), as long as F is a one-to-one increasing differentiable function satisfying (2.12). We observe that the choice for 
the specific mapping F seems to have very little or no influence on the simulation results using the current method. This 
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Fig. 3.8. Chemo-repulsion model: time histories of Etot (t) (plots (a) and (c)) and ξ = F(R)
E (plots (b) and (d)) obtained using several mapping functions 

F (R) as shown in the legend. Results in (a) and (b) correspond to �t = 10−4 and those in (c) and (d) correspond to �t = 10−5 in the simulations. Other 
parameters are fixed, with C0 = 1, e0 = 8040 and κ0 = 1000.

point is demonstrated by Fig. 3.8. Here we have considered several functions, F (R) = Rm (m = 1, 2, 3, 4, 6) and F (R) =
e0
2 ln(

κ0+R
κ0−R ) with e0 = 8040 and κ0 = 103. Fig. 3.8 shows the time histories of Etot(t) and ξ obtained using these mappings, 

together with a fixed C0 = 1 and two time step sizes �t = 10−4 and 10−5. It can be observed that the time history curves for 
both Etot(t) and ξ corresponding to different F functions overlap with one another, suggesting no or very little difference 
in the simulation results. In particular, Fig. 3.8(d) shows the ξ history curves corresponding to different F obtained with 
the smaller �t , with the vertical axis ξ magnified around the unit value. It can be observed that the difference between 
various curves is on the order of magnitude 10−6. Since little difference in the numerical results is observed with different 
mapping functions F (R) using the current method, the majority of numerical tests reported in this and subsequent sections 
will be carried out using the simplest mapping F (R) = R .

In Section 2.4 we have discussed another unconditionally energy-stable scheme (referred to as “alternative method”), 
which is based on an alternative formulation with ξ = R

G (E)
. The dynamic equation for the auxiliary variable R(t) is accord-

ingly replaced by equation (2.47). Fig. 3.9 is a comparison of the time histories for Etot(t) and ξ obtained using these two 
methods. The results in Fig. 3.9(a) and (b) are obtained with a mapping function F (R) = R2 (or equivalently G (E) = √

E), 
and those in (c) and (d) correspond to F (R) = R3 (or G (E) = 3

√
E). We observe that there seems to be little difference 

in the computed total energy Etot(t). But some difference can be noted with the ξ histories. The computed ξ values using 
the current method (with F (R)

E ) seem to be consistently larger than those using the alternative method (with R
G (E)

). While 
all these values deviate from the unit value substantially because of the time step size �t = 10−4, the deviation with the 
current method appears noticeably smaller than that with the alternative method. This seems to suggest that, while the 
simulation results using these methods are not very much different, the formulation using F (R)

E may be somewhat better 
than the alternative formulation using R .
G (E)
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Fig. 3.9. Chemo-repulsion model: comparison of the time histories of Etot (t) (plots (a) and (c)) and ξ (plots (b) and (d)) computed using the current method 
and the alternative method from Section 2.4. In the current method ξ = F (R)/E , and in the alternative method ξ = R/G (E). Plots (a) and (b) are obtained 
with the mapping F (R) = R2 (i.e. G (E) = √

E), and plots (c) and (d) are obtained with F (R) = R3 (i.e. G (E) = 3
√

E). Other parameters are fixed with 
�t = 10−4 and C0 = 1.

4. Cahn-Hilliard equation with constant and variable mobility

We apply the gPAV method to simulate the Cahn-Hilliard equation [4] in this section. This equation has widespread 
applications in the phase-field modeling of materials science, two-phase and multiphase flows (see e.g. [32,7,30,48,26,12,16,
13,14,31,42,43], among others). Consider the Cahn-Hilliard equation on a domain � (with boundary �):

∂φ

∂t
= ∇ · (m(φ)∇μ

) + f (x, t), (4.1a)

μ = δEtot

δφ
= −λ∇2φ + h(φ), (4.1b)

m(φ)n · ∇μ = da(x, t), on �, (4.1c)

n · ∇φ = db(x, t) on �, (4.1d)

supplemented by the initial condition

φ(x,0) = φin(x). (4.2)

In these equations, φ(x, t) ∈ [−1, 1] is the phase field function, f (x, t), da(x, t) and db(x, t) are prescribed source terms for 
the purpose of convergence testing only, and will be set to f (x, t) = da(x, t) = db(x, t) = 0 in actual simulations. Etot is the 
free energy functional,

Etot(t) = Etot[φ,∇φ] =
∫ [

λ

2
∇φ · ∇φ + H(φ)

]
d�, with H(φ) = λ

4η2
(φ2 − 1)2 (4.3)
�
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in which η is the characteristic interfacial thickness scale, and λ is referred to as the mixing energy density coefficient and 
is related to other physical parameters. For example, for two-phase flow problems λ is given by λ = 3

2
√

2
ση, where σ is 

the surface tension. μ is referred to as the chemical potential, and the nonlinear term h(φ) is given by h(φ) = H ′(φ). H(φ)

is referred to as the potential free energy density function, which can take many different forms. In this paper we only 
consider the double-well form as given in (4.3). m � 0 is the mobility, and in this work we consider two cases: (i) m = m0, 
and (ii) m = m(φ) = max(m0(1 − φ2), 0), with m0 being a given positive constant.

We take the L2 inner product between (4.1a) and μ, perform integration by part and impose the boundary condition 
(4.1d). This leads to the energy balance equation,

∂

∂t

∫
�

(λ

2
|∇φ|2 + H(φ)

)
d� = −

∫
�

m(φ)|∇μ|2d� +
∫
�

f μd�

+
∫
�

m(φ)(n · ∇μ)μd� + λ

∫
�

(n · ∇φ)
∂φ

∂t
d�. (4.4)

Based on equations (2.11) and (4.4), we define the shifted total energy by

E(t) = E[φ] =
∫
�

(λ

2
|∇φ|2 + H(φ)

)
d� + C0, (4.5)

where C0 is chosen to ensure E(t) > 0. Let us define F and G and R(t) based on equations (2.13a)–(2.13b). Following 
equation (2.14) and using (4.5), we have

F ′(R)
dR

dt
=

∫
�

[
− λ∇2φ + h(φ)

]∂φ

∂t
d� + λ

∫
�

db
∂φ

∂t
d�, (4.6)

where the boundary condition (4.1d) has been used.

4.1. Constant mobility

Assume that m(φ) = m0 > 0 is a constant. We reformulate equations (4.1a)–(4.1c) as follows,

∂φ

∂t
= m0∇2

[
−λ∇2φ + S(φ − φ) + F (R)

E
h(φ)

]
+ f , (4.7a)

m0n · ∇
[
−λ∇2φ + S(φ − φ) + F (R)

E
h(φ)

]
= da, on �, (4.7b)

where S is chosen constant satisfying a condition to be specified later. Note that a zero term S(φ − φ) is added in these 
equations. By incorporating appropriate zero terms into the RHS, we reformulate equation (4.6) as follows,

F ′(R)
dR

dt
=

∫
�

μ
∂φ

∂t
d� −

∫
�

μ

[
m0∇2

(
−λ∇2φ + S(φ − φ) + F (R)

E
h(φ)

)
+ f

]
d�

+ F (R)

E

⎡
⎣−

∫
�

m0|∇μ|2d� +
∫
�

f μd� +
∫
�

daμd� +
∫
�

λdb
∂φ

∂t
d�

⎤
⎦

+
(

1 − F (R)

E

)∣∣∣∣∣∣
∫
�

f μd� +
∫
�

daμd� +
∫
�

λdb
∂φ

∂t
d�

∣∣∣∣∣∣

, (4.8)

where μ is given by (4.1b).
The energy-stable scheme for the equations (4.7a)–(4.7b), (4.1d) and (4.8) is as follows:

∂φ

∂t

∣∣∣n+1 = m0∇2
[
− λ∇2φn+1 + S(φn+1 − φ̄n+1) + ξh(φ̄n+1)

]
+ f n+1, (4.9a)

m0n · ∇[ − λ∇2φn+1 + S(φn+1 − φ̄n+1) + ξh(φ̄n+1)
] = dn+1

a , on �, (4.9b)

n · ∇φn+1 = dn+1
b , on �, (4.9c)

ξ = F (Rn+ 3
2 )

˜n+3/2
, (4.9d)
E[φ ]
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E[φ̃n+3/2] =
∫
�

[
λ

2
|∇φ̃n+3/2|2 + H(φ̃n+3/2)

]
d� + C0, (4.9e)

and

DF (R)

∣∣∣n+1 dR

dt

∣∣∣n+1 =
∫
�

[
− λ∇2φn+1 + h(φn+1)

] ∂φ

∂t

∣∣∣∣
n+1

d�

−
∫
�

[
− λ∇2φn+1 + h(φn+1)

]{
m0∇2

[
− λ∇2φn+1 + S(φn+1 − φ̄n+1) + ξh(φ̄n+1)

]
+ f n+1

}
d�

+ ξ
{

−
∫
�

m0|∇μ̃n+1|2d� +
∫
�

f n+1μ̃n+1d� +
∫
�

(
dn+1

a μ̃n+1 + λdn+1
b

∂φ

∂t

∣∣∣∣
∗,n+1

)
d�

}

+ (1 − ξ)

∣∣∣∣∣∣
∫
�

f n+1μ̃n+1d� +
∫
�

(
dn+1

a μ̃n+1 + λdn+1
b

∂φ

∂t

∣∣∣∣
∗,n+1

)
d�

∣∣∣∣∣∣ .

