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ON THE TEMPERED SPECTRUM OF
QUASI-SPLIT CLASSICAL GROUPS

DAVID GOLDBERG AND FREYDOON SHAHIDI

§1. Introduction. One of the most striking aspects of the Langlands program
is the conjectural relation between harmonic analysis and number theory. The
proof of a conjecture of Langlands given in [20] shows that determining the
poles of certain (conjectural) Langlands L-functions is equivalent to determining
the nondiscrete tempered spectrum of reductive p-adic groups. The theory of
endoscopy [16] and twisted endoscopy [13], [14] has proved particularly useful
in giving a context within which to explore these problems, at least for classical
groups (see the introduction and Section 3 of [21]).

Previously the authors separately determined the nondiscrete tempered spec-
trum of classical groups supported in their Siegel parabolic subgroups (see [8]
and [21]) or, equivalently, computed the symmetric square and the exterior
square L-functions for GL,(F) [21], as well as the Asai L-functions for GL,(E),
where E is a quadratic extension of F [8]. In fact, these L-functions were deter-
mined for an arbitrary irreducible admissible representation of GL,(F) or
GL,(E), accordingly. Finally, in [22], the second author addressed the problem
for arbitrary maximal parabolic subgroups of split even special orthogonal
groups. In terms of L-functions, the work in [22] determines the Rankin-Selberg
product L-functions attached to irreducible admissible representations of
GL,(F) x SOyu(F).

The purpose of the present paper is twofold. First we generalize the work in
[22] to symplectic and quasi-split special orthogonal groups and thus, using [9],
eventually determine the nondiscrete tempered spectrum of these groups. The
second purpose is to remove a gap that existed in the proof of Theorems 7.8 and
8.1 of [22]. The final results of the present paper, Theorem 4.8 and Corollary 4.9,
while having the similar main (regular) term Rg, have a different and more
complicated singular contribution than the singular terms given in Theorems 7.8
and 8.1 of [22]. However, in Proposition 5.2 of the present paper, we manage to
relate the singular terms from the two different versions to each other (see
Remark 4.11). The reader of [22] must therefore consider Theorem 4.8 and Cor-
ollary 4.9 of the present paper as correct versions of Theorems 7.8 and 8.1 of
[22], and it is most efficient if Sections 4 and 5 of the present paper are sub-
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256 GOLDBERG AND SHAHIDI

stituted for Sections 6-9 of [22]. Sections 1-5 of [22], which were the main
motivation for this whole project, are precise and correct. We are indebted to
Robert Kottwitz for noticing this gap in an earlier version of the present paper,
and consequently in [22].

To explain our results, let G be a symplectic group or a quasi-split special
orthogonal group of rank m defined over a p-adic field F of characteristic zero.
Let 7 and 7’ be discrete series representations of G(F) and GL,(F), respectively.
We denote by G either the symplectic or the quasi-split orthogonal group of
rank m+ n (with the same Witt rank and discriminant as G in the orthogonal
case). Let I(t' ® t) be the representation of G(F) unitarily induced from the F-
points of the parabolic subgroup whose Levi component is isomorphic to
GL, x G. The reducibility of I(z’ ® t) is governed by the residue of the standard
intertwining operator A(s, 7’ ® 7, wp) (cf. Section 2), at s = 0.

Suppose n is even and W, is the standard antidiagonal matrix with respect to
which one defines the symplectic or split even orthogonal group of rank n/2. We
let ¢: GL, — GL, be the automorphism given by &(g) = W,y 'W,"!. In the
symplectic case, ¢ = 6, and in the orthogonal case, ¢ = 0, where these auto-
morphisms ‘are defined in [22]. When one attempts to compute the residue of
A(s,7’ ® t,wp), one is led to consider a correspondence between certain e-
conjugacy classes of GL,(F) and conjugacy classes of G(F) (see Section 3 and
equation (4.3)). We call this the ¢-norm correspondence. By Lemma 3.11 and
Corollary 3.13, the norm correspondence is surjective whenever n = 2m. If
n < 2m, then the image of the correspondence contains no regular elliptic
conjugacy classes. We show that the norm correspondence that we define agrees,
up to a sign, with the norm map defined by Kottwitz and Shelstad on the set of
strongly e-regular conjugacy classes (cf. Lemma 3.18). That is, if n = 2m, and Y
is a strongly e-regular element of GL,(F), then, at least for almost all Y, the
norm exhausts all those G(F) conjugacy classes which are GL,(F) conjugate
to —Ye(Y). Since the norm correspondence has finite fibers (cf. Lemma 3.11,
Corollary 3.13, and Lemma 4.7), we let &/ denote its one to finite inverse,
extended by the nonsquare central elements (cf. Section 4). It agrees with the
image map &/g/gL, of [14] from semisimple conjugacy classes in G(F) to e-
semisimple e-conjugacy classes in GL,(F).

We restrict ourselves to the case where both t and 1’ are supercuspidal. There
are two terms that appear in the residue of A(s,7’ ® 7, wp). The first we call the
regular or main term, and is that associated to the regular elliptic conjugacy
classes in G(F). If n < 2m, then this term does not occur. Suppose that f; is a
matrix coefficient of = and that f' € C°(GL,(F)) defines a matrix coefficient of
©’ by descent. Then the regular term is given by

Re(fo f') =Y u(B)W(T)|™ jT @.(L({y}), £)O({7}, £:)ID(y)| dy,
{T:} i

where the sum is over the conjugacy classes of elliptic tori in G(¢), with 2¢ =
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min(n,2m), ®, and ® denote e-twisted and ordinary orbital integrals, respec-
tively, u(T;) is the measure of T; = T;(F), and D(y) is the usual discriminant of
Harish-Chandra [10]. In fact, we should be more precise and say that

O(L{1}), f) = Y. @{LAGLEYYD,
{rte({})

where A({y},{¥'}), is a transfer factor given in Section 4.
The singular term is more complicated and given as a limit

Raae(f 1) = WD tim Res [ w5100y
in which the sum is over conjugacy classes of all Cartan subgroups of G(¢), and
for each i, w; is a compact subset of the regular elements T;' of T; = T;(F). The
function y,, in which &/ is the image correspondence, is defined in Section 4.
The fact that all Cartan subgroups must be included is critically important when
n < 2m. The main result of this paper (Theorem 4.8 and Corollary 4.9) can be
formulated as follows.

THEOREM. The intertwining operator A(s,t’ ® t,wp) has a pole at s = 0 if and
only if cRG + Rsmg # 0 for some data, where ¢ = (2nlog q) . Consequently, sup-
pose that ©/ ~ 7',
(a) The induced representation I(t' ® t) is irreducible if and only if
cR¢ + Rsing # 0.

(b) Assume 1 is generic, that is, has a Whittaker model. If I(t' ® t) is irredu-
cible, then I(s,7’ ® t), s € R is reducible exactly at s=+1/2 or s=+1,
and at only one of these pairs.

The term Rg can be easily expressed as a pairing between the character of t
and the e-twisted character of 7’ (Section 5). Its nonvanishing will then be the
reason to call ©’/ the “e-twisted endoscopic transfer” of ¢ (Definition 5.1). When
n > 2m, the nonvanishing of Rg must be equivalent to the existence of a pole at
s = 0 for the Rankin-Selberg product L-function L(s,t’ x t) defined in [20].

On the other hand, if t’ comes from SO, (F) by twisted endoscopy as defined
in [21], and Rg = 0, which we expect to be the case for any ' as such, then
Rging # 0 (Proposition 5.2). Thus, Rgpg =0 must imply that 7/ comes from
SO} (F) (cf. [21]). Consequently, the two terms Rg and Rgjng pretty much separate
the poles of the two L-functions L(s,’ x ) and L(s, 7', A%p,), respectively.

When n < 2m, Rg =0, and therefore Rgng controls the poles of both L-
functions, and distinguishing them requires further analysis. But in all cases we
have the following weaker result (Proposition 5.3) in which we may and do
assume t’ ~ 7";

PROPOSITION (a) Suppose t' comes from SO,.1(F) (nonvanishing condition
(5.2) of [21]), or, equivalently, L(s,', A2p,) has a pole at s=0. Then
L(s,t’' x 1) is holomorphic at s = 0.
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(b) Otherwise, that is, if ©' does not come from SO,1(F), then L(s,t7’ X t) has a
pole at s = 0 if and only if cRg + Rsing # 0 for some data.

Finally, we would like to thank Laurent Clozel and Robert Kottwitz for their
suggestions, comments, and interest.

§2. Preliminaries. Let F be a p-adic field of characteristic zero. For an
integer | > 0, let

wp = EMI(F)7

and
€ M|(F).

Let J,, be a quasi-split symmetric or symplectic form of dimension 2r, defined
over F. If Jy, is symmetric and V ~ F¥ is the maximal anisotropic subspace of
F? under J,,, then we assume that

wi
Jy = A k )
wi

with 2r = 2]+ k, and Ay an anisotropic form of dimension k. In the symplectic
case we take Jy = uy. For X € M,(F), we let 8(X) = wy'Xw; 1. If Y € GL,(F),

then we set O(Y) = 4(Y™1). Similarly, we let 6*(X) = u,'Xu;!, and 6*(Y) =
6*(Y~1). We set

#X) = (?*(X), if Jp, is symplectic,
6(X), otherwise,

and write &(Y) for &(Y1).
Let G be the special orthogonal, or symplectic group defined with respect to
Jor. Thus, G = {g € GL2|'gJ2g = J2}°, with the superscript indicating the con-
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nected component. In the symmetric case, we assume that k > 0, since k = 0 is
dealt with in [22]. (Note that this implies that k = 2, and G is then determined
by the discriminant of the associated symmetric form (see [18]).) If G is orthog-
onal, then we let E be the quadratic extension of F over which G splits. _

If J,, is symplectic, let T be the maximal split torus of diagonal elements in G.
If J, is symmetric, then we take

X2

T = { X |x; € Gm, X € SO(A3)

~

. xgl
n\ xI_I/ J

Let T4 be the maximal split subtorus. Thus, in the symmetric case, T is the col-
lection of elements of T with X = I,. Let B = TU be the Borel subgroup, with U
the collection of upper triangular unipotent matrices in G. Let A be the set of
simple roots of T in U, and suppose that ® = A\{e, — e,+1}. Let

A=Ap= <n®kerXa) )

where g, is the root character attached to «. Then

xI,
A= IZm |xeGm .
x~1I,

We assume that n is even. If M = Zg(A), then M ~ GL, x G(m), where

G(m) — SPZM’ if G = Sp2r,
80y, if G=S0y,.

M={<g h )lgeGL,,,heG(m)}.
&(g)

In fact,
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Let N = [],c 03+ (@) Na» Where

+(8) = {ﬂ e f=S cme > 0}.
(0]

We set P = MN. Let P = P(F), M = M(F), and N = N(F). We are interested in
determining when Ind$(n) is reducible, if 7 is a discrete series representation
of M. In order to do this, we study the poles of the standard intertwining opera-
tors that arise, using the theory developed by Harish-Chandra [24]. We begin by
looking at the structure of N to determine the types of integrals that need to be
evaluated. The proof of the following lemma follows from a straightforward
matrix computation.

I, X Y
LeMMA 2.1. Suppose that ne N, and n = ( 0 DLy X ) . Then we have
0o 0 I,

X' = u2mtX'4n1 if é = Spa;
—Jom' X W, if G= 80y,

and
2.1 Y+&Y)=XX". 0O

Remark. If ne N is as above, then we may denote n by n(X, Y).
Let G’ = GL,. Ford € G, the set

{g7'%e(g)lg € G')}
is called the e-conjugacy class of 6 in GL,(F). Furthermore, the group
G;; = {9 € G'lg~'de(g) = 6}

is called the e-twisted centralizer of § in G’. We let €’ be the set of e-conjugacy
classes in G, and denote the conjugacy classes in G(m) by €.
Let

1

go= 1 ' € GL,(F).
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Note that u, = ggw,. If n = 2m, we rewrite (2.1) as

(2.2) —Ygo + 6(Ygg) = Xgof(X)
if G = Spy,, and
(2.3) Y +0(Y) = X(—J,w,)0(X)

if G = 50y,
Let ./ be the collection of e-conjugacy classes in GL,(F) for which (2.1) has
F-rational solutions. Then (2.2) shows that, if G = Sp,,, then

N ={{Y}| = Ygo+ 6(Ygs) ~ g},

where the equivalence is that of f-skew symmetric forms. Since —Ygg + 5( Ygo)
is singular only on a set of measure zero in GLy, and there is a unique equiv-
alence class of nondegenerate f-skew symmetric forms, we see that 4" is almost
all of ¢'. Similarly, (2.3) shows that if G = SOy, then, up to a set of measure
zero, 4 is the set of f-conjugacy classes for which Y + 6(Y) is equivalent to
—J,w, as G-symmetric forms.

Note that if {Y} € 4/, and (X, Y) is a solution to (2.1), then

Y45y ) = Y IXX'5Y) = (Y X)(Y X))

Therefore, A4 is closed under {Y} — {Y~1}. 5
Let wo be the nontrivial class in the Weyl group W(G, A). Then Wy is repre-

sented by
I,
Wy = I 2m .
I,

The actions of wy on M and A are (g, k) — (&(g),h), and x — x~1, respectively.

As in the work of Harish-Chandra, we have the following notation. For a
connected reductive p-adic group G, we let &.(G) be the collection of equiv-
alence classes of irreducible admissible representations of G. We denote by &(G)
those classes in &.(G) which are unitarizable. We let £>(G) be the discrete series
classes. We use °6.(G) to denote the supercuspidal classes, and set °6(G) =
6(G) n°6.(G).

Let (¢, V') €°6(G’) and (z,V) € °6(G(m)). Then 7' ®t is a unitary super-
cuspidal representation of M. Let

I(s,7 ® ©) = IndS, (7' ® |det( )') ®  ® 1y).



262 GOLDBERG AND SHAHIDI

We denote the space of I(s,7’ ® 7} by V(s,7’ ® 7). To understand the reduc-
ibility of I(7' ® 7) = I(0,7' ® 7), one must determine the poles of the standard
intertwining operator

A(s, 7 ® 7, w0)f(g) = [N £ (wyng) dn

associated to t/ ® 7 (cf. [24]). Here f € V(s,7’ ® 7). By Bruhat’s theorem (see
[11]) we may assume that wy(t’ ® 7) ~ v’ ® 7. This is equivalent to assuming
v ~ 7 [4,§7].

Suppose that IM is the L-group of M and In is the Lie algebra of LN (see [5]).
If r is the adjoint representation of “M on Ln, then r = r; @ ry, where r, = A2p,,
with p, the standard representation of GL,(C), and r; is the tensor product of p,
with the standard representation of the L-group of G(m). Moreover, the labeling
of these representations as r; and r, is consistent with the ordering given in [19].
Consequently, the results of [20] imply that if t is generic, then the poles of
A(s, 7" ® t,wp) are the same as the poles of

L(s,7" x 1)L (2s,7', A%p,),

where L(s,t’ x 1) = L(s,7’ ® 17,r1). Furthermore, at most one of the two L-
functions in the product can have a pole at s = 0 (cf. [20, Thm. 7.6]). The poles
of L(s,t’, A%p,) were determined by Shahidi in [21]. Thus, our work here deter-
mines which representations t’ give rise to a pole of L(s, 7’ x 1) at s = 0 for some
7. As explained in [20], this completely determines L(s,t’ x 1) if 7 and ' are
supercuspidal. The method of [20], as used in [21] and [8], can then be used to
determine L(s,7’ x 7) for any pair of irreducible admissible representations t
and 7'.
Denote by N the unipotent radical opposed to N. We let

V(s,” ® 1)y = {he V(s,7” ®1)|supp h = N modulo P}.
By a lemma of Rallis [21], it is enough to compute the poles that arise when

A(s,7’ @ 1,wp) is applied to functions in V(s,7’ ® 7), and evaluated at the
identity. Thus, we note the following result.

LEMMA 2.2. Let N be the unipotent radical opposed to N. If n =n(X,Y) € N,
then wy'n € PN if and only if Y € GL,(F), in which case

e(Y) -Y X I, I 0 0
woln=| 0 DLn.—-XY'X X ||(X'X)Y L, 0]. O
0 0 Y Yy!' vlx I,

We note, for future reference, that (Y1X)' = X'e(Y).
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The proof of the following result is computational and is based on equation
(2.1).

LemMA 2.3. Suppose that (X,Y) is an F-rational solution to (2.1). Then
Im—X'Y'XeG(m). O

Let heV(s,7”’ ®1), Fix open compact subsets L < M,(F) and L' c
Msom(F). We assume that, for some v’ € V', v € V, we have

I 0 o0
h((X’e(Y) I 0)) =E (Y HEL(YIX) (V' @),
Yy! Ylx 1

where ¢; and &;, are the characteristic functions of L and L', respectively.
Choose ' € V' and € V. Let ¥, and f, be the matrix coefficients of 7’ and ©
given by the pairs (v/,%') and (v,?), respectively. Then, from Lemma 2.2,
(v ® 7, A(s, T’ ® t,wo)h(e)) is equal to

(2.4) j Yo (e(Y)fe(I — X'Y71X)|det Yl_s_“""a)é(X, Y)d(X,Y),
(¥,X)

y

where the integral is over the collection of F-rational solutions (Y, X) of (2.1).
Here, pp = (1/2) X yconz+(e) % & is as in [20], &(X,Y) = &L (Y 1)En(Y'X),
and d(X,Y) is a choice of Haar measure on N.

§3. The norm correspondence and its consequences. In this section, we study
the properties of the map (X, Y) + I, — X’Y~!X. In particular, we discuss the
relation with the norm map defined by Kottwitz and Shelstad in [14]. The
results here have the same flavor as Sections 4 and 5 of [22]. We let

el (m) _ G(m)’ ?f ? = Spor;

0,,.(F), if G=S0;,.
Lemma 3.1. Suppose (X,Y) is a rational solution to (2.1). Further suppose
that Xg(Xg)' = X X', for some g € GLoy(F). Then Xg = Xh for some h € G¥ (m).

Proof. Consider F* and F?" as row vectors, and let U = F*X < F?". Let
(, ) be the symmetric (or symplectic) form given on F2™ by J,,. Set

, _ [ =, if G=Spa;
S . A if G =50y,
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and

W, = u, if ? = Spar;
wp, if G = S0;,.

Note that in each case, X' =J} ‘XW,. Since (Xg)(Xg)' = XX’', we have
X915, g XW, = XJ;,'XW,, which we rewrite as XgJj ‘gX = XJ; ‘X. Let
g*: U < F?" be given by g*(v) = vg. Now, suppose that v;,v, € U, and v; =
yiX, with y; € F*. Then

(9" (v1), g (v2)) = (v1g, v2g) = v19J3, 'g'v2 = 11 X 9], 9’ X y>
= y1XJ3, Xy, = (v1,02).

Therefore, g* is an isometry onto a subspace of F?". Consequently, by Witt’s
theorem for symmetric and symplectic forms [17], we can choose h € G (m),
with vg = vh for all v e U. Now, for each y € F*, we have yXg = yXh, and so
Xg=Xh. O

Let {Y~!} be the e-conjugacy class of Y~! in GL,(F). Suppose that (X,Y)
satisfies (2.1), and g € GL,(F). Let W, and Jj,, be as in the proof of Lemma 3.1.
Then (9X)(9X)' = gXJ},' X'gW, = gXX'e(g"). Note that

gYe(g™') +E(gYe(g7h)) = gYe(g) ™' + W, (g Y W, g W) W
=gYe(g)™' +g&(Y)e(g9) ™" = (gX)(gX)".

Thus, the orbits {X} € GL,(F)\M,x2m(F) parameterize the e-conjugacy classes
for which (2.1) has an F-rational solution.

Now suppose that {X} € GL,(F)\Mx2m(F) parameterizes {Y~'} € 4" If we
replace X with gX, then I — X'Y~1X is unchanged if we replace Y~! with
&(9)"' Y~1g, which is also in {Y~1}.

If X is changed to X = gX, with g € GL,(F), we then say that {X;} param-
eterizes { ¥;'}, rather than {X;} parameterizes {Y '}, to point out that (Xi, ¥;)
satisfies (2.1), although the classes are the same.