(4.10)

These are supplemented by the initial conditions

φ0(x) = φin(x), R0 = G (E0), with E0 =
∫
�

(1

2
|∇φin|2 + H(φin)

)
d� + C0. (4.11)

In the above equations, ∂φ
∂t

∣∣∣n+1
and dR

dt

∣∣∣n+1
are defined by (2.21b), and φ̄n+1 is defined by (2.21c). φ̃n+1, φ̃n+3/2 and μ̃n+1

are second-order approximations of φn+1, φn+3/2 and μn+1, respectively, to be specified later in (4.24)–(4.26). ∂φ
∂t

∣∣∣∗,n+1
is 

an approximation of ∂φ
∂t

∣∣∣n+1
to be specified later in (4.25).

Theorem 4.1. In the absence of the external force f = 0, and with zero boundary conditions da = db = 0, the scheme consisting of 
(4.9)-(4.10) is unconditionally energy stable in the sense that

F (Rn+ 3
2 ) − F (Rn+ 1

2 ) = −ξ�t

∫
�

m0|∇μ̃n+1|2 ≤ 0, (4.12)

if the approximation of R(t) at time step 1
2 is positive.

Proof. Multiplying −λ∇2φn+1 + h(φn+1) to equation (4.9a), integrating over the domain, and adding the resultant equation 
to equation (4.10), we obtain the energy balance relation as follows:

F (Rn+ 3
2 ) − F (Rn+ 1

2 )

�t
= ξ

{∫
�

f n+1μ̃n+1d� +
∫
�

(
dn+1

a μ̃n+1 + λdn+1
b

∂φ

∂t

∣∣∣∣
∗,n+1

)
d�

}

− ξ

∫
�

m0|∇μ̃n+1|2d� + (1 − ξ)

∣∣∣∣
∫
�

f n+1μ̃n+1d� +
∫
�

(
dn+1

a μ̃n+1 + λdn+1
b

∂φ

∂t

∣∣∣∣
∗,n+1

)
d�

∣∣∣∣,
(4.13)

where we have used the relation (2.28). If f = 0 and da = db = 0, then

ξ = F (Rn+1/2)

E[φ̃n+3/2] + �t
∫
�

m0|∇μ̃n+1|2 . (4.14)

If Rn+1/2|n=0 > 0, one can conclude by induction that ξ > 0 for any n � 0. This leads to (4.12). �
The method from the Appendix A can be employed to compute the first time step, which can ensure that the approxi-

mation of R(t) at the step 1
2 is positive.

To implement the scheme we note that equation (4.9a) can be transformed into

∇2(∇2φn+1) − S ∇2φn+1 + γ0
φn+1 = 1 [ φ̂ + f n+1

]
− S ∇2φ̄n+1 + ξ

1 ∇2h(φ̄n+1), (4.15)

λ m0λ�t m0λ �t λ λ
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where we have used the notation in equation (2.37). This equation can be reformulated into the following two Helmholtz 
type equations that are de-coupled from each other (barring the unknown scalar number ξ ), (see e.g. [16,47] for details)

∇2ψn+1 −
(
α + S

λ

)
ψn+1 = 1

m0λ

[ φ̂

�t
+ f n+1

]
− S

λ
∇2φ̄n+1 + ξ

1

λ
∇2h(φ̄n+1), (4.16a)

∇2φn+1 + αφn+1 = ψn+1, (4.16b)

where ψn+1 is an auxiliary field variable defined by (4.16b), and the constant α is given by and the chosen constant S must 
satisfy

α = − S

2λ

(
1 −

√
1 − 4γ0λ

m0�t S2

)
; S �

√
4λγ0

m0�t
. (4.17)

In light of (4.16b) and (4.9c), the boundary condition (4.9b) can be transformed into

n · ∇ψn+1 =
[(

α + S

λ

)
dn+1

b − 1

m0λ
dn+1

a

]
− S

λ
n · ∇φ̄n+1 + ξ

1

λ
n · ∇h(φ̄n+1). (4.18)

To solve equations (4.16a)-(4.16b) together with the boundary conditions (4.18) and (4.9c), we take advantage of the fact 
that ξ is a scalar number and introduce two sets of field functions (ψn+1

i , φn+1
i ) (i = 1, 2) as solutions of the following 

equations:
For ψn+1

1 :

∇2ψn+1
1 −

(
α + S

λ

)
ψn+1

1 = 1

m0λ

[ φ̂

�t
+ f n+1

]
− S

λ
∇2φ̄n+1, (4.19a)

n · ∇ψn+1
1 =

[(
α + S

λ

)
dn+1

b − 1

m0λ
dn+1

a

]
− S

λ
n · ∇φ̄n+1. (4.19b)

For ψn+1
2 :

∇2ψn+1
2 −

(
α + S

λ

)
ψn+1

2 = 1

λ
∇2h(φ̄n+1), n · ∇ψn+1

2 = 1

λ
n · ∇h(φ̄n+1). (4.20)

For φn+1
1 :

∇2φn+1
1 + αφn+1

1 = ψn+1
1 , n · ∇φn+1

1 = dn+1
b . (4.21)

For φn+1
2 :

∇2φn+1
2 + αφn+1

2 = ψn+1
2 , n · ∇φn+1

2 = 0. (4.22)

Then for given scalar number ξ , the following field functions solve the system consisting of equations (4.16), (4.18) and 
(4.9c):

ψn+1 = ψn+1
1 + ξψn+1

2 , φn+1 = φn+1
1 + ξφn+1

2 , (4.23)

where (ψn+1
i , φn+1

i ) (i = 1, 2) are given by equations (4.19a)-(4.22).
Now we are ready to determine the unknown scalar ξ . Following equations (2.42), we define

φ̃n+1 = φn+1
1 + φn+1

2 , ψ̃n+1 = ψn+1
1 + ψn+1

2 , ∇2φ̃n+1 = ψ̃n+1 − αφ̃n+1 (4.24)

where equation (4.16b) has been used. Accordingly, in light of equations (4.1b) and (2.37), we define⎧⎪⎨
⎪⎩

μ̃n+1 = −λ∇2φ̃n+1 + h(φ̃n+1) = −λ(ψ̃n+1 − αφ̃n+1) + h(φ̃n+1),

∂φ

∂t

∣∣∣∣
∗,n+1

= γ0φ̃
n+1 − φ̂

�t
.

(4.25)

We further define

φ̃n+ 3
2 = 3

2
φ̃n+1 − 1

2
φn. (4.26)

Combining equations (4.9d) and (4.13), we obtain the formula for ξ ,

ξ = F (Rn+1/2) + �t|S0|
E[φ̃n+ 3

2 ] + �tm
∫ |∇μ̃n+1|2d� + �t(|S | − S )

, (4.27)

0 � 0 0
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where S0 is given by

S0 =
∫
�

f n+1μ̃n+1d� +
∫
�

(
dn+1

a μ̃n+1 + λdn+1
b

∂φ

∂t

∣∣∣∣
∗,n+1

)
d�. (4.28)

Once ξ is known, φn+1 and ψn+1 can be obtained directly by equation (4.23) and Rn+1 can be computed based on equa-
tion (2.45).

Equations (4.16a)-(4.22) are Helmholtz type equations with Neumann type boundary conditions. They can be imple-
mented with C0 spectral elements in a straightforward fashion.

Remark 4.1. In equation (4.9a), we have treated the nonlinear term explicitly by h(φ̄n+1). When �t becomes large, φ̄n+1 can 
no longer approximate φn+1 well. Thus, although the scheme (4.9)-(4.10) is unconditionally stable, the simulation will lose 
accuracy for large time steps. One possible approach to improve the accuracy is to replace ξh(φ̄n+1) in equation (4.9a) by

λ

η2

(
φ2

0 − 1
)
φn+1 + ξ

[
h(φ̄n+1) − λ

η2

(
φ2

0 − 1
)
φ̄n+1

]
,

where φ0 is a chosen field function close to φn+1, e.g. a snapshot of the φ field in the recent past. The first term in the 
above equation serves as a linearized approximation of h(φn+1) and the second term serves as a correction to this ap-
proximation. By doing so, equation (4.9a) with the mentioned modification is still linear, but can no longer be decoupled 
straightforwardly. One needs to solve either a fourth-order linear equation or a coupled linear system. However, this treat-
ment can result in improved accuracy besides unconditional stability. We will demonstrate this in the forthcoming case for 
the Cahn-Hilliard equation with variable mobility.