Now suppose {X1}, X1 = Xh, h € GLy,(F), also parameterizes {Y~'}. Then
by Lemma 3.1, h € G¥ (m) and

I-X\Y'X; =1—(Xh)Y ' Xh=1- (J},'"XW,)Y ' Xh
=I1-h'0, XW,Y ' Xh=h"1(I - X'Y ' X)h.

Thus, the conjugacy class of I — X'Y~1X in G¥ (m) is unchanged.
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Lemma 3.2. Suppose {X1}, X1 =9gXh, ge GL,(F), he GL,(F), parame-
terizes {Y; !}, ¥ = gYe(g)™!. Then X € GL,(F)XG' (m). [

We denote the set of all conjugacy classes {I — X'Y 1 X} for all possible X by
N:({Y~!}). By Lemma 3.2 it defines a one-to-finite correspondence.

LemMa 3.3.  Suppose that n = n(X,Y) € N, with Y invertible. Then
(@ I-X'Y X)X =-X'Yl¢(Y!), and
(b) X(I — X'Y~1X) = —e(Y-1)Y~1X.

Proof. By Lemma 2.2,

0 0 I eY) -Ylx I I 0 0
0 I X' |=( 0 I-XY!x X'||XeY I 0.
I X Y 0 0 Y Y1 vyilx 1

Comparing the (2,1)-entries, we see that

0=(I-X'Y'X)X'e(Y)+X'Y ],
or

I-X'Y'X)X'e(Y) = -X'Y7},
which gives us (a). We can rewrite this as
I-X'Y' X)), XW, = —J,, XW,Y ' W, YW, !,
and thus,
LI - X'Y 1 X)Jom'X = - Xe('Y)'Y.
Since I — X'Y~1X € G(m), we have

- X'Y ' X)X = —Xe('Y)Y,
or
X(I-X'Y'X)!' = —ve(Y)X,
which proves (b). []
LemMA 3.4  Suppose that X € Mpyom(F) and U = F"X. Let
Hyx = {he G(m)| Xh = gnX for some g € GL,(F)}.

If {0} € U < F?" then Hx < G(m).
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Proof. Suppose that he Hy. Let u € U, and choose v € F* with u = vX. Then
uh = vXh =vg,X € U. Thus, U is an Hy-invariant subspace of F?". If Hy =
G(m), then we know that {0} and F?" are the only invariant subspaces. []

LEMMA 3.5. Suppose that n is even, and {X} € GLy(F)\Mnxom(F)/G" (m). If
(X, Y) is a rational solution to (2.1), with Y invertible, then

X(I-X'Y1X)=—(Y )Y X,

and I — X'Y"1X € Hy.

Proof. That X(I—X'Y'X)=—¢(Y!)Y!X follows from Lemma 3.3.
Since X(I—-X'Y"'X)=gX, for some geGL4(F), we see that I—
X'Y-'XeHy. O

LemMA 3.6. Fix X in Myxom(F), and let U = F"X. We consider F?" as a sym-
plectic or symmetric space with respect to the form Jay. If U is nondegenerate,
then HY, the right stabilizer of U in G(m), is the stabilizer of an involution of

GY (m). If U is degenerate, then H' is contained in a proper parabolic subgroup of
G(m).

Proof. If U is nondegenerate, then Lemma 424 of [17] implies that
F?" = U L W. Of course, W = U*. Since Uh = U and h € G(m), we know h sta-
bilizes W as well. Therefore, h centralizes —1y L 1y. Conversely, suppose
h e Stab_y, 11, N G(m). For each u € U, we let uh = u; + wy, be the decomposi-
tion of u with respect to U and W. Then u(—1y L 1w)h = —uh = —uy — wy,
while uh(—1y L 1) = —uy + wy. Thus, wy = 0, and so Uh = U; that is, h € Hy.

If U is degenerate, then we let U= W L RadU. If ue Rad U, then, for all
u; € U, we have (uh,u;) = (u,u1h) =0, so h stabilizes RadU. Since RadU
is totally isotropic, Hy = Px = MxNyx, where Px is the parabolic subgroup
stabilizing precisely RadU. [J

PROPOSITION 3.7. Suppose that n < 2m, and take X € Myxom(F). Fix an inver-
tible Y with (X,Y) an F-rational solution to (2.1). Then I — X'Y~1X belongs to
a proper parabolic subgroup, or a proper centralizer of a singular elliptic element
of GV (m). Moreover, {N,(Y)} is never regular elliptic.

Proof. Since n < 2m, we have U = F"X < F?", and the first result follows
from Lemmas 3.3(b) and 3.6. The last assertion is a consequence of I — X'Y~1X
having at least 2m — n eigenvalues equal to 1. []

LeMMA 3.8. Suppose that I + S € G(n/2). Then there is some Y € GL,(F), and
a projection X € M,(F) with

Y~1X, if G= Spor;

S=-XY'x=-X'Y1= N
JownY1X, if G = S0y,.
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Proof. First suppose that J,, is symmetric. For Se M,(F), we let §¥ =
J»'SJ;1. Then S — S is an anti-involution. Suppose I + S € SO;,. Then

I+ 8)J ' (I+8) = Jn,

SO
STy + Jn'S + SJ,'S = 0.
Therefore,
S+5¥ +8s =0,
or

S =—(1+8)7's.

Now, applying Lemma 5.6 of [22], with A=—(I+ S)", we can find
Y; € GL,(F), and a projection X € M,(F), with S=XVY ' X=Xy '1=
Y !X. Let Y= YiJ,w,!. Then S=-X'Y!1X=-X'Y"!, and S=Y X =
Jaw, Y 1X.

Now suppose that J, is symplectic. Then we repeat the above argument with
SV = u,'Su, = —6*(S), to get the result of the lemma. [J

DErFINITION 3.9. Suppose the pair (Y, X) satisfies the hypotheses of Lemma
3.8. Then {Y'} is called the canonical section of the norm correspondence over
{Z}, where Z =1 — X'Y1X (cf. [22]).

Remark. We have called this the canonical section since it is the natural
extension of the unique section defined at every generic point Z, that is, those Z
for which X = I, through I + Y~! = Z. Observe that this applies to almost all Z.

LemMa 3.10.  Suppose that G = SOy, and g € G(n). Then the dimension of the
g-fixed vectors in F?" is even.

Proof. We know that G = G(n) splits over a quadratic extension E/F. Thus,
G(E) ~ SO,(E). By Lemma 5.8 of [22], we know that the dimension of the
fixed-point set of g in E* is even. Suppose that V is the fixed-point set of g in
F? Let v e E?, with gv = v. We write v = 3 ¢;v;, with v; € F?* and c; € E. We
may assume that {v;} and {c;} are linearly independent over F. Extending {v;}
to an F-basis of F?", we write gv; = ) a;jvj, with a;; € F. Since gv = ) cigv; = v,
we see that > cv; = > cja;v;. Comparing coefficients, and using the linear
independence of {c¢;} over F, we see that (a;) is the identity matrix, that is,
v; € V, for each i. Thus, dimp(V) = dimg(V ®rE), and this last is the dimension
of the g fixed points in E?", and hence is even. []
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LemMaA 3.11. Suppose that n = 2m. Then N, : /" — € is surjective with finite
fibers.

Proof. First suppose that J, is symmetric. Suppose I — S € G(m), and choose
a projection X € M,(F) with S=X'Y"'X=X'Y"'=-J,w,Y"'X, as in
Lemma 3.8.

Now, we have

(I + Tawo Y 1X) T, (I = XY X)) = Ty,

which implies
JawnY "L X Ty = BEXTY VX = Jyw, YT X T, XY IX
Thus
YIX4+0(Y X = -Y ' XTI XY WX = YT XX'O(Y )X

Note that if v is in the image of X, then v= Xv, so Y~ Ly +6(Yy 1=
YIXX'0(Y V), or (Y +6(Y))o = XX'v.

So we need to show that we can choose (X, Y) satisfying (2.1) on ker X. Since
ker X < ker(Y1XX'6(Y~1)X) = ker(Y~!XX'6(Y~!)), we need to show that we
can choose (Y, X) so that Y + H(Y) 0 on ker X. We know that J,w, Y 1X =

~X'Y~!, and J,w,0(Y1)X = —X'6(Y ') X. Note that 6(X) is also a projection,
and H(X) ~wnJ; X', Thus, both Y~} and §(Y~1)|,, x are isomorphisms
onto kerf(X). ( (Note that —6(X) is the matrix denoted by X’ in [22].) For
veF", we let 6(v) ='(ww). Note that G(v)A(Y~!) =Y lw, = 6(Y 1v).
Choose bases # and %' for ker X and ker §(X), respectively. Then we see that
the matrix of Y~!|,. ., with respect to 4, %', is equal to the matrix of
6(Y 1) |,s x» With respect to the bases 0(.@), and 6(#'). Note that ker X is pre-
cisely the fixed-point space of I — X'Y~1X in F", and thus, by Lemma 3.10, we
can choose a unique (up to @-conjugacy) Y w1th Yoy @ O-skew _symmetric
matrix. For such a choice of (Y,X), we now have Y'+ 6(YHX =

Y-1XX'(Y™1), and thus (2.1) is satisfied.

Suppose now that J, is symplectic. If I — S € Sp,(F), then we can choose
a projection X € M,(F) and Y € GL,(F) so that S=X'Y ! X=X'Y!=
—Y !X, as in Lemma 3.8. Using an argument similar to the one above, we see
that

YIX +04(Y HX = Y XX'6* (Y )X

Then we again have (2.1) on the image of X. Note that, in this case, X' =
up' Xu, = —6*(X), and —X’' = 6*(X) is a projection. Moreover, —X'Y~! =
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Y~!X, and —X'6*(Y~!) = §*(Y~!)X. Thus, both Y~! and §*(Y~!) carry ker X
isomorphically onto ker(—X’). Thus, the argument reduces to showing that we
can choose Y so that

YIkerX + 0*(Y|kerX) =0.

Note that §*(Y) = —Y if and only if Yggw, = (Ygew,). However, on any vector
space, one can always find a symmetric invertible transformation. For example,
taking Yyerx = Wng6) lkerx = Uy lxer x» We get the desired element of GL,.

To prove that N, has finite fibers we use the following result.

Lemma 3.12. If (Y,X) is an F-rational solution to (2.1), then N,({Y~'})
determines the semisimple part of {e(Y~!)Y '} in GL,(F) uniquely.

Proof. Changing Y to an e-conjugate, we can assume that X is a projection.
Suppose that v is in the left image Im X of X. Then vX = v, so by Lemma 3.3,
ve(Y 1) Y1X = —o(I — X'Y~'X). Suppose v is in the left kernel ker X of X.
Then v(Y +&(Y)) = vXX' =0, so ve(Y"!)Y~! = —v. Therefore, the matrix of
e(Y~!)Y~! with respect to a basis of F* which respects F* = Im X @ ker X is
(acting on the right)

(—(I—X'I(;_lx)hmx .*1)'

Thus, the semisimple part of {e(Y~1)Y~!} is uniquely determined by N,({Y~'}),
completing the lemma. []

Now, the finiteness of the fibers is as in [22]. [

COROLLARY 3.13. Ifn > 2m, then the statement of Lemma 3.11 is true.

Proof Letj= (n/2) —m, and consider the injection

I;
h— h
I;

of G(m) into G(n/2). By Lemma 3.11, there are X € M,(F) and Y € GL,(F)

with
I
h =I,-X'YX.
I;
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LetX=(X1 X, X3),withX1,X3eM,,xj(F),andXzeM,,xzm(F).Then

Xy
x=|x|,
Y

where X! = —W;X;W,!, and W is as in the proof of Lemma 3.1. We now
have

Xg/y—l
I-X'Y'X=I-| xX37! | (X1 X, X3).
Xi/Y_l

Thus, by inspection, I, — X)) Y~1X, = h. The finiteness of the fiber follows from
that of the case n =2m. []

Finally, let N;! denote the canonical section of the norm correspondence
defined before. Then, by Lemma 3.11, N;! : ¢ — €'

LEMMA 3.14. The map N;' : € — €' is continuous.
Proof. The proof is similar to the proof of Lemma 5.16 of [22]. [

Note that 6* fixes the standard splitting of GL,, while & does not. However,
6* = Int(gy)0, where gy = diag{1,—1,1,—1...,—1}. Suppose that F = F. Let
T, be the torus of diagonal matrices in GL,. We define Ng by Ng-(Y) =
Y6*(Y), for Y e T,

If Y=diag{ai,...,as}, then 6*(Y)=diag{a;!,...,a;!,a;!}. Therefore,
Y6*(Y) = diag{aia; !, a2a;,. .., asa;'}. Consequently,

ker Ng‘ = {diag{al, A2y ..,8,/2,08p)2,---,02, al}}.

Let Yo = diag{ay,...,an,1,1,...,1}. Then
(I—6")(Yo) = Yo0"(Yo)™* = diag{ay, ..., a2, auy2, - - ., a2, a1} € ker Ny

Therefore, ker Ny = (I — 8*)T;. (Of course, this is the same as in [22], since
S0y, is split over F. For Spyy, it also follows from [22], since SO,, and Span
share the diagonal Cartan.)

Now suppose that F is not necessarily algebraically closed. Let Ty be a
Cartan subgroup of G(n/2), defined over F. Choose a 6*-stable pair (B’,T') of
GL,, with T’ defined over F, such that there is an isomorphism Ty = T is
defined over F [14].
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LemMa 3.15. Themap Y — YO0 (Y) from T’ to T’ has
(1) = {d6"()) =1}

as its image, can be identified with the projection of T’ onto Ty, and is defined
over F.

Proof. The proof follows from the above observations and the argument of
Lemma 5.17 of [22]. [

LEMMA 3.16. Assume n = 2m.

(a) Suppose that F is algebraically closed. Let {Y} € /" = €' be e-semisimple,
with Y in an e-stable Cartan subgroup of GL,. Then, there is an X € M,(F)
that satisfies (2.1) with Y so that I — X'Y "X is semisimple in G(n/2).
Moreover, e(Y})Y™! belongs to G(n/2), and I — X'Y~'X is GL,(F)-
conjugate to —&(Y~)Y~!. Furthermore, every GL,(F)-conjugate of
—&(Y~1)Y ! belongs to the image of {Y~'} under N.,.

(b) Suppose F is not necessarily algebraically closed. If there is an X in My(F)
such that I — X'Y X is semisimple in G(n/2), then all the remaining state-
ments of (a) are valid as well. If {Y~'} € /" corresponds to {X} = {I},
that is, for almost all Y, then the GLy(F)-conjugates of —e(Y~1)Y~!
exhaust the image of {Y~'} under the norm map N,.

(c) In either case, the semisimple part of every conjugacy class in N({Y}) is
GL,(F) conjugate to {—e(Y~1)Y!}.

Proof. Assume that F is algebraically closed. Suppose that J, is symmetric
and that 4 € GL,(F) satisfies AJ,'A = w,. Since Y is f-semisimple, there is an
X1 € M,(F) with I — X{Y~!X; semisimple in SO,(F) (the split form). Here
X" = —wy'X1wy. Let X = X 1A. Then

I-X'Y X =147, (X1 Aw,Y 1 X14 =1+ J,'4'X1w, Y 1X,4
=TI+ AW, X w, Y 1X14 =411 - XY 1X))A.
Since I — X/ Y~1X; is semisimple in SO,(F), we see that I — X'Y~'X is semi-
simple in SOy, (F).

On the other hand, if Y is 0*-semisimple, then there is an h € Spy,(F) with
Y, = hYa~! = diag{ay, ..., a,}. Then

Y1 + 6*(Y1) = diag{as + an, a2 + Gn_1,. .., a1 + Gy}
Leti=+-1, and

X = idiag{al +an,a+ayq,.. -1 On)2 +an/2+17 1., 1}
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Then X| = —idiag{1,...,1,a,2 + @n/241,...,01 + ay}. Therefore, X, X = ¥; +
6*(Y1). Note that

I-X\Y'X; = —diag{a; 'a, a5 'a,1,...,a; a;},
which is semisimple. Letting X = h~1X, we have that
[-X'Y X =1-X16*(hh ' Yih(h™ X)) =1 - X\ Y71X,

is semisimple.

So, in either case, we can choose X € M,(F) with the desired property. Now,
since Y belongs to a e-stable Cartan, we see that &(Y~!)Y~! is semisimple in
G(n/2). Choose Y,, which is e-conjugate to Y, and a projection X, satisfying (2.1)
with Y, such that I — X,'Y; !X, =1 — X'Y~1X. Then ¢(Y,; 1) Y; ! is conjugate to
g(Y~1)Y~L. By the proof of Lemma 3.12, we see that —e(Y~!)Y~! has matrix

(I- XY X0)lpmx  *
0 I

with respect to a basis that respects F" = Im X, @ ker X,. Thus, the eigen-
values of —g(Y~1)Y~! different from 1 are among those of I — X,Y, 1 X,. Since
Y belongs to an e-stable Cartan subgroup of GL,(F), we see that
Y lg(Y™!) =¢(Y~1)Y!, and thus Y;'e(Y;') and (Y, !)Y;' have the same
eigenvalues. Consequently, the eigenvalues of I— X'Y~ !X =1-X,Y;1X,
which are not equal to 1 are among those of —&(Y;!)Y, !, and, therefore,
I-X'Y~'X and —¢(Y~1)Y~! are GL,(F)-conjugate. This proves part (a). Parts
(b) and (c) follow from part (a). []

LemMmA 3.17. Assume n=2m. Suppose that Y +&Y)=XX', and Z =
I-X'Y"'X. Let ge G,y(F), and suppose that there is an he G(n/2) with
gX = Xh. Then h, whose class modulo the right stabilizer of X is uniquely deter-
mined, belongs to Gz(F). Conversely, suppose h € Gz(F), and (X,Y) gives the
canonical section over Z. If there is some g € G'(F) with gX = Xh, then we can
choose such a g in G; y(F).

Proof. We only need to prove the converse. Recall that

W { ?f (:3= Spas;
Wy, if G= SOJ,,.

Then in each case, X' = —J,'XW,™!, and from Lemma 3.8 we have

X'Y'X=XYv"'=-Js,w Yy 'x.
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Set X" = —W,!XW,™! = —#X). Then X" = W, 'J;1X’, and thus,

X'y X=x"y 1=-v1Xx.
Further note that —X” is a projection, since X is.

Take Uy = XF", Ul = (-X")F", U, = {v|Xv =0}, and U} = {v|X"v = 0}.
Then Y~!: Uy — U, and Y~!: U, — U}. If we set &(v) = {(Wyv) = 'vW,™!, then
this is an isomorphism of F” which takes U; to U’ and U] to U, where U = F"X
and U’ = F*"(—X"). Now ¢(Y) takes U’ to U.

Suppose that h~1X'Y -1 Xh = X'Y~!X. Then

LIIX'Y I X )W, = T (XY TIX)W,,
which gives

h1X'e(Y)Xh = X'e(Y)X.

A straightforward computation shows that

Gl/-:,e(Y) = GzI:,Y—l = 8(G¢Iz,Y)'
Note that I + X" and I — X are projections, and

I+xX"Y ' (I-X)=(I+X")Y 1=Y(I-X).
We now take g € G, y with gX = Xg. Then e(g)'Ylg=Y~! and so
(3.1) I+ X")e(g) 'Y g - X) = I+ X")Y™'(I - X),
which implies that
(3.2) e(g) "I+ X" Y I - X)g= I+ X")Y"I(I - X).
Let ¢ be defined by ¢" |y, = Xhl|y, and g¥|y, = (I — X)g|y,. If ve Uy, then
9" Xv=g"v=Xhv. If ve U, then J,W,Y"'Xhv = hJ,W,Y 1Xv =0, and so,

Xhv =0 = g¥ Xv. Thus, g’ X = Xh.
If v € Uy, then we know that Y~'v € U}. Note that

—X"e(g") 'Y gV v = g(h) " (-X") Y Xhv
= —e(h)"' WU X' Y Xho

=—g(h)"'W XY
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= —e(h)~' Wt IX Y
= e(h) e(h)(-X")Y 1y
=-X"Y .
Furthermore, we see that
I+ X")e(g")™ = Wo(I = X)W, Wiig" W,
= Wi(g" (I - X)W, = W (I - X)g) W,
=&(g) " (I + X").
Thus, we have
I+ X"e(g) 'Y g v=e(g) "I+ X")Y ' Xho =0=(I+ X")Y ',

since Y~!Xhv e Uj.
Now suppose that v € U,. Then

~X"e(g") "' Y79 v = e(h)(-X")Y (I - X)gv
=gM)(=X")I+ X" Y lgv=0=-X"Y"10.
Finally, we see that
(I+X"e(g" ) Y 'g v =e(g) " (I + X") Y/ (I - X)gv
=(I+X"Y YI-Xw=I+X")Y 1y,
the next to last equality coming from (3.2), and the final one from the definition

of Uj. So, gV is the desired element. []

We can now state the final result of this section. This allows us to determine
the residues of the intertwining operator given in (2.4) via the theory of twisted
endoscopy.