4.2. Variable mobility

Next, we consider the case with a variable mobility, m(φ) = max(m0(1 − φ2), 0). We reformulate the equations 
(4.1a)–(4.1c) into

∂φ

∂t
= ∇ · [mc(φ0)∇C ] + F (R)

E
∇ · [m(φ)∇μ − mc(φ0)∇C ] + f , (4.29a)

mc(φ0)n · ∇C + F (R)

E
n · [m(φ)∇μ − mc(φ0)∇C ] = da. (4.29b)

In these equations, μ is given by (4.1b), φ0 is a chosen field distribution corresponding to φ(x, t) at a certain time instant 
or at some time instants, and⎧⎪⎪⎪⎨

⎪⎪⎪⎩
C = −λ∇2φ + S(φ − φ) + κ(φ0)φ;
mc(φ0) = m(φ0), or mc(φ0) = m0;
κ(φ0) = λ

η2
(φ2

0 − 1), or κ(φ0) = 0;
(4.30)

where S � 0 is a chosen constant. By incorporating appropriate zero terms into the RHS of (4.6), we can transform this 
equation into,

F ′(R)
dR

dt
=

∫
�

μ
∂φ

∂t
d� −

∫
�

μ

[
∇ · (mc(φ0)∇C) + F (R)

E
∇ · [m(φ)∇μ − mc(φ0)∇C ] + f

]
d�

+ F (R)

E

⎡
⎣−

∫
�

m(φ)∇μ · ∇μ +
∫
�

f μd� +
∫
�

daμd� +
∫
�

λdb
∂φ

∂t
d�

⎤
⎦

+
(

1 − F (R)

E

)∣∣∣∣∣∣
∫
�

f μd� +
∫
�

daμd� +
∫
�

λdb
∂φ

∂t
d�

∣∣∣∣∣∣ .

(4.31)

Following equations (2.25a)-(2.25e), we propose the following scheme:

∂φ

∂t

∣∣∣n+1 = ∇ · (mc(φ0)∇Cn+1) + ξ∇ ·
[
m(φ̄n+1)∇μ̄n+1 − mc(φ0)∇ C̄n+1

]
+ f n+1, (4.32a)

Cn+1 = −λ∇2φn+1 + S(φn+1 − φ̄n+1) + κ(φ0)φ
n+1, (4.32b)
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ξ = F (Rn+3/2)

E[φ̃n+3/2] , (4.32c)

E[φ̃n+3/2] =
∫
�

[
λ

2

∣∣∣∇φ̃n+3/2
∣∣∣2 + H(φ̃n+3/2)

]
d� + C0, (4.32d)

mc(φ0)n · ∇Cn+1 + ξn ·
[
m(φ̄n+1)∇μ̄n+1 − mc(φ0)∇ C̄n+1

]
= dn+1

a on ∂�, (4.32e)

and

DF (R)

∣∣∣n+1 dR

dt

∣∣∣n+1 =
∫
�

[ − λ∇2φn+1 + h(φn+1)
]∂φ

∂t

∣∣∣n+1
d� − ξ

∫
�

m(φ̃n+1)
∣∣∇μ̃n+1

∣∣2
d�

+
∫
�

[
λ∇2φn+1 − h(φn+1)

]{∇ · (mc(φ0)∇Cn+1) + ξ∇ ·
[
m(φ̄n+1)∇μ̄n+1 − mc(φ0)∇ C̄n+1

]
+ f n+1

}
d�

+ ξ

⎡
⎣∫

�

f n+1μ̃n+1d� +
∫
�

(
dn+1

a μ̃n+1 + λdn+1
b

∂φ

∂t

∣∣∣∣
∗,n+1 )

d�

⎤
⎦

+ (1 − ξ)

∣∣∣∣∣∣
∫
�

f n+1μ̃n+1d� +
∫
�

(
dn+1

a μ̃n+1 + λdn+1
b

∂φ

∂t

∣∣∣∣
∗,n+1

)
d�

∣∣∣∣∣∣ ,

(4.33)

together with the boundary condition (4.9c) and the initial condition (4.11). In these equations, ∂φ
∂t

∣∣∣n+1
and dR

dt

∣∣∣n+1
are 

defined in (2.21b), φ̄n+1 is given by (2.21c), and C̄n+1 and μ̄n+1 are computed by

C̄n+1 = −λ∇2φ̄n+1 + κ(φ0)φ̄
n+1, μ̄n+1 = −λ∇2φ̄n+1 + h(φ̄n+1). (4.34)

φ̃n+1, φ̃n+3/2, μ̃n+1, and ∂φ
∂t

∣∣∣∗,n+1
are approximations to be specified later.

Theorem 4.2. In the absence of the external source term ( f = 0), and with zero boundary conditions (da = db = 0), the scheme 
consisting of (4.32)-(4.33) is unconditionally energy stable in the sense that

F (Rn+ 3
2 ) − F (Rn+ 1

2 ) = −ξ�t

∫
�

m(φ̃n+1)|∇μ̃n+1|2 ≤ 0, (4.35)

if the approximation of R(t) at time step 1
2 is positive.

Proof. We take the L2 inner product between 
(−λ∇2φn+1 + h(φn+1)

)
and equation (4.32a), and add the resultant equation 

to equation (4.33). This leads to

F (Rn+ 3
2 ) − F (Rn+ 1

2 )

�t
= ξ

{∫
�

f n+1μ̃n+1d� +
∫
�

(
dn+1

a μ̃n+1 + λdn+1
b

∂φ

∂t

∣∣∣∣
∗,n+1 )

d�
}

− ξ

∫
�

m(φ̃n+1)|∇μ̃n+1|2d� + (1 − ξ)

∣∣∣∣
∫
�

f n+1μ̃n+1 +
∫
�

(
dn+1

a μ̃n+1 + λdn+1
b

∂φ

∂t

∣∣∣∣
∗,n+1 )

d�

∣∣∣∣.
(4.36)

By the same arguments as in the proof of Theorem 4.1, we arrive at the relation (4.35) based on the above equation. �
For implementation of the scheme, one notes that equation (4.32a) can be transformed into

γ0

�t
φn+1 − ∇ · [mc(φ0)∇Cn+1] =

( φ̂

�t
+ f n+1

)
+ ξ∇ ·

[
m(φ̄n+1)∇μ̄n+1 − mc(φ0)∇ C̄n+1

]
. (4.37)

Barring the unknown scalar ξ , equations (4.37), (4.32b), (4.32e) and (4.9c) can be solved as follows. Introduce two pairs of 
field functions (φn+1, Cn+1) (i = 1, 2), as the solution of the following equations:
i i
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For (φn+1
1 , Cn+1

1 ):

γ0

�t
φn+1

1 − ∇ · [mc(φ0)∇Cn+1
1

] = φ̂

�t
+ f n+1, (4.38a)(

κ(φ0) + S
)
φn+1

1 − λ∇2φn+1
1 − Cn+1

1 = Sφ̄n+1, (4.38b)

mc(φ0)n · ∇Cn+1
1 = dn+1

a , on � (4.38c)

n · ∇φn+1
1 = dn+1

b , on �. (4.38d)

For (φn+1
2 , Cn+1

2 ):

γ0

�t
φn+1

2 − ∇ · [mc(φ0)∇Cn+1
2

] = ∇ ·
[
m(φ̄n+1)∇μ̄n+1 − mc(φ0)∇ C̄n+1

]
, (4.39a)(

κ(φ0) + S
)
φn+1

2 − λ∇2φn+1
2 − Cn+1

2 = 0, (4.39b)

mc(φ0)n · ∇Cn+1
2 = −n ·

[
m(φ̄n+1)∇μ̄n+1 − mc(φ0)∇ C̄n+1

]
, on �, (4.39c)

n · ∇φn+1
2 = 0, on �. (4.39d)

Then for given scalar value ξ , the following field functions solve the system consisting of equations (4.32a)-(4.32e) and 
(4.9c):

Cn+1 = Cn+1
1 + ξCn+1

2 , φn+1 = φn+1
1 + ξφn+1

2 (4.40)

where (Cn+1
i , φn+1

i ) (i = 1, 2) are given by equations (4.38)-(4.39).

The unknown scalar value ξ remains to be determined. Following equation (2.42), φ̃n+1, μ̃n+1 and ∂φ
∂t

∣∣∣∗,n+1
are again 

given by equations (4.24) and (4.25), where based on equation (4.32b) we compute ∇2φ̃n+1 by

∇2φ̃n+1 = 1

λ

[
κ(φ0)φ̃

n+1 + S(φ̃n+1 − φ̄n+1) − (Cn+1
1 + Cn+1

2 )
]
. (4.41)

The approximation φ̃n+ 3
2 is given by (4.26). As a result, ξ can be computed by,

ξ = F (Rn+1/2) + �t|S0|
E[φ̃n+ 3

2 ] + �t
∫
�

m(φ̃n+1)|∇μ̃n+1|2d� + �t(|S0| − S0)
, (4.42)

where S0 is given by (4.28), and φn+1 and Rn+1 can be evaluated by equations (4.40) and (2.45), respectively.
Equations (4.38)-(4.39) can be discretized in space by C0 spectral elements, and their weak forms are:

For (φn+1
1 , Cn+1

1 ): Find φn+1
1 , Cn+1

1 ∈ H1(�) such that

γ0

�t

(
φn+1

1 ,ϕ
)
�

+
(

mc(φ0)∇Cn+1
1 ,∇ϕ

)
�

=
( φ̂

�t
+ f n+1,ϕ

)
�

+ 〈dn+1
a ϕ〉�, (4.43)([

κ(φ0) + S
]
φn+1

1 ,ϕ
)

�
+ λ

(∇φn+1
1 ,∇ϕ

)
�

− (
Cn+1

1 ,ϕ
)
�

= S
(
φ̄n+1,ϕ

)
�

+ λ〈dn+1
b ϕ〉�, (4.44)

for all ϕ ∈ H1(�).
For (φn+1

2 , Cn+1
2 ): Find φn+1

2 , Cn+1
2 ∈ H1(�) such that

γ0

�t

(
φn+1

2 ,ϕ
)
�

+
(

mc(φ0)∇Cn+1
2 ,∇ϕ

)
�

= −
(

m(φ̄n+1)∇μ̄n+1 − mc(φ0)∇ C̄n+1,∇ϕ
)

�
, (4.45)([

κ(φ0) + S
]
φn+1

2 ,ϕ
)

�
+ λ

(∇φn+1
2 ,∇ϕ

)
�

− (
Cn+1

2 ,ϕ
)
�

= 0, (4.46)

for all ϕ ∈ H1(�).