Lemma 3.18.  Suppose that n = 2m.

(a) For G = SOy, the norm correspondence Ny agrees with the norm map of
Kottwitz and Shelstad on the intersection of A~ with strongly 0-regular 6-
semisimple conjugacy classes in GL,,.
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(b) For G = Spa,, the norm correspondence Ng+ agrees with the negative of the
norm map of Kottwitz and Shelstad on the intersection of A~ with strongly
0*-regular 0" -semisimple conjugacy classes in GL,,.

Proof. (a) follows from the argument of Lemma 5.21 of [22], since SOy,
splits over L. For (b) we simply note that if Ty is a Cartan subgroup of Spy,
defined over F, and T’ is a 6-stable Cartan of GL,, with Ty — Tj. defined over
F, then Ny ({Y}) = {—Y~10*(Y~1)}, which is the negative of the norm map
defined in [14]. [

Remark. The appearance of the minus sign in (b) appears somewhat incon-
gruous with the results of [22]. However, this does not affect the location of the
poles of the intertwining operator, because it only has the effect of multiplying
the residue by a scalar, namely, w(—1), where w is the central character of z.
However, the sign may be of some arithmetic significance, and this question
should be addressed in the future.

§4. The poles of intertwining operators. We return now to the computation
of the poles of the intertwining operator A(s,7’ ® t,wp) discussed in Section 2.
We use the results of Section 3 to determine the residues of these integrals. We
begin with the following proposition.

PROPOSITION 4.1.  Assume n = 2m. Suppose the e-conjugacy class {Y '} is e-
regular. Then N,({Y~'}) consists of a single conjugacy class in GV of a regular
semisimple element in G. Assuming that Y and &(Y) commute, that is, that
Y~ le(Y™1) is in G, then the converse is true, that is, if N;({Y~'}) is regular, then
{Y~1} is e-regular (and hence is e-semisimple).

Proof. Suppose the e-conjugacy class { Y~} is e-regular. Then up to GL,(F)-
conjugation, &(Y~')Y~! is a regular semisimple element of G. Choose Y;!,
e-conjugate to Y~!, and a projection X, satisfying (2.1) with Y,, such that
I-X)Y;1X,=1-X'Y"'Y. By Lemma 5.10 of [22], the eigenvalues of
g(Y"1)Y-! different from 1 are among those of the semisimple part of
I-X,Y;1X,. Since Y lg(Y~ 1) is GL (F)-con_]ugate to e(Y~1)Y~1) one sees
that the eigenvalues of —¢(Y2)™ Y, ! and —Y;!e(Y,)™" are the same. Therefore,
one can apply the argument of Lemma 5.10 of [22] to the equation in Lemma
3.3(a) to show that the eigenvalues of the semnslmple part of I — X} Y; !X, that
are not 1 are also among those of —e(Y2)™ Y2 1. Then the semisimple parts of
I-X'Y"'X and —&(Y)"'Y™! are GL,(F)-conjugate. But —e(¥)™'Y™! is
GL,(F)-conjugate to a regular element in G, and therefore, I — X’Y !X must be
semisimple and regular.

Suppose now that Y +&Y) = XX', with Y~'e(Y)™' € G(F), and assume
N.({Y™'}) contains a regular semisimple element {I — X'Y~!X}. Again by
Lemma 3.3(a), and the argument of Lemma 3.12, the conjugacy class of
I — X'Y~'X is completely determined by the semisimple part of {—Y " lg(Y~1)},
a conjugacy class in G(F). That is, the eigenvalues of the first are among those of
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the second. Moreover, by Lemma 3.12, the semisimple part of the conjugacy
class of —e(Y~!)Y~! is completely determined by I-—X'Y~!X. Since
{I - X'Y~'X} is regular semisimple in G(F), and Y~'¢(Y~!) e G(F), we con-
clude that Y~lg(Y~!) is regular and semisimple. Therefore, { Y~} is e-regular.
In fact, let ¥ =(Y,e) represent an element in the nonidentity component
of GL, > {1,e}. Write Y =su, with s semisimple and u unipotent. Then
Y2 =52 = Y~ lg(Y™1). If Y~lg(Y~!) is semisimple, then u? = u = 1, and thus ¥
is e-semisimple and e-regular. []

COROLLARY 4.2. Suppose n > 2m. For almost all regular elliptic conjugacy
classes {h} € G(m), the collection of e-conjugacy classes, N, Y({n}) is parame-
terized by a unique e-regular, e-conjugacy class in GLyy(F).

Proof. For almost all regular semisimple classes in G(m), there is a choice of
Y, € GLyw(F) that satisfies (2.1) with X, = Iom, so that I — X5Y;1X; € {h}. In
particular, Y, +&(Y;) = I5,. By Proposition 4.1, the e-conjugacy class of Y is
e-regular and uniquely determined by h. Let j= (n— 2m)/2, as in Corollary

3.13. Let
0jx2m
X = Iom € Mn><2m(F)-

0jx2m

0 0 0
XX'={(0 ILn, 0].
0 0 0

Then X’ =(0 I’ 0),and

Let
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Similarly, if G is symplectic, then we have

=D\ (1 uj!
&Y) = (—=1Yum 'Y, (=1 uzm
uj =1} \(-1Yy
—I;
= &Y2)
I

Therefore,

0 0 0
Y+&Y)=|0 I, 0]=xXx"

0 0 0

Moreover, we see that I, — X'Y !X = I, — I}, Y; ' = h.

It remains to check that for almost all Y3, the class of Y satisfying (2.1) is,
up to GL,(F)—¢-conjugacy, of the form given in the previous paragraph. First
observe that for almost all Y satisfying (2.1) with

)

Y acts semisimply on the direct sum of the image and the kernel of XX’, both of
which are invariant under ¢, since Y, is e-regular. Moreover, Y must be ¢-skew
symmetric on ker(XX’) and can therefore be given in the form diag(Jy, Y3,J>)
with diag(Jy,J2) e-symmetric (G symplectic) or e-skew symmetric (G orthog-
onal), proving our assertion. []

LEMMA 4.3. Suppose that o € F**\F*. Let ag = diag{a, 1,2,1,...,1} € GSpo.
Then

Ne({'}) = a5 N.({r )t

for any y' € A Similarly, let « € NE*. Take go € GLi(F) with goAy'go = aAy.
Let g = diag{ozIm_(k/z), do, Im—(k/2)} € GOy, Then

No({y'}) = a5 N.({»' })oto,

forall {y'} e .
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Proof. Let a¥ = aly,. In the symplectic case, «’ = ag&(ap), while in the
orthogonal case, &' = J;lagJ, ‘op. Let Y~ € {y’}. Then Xa¥ X' =Y +&Y),
while Xo¥ X' = (Xao)(Xap)'. Since N({ay'}) is the conjugacy class given by

I - (Xog)'(aY) ™! (Xoo),
we have

— (X)) (@Y) N (Xag) = a5 (I = X'Y ' X)ap. O

Let € and 4’ be the sets of conjugacy classes in G(m) and e-conjugacy classes
in GL,(F), respectively. Suppose that n = 2m. Let T be a Cartan subgroup of
G(n/2), defined over F. By Lemma 3.3.B of [14], there is a §*-stable Cartan
subgroup T’ of GL, with an isomorphism T = Tg., which is defined over F.
Furthermore, this isomorphism induces the image map /g/2)/6L, between
semisimple classes in € and §*-semisimple #*-conjugacy classes in GL,. We set

_ {I, if G(n/2) is symplectic,
*" lgs, if G(n/2) is orthogonal.

(See [22, §7].) Let h: T' — T'g, be given by right multiplication by g.. Then, up
to a sign, we see that the diagram

TI
N h

T~ T;« T— Tlge

€

commutes on the set of strongly 6*-regular elements of T'. (Recall that an ele-
ment t of T’ is called strongly 6*-regular if Go‘ is abelian.) Since T’ is 6*-stable,
we can, in the language of §3.1 of [14], take ¥ = 1, to see that h~! is the map m
of [14].

LeMMA 4.4. Let T be a Cartan subgroup of G(n/2) defined over F. Then there
is a @*-stable Cartan T’ of G'(n), such that the diagram
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commutes up to a sign on all strongly 0*-strongly regular 6*-semisimple elements
of T/(F). Furthermore, T ~ Ty induces the image map /- If 6" € T' is 6*-
strongly regular, then Centy+(6*,G') = (T’ )

Proof. We only need to prove the last statement. If §* is strongly 6*-regular,
then Centy-(6*,G’) is a maximal torus in G’, stable under Int(6*) o §*. Since
T;» =T’ is a maximal torus and T’ is 6"-stable, we have Centy(0*,G’) =
m”. o

We must eventually integrate over twisted conjugacy classes in .4". By Propo-
sition 4.1 and the surjectivity of the norm correspondence, up to a set of measure
zero, these twisted conjugacy classes are parameterized by regular semisimple
conjugacy classes in G. There may be two regular conjugacy classes in G which
parameterize the same class in 4. This will be taken into account as we inte-
grate over all of the Cartan subgroups of G. We can therefore fix a representa-
tive T for each conjugacy class of Cartan subgroups of G that are defined over
F. Let dy be a Haar measure for T = T(F). Then by Lemma 3.15, the last part of
Lemma 4.4, Proposition 4.1, and upon computing the Jacobian for the corre-
sponding open immersion in page 227 of [1] (or Theorem 3.2 of [23]), the mea-
sure |W(T)|“ |Dg+(y")| dy as T ranges provides us with a measure for .#". Here
{7} isin Ng-({y'}) for each e-regular {y’g,} in A4 and

Det ()}I) = det(Ad(y,) o 0* - 1)|9/90*,7”

as described in [14]. We introduce the positive multiple |W(T)|™" since, because
of surjectivity of the norm correspondence, we may and do transfer the inte-
gration to one on G for which the measure for integration over semisimple
conjugacy classes of G coming from the conjugacy class of T is, in fact,

|W(T)|~}|D(y)| dy, as suggested by the Weyl integration formula.
By Lemma 4.5.A of [14],

x1({rh {v'}) = [Dg (¥)I/ID()]

is bounded on {({Ny+(y)}, {y'})}. Suppose {y} is regular and semisimple. Define

({7} {7'}) = {"1“?} Y9 )), if {7} € N.({y'}) and ¥/ is e-regular;

0, otherwise.

Observe that |D(y)| = |D(y™1)|.
For each regular semisimple conjugacy class {y} € ¢, define

2 ({7}) = {{oy' Yo e FP'\F*, {3} e N.({(*")""})}-
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We set

A, (o = { & ORUL D, ) e N0

0, otherwise.

Finally, let

d)B(d({y})a f,) = Z A(% yl)d)e(y,a f,)
{r'res({v})

The main part of the residue of the intertwining operator at s = 0 comes from
the regular elliptic elements in the form of the Weyl integration formula applied
to the class function ®,(/({y}), f’), that is, as a pairing between characters and
twisted characters (cf. Section 5). More precisely, the contribution from these
regular elliptic classes has the form

Re(fe f') = {z:ﬂ(Ti) \w(T)| ™! JT O({y}, f2)@u( ({1}), ) ID()| dy,
T:} i

where {T;} runs over the conjugacy classes of elliptic Cartan subgroups of
G = G(m) and T; = T;(F). For each i, u(T;) is the measure of T;. Observe that
by the way that our transfer factor A is defined; this is, in fact, an integration
over g-conjugacy classes in A" (since the norm correspondence is surjective).

Let us first check the convergence of Rg. It is enough to show that

| o6, faouer o, 06,
T(F)

converges for any elliptic torus T of G(n/2). By Theorem 14 of [10], the function

|D(y)|"/2®(y, f.) is bounded on the intersection of T(F), with the regular set of
G. Therefore, we are reduced to proving the convergence of

j o, ({y}), )P dy.
T(F)

It is enough to show that each integral in the sum converges absolutely, that is,
that

[re 10 g L ) DG 4
Ng+ ({y'D={r}

converges for every a € F**\F*. We are therefore reduced to showing the con-
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vergence of

(4.1) J |y (7', Rao S| Do (') 1D ()| 2 .
No- (Y D=0)

Since ®y:(—,—) is a tempered distribution, the function ®y- (3, f')|Dg- ()|

is bounded on the intersection of Ty«(F) with the 8*-regular set [6], [10]. Now
the convergence of (4.1) follows from the boundedness of xi({y},{y })1/ 2
(Lemma 4.5.A of [14]).

Let MV =GL,(F)x G' act on N by the adjoint action, where G’ =
GY (m) = 0y, if G(m) = SOsz and GY(m) = Sp2m, otherwise. Then the orbit of
n(X,Y) e N consists of pairs (9Xh~!,gYe(g)™') e N, with ge G’ and he GY.
The stabilizer A¥ of the action at n(X,Y) consists of all those pairs (g, h) with
g € G, y(F) for which gX = Xh. Then he G}, where Z=1—X'Y"'X and G},
is the ‘centralizer of Z in G¥ (m). By abuse of both notation and termmology,
identify A" as a subgroup of both G%(F) and G .,y(F) through projection onto
its components.

To compute (2.4) we ﬁrst 1ntegrate over each orbit of N under MV . The mea-
sure d*(X,Y) = |detY|” {or8 d(X Y) is an invariant measure on these orbits. In
fact, it can be easily checked that

d*(gXh™',gYe(g)™") = d*(X, Y),
since
d(gXh™',gYe(g)™") = |detg|*mPd(X, V).

One can then write d*(X,Y) as a product of measures d}(X,Y) and d}(X,Y),
the first one for integration over the orbit of (X,Y) under MY, and the
second to run over all such orbits. (They both are specified later.) Then
d3(Y~1X,¢(Y)) = d3(X,Y). Since d*(X,Y) and dj(X,Y) are both invariant
under the action of MV, so is d}(X,Y). Let dd be a measure on A'. Fix mea-
sures dg and dh on GL (F ) and GY (F) so that the measure d}(X,Y) on each
orbit is given by the quotient of dhdg by do. Consider the map (g,h) —
(gXh~1,gYe(g)™") from GL,(F) x G¥ (F) to the orbit of (X, Y). Changing our
representative for the orbit from (X,Y) to (Y~!X,e(Y)) changes (g,h) to
(gY~1, h). Thus, the measures dg and dh are unchanged by this change of repre-
sentative. Also, changing (X, Y) to (Y~1X,&(Y)) changes A" to (Y,)AY (Y, )™
and therefore leaves dJ invariant. Thus, d}(X,Y) = d}(Y1X,&(Y)), and there-
fore d*(Y~1X,¢(Y)) = d*(X,Y).
Making this change of variables, the integral in (2.4) can be expressed as

(42) j( o= XY () e (et P (X, )

3
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2Let «' be the central character of 7’. Since we are assuming that 7’ is self-dual,
" is trivial. We choose f' € CX(G’) so that

Vulg') = J f'(zgo'(z71) d*z.
2(6")
Making this substitution, we rewrite (4.2) as
JF" J(Y X f’(ZY)fT(I - X/Y—IX)w/(Z”detYlséL (S(Y)_l)fLI(X) d*(X, Y) d*z.
(4.3)

There is a map from the orbit of n(X,Y) under MV onto G'/AY x AV\GY

whose fiber is homeomorphic to XA'. The integration over the orbit is then
equal to the integration over the product of G'/AY x AY \G" with XA'. The
contribution to (4.3) from the orbit of n(X, Y) under the action of MV is then

Us,2)= ), o'(@

ae (FX2)\Fx

o] s eaYeey s 2 den(g Ye(o) I dg dhd (Xh)
geG'/AY JheA'\G' JXA

: J £z 2gYe(g) ™ )éL (27 g X hoh) |det z| ™ d*z,
VAD)

where L = &(L). Observe that we have suppressed the dependence of Y on other
parameters X, Y, f, f;, L, and L'. Breaking the variables further,

P(5,2) = ')

S T U IR £ 72 O A
9€G'[G, y JheGY\GY JgoeG; /A" JXGY

z

(4.4)
-|det(gYe(g)™")|° dg dhdgo dX hy

- j £ (29 Ye(g) ™) EL (2 ggoXhoh) |detz| ™ &z,
Z(G")

where Gt/:,Y = G;,Y(F) and GY = G\é(F)
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Let Z;’s be representatives for the G-orbits inside the G¥ -orbit of Z. Note that
there are either one or two G-orbits in each G¥ -orbit. Denote by

®(Z;, 1) =j A db

2;(F

and

oz, f)=|, S izhyan
GV (F)\GY

the corresponding orbital integrals. Finally, let

@, 5(xY, f') = j . f'(agYe(g)™") |det(gYe(g) ™)) dg.

G'/Gyy(

Clearly,

lim ®,.s(aY, /) = ®y(aY, f') = J F'(agYe(g)™") dg
=0 616y (F)

is the corresponding twisted orbital integral.

Suppose first that n = 2m. Assume (Y,I) satisfies (2.1) and Z=1-T'Y"!.
Note that I’ = —I if G is symplectic and is —J,w,, otherwise. (If G is a split
orthogonal group then, again, I'=—I and Z=1+Y"!) Then Gz(F) ~
G, y(F) ~ A" Let

(4.5)
¥(s,2) =) o' (@)

| || reaYale) )2z det(g Yo(o) ™) didg dho
9€G'/G, y(F) Jhe GY\G" Jhye Gy

: J Ei(z72gYe(g) ") eL (27 ghoh) |det z| ™ d*z.
Z(G")

Then y(s, Z) = y (s, Z).
Let L(1,5) = (1 — g~*)"! denote the local Hecke L-function attached to the
trivial character 1. We have the following result.

LEMMA 4.5. Let n=2m. Assume that Y is e-regular. Then (s, Z) converges
absolutely for Res > 0. Suppose further that (Y,I) satisfies (2.1), that is, for
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almost all twisted conjugacy classes in A". Then Y(s,Z) also converges absolutely
for Res > 0, and there exists a function Ez(s) = E(s,Z,Y, fx, f',L,L’), which as
a function of s is entire, such that Y (s, Z) = Ez(s) if Z is regular and nonelliptic,
and

¥(s,Z) = Ez(s)

+ ( Z Z(De,s(‘xya f’)CD(Z]-, f‘z)/‘(GZj(F))) qb(Y’z)SL(L 2"'5)

ae(FX)\Fx ]

for Res > 0 if Z is regular elliptic. Here b(Y,Z) is an integer depending on the
data f., f',L,L', as well as Y and Z. In particular,

Res y(s,Z) = (2nlogg)™ D D ®u(a¥, [)®(Z;, f)u(Gz,(F))

ae(FX)\F* ]
if Z is regular elliptic, and

Res Y(s,Z) =0
s=0

if Z is regular but nonelliptic.

Proof. We prove the lemma when X =1I. The convergence of ¥(s,Z)
can be proved the same way. We may assume L (therefore, L) and L' are
both basw neighborhoods of 0. Clearly f*(ag Ye(g) ') & (z 29 Ye(g)~ ) = 0 unless
gYs(g) € z2L n o~ supp (f’) for some «. A standard argument using the sup-
port of f’ then implies that |detz| must be bounded below with the bound
depending only on L and f’. Since Y and Z are e-semisimple and semisimple,
respectively, we may assume g and h in (4.5) belong to compact sets supp(g)
and supp(h) of G'/G, y(F) and GY%(F)\GY, depending upon Y, Z, f., and f,
respectively.