Remark 4.2. If one chooses κ(φ0) = 0 and mc(φ0) = m0 > 0, then the scheme (4.32a)–(4.33) can also be implemented by 
solving four de-coupled Helmholtz type equations in a way similar to the constant mobility case in Section 4.1.

4.3. Numerical results

We next provide numerical examples to demonstrate the accuracy and unconditional stability of the proposed schemes 
(4.9)-(4.10) and (4.32)-(4.33) for Cahn-Hilliard equation with constant and variable mobilities. For cases with variable mobil-
ity we employ mc(φ0) = m(φ0) = max(m0(1 − φ2

0), 0) in the algorithm with these tests, where m0 and φ0 will be specified 
below.
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Table 1
Simulation parameter values for convergence tests of Cahn-Hilliard equation.

Parameter Value Parameter Value

C0 1 λ 0.01
m0 0.01 η 0.1
t0 0.1 t f 0.2 (spatial tests) or 1.1 (temporal tests)
Element order (varied) Elements 2
�t (varied) �tmin 1e − 4

S 1 (variable mobility solver) S
√

4γ0λ
m0�t or

√
4γ0λ

m0�tmin
(constant mobility solver)

F (R) R φ0 φin

mc(φ0) m(φ0)

4.3.1. Convergence rates
Consider domain � = [0, 2] × [−1, 1] and a contrived solution in this domain:

φ(x, t) = cos(πx) cos(π y) sin(t). (4.47)

The external force and boundary source terms f (x, t), da(x, t) and db(x, t) in (4.1a), (4.1c) and (4.1d) are chosen such that 
the analytic expression (4.47) satisfies (4.1).

The computational domain � is discretized with two equal-sized quadrilateral elements. The algorithms (4.9)-(4.10)
for the constant-mobility case and (4.32)-(4.33) for the variable-mobility case are employed to numerically integrate the 
Cahn-Hilliard equation from t = t0 to t = t f . The initial field function φin is obtained by setting t = t0 in the contrived 
solution (4.47). The numerical errors are computed by comparing the numerical solution against the analytic solution (4.47)
at t = t f . In the following convergence tests, we fix F (R) = R , C0 = 1, and φ0 = φin(x) in (4.32). The values for the 
simulation parameters are summarized in Table 1.

In the spatial convergence test, we fix �t = 0.001, t0 = 0.1 and t f = 0.2, and vary the element order systematically from 
2 to 20. The numerical errors in L∞ and L2 norms at t = t f are then recorded. For the algorithm with constant mobility, S

in equation (4.9) is chosen as S =
√

4γ0λ
m0�t , while for the algorithm with variable mobility we use S = 1. Figs. 4.1(a) and (b) 

show the numerical errors as a function of the element order from these tests. It can be observed that the errors decrease 
exponentially with increasing element order and that the error curves level off at around 10−5 and 10−6 beyond element 
order 8 and 10, respectively for these two solvers, due to the saturation of temporal errors.

In the temporal convergence test, we fix the element order at a large value 18, t0 = 0.1, and t f = 1.1, and vary �t
systematically from 0.2 to 1.953125 × 10−4 to study the behavior of numerical errors. For the constant-mobility case, 
S =

√
4γ0λ

m0�tmin
(where �tmin = 10−4), while for the variable-mobility case S = 1. Figs. 4.1(c) and (d) show the numerical 

errors as a function of �t for these cases. We observe a second-order convergence rate in time for both cases.
Fig. 4.2 shows the spatial and temporal convergence behaviors of the method in terms of the L2 errors of φ corresponding 

to several different mapping functions F (R). Note that e0 = κ0 = 10 with the mapping F (R) = e0
2 ln

(
κ0+R
κ0−R

)
. These results 

demonstrate the spatial exponential convergence rate and the second-order temporal convergence rate of the method with 
various mapping functions, and also the insensitivity of the simulation results with respect to F (R).

4.3.2. Constant mobility: coalescence of two drops
We next consider the coalescence of two drops to demonstrate the numerical properties of the proposed scheme 

(4.9)-(4.10) for problems with constant mobility. Consider a square domain � = [0, 1]2 and two materials contained in 
this domain. It is assumed that the dynamics of the material regions is governed by the Cahn-Hilliard equation with a 
constant mobility, m(φ) = m0 > 0, and that φ = 1 and φ = −1 correspond to the bulk of the first and second materials, 
respectively. We assume that at t = 0 the first material occupies two circular regions that are right next to each other and 
the rest of the domain is filled by the second material.

To be more specific, the initial distribution of the material takes the form

φin(x) = 1 − tanh
|x − x0| − R0√

2η
− tanh

|x − x1| − R0√
2η

, (4.48)

where x0 = (x0, y0) = (0.3, 0.5) and x1 = (0.7, 0.5) are the centers of the circular regions for the first material, and R0 =
0.19 is the radius of these circles. The external force and the boundary source terms in (4.1) are set to f (x, t) = da(x, t) =
db(x, t) = 0. We discretize the domain using 400 equal-sized quadrilateral elements with element order 10. We employ a 
mapping function F (R) = R2 for this problem. The simulation parameters are listed as follows:

η = 0.01, σ = 151.15, λ = 3

2
√

2
ση, m0 = 10−6

λ
, S =

√
4γ0λ

m0�t
, C0 = 106. (4.49)
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Fig. 4.1. Spatial/temporal convergence tests for Cahn-Hilliard equation. L2 and L∞ errors of φ versus element order for (a) constant mobility, (b) variable 
mobility (fixed �t = 0.001, t0 = 0.1, t f = 0.2). L2 and L∞ errors of φ versus �t for (c) constant mobility, (d) variable mobility (fixed element order 18 and 
t0 = 0.1, t f = 1.1). Numerical results correspond to φ0 = φin(x) in (4.32) for cases with variable mobility.

Fig. 4.3 shows the evolution of the two material regions with a temporal sequence of snapshots of the interfaces between 
these two materials visualized by the contour level φ = 0. It can be observed that the two separate regions of the first 
material gradually coalescence with each other to form a single drop under the Cahn-Hilliard dynamics.

To investigate the effect of time step size on the accuracy of the simulation results, in Fig. 4.4 we compare the distribu-
tions of the material interfaces at t = 50 obtained with several time step sizes, ranging from �t = 10−1 to �t = 10−4. The 
distribution computed with �t = 10−2, 10−3 and 10−4 are essentially the same. With the larger time step size �t = 10−1, 
some difference can be noticed in the material distribution compared with those obtained using smaller �t values. This 
suggests the simulation is starting to lose accuracy with time step sizes �t = 10−1 and larger.

Fig. 4.5 shows the time histories of the total energy Etot(t) (see equation (4.3)) and the ratio ξ = F (R)
E obtained using 

time step sizes �t = 10−2 to �t = 10−4. It can be observed that the history curves essentially overlap with one another for 
different time step sizes. The computed values for ξ = F (R)

E are very close to 1 for each �t , suggesting that F (R) is a good 
approximation for E(t) and the numerical approximation is accurate with these time steps.

Thanks to the energy stability property of the current method, we can use fairly large time step sizes for the simulations. 
In Fig. 4.6, we depict some longer time histories (up to t = 10000) of the total energy Etot(t) and the ratio ξ = F (R)

E
obtained using several large time step sizes �t = 0.1, 1, 10. At these large �t values we can no longer expect the results 
to be accurate. Indeed, in Fig. 4.6(a), Etot increases initially, and levels off over time at around Etot ≈ 2000. Meanwhile, 
ξ decreases rapidly to a smaller number close to 0, suggesting that there is a large discrepancy between F (R) and E(t). 
While these computation results are not accurate, they nonetheless demonstrate the proposed method is stable and robust 
with large time steps.