To study the convergence of (4.5), we may assume kg is in the F-points of
the split component of G‘é (i.e., the connected component of Gz), which we may
further assume are given by diagonal matrices. Write z = diag(z, z, .. ., z), and

T -1 -1 -1 -1
ho = diag(as, a1,...,a1,82,. .., G2y .., 85 4oy @y A7 ..o, 010).

By the compactness of supp(g) and supp(h), &1 (z 'ghoh) =0, unless z 'hg
belongs to a compact subset of M,,(F), that is, |za;| > x and |za;!| > «, for some
x > 0. Consequently, |z| = k. Moreover, there exists a x; >0 such that if
|z7'a;!| < k1 and |z7lay| < xy, then supp(g)z~'hoT supp(h) = L', since both
supp(g) and supp(h) are compact. Here T is the compact part of GV Observe



TEMPERED SPECTRUM OF QUASI-SPLIT CLASSICAL GROUPS 285

that x; = k. Consequently, with such a z and hy, h is free to change over all its
compact support leading to ®(Z, f;), which vanishes if the split component of
G, is nontrivial (cf. [22]). Otherwise GY (F) is compact.

Let n be the lower bound given by f’ and L on |z|. We use k instead of 7
if x > n. We may assume x;/x is a nonnegative integral power of g. Choose a
nonnegative integer m so that |@™™| = k1 /x. Then |o™™za;| > K1, |@ ™za; 1| >
k1, and |@™™z| = nKy/k = n. Consequently, for all z with |z| = ki /k, we can
drop both ¢; and £, and integrating over all z = fo™™, with f € 0*, and all of
G} (F), we get

(4.6) Yo D 0z, £) (2, 1)) g u(m).

ae(FX)\Fx J m>¢

Here |w~¢| = nx;/x and u(m) is equal to

HJ d*a;

i YD <|a| <gtm9

times the measure of the compact part of G}(F). Moreover, d is given by
k1 = q%. The series clearly converges for Res > 0. If G\é (F) is not compact, then
(4.6) vanishes. The remaining values of z, that is, nx1/x > |z| = 5, only lead to an
entire function in s. The proof is now complete. []

COROLLARY 4.6. Let T; be a Cartan subgroup of G. Denote by T’ the subset of
regular elements of T; = T;(F). Let w; be a compact subset of T;'. Then given
fo,f'L,and L', b = b(Y,Z) and Ez can be chosen independent of Y and Z for all
Ze ;.

Proof. This follows from the corollary to Lemma 19 of [10], which implies
that the compact sets supp(g) and supp(h) of the proof of Lemma 4.5 can in fact
be chosen to be the same for all Z e w;. [

To calculate the residue for the intertwining operator, we must now integrate
over all the orbits of the action of MV on N. We do this by integrating over all
the e-regular e-conjugacy classes in A" _

First assume n = 2m. We must integrate y(s,Z) over orbits of N under the
action of MY. Almost all of these orbits are parameterized by e-regular con-
jugacy classes in 4. Therefore removing a set of measure zero from these orbits,
we may integrate Y(s, Z) over e-regular (and ¢-semisimple) e-conjugacy classes
{Y} in A Then, by Proposition 4.1, {Z} = N, ({Y!}) is regular and semi-
simple in G" (F).

Let {T;} denote a complete set of conjugacy classes of Cartan subgroups of G
defined over F. We now must integrate over 4" As we discussed before, using
Proposition 4.1 and the surjectivity of the norm correspondence, we instead
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integrate over u; T;, using measures

(W (T~ ke ({7, (D) IDG)l dy; = W ()| |Dg (7)) e

Now suppose n > 2m. Then for almost all {Y} € A, we can choose a repre-
sentative diag(J1,g,J2), with g € GLy,(F) e-regular in GLj,(F) as in Corollary
4.2. More precisely, we may assume X € Myxom(F) has the form

0j><2m
x- ( e )

0jx2m
with j = (n/2) — m. Moreover, as in Corollary 4.2, we may assume Y preserves
the kernel and the image of XX’ for almost all Y, and therefore Y must be &-
skew symmetric on ker(XX’). Consequently, diag(Jy,J;) must be either sym-
metric (G symplectic) or skew symmetric (G orthogonal) on this kernel. Outside
of a set of measure zero, the twisted conjugacy classes in 4" now form a fiber
bundle with finite fibers coming from the twisted conjugacy classes of possible
diag(Jy, J2). The base of the fiber bundle is parameterized by e-conjugacy classes
{Y~1} in GLy,(F) such that Y is the second component of a rational solution
to (2.1) whenever GL,y, X G(m) is considered as a Levi subgroup of G(3m),
and we may use §*-stable Cartan subgroups of GL,, and their F-isomorphisms
with T/’s as in the case n = 2m. Here {T;}, is a complete set of representatives
for the conjugacy classes of Cartan subgroups of G. We then get measures
K1(¥;, v))|D(y;)| dy; on the T;’s, and by surjectivity we need to integrate over uU; T;
for each fiber. The integral over the whole fiber bundle is then achieved by using
the image correspondence &/ defined precisely as in the case n = 2m, but still
integrating over u; T;. Still assuming n > 2m and choosing

0j><2m
X=Xo=| Dbm |,
0j><2m

equation (4.4) can now be written as

‘Z(& Z) = Z wl(a)

] | RACECORTACED
9€G'/G,y(F) Jhe G} (F)\GY Jhe G} (F)

- |det(gYe(g)™")|* dg dhdhg

: J ¢1(z7gYe(g) ") Er (27 g Xohoh)|det 2| ™ d*z.
2(6")



TEMPERED SPECTRUM OF QUASI-SPLIT CLASSICAL GROUPS 287
Lemma 4.5 is now valid for y/(s, Z) = (s, Z) even if n > 2m, and in what follows
we may assume n = 2m.

For each G-conjugacy class of Cartan subgroups of G, choose a representative
T;. Given i, let T be the subset of regular elements in T; = T;(F). For y e T/, let

U (5,7) = Y _¥(s,7),

where the sum is over all {Y} for which N,({Y~!}) contains {y}. Let w; be a
compact subset of T;'. By the absolute convergence of intertwining operators for
Res > 0 (cf. [24]) we see that (4.3) is equal to

S | ) PO+ WO [ el P4

i T

Let

Ra,(s) = |W(n)|-1j Var(5,7) D)) d.

;

By Corollary 4.6,

Ru,(s) = hi(s) + W (T)| ™! J Oy, f)@:(# ({7}), f) D)  dy - w(T)q"L(1, 2n5),

w;

if T; is anisotropic, where h;(s) is an entire function of s. Otherwise, Ry, (s) is
entire. Clearly,

Res 2 o)

= (2nlogg)™" Y (M)W (T)|™ L D(y, f)@e( ({r}), f))ID ()| dy,

where the sum ),/ is understood to be over conjugacy classes of anisotropic
Cartan subgroups T; of G. Thus, the residue of the operator at s = 0 equals

(2nlog q)‘lZ:’M(Ti)IW(Ti)l_1 L D(y, f)@e( ({v}), f') ID(v)| dy

FRESWDN [ vl DO .



288 GOLDBERG AND SHAHIDI

Letting w; — T;' for all i, the residue is then equal to

Rl )+ S IWDI i Res [ als ) D)4y,

w;—T; s=0

where ¢ = (2nlog q)”l. Here Rg is defined the same way as in the case n = 2m.
Now suppose that n < 2m, and consider the injection

Ln—ny2)
h— h
In—(n/2)

of G(n/2) into G(m). Let N;: /" — % be the e-norm correspondence from
e-conjugacy classes A in GL,(F) to conjugacy classes in G(m). Suppose
that X € Myuom(F) and Y e GL,(F) satisfy Y +&Y)= XX'. Note that
rank X’Y~!X < n, and so at most n eigenvalues of I — X'Y~1X are different
from 1. Thus, the semisimple part of the conjugacy class {I — X'Y~'X'} has a
representative in G(n/2). Now let " be the subset of # consisting of those con-
jugacy classes of G(m) whose semisimple parts meet G(n/2). Then we see that
N,: N > &,

LemMMA 4.7. If n < 2m, then the norm correspondence N, has finite fibers.

Proof. We only need to show that if Y € GL,(F) and X € Myyom(F) satisfy
(2.1), then I — X'Y~!X determines the semisimple part of e(Y~1)Y~!. But, by
Lemma 3.3, we have (Y1) Y~1X = —X(I — X'Y~!1X). We may suppose that X
is in row echelon form, with the last n — r rows of X identically zero. We thus
have the decomposition F" = F" @ F"", with X| an injection into F*", and
X|pnr = 0. Consequently, the matrix of ¢(Y~!)Y~! with respect to a basis
respecting the above decomposition of F* is (’g D, with A determined by
I — X'Y~!'X. Thus, N, has finite fibers. []

Continuing with our study of the case n < 2m, we notice that again almost all
of the e-conjugacy classes in 4" can be parameterized by regular semisimple
conjugacy classes in ¢¥ or by regular semisimple conjugacy classes in G(n/2).
More precisely, for G = SOy, we set X1 = (Onx; In  Ony;), With j = (2m —n)/2.
Then

w; Ojxn
X{=- Jn I, |w,
wj ijn
ijn
= "'Jan



TEMPERED SPECTRUM OF QUASI-SPLIT CLASSICAL GROUPS 289

Thus, X1X]=—-J,w, =Y +&Y). If G=Spy, and j is even, then we take
X;1=(0 I, 0),asabove. We have X X] = —I,=Y +&(Y). If j is odd, then
we take X; = (0 wu, 0). Then again we see that X;X| = —I, =Y +&(Y). In
all but this last case, the identity

L
12,,,~X1Y-1X1=z=( z, )
1

with Z; in the image of the norm correspondence for Y~! in the case n = 2m, is
now obvious. Thus, the parameterization of almost all the e-conjugacy classes in
A is as claimed in these cases. In the case where G = Sp,, and j is odd, then

(L
L — X[ Y71X, = In — u, Y~ luy,

\ I
(1

= é(t(In + Y_l))
\ I;

Since Y € 4 satisfies (2.1) with X = I,,, we know that Z; = I, + Y~! € Sp,, and
thus &(Z;) = Zy, or Z;) = Z7'. Therefore, &(‘(I + Y™1)) =* Z!. Thus,

I
I-xY7'x, = 'zt ;
I;
with Z; as before.