As discussed in previous sections, the current scheme guarantees the positivity of the computed ξ and R(t) values, 
regardless of the time step size or the external forces. In Fig. 4.7, we compare the time histories of the computed auxil-
iary variable R(t) obtained using the current method and the auxiliary variable obtained by the scalar auxiliary variable 
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Fig. 4.2. Spatial/temporal convergence tests for the Cahn-Hilliard equation obtained using several mapping functions F (R) as given in the legend. L2 errors 
of φ versus the element order for (a) constant mobility, (b) variable mobility (fixed �t = 0.001, t0 = 0.1, t f = 0.2). L2 errors of φ versus �t for (c) constant 
mobility, (d) variable mobility (fixed element order 18 and t0 = 0.1, t f = 1.1).

(SAV) method from [38]. Note that in the current method F (R) = R2 (hence R(t) = √
E(t)) has been used. In the SAV 

method the auxiliary variable, denoted by R1(t) in the figure for clarity, is computed by a dynamic equation stemming 
from the relation R1(t) = √

E1(t), where E1(t) =
∫
�

H(φ)d� + C0 > 0. Therefore, R1(t) should physically be positive. In re-
ality, however, the discrete solutions for R1(t) computed by the SAV method can become negative. This is evident from 
Fig. 4.7(b), where the result obtained using the SAV method with a large �t = 1 is shown. On the other hand, the discrete 
solutions for R(t) from the current method are guaranteed to be positive, which is evident from Fig. 4.7(a). It should be 
pointed out that since the definitions of the auxiliary variables in the current method and in the SAV method are different, 
the specific values of R(t) and R1(t) are not comparable. Nevertheless, the positivity of these variables are both expected 
physically.

4.3.3. Variable mobility: evolution of a drop
We next consider the evolution of a square drop governed by the Cahn-Hilliard equation with a variable mobility. The 

computational domain and the settings follow those for the coalescence of two drops discussed above. The difference lies 
in the initial distribution of the materials. To be precise, the initial distribution of field function is set as follows:

φin(x) = 1

2

[
tanh

x − x0 + h0√
2η

− tanh
x − x0 − h0√

2η

]
·
[

tanh
y − y0 + h0√

2η
− tanh

y − y0 − h0√
2η

]
− 1, (4.50)

where (x0, y0) = (0.5, 0.5) is the center of the domain and h0 = 0.2.
Fig. 4.8 shows the evolution of the system with a temporal sequence of snapshots of the interfaces between the two ma-

terials. These results are computed with a time step size �t = 0.01, S = 1, C0 = 106, and the mapping function F (R) = R2. 
The φ0 in the algorithm is taken as the field φ(x, t) at every fifth time step, i.e. φ0(x) = φ5k(x) (k = 0, 1, 2 . . . ). In other 
words, the φ0 field and also the coefficient matrices of the system are updated every 5 time steps in this set of tests. These 



Z. Yang, S. Dong / Journal of Computational Physics 404 (2020) 109121 33
Fig. 4.3. Temporal sequence of snapshots showing the coalescence of two circular drops visualized by the contour level φ = 0 governed by Cahn-Hilliard 
equation with constant mobility.

Fig. 4.4. Coalescence of two drops: snapshots of material interfaces at t = 50 computed using (a) �t = 10−1, (b) �t = 10−2, (c) �t = 10−3, (d) �t = 10−4.

Fig. 4.5. Coalescence of two drops: time histories of (a) Etot (t) and (b) ξ corresponding to a range of smaller time step sizes �t = 10−2,10−3,10−4.
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Fig. 4.6. Coalescence of two drops: time history of (a) Etot (t) and (b) ξ for several large time step sizes �t = 0.1,1,10.

Fig. 4.7. Positivity of computed auxiliary variables: (a) time history of the auxiliary variable (R(t)) obtained by the current method, and (b) time history 
of the auxiliary variable (denoted by R1(t)) obtained by the SAV method of [38]. �t = 1 in the simulations of coalescence of two drops (Cahn-Hilliard 
equation with constant mobility). Note that the auxiliary variable in the current work and that in [38] are not the same in definition, and so their specific 
values are not comparable. But both should physically be positive.

Fig. 4.8. Evolution of a square drop (Cahn-Hilliard equation with variable mobility): Temporal snapshots of the material interface visualized by φ = 0. 
�t = 10−2 in the simulations.

results illustrate the process for the evolution of the initial square region into a circular region under the Cahn-Hilliard 
dynamics.

In Fig. 4.9, we show the time histories of the total energy Etot(t) and ξ = F (R)
E(t) obtained with several time step sizes 

ranging from �t = 10−2 to �t = 10−4. Note that the variable mobility is m(φ) = max(m0(1 − φ2), 0). Here we have consid-
ered two ways to simulate the problem:
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Fig. 4.9. Evolution of a square drop (Cahn-Hilliard equation with variable mobility): time histories of (a) Etot(t) and (b) ξ for various time step sizes 
�t = 10−2, 10−3, 10−4. In these tests, φ0 = 0 for �t = 10−3 and 10−4, while for �t = 10−2, we set φ0 = 0, referred to as “no update” in the legend of (a), 
and also update φ0 to φn every 5 time steps, referred to as “update”. The case �t = 10−2 in (b) corresponds to the “update” case.

• by setting φ0 = 0 in the algorithm. This leads to mc(φ0) = m(φ0) = m0 and κ(φ0) = − λ

η2 , and a time-independent 
coefficient matrix for the system, which can be pre-computed. We refer to this setting as the standard way.

• by setting φ0 = φ5k (k = 0, 1, 2, . . . ) in the algorithm. The φ0 field and the coefficient matrix are quasi time-independent, 
and they are updated every 5 time steps.

With the smaller time step sizes �t = 10−3 and 10−4, we set φ0 = 0 in the algorithm (the standard way) when performing 
simulations. With the larger �t = 10−2, we have conducted simulations in both ways with the algorithm. In Fig. 4.9(a) 
the results from these two settings are marked by “no update” (standard way) and “update” (second way) in the legend 
corresponding to �t = 10−2. It is observed that the energy histories corresponding to �t = 10−4 and 10−3, and �t = 10−2

with φ0 updated periodically, essentially overlap with each other. However, the energy history corresponding to �t = 10−2

with φ0 = 0 exhibits a pronounced discrepancy compared with the other cases. These results indicate that with the standard 
way (by setting φ0 = 0) in the algorithm the simulation result would cease to be accurate when the time step size increases 
to �t = 10−2. However, if one uses the second way (by updating φ0 periodically), accurate simulation result can be obtained 
even with �t = 10−2. In other words, by updating φ0 in the algorithm from time to time, one can improve the accuracy 
of the simulations even at larger time step sizes. We depict in Fig. 4.9(b) the time histories of ξ = F (R)

E corresponding to 
these time step sizes. Shown for �t = 10−2 in this plot is the result with φ0 updated periodically. It is observed that the 
computed ξ is essentially 1 with �t = 10−3 and 10−4. With �t = 10−2 (and φ0 updated periodically), the computed ξ is 
substantially smaller than 1. But interestingly, the simulation results for the field function φ are still quite accurate with 
this larger �t . This group of tests suggests that one possible way to improve the accuracy of the proposed energy-stable 
scheme is to update the φ0 in the algorithm periodically, e.g. every N time steps. By choosing an appropriate N for a 
given problem, one can enhance the simulation accuracy even at large or fairly large time step sizes. Because φ0 and the 
coefficient matrix for the system only need to be updated infrequently, the cost associated with updating the coefficient 
matrix can be manageable. There is a drawback with this, however. The computations using the second way (updating φ0
periodically) seems not as robust as the standard way (by setting φ0 = 0) for large �t . Because of the non-zero φ0 field 
in the algorithm, the conditioning of the system coefficient matrix using the second way seems to become worse for large 
�t . We observe that for larger �t � 0.1 the system coefficient matrix using the second way can become singular and the 
computation may break down.

5. Nonlinear Klein-Gordon equation

We consider an energy-conserving system, the nonlinear Klein-Gordon equation, in this section and apply the gPAV 
method to this system. Consider the nonlinear Klein-Gordon equation [39] on a domain � (with boundary �)

∂u

∂t
= v, (5.1)

ε2 ∂v

∂t
− α2∇2u + ε2

1u + g(u) = f (x, t), (5.2)

u = da(x, t), on �, (5.3)
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where ε, α and ε1 are positive constants. These equations are supplemented by the initial conditions

u(x,0) = uin(x), v(x,0) = vin(x) in �. (5.4)

In these equations g(u) = G ′(u) and G(u) is a potential energy function with G(u) � 0. The above system satisfies the 
following energy balance law:

∂

∂t

∫
�

(α2

2
|∇u|2 + ε2

1

2
|u|2 + ε2

2
|v|2 + G(u)

)
d� =

∫
�

f vd� + α2
∫
∂�

(n · ∇u)vd�. (5.5)

We define a shifted total energy according to equation (2.11),

E(t) = E[u, v] =
∫
�

(α2

2
|∇u|2 + ε2

1

2
|u|2 + ε2

2
|v|2 + G(u)

)
d� + C0, (5.6)

where C0 is chosen such that E(t) > 0. Choose F and G , and define the auxiliary variable R(t) based on equation (2.13a). 
Following equation (2.14), we have

F ′(R)
dR

dt
=

∫
�

(
− α2∇2u + ε2

1u + g(u)
)∂u

∂t
d� +

∫
�

ε2 v
∂v

∂t
d� + α2

∫
�

(n · ∇u)
∂u

∂t
d�, (5.7)

where integration by part has been used.
Following equations (2.17)-(2.19), we reformulate equations (5.2) and (5.7) into

∂v

∂t
=

(α

ε

)2∇2u −
(ε1

ε

)2
u − F (R)

E

1

ε2
g(u) + 1

ε2
f , (5.8a)

F ′(R)
dR

dt
=

∫
�

(
− α2∇2u + ε2

1u + g(u)
)∂u

∂t
+

∫
�

ε2 v
∂v

∂t
d�

+ F (R)

E

(∫
�

f vd� + α2
∫
�

(n · ∇u)vd�
)

+
[

1 − F (R)

E

] ∣∣∣∣∣∣
∫
�

f vd� + α2
∫
�

da vd�

∣∣∣∣∣∣
−

∫
�

(
− α2∇2u + ε2

1u + g(u)
)

vd� −
∫
�

ε2 v

[(α

ε

)2∇2u −
(ε1

ε

)2
u − F (R)

E

1

ε2
g(u) + 1

ε2
f

]
d�.

(5.8b)

The reformulated system consists of equations (5.1), (5.8a)-(5.8b) and (5.3)-(5.4), which is equivalent to the original system 
(5.1)-(5.4).

Since the Klein-Gordon equation is conservative (in the absence of external source term and with appropriate bound-
ary condition), we will employ the Crank-Nicolson method for time discretization of the field variables, by enforcing the 
discretized equations at step (n + 1/2). This corresponds to the approximations (2.33a)–(2.34) with θ = 1

2 and β = 0. So 
the method here is slightly different than the one presented in Section 2.2, which corresponds to θ = 1 and β = 1

4 in the 
approximations (2.33a)–(2.34). The energy-stable scheme for the nonlinear Klein-Gordon equation is then as follows:

un+1 − un

�t
= vn+ 1

2 , (5.9a)

vn+1 − vn

�t
=

(α

ε

)2∇2un+ 1
2 −

(ε1

ε

)2
un+ 1

2 − ξ
1

ε2
g(ūn+ 1

2 ) + 1

ε2
f n+ 1

2 , (5.9b)

ξ = F (Rn+1)

Ẽ[ũn+1, ṽn+1] , (5.9c)

E[ũn+1, ṽn+1] =
∫
�

(α2

2
|∇ũn+1|2 + ε2

1

2
|ũn+1|2 + ε2

2
|ṽn+1|2 + G(ũn+1)

)
d� + C0, (5.9d)

un+1 = dn+1
a , on �, (5.9e)
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together with

DF (R)|n+ 1
2

Rn+1 − Rn

�t
=

∫
�

(
− α2∇2un+ 1

2 + ε2
1un+ 1

2 + g(un+ 1
2 )

)un+1 − un

�t
d�

+
∫
�

ε2 vn+ 1
2

vn+1 − vn

�t
d� −

∫
�

(
− α2∇2un+ 1

2 + ε2
1un+ 1

2 + g(un+ 1
2 )

)
vn+ 1

2 d�

−
∫
�

ε2 vn+ 1
2

{(α

ε

)2∇2un+ 1
2 −

(ε1

ε

)2
un+ 1

2 − ξ
1

ε2
g(ūn+ 1

2 ) + 1

ε2
f n+ 1

2

}
d�

+ ξ
(∫

�

f n+ 1
2 ṽn+ 1

2 d� + α2
∫
�

(
n · ∇ũn+ 1

2
)

ṽn+ 1
2 d�

)

+ (1 − ξ)

∣∣∣ ∫
�

f n+ 1
2 ṽn+ 1

2 d� + α2
∫
�

(
n · ∇ũn+ 1

2
)

ṽn+ 1
2 d�

∣∣∣.

(5.10)

These equations are supplemented by the initial conditions

u0 = uin(x), v0 = v in(x), R0 = G (E0), (5.11)

where E0 is evaluated by

E0 =
∫
�

(α2

2
|∇uin|2 + ε2

1

2
|uin|2 + ε2

2
|v in|2 + G(uin)

)
d� + C0. (5.12)

In the above equations, DF (R)|n+ 1
2 is defined by (2.34) with θ = 1/2, and⎧⎪⎨

⎪⎩
un+1/2 = 1

2
(un+1 + un), vn+1/2 = 1

2
(vn+1 + vn),

ūn+ 1
2 = 3

2
un − 1

2
un−1, v̄n+ 1

2 = 3

2
vn − 1

2
vn−1.

(5.13)

ũn+1, ṽn+1, ũn+ 1
2 and ṽn+ 1

2 are second-order approximations of un+1, vn+1, un+ 1
2 and vn+ 1

2 , respectively, defined later in 
(5.22)-(5.23).

Theorem 5.1. In the absence of the external force f = 0, and with homogeneous boundary condition (da = 0) and suppose that the 
initial condition v in satisfies the compatibility condition vin|� = 0, the scheme consisting of (5.9)-(5.11) conserves the modified energy 
F (R) in the sense that:

F (Rn+1) − F (Rn) = 0. (5.14)

Proof. Multiplying 
(−α2∇2un+ 1

2 +ε2
1un+ 1

2 + g(un+ 1
2 )

)
to equation (5.9a), ε2 vn+ 1

2 to equation (5.9b), taking the L2 integrals, 
and summing up the resultant equations with equation (5.10), we arrive at the relation,

F (Rn+1) − F (Rn)

�t
= ξ

(∫
�

f n+ 1
2 ṽn+ 1

2 d� + α2
∫
�

(
n · ∇ũn+ 1

2
)

ṽn+ 1
2 d�

)

+ (1 − ξ)

∣∣∣ ∫
�

f n+ 1
2 ṽn+ 1

2 d� + α2
∫
�

(
n · ∇ũn+ 1

2
)

ṽn+ 1
2 d�

∣∣∣, (5.15)

where we have used equations (2.21b)-(2.22). If da = 0, then un|� = 0 and vn|� = 0 for all n > 0. Based on the definition of 
ṽn+ 1

2 in the equation (5.23) below, it is straightforward to verify that ṽn+ 1
2 |� = 0 as long as v0|� = 0. Furthermore, if f = 0, 

the volume integrals in equation (5.15) vanish. This leads to equation (5.14). �
Remark 5.1. Since F (R) is an approximation of E(t), the discrete conservation for F (R) in equation (5.14) does not imply 
the conservation for E(t) on the discrete level. However, it does lead to an unconditionally energy stable scheme for long 
time simulations.



38 Z. Yang, S. Dong / Journal of Computational Physics 404 (2020) 109121
Despite the complication caused by the unknown scalar variable ξ , the proposed scheme can be solved in a decoupled 
fashion. Combining equations (5.9a) and (5.13), we get

vn+1 = 2

�t
un+1 − 2

�t
un − vn. (5.16)

Inserting equation (5.16) into (5.9b) leads to[( 2ε

α�t

)2 +
(ε1

α

)2]
un+1 − ∇2un+1 =

( ε

α

)2{[( 2

�t

)2 − (ε1

ε

)2
]

un + 4

�t
vn + 2

ε2
f n+ 1

2

}
− ξ

2

α2
g(ūn+ 1

2 ) + ∇2un.

(5.17)

To solve this equation, we introduce un+1
1 and un+1

2 as solutions of the following two equations:

[( 2ε

α�t

)2 +
(ε1

α

)2]
un+1

1 − ∇2un+1
1 =

( ε

α

)2{[( 2

�t

)2 − (ε1

ε

)2
]

un + 4

�t
vn + 2

ε2
f n+ 1

2

}
+ ∇2un, (5.18)

un+1
1 = dn+1

a on �, (5.19)

and [( 2ε

α�t

)2 +
(ε1

α

)2]
un+1

2 − ∇2un+1
2 = − 2

α2
g(ūn+ 1

2 ), un+1
2 = 0 on �. (5.20)

Then the solution to equation (5.17), together with the boundary condition (5.9e), is given by

un+1 = un+1
1 + ξun+1

2 . (5.21)

where ξ is to be determined.
We define

ũn+1 = un+1
1 + un+1

2 , ũn+1/2 = 1

2
(ũn+1 + un), (5.22)

ṽn+1 = 2

�t
(ũn+1 − un) − vn, ṽn+1/2 = 1

2
(ṽn+1 + vn). (5.23)

By combining equations (5.9c) and (5.15), we can determine ξ ,

ξ = F (Rn) + �t|S0|
E[ũn+1, ṽn+1] + �t(|S0| − S0)

, with S0 =
(∫

�

f n+1/2 ṽn+1/2d� + α2
∫
�

(n · ∇ũn+1/2)ṽn+1/2d�
)
. (5.24)

With ξ known, un+1 and vn+1 can be computed by equations (5.21) and (5.16), respectively. Rn+1 can be computed by,

Rn+1 = G (ξ E[ũn+1, ṽn+1]). (5.25)

The weak formulations for equations (5.18) and (5.20) are: Find (un+1
1 , un+1

2 ) ∈ H1(�) such that

(∇un+1
1 ,∇ϕ

)
�

+
[( 2ε

α�t

)2 +
(ε1

α

)2](
un+1

1 ,ϕ
)
�

= −(∇un,∇ϕ)�

+
( ε

α

)2([( 2

�t

)2 − (ε1

ε

)2
]

un + 4

�t
vn + 2

ε2
f n+ 1

2 ,ϕ
)

�
, ∀ϕ ∈ H1

0(�) :=
{

w ∈ H1(�) : w|� = 0
}
;

(5.26)

(∇un+1
2 ,∇ϕ

)
�

+
[( 2ε

α�t

)2 +
(ε1

α

)2](
un+1

2 ,ϕ
)
�h

= − 2

α2

(
g(ūn+ 1

2 ),ϕ
)
�
, ∀ϕ ∈ H1

0(�). (5.27)

These can be implemented with C0 spectral elements in a straightforward fashion.