We again choose a complete set of representatives {T;}; for the conjugacy
classes of Cartan subgroups in G(n/2). None of the T; is elliptic in G = G(m).
By Lemma 3.2, the contribution from almost all the orbits is given by

V(5,2) =3 /()

- j j j f'(agYs(g)™)f-(h™'Zh)
geG' (G} y(F) heGL(F\G' JX:1GY (F)

|det(gYe(g)™)I* dg dh d(X 1ho)

J £ (29 Ye(g~1))Er (2~ g X 1hoh)|det 2] 4%z,
Z(G")
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where X; is as above and Z = I — X{Y~'X;. Moreover, X;Gy(F) ~ G, y(F),
and therefore the formula for Y(s, Z) can be written as

VW(s,2) =) o'(@

]| O IO A O
9€G'/Gy(F) Jhe GL(F\G' JgoeGyy(F)

- |det(gYe(g™"))|* dg dhdgo

: J - Ei(z72gYe(g™Y))ér (2 ggo X 1h)|det z| > d*z,
Z !

which is exactly the same expression as the one given in the case n > 2m, with
the roles of GY (F) and G, y(F), as well as hy and gy, interchanged. Using the
image correspondence, again we define (s, Z) as in the other cases. The inte-
gration of ¥ (s,y) now is over u; T;, and an argument similar to those used
before applies. But this time Rg(f7, f') =0, since ®(y, f;) = 0 for all elliptic y.
Observe that although the integration is only over regular semisimple conjugacy
classes in G(n/2), the orbital integrals ®(—, f;) are computed over all of
G = G(m).
We state our result as follows.

THEOREM 4.8. Let 2¢ = min(n,2m) and denote by {T;} a complete set of rep-
resentatives for the conjugacy classes of Cartan subgroups of G(£). For each i, let
w; denote a compact subset of Ty, the set of regular elements of T;. Then the inter-
twining operator A(s,7’ ® t,wp) has a pole at s = 0 if and only if

Re(fs, f WT»"ll'RI ,7)|D(¥)| dy # 0,
c c(fff)+Zl (Th)| Jim_ Res z'\w,'//‘“(s NID(y)| dy #

for some choice of the data f., f',L, and L'. Here ¢ = (2nlog q)'l. Ifn < 2m, then
Re(f2, ) =0 for all f; and f', and therefore it is the nonvanishing of

S IW(T)|™ lim Res Yt (5,7)|D ()| dy
i T'\oy

w—T; s=0

that determines the pole of the operator at s = 0.

COROLLARY 4.9. Suppose that v/ ~ 7.
(a) The induced representation I(t’ ® t) is irreducible if and only if

w;—T; s=0

Rolfe f)+ S IW(T)I™ Jim Res | wis(snIDG)Idy #0

for some choice of the data.
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(b) Assume t is generic. If I(7' ® 1) is irreducible, then I(s,7’ ® 1), se R, is
reducible exactly at s = +1/2 or s = + 1, and at only one of these pairs.

Remark 4.10. When n > 2m, the residue is the sum of cRg and the more
complicated term

i— 1

S W™ tim Res| w60 DO b
i @ =0 JT \as

In the next section, we relate the nonvanishing of the second term to the simple
nonvanishing condition of Proposition 5.1 of [21], that is, in terms of the theory
of twisted endoscopy that discusses the equivalence of this nonvanishing with ¢’
coming from SOy1(F).

Remark 4.11. Clearly Theorem 4.8 and Corollary 4.9 are valid for the split
even special orthogonal groups and are the correct versions of what was origi-
nally stated as Theorems 7.8 and 8.1 in [22]. In fact, although the main term
Rg of Theorem 7.8 of [22] is correct, the singular terms given there are too
optimistic and are consequences of a gap in the proof of Theorem 7.8 of [22].
However, in Proposition 5.2 of the next section, using L-functions, we relate the
singular terms from the two different versions to each other. We refer the reader
to the introduction for further comments.

§5. The connection with twisted endoscopy and L-functions. We now show
how the results from Section 4 can be related to the theory of twisted endoscopy
and L-functions.

Let x, be the distribution character of 7. By the work of Harish-Chandra,
[10], [11], we know that x, is given by a locally integrable function, which we
also denote by y,. From [12] and [7], we can choose a matrix coefficient f; for t
such that ®(y, f;) = x,(y), for all regular semisimple y € G. The matrix coeffi-
cient f; is then called a pseudocoefficient.

Since ©/ ~ ¥ ~ (¢')?, we see that ¢’ extends to a representation of the dis-
connected group GL,(F) X {1,¢}. This comes from fixing an equivalence 7’(e)
between t’ and (t')°. The e-twisted distribution character of 7’ is defined by
15 (f") = trace(r'(f)7'(e)). In [6] Clozel showed that there is a locally integrable
function, also denoted by y%,, on the e-regular elements such that

=], s 6,

ZI

with Z’ the center of G'. Kottwitz and Rogawski [15] proved the existence of
e-twisted pseudocoefficients. That is, there exists a matrix coefficient ¥, of 7’
such that @,(y',¥,) = % (y') for every e-regular element y’ € GL,(F). Thus, by
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choosing f' € C¥(GL,(F)), which defines .., we have

(AL ({1}), /)= D A ILG),

v et ({r})

and we denote this by & (2/({y})).
Let n = 2m. Then, by the above observations, we can choose f; and f’ so that
the regular term becomes

Re(fe, /) =Y w(T)IW(T)|™ L Xz (#({7}))|D(y)| dy.
{T:} i

Thus, R¢ defines a pairing between the character y, of 7, and the e-twisted char-
acter ¢, of v'. Consequently, we expect that the nonvanishing of Rg(f;, f') must
in part point towards 7/ coming from t via twisted endoscopy [2], [3], [13],
[14]. For our purposes, we define the notion of endoscopic transfer below.
Observe that Rg makes sense and is convergent for any discrete series 7.

DEFINITION 5.1. A self-dual irreducible supercuspidal representation ' of G’
is said to be the e-twisted endoscopic transfer of a discrete series representation ©
of G(n/2) if Rg(f:, f') #0, for some matrix coefficient f, of 1, and some
f' € C®(GL,(F)) defining one for '

Assume n > 2m, and resume our assumption that T and ¢’ are supercuspidal.
We expect that the Rankin-Selberg product L-function L(s,t’ x t), which was
formally defined in [20], must satisfy the following (defining) condition:

L(s,7’ x ) has a pole at s = 0 if and only if Re(fz, f) # 0 for
some f, and f', or equivalently, if and only if t’ comes by twisted
endoscopy from t (Definition 5.1).

As discussed in the next few paragraphs, this seems to be in complete agree-
ment with definitions given in [21].

We must now study the singular contributions, and we therefore continue with
our assumption n > 2m, and let

Rone(f /) = WD i Res [ el ) D1

w;i—T; s=0

so that the residue of the intertwining operator A(s,t’ ® 7,wp) at s = 0 can be
written as

CRG(f‘L', f,) + Rsing(ft: f,),
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where ¢ = (2nlog q)‘l. Observe that we have suppressed the dependence of Rging
on Land L'

Our goal in what follows is to separate out the poles coming from the two L-
functions L(s, 7’ x t) and L(s, 7', A%p,) by means of the nonvanishing of R¢ and
Rging, respectively, when n > 2m.

By Lemma 4.5, Ring(f:, f') = 0 if and only if the process of taking the resi-
due and integration can be interchanged. On the other hand, the theory of L-
functions discussed earlier demands the existence of poles coming from those of
L(s,t', A%p,) at s = 0.'Such poles depend on 7’ alone and cannot be reflected in
the nonvanishing of Rg. Consequently, one must expect Rgg # 0 in general,
as we discuss below. Therefore, the fact that interchanging the process of taking
the residue at s =0 and integration must be checked is not just an analytic
impediment, but rather a fact that reflects deep arithmetic connections that
govern the problem.

Now, let us assume that ¢/ comes from SO, (F) as explained in Proposition
5.1 and Theorem 7.6 of [21], or in other words, L(s, 7', A2p,) has a pole at s = 0.
Then, by the simplicity of the pole of A(s,7’ ® t,wp) at s =0, L(s,t’ X t) must
be holomorphic there. (See below and the discussion after Definition 5.1.) More-
over, assume that 7 is such that Rg(fr, f') = 0 for all f; and f’. We expect this
to be true for all T anyway, if t’ comes from SO,.;(F). Then, by the theory of
L-functions [20] as explained before,

L(s,7" x ©)"'L(2s,7, A%p,) ' A(s,7' ® 7, Wo)

must be nonzero and holomorphic. This implies that Rgng(f7, f') # 0 for some
data. We therefore have the following result.

PROPOSITION 5.2.  Suppose n > 2m. Assume that ©' comes from SOpn.1(F). Then
Rging # O for any irreducible unitary supercuspidal representation t of G(m) from
which t' does not come by twisted endoscopy (Definition 5.1). (We expect this to
be the case for every irreducible unitary supercuspidal representation t of G(m) if
' comes from SOy11(F).)

When n < 2m, the term Rg = 0, and therefore the control of the poles of both
L-functions lies within Rgysg, Which now constitutes the whole residue. Further
analysis of the term Rgy, is now necessary to distinguish the two L-functions.

We conclude the paper by stating a result about L(s,t’ x t) for any even n
and any m with no further assumption on the relation between r and v'. We may
and do assume that v/ ~ 7.

PrOPOSITION 5.3. (a) Suppose t’' comes from SO, 1(F) (nonvanishing condition
(5.2) of [21]), or equivalently, L(s,7', A%p,) has a pole at s=0. Then
L(s, ' x 1) is holomorphic at s = 0.

(b) If ' does not come from SOp.1(F), then L(s,t’ x t) has a pole at s =0 if
and only if cRg + Rsing # 0 for some data.
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Proof. The proposition is a consequence of the simplicity of the poles of
A(s,7’ ® 7, wp), Theorem 4.8, and the holomorphy and nonvanishing of

L(s,7" x 1) 'L(2s,7', A2p,) " A(s,7 ® 1, wo).
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