5.1. Numerical results

We next provide numerical examples to demonstrate the accuracy and unconditional stability of the proposed scheme 
to the Klein-Gordon equation (5.1)-(5.3). Specifically, we fix the parameters therein and the potential energy function as

ε = ε1 = α = 1, G(u) = 1 − cos(u), g(u) = G ′(u) = sin(u). (5.28)

This corresponds to the dimensionless relativistic Sine-Gordon equation (DRSG) (see e.g. [3]).
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Fig. 5.1. Spatial/temporal convergence tests for DRSG equation: L2 and L∞ errors of u versus (a) element order (fixed �t = 0.001 and t f = 0.1), and (b) �t
(fixed element order 18 and t f = 1).

5.1.1. Convergence rates
To study the convergence rates in space and time of the proposed method, we employ the following manufactured 

analytic solution

u = cos(πx) cos(π y) sin(t). (5.29)

The external force f (x, t) in (5.2) and the external boundary source term da(x, t) are chosen such that the above expression 
(5.29) satisfies equations (5.1)-(5.3).

The computational domain � = [0, 2] × [−1, 1] is discretized using two equal-sized quadrilateral elements, with the 
element order and the time step size �t varied systematically in the spatial and temporal tests. The algorithm presented 
in this section is employed to numerically integrate the DRSG equation from t = 0 to t = t f . The mapping F (R) = R and 
C0 = 1 are used in these computations. The initial condition uin and vin are obtained by setting t = 0 in the analytic 
expression (5.29) and using (5.1). We then record the numerical errors in different norms by comparing the numerical 
solution with the analytic solution at t = t f .

To conduct the spatial convergence test, we vary systematically the element order from 2 to 20 and depict in Fig. 5.1(a) 
the L∞ and L2 errors of u as a function of the element order with a fixed �t = 0.001 and t f = 0.1. It is observed that the 
numerical errors decay exponentially with increasing element order, and levels off beyond element order 12, caused by the 
saturation of temporal errors.

To study the temporal convergence rate, we fix the element order at a large value 18 and t f = 1.0. The time step size �t
is varied systematically from 0.2 to 7.8125 × 10−4 and the numerical errors in L∞ and L2 norms are depicted in Fig. 5.1(b). 
A second-order convergence rate in time is clearly observed.

Fig. 5.2 shows the spatial and temporal convergence behaviors of the current method, in terms of the L2 errors, corre-

sponding to several different mapping functions F (R). Note that e0 = κ0 = 10 with the mapping F (R) = e0
2 ln

(
κ0+R
κ0−R

)
. It 

is evident that with different mapping functions the current method exhibits a spatial exponential convergence rate and 
temporal second-order convergence rate. We again observe the insensitivity of the simulation results with respect to F (R), 
similar to those with the other tests in previous sections.

5.1.2. Study of method properties
We next study the remarkable stability of the proposed method with the DRSG equation. Consider the DRSG equation on 

the domain � = [0, 14]2, with zero external force f (x, t) = 0 and zero boundary source term da(x, t) = 0 in (5.3). The initial 
conditions are set to

uin(x) = 2

exp
(
(x − 7)2 + (y − 7)2

) + exp
( − (x − 7)2 − (y − 7)2

) , vin(x) = 0. (5.30)

With these initial and boundary conditions, the DRSG equation is energy conserving.
The domain � is discretized with 400 equal-sized quadrilateral elements with a fixed element order 10. We employ 

a mapping function F (R) = e0
2 ln(

κ0+R
κ0−R ) (e0 = 10, κ0 = 100) and the energy constant C0 = 1 in the algorithm. Fig. 5.3

illustrates the evolution of u by a sequence of snapshots of its contour levels. One can observe a circular wave pattern 
starting from the center of the domain and propagating outward toward the boundaries. As the wave reaches the boundaries, 
the interaction with the Dirichlet boundary (u = 0) gives rise to an extremely complicated wave pattern; see Fig. 5.3(d).
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Fig. 5.2. Spatial/temporal convergence for the DRSG equation obtained with various mapping functions F (R): L2 errors of u versus (a) element order (fixed 
�t = 0.001 and t f = 0.1), and (b) �t (fixed element order 18 and t f = 1).

Fig. 5.3. DRSG equation: Temporal sequence of snapshots for u distribution. Simulation results are obtained with �t = 10−4, and the mapping F (R) =
e0
2 ln

(
κ0+R
κ0−R

)
(with e0 = 10, κ0 = 100).

Fig. 5.4(a) shows the time histories of the energy errors, |E(t) − E(0)|, obtained using several time step sizes (�t = 10−4, 
10−3 and 10−2). One can observe oscillations in the history curves about their respective mean values that are consistent 
with a second order accuracy in time. It should again be noted that the current algorithm conserves the modified energy 
F (R) discretely, not the original energy E(t). Fig. 5.4(b) shows time histories of the ratio ξ = F (R)

E corresponding to these 
�t values. The computed ξ values are essentially 1, indicative of the accuracy of these simulations.

We then increase the time step size to �t = 0.1, 1 and 10, and depict in Fig. 5.5(a) the time histories of E(t) and F (R)

for a long time simulation to t = 1000. Large discrepancies between the energy E(t) and F (R) can be observed, especially 
for �t = 1 and 10, suggesting that F (R) no longer approximates well the energy E(t) with these time step sizes. Note that 
the F (R) histories obtained by different large �t values overlap with one another. This is consistent with Theorem 5.1 that 
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Fig. 5.4. DRSG equation: Time histories of (a) |E(t) − E(0)| and (b) ξ = F (R)/E obtained with several time step sizes, �t = 10−4, 10−3, 10−2. Numerical 
results correspond to F (R) = e0

2 ln(
κ0+x
κ0−x ) (e0 = 10, κ0 = 100).

Fig. 5.5. Time histories of (a) E(t) and F (R) and (b) ξ = F (R)/E versus large �t = 0.1, 1, 10 for DRSG equation. The numerical results are obtained with 
F (R) = e0

2 ln(
κ0+x
κ0−x ) (e0 = 10, κ0 = 100).

the current scheme conserves the modified energy F (R). It can be observed from Fig. 5.5(b) that the computed ξ = F (R)
E

becomes significantly smaller than 1, indicative of large errors in the simulations with these large time step sizes. However, 
the computations are evidently stable, even with these large �t values.

6. Concluding remarks

In this paper we have presented a framework (gPAV) for developing unconditionally energy-stable schemes for general 
dissipative systems. The scheme is based on a generalized auxiliary variable (which is a scalar number) associated with 
the energy functional of the system. We find that the square root function, which is critical to previous auxiliary-variable 
approaches, is not essential to devising energy-stable schemes. In the current method, the auxiliary variable can be defined 
by a rather general class of functions, not limited to the square-root function. The gPAV method is applicable to general 
dissipative systems, and a unified procedure for discretely treating the dissipative governing equations and the generalized 
auxiliary variable has been presented. The discrete energy stability of the proposed scheme has been proven for general 
dissipative systems. The presented method has two attractive properties:

• The scheme requires only the solution of linear algebraic equations within a time step, and no nonlinear solver is 
needed. Furthermore, with appropriate choice of the F L operator in the algorithm, the resultant linear algebraic systems 
upon discretization involve only constant and time-independent coefficient matrices, which only need to be computed 
once and can be pre-computed. In terms of the computational cost, the scheme is computationally very competitive 
and attractive.
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• The generalized auxiliary variable can be computed directly by a well-defined explicit formula. The computed values for 
the auxiliary variable are guaranteed to be positive, irrespective of the time step size or the external forces or source 
terms.

Three specific dissipative systems (a chemo-repulsion model, Cahn-Hilliard equation with constant and variable mobility, 
and the nonlinear Klein-Gordon equation) have been studied in relative detail to demonstrate the gPAV framework devel-
oped herein. Ample numerical experiments have been presented for each system to demonstrate the performance of the 
method, the effects of algorithmic parameters, and the stability of the scheme with large time step sizes.

Time step size adaptivity can be a useful property for numerical schemes. When the approximations (2.33a)–(2.34) with 
θ = 1

2 and β = 0 are employed in the current scheme, just like those presented in Section 5 for the Klein-Gordon equation, 
the current method becomes a single-step scheme. Only the field data in the previous time step (un) is needed when 
marching in time. In this case, it is quite straightforward to adaptively change the time step size. In the more general 
case (θ �= 1

2 ), the approximations presented in the current work become a two-step method, requiring the field data in the 
two previous time steps (un and un−1) for time-marching. In this case, it will be much more involved to adapt the time 
step size and simultaneously ensure the other attractive properties (such as positivity, unconditional energy stability, and 
second-order accuracy). This is an interesting problem that will be explored in a future work.

Numerical results in the current work suggest that the simulation results are not sensitive to the choice of the mapping 
function F (R) using the gPAV method. The difference between the simulation results corresponding to different F (R)

seems very small and basically negligible. In terms of which mapping function to use in actual applications, we would like 
to recommend the function F (R) = R , since it is perhaps the simplest one available. A sizable portion of the numerical 
experiments in the current work has been performed using this mapping function.

All physically meaningful systems in the real world are energy dissipative (or conserving) due to the second law of ther-
modynamics, and these systems are typically nonlinear. The design of energy-stable and computationally-efficient schemes 
for such systems is critical to their numerical simulations, and this is in general a very challenging task. The gPAV frame-
work presented here lays out a roadmap for devising discretely energy-stable schemes for general dissipative systems. The 
computational efficiency (e.g. involving linear equations with pre-computable coefficient matrices) and the guaranteed posi-
tivity of the computed auxiliary variable of the method are particularly attractive, in the sense that the gPAV method is not 
only unconditionally energy-stable but also can be computationally efficient and competitive. We anticipate that the gPAV 
method will be useful and instrumental in numerical simulations of a number of computational science and engineering 
disciplines.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

This work was partially supported by NSF (DMS-1522537).

Appendix A. Approximation for the first time step

We present a method on how to deal with the first time step such that the approximation for the auxiliary variable R(t)
at time step 1

2 shall be positive. We consider below only the formulation based on F (R)
E . It is noted that for the alternative 

formulation based on R
G (E)

(see Section 2.4) one can modify the following scheme in a straightforward fashion to achieve 
the same property. The notations here follow those employed in the main text.

Consider the system consisting of equations (2.17), (2.19), the boundary condition (2.2), and the initial conditions (2.3)
and (2.20). Define⎧⎪⎪⎨

⎪⎪⎩
u0 = uin(x),

R0 = G (E0), with E0 =
∫
�

e(uin)d� + C0.
(A.1)

One notes that E0 > 0 and R0 > 0.
We compute the first time step in two substeps. In substep one we compute an approximation of (u1, R1), denoted by 

(u1
a , R1

a ), and in substep two we compute the final (u1, R1). More specifically, the scheme is as follows:
Substep One:

u1
a − u0

= F L(u1
a) + ξa

[
F (u0) − F L(u0)

]
+ f 1, (A.2a)
�t
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ξa = F (R1
a)

E[ũ1
a ] , (A.2b)

E[ũ1
a ] =

∫
�

e(ũ1
a)d� + C0, (A.2c)

B(u1
a) = f 1

b, on �, (A.2d)

F (R1
a) − F (R0)

R1
a − R0

R1
a − R0

�t
=

∫
�

e′(u1
a) · u1

a − u0

�t
d�

−
∫
�

e′(u1
a) ·

(
F L(u1

a) + ξa

[
F (u0) − F L(u0)

]
+ f 1

)
d�

+ ξa

⎡
⎣−

∫
�

V (ũ1
a)d� +

∫
�

V s( f 1, ũ1
a)d� +

∫
�

Bs( f 1
b, ũ1

a)d�

⎤
⎦

+ (1 − ξa)

∣∣∣∣∣∣
∫
�

V s( f 1, ũ1
a)d� +

∫
�

Bs( f 1
b, ũ1

a)d�

∣∣∣∣∣∣ .

(A.2e)

Substep Two:

u1 − u0

�t
= F L(u1) + ξ

[
F (u0) − F L(u0)

]
+ f 1, (A.3a)

ξ = F (R3/2)

E[ũ3/2] , (A.3b)

E[ũ3/2] =
∫
�

e(ũ3/2
)d� + C0, (A.3c)

B(u1) = f 1
b, on �, (A.3d)

F (R3/2) − F (R1/2)

R3/2 − R1/2

R3/2 − R1/2

�t
=

∫
�

e′(u1) · u1 − u0

�t
d�

−
∫
�

e′(u1) ·
(

F L(u1) + ξ
[

F (u0) − F L(u0)
]
+ f 1

)
d�

+ ξ

⎡
⎣−

∫
�

V (ũ1
)d� +

∫
�

V s( f 1, ũ1
)d� +

∫
�

Bs( f 1
b, ũ1

)d�

⎤
⎦

+ (1 − ξ)

∣∣∣∣∣∣
∫
�

V s( f 1, ũ1
)d� +

∫
�

Bs( f 1
b, ũ1

)d�

∣∣∣∣∣∣ .

(A.3e)

Note that in the above equations the superscript of a variable such as (·)1/2 and (·)3/2 denotes the time step index. In 
(A.2b) and (A.2e) ũ1

a is an approximation of u1
a and will be specified later in (A.12). In (A.3e) ũ1 is an approximation of u1

and will be specified later also in (A.12). In (A.3b), (A.3c) and (A.3e), ũ3/2, R1/2 and R3/2 are defined by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ũ3/2 = 3

2
u1

a − 1

2
u0,

R3/2 = 3

2
R1 − 1

2
R0,

R1/2 = 1

2

(
R1

a + R0
)

.

(A.4)

It can be noted that the above scheme represents a first-order approximation of (u1, R1) for the first time step.
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Combine equations (A.2a) and (A.2e) and we have

F (R1
a) − F (R0) = −ξa�t

∫
�

V (ũ1
a)d� − ξa�t(|Sa| − Sa) + |Sa|�t (A.5)

where Sa = ∫
�

V s( f 1, ũ1
a)d� + ∫

�
Bs( f 1

b, ũ1
a)d�. In light of (A.2b), this leads to⎧⎪⎨

⎪⎩
ξa = F (R0) + |Sa|�t

E[ũ1
a ] + �t

∫
�

V (ũ1
a)d� + (|Sa| − Sa)�t

,

R1
a = G (ξa E[ũ1

a]).
(A.6)

Since R0 > 0, we conclude that ξa > 0 and R1
a > 0 based on these equations. It follows that R1/2 = 1

2 (R1
a + R0) > 0 in light 

of equation (A.4).
Similarly, combining equations (A.3a) and (A.3e) gives rise to

F (R3/2) − F (R1/2) = −ξ�t

∫
�

V (ũ1
)d� − ξ�t(|S0| − S0) + |S0|�t (A.7)

where S0 = ∫
�

V s( f 1, ũ1
)d� + ∫

�
Bs( f 1

b, ũ1
)d�. In light of (A.3b) and (A.4), we have⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ξ = F (R1/2) + |S0|�t

E[ũ3/2] + �t
∫
�

V (ũ1
)d� + (|S0| − S0)�t

,

R3/2 = G (ξ E[ũ3/2]),
R1 = 2

3
R3/2 + 1

3
R0.

(A.8)

We therefore conclude that ξ > 0, R3/2 > 0 and R1 > 0.
We still need to determine u1

a and u1, and specify ũ1
a and ũ1. Note that F L(u) and B(u) are linear operators. Equations 

(A.2a) and (A.2d), and also equations (A.3a) and (A.3d), can be solved as follows. Define two variables u1
1 and u1

2 as solutions 
to the following systems, respectively:

For u1
1:

1

�t
u1

1 − F L(u1
1) = u0

�t
+ f 1, (A.9a)

B(u1
1) = f 1

b, on �. (A.9b)

For u1
2:

1

�t
u1

2 − F L(u1
2) = F (u0) − F L(u0), (A.10a)

B(u1
2) = 0, on �. (A.10b)

Then it is straightforward to verify that, for given ξa and ξ , the following functions respectively solve the equations (A.2a)
and (A.2d), and equations (A.3a) and (A.3d),

u1
a = u1

1 + ξau1
2, (A.11a)

u1 = u1
1 + ξu1

2. (A.11b)

We then specify ũ1
a and ũ1 as follows,

ũ1
a = ũ1 = u1

1 + u1
2. (A.12)

The solution for (u1, R1) at the first time step consists of the following procedure:

• Solve equations (A.9a)–(A.9b) for u1
1;

Solve equations (A.10a)–(A.10b) for u1.
2
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• Compute ũ1
a and ũ1 by equation (A.12);

Compute ξa and R1
a by equation (A.6);

Compute u1
a by equation (A.11a).

• Compute ũ3/2 and R1/2 based on equation (A.4);
Compute ξ and R1 based on equation (A.8);
Compute u1 by equation (A.11b).

We can make the following conclusion based on the above discussions.

Theorem A.1. The scheme represented by (A.2a)–(A.3e) for computing the first time step has the property that

R1 > 0, R1/2 > 0, and R3/2 > 0, (A.13)

where R1/2 and R3/2 are given by (A.4), regardless of the time step size �t and the external forces f and f b.
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