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ON THE TEMPERED SPECTRUM OF
QUASI-SPLIT CLASSICAL GROUPS

DAVID GOLDBERG AND FREYDOON SHAHIDI

1. Introduction. One of the most striking aspects of the Langlands program
is the conjectural relation between harmonic analysis and number theory. The
proof of a conjecture of Langlands given in [20] shows that determining the
poles of certain (conjectural) Langlands L-functions is equivalent to determining
the nondiscrete tempered spectrum of reductive p-adic groups. The theory of
endoscopy [16] and twisted endoscopy [13], [14] has proved particularly useful
in giving a context within which to explore these problems, at least for classical
groups (see the introduction and Section 3 of [21]).

Previously the authors separately determined the nondiscrete tempered spec-
trum of classical groups supported in their Siegel parabolic subgroups (see [8]
and [21]) or, equivalently, computed the symmetric square and the exterior
square L-functions for GLn(F) [21], as well as the Asai L-functions for GLn(E),
where E is a quadratic extension of F [8]. In fact, these L-functions were deter-
mined for an arbitrary irreducible admissible representation of GLn(F) or
GLn(E), accordingly. Finally, in [22], the second author addressed the problem
for arbitrary maximal parabolic subgroups of split even special orthogonal
groups. In terms of L-functions, the work in [22] determines the Rankin-Selberg
product L-functions attached to irreducible admissible representations of
GLn(F) x S02m(F).
The purpose of the present paper is twofold. First we generalize the work in

[22] to symplectic and quasi-split special orthogonal groups and thus, using [9],
eventually determine the nondiscrete tempered spectrum of these groups. The
second purpose is to remove a gap that existed in the proof of Theorems 7.8 and
8.1 of [22]. The final results of the present paper, Theorem 4.8 and Corollary 4.9,
while having the similar main (regular) term RG, have a different and more
complicated singular contribution than the singular terms given in Theorems 7.8
and 8.1 of [22]. However, in Proposition 5.2 of the present paper, we manage to
relate the singular terms from the two different versions to each other (see
Remark 4.11). The reader of [22] must therefore consider Theorem 4.8 and Cor-
ollary 4.9 of the present paper as correct versions of Theorems 7.8 and 8.1 of
[22], and it is most efficient if Sections 4 and 5 of the present paper are sub-
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stituted for Sections 6-9 of [22]. Sections 1-5 of [22], which were the main
motivation for this whole project, are precise and correct. We are indebted to
Robert Kottwitz for noticing this gap in an earlier version of the present paper,
and consequently in [22].
To explain our results, let G be a symplectic group or a quasi-split special

orthogonal group of rank m defined over a p-adic field F of characteristic zero.
Let z and z’ be discrete series representations of G(F) and GLn(F), respectively.
We denote by G either the symplectic or the quasi-split orthogonal group of
rank rn + n (with the same Witt rank and discriminant as G in the orthogonal
ease). Let I(z’ (R) r.) be the representation of (F) unitarily induced from the F-
points of the parabolic subgroup whose Levi component is isomorphic to
GLn x G. The reducibility of I(z (R) z) is governed by the residue of the standard
intertwining operator A(s, z’ (R) z, wo) (cf. Section 2), at s 0.

Suppose n is even and W is the standard antidiagonal matrix with respect to
which one defines the symplectic or split even orthogonal group of rank n/2. We
let e’GLn GLn be the automorphism given by e(#)= Wn /-1Wn-1. In the
symplectic case, e 0", and in the orthogonal case, e 0, where these auto-
morphisms are defined in [22]. When one attempts to compute the residue of
A(s,z’ (R)z, w0), one is led to consider a correspondence between certain e-
eonjugacy classes of GLn(F) and conjugacy classes of G(F) (see Section 3 and
equation (4.3)). We call this the e-norm correspondence. By Lemma 3.11 and
Corollary 3.13, the norm correspondence is surjective whenever n > 2m. If
n < 2m, then the image of the correspondence contains no regular elliptic
conjugacy classes. We show that the norm correspondence that we define agrees,
up to a sign, with the norm map defined by Kottwitz and Shelstad on the set of
strongly e-regular conjugacy classes (cf. Lemma 3.18). That is, if n 2m, and Y
is a strongly e-regular element of GLn(F), then, at least for almost all Y, the
norm exhausts all those G(F) conjugacy classes which are GLn(F) conjugate
to -Ye(Y). Since the norm correspondence has finite fibers (cf. Lemma 3.11,
Corollary 3.13, and Lemma 4.7), we let denote its one to finite inverse,
extended by the nonsquare central elements (cf. Section 4). It agrees with the
image map zCG/Ln of [14] from semisimple conjugacy classes in G(F) to e-
semisimple e-conjugacy classes in GLn(F).
We restrict ourselves to the case where both z and z’ are supercuspidal. There

are two terms that appear in the residue of A(s, z’ (R) z, wo). The first we call the
regular or main term, and is that associated to the regular elliptic conjugacy
classes in G(F). If n < 2m, then this term does not occur. Suppose that f is a
matrix coefficient of z and that f C(GLn(F)) defines a matrix coefficient of
z’ by descent. Then the regular term is given by

Rc(f,, f’)= > /
{T} T

Oe(.({?}), f’)O({),}, A)ID()I

where the sum is over the conjugacy classes of elliptic tori in G(), with 2t?
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min(n, 2m), e and denote e-twisted and ordinary orbital integrals, respec-
tively, #(T) is the measure of T/= Ti(F), and D(y) is the usual discriminant of
Harish-Chandra [10]. In fact, we should be more precise and say that

where A({7}, {)"}), is a transfer factor given in Section 4.
The singular term is more complicated and given as a limit

f’) lim Res f q/ c(s,Rsing(f,
oT s=0 dT,\o

in which the sum is over conjugacy classes of all Caftan subgroups of G(e), and
for each i, o9 is a compact subset of the regular elements T’ of T T(F). The
function q/, in which is the image correspondence, is defined in Section 4.
The fact that all Cartan subgroups must be included is critically important when
n < 2m. The main result of this paper (Theorem 4.8 and Corollary 4.9) can be
formulated as follows.

THEOREM. The intertwinin9 operator A(s, z’ (R) z, wo) has a pole at s 0 if and
only if cRt; + Rsing # 0 for some data, where c (2n log q)-l. Consequently, sup-
pose that z - .(a) The induced representation I(z’(R)z) is irreducible if and only if

CRG + Rsing -76 0.
(b) Assume z is generic, that is, has a Whittaker model. If l(z(R) z) is irredu-

cible, then I(s, z(R) z), s IR is reducible exactly at s +__ 1/2 or s +__ 1,
and at only one of these pairs.

The term R can be easily expressed as a pairing between the character of z
and the e-twisted character of z’ (Section 5). Its nonvanishing will then be the
reason to call z’ the "e-twisted endoscopic transfer" of z (Definition 5.1). When
n > 2m, the nonvanishing of R must be equivalent to the existence of a pole at
s 0 for the Rankin-Selberg product L-function L (s, z’ x z) defined in [20].
On the other hand, if z’ comes from SOn+ (F) by twisted endoscopy as defined

in [21], and R 0, which we expect to be the case for any z as such, then
Rsing 0 (Proposition 5.2). Thus, Rsing--0 must imply that z’ comes from
SO(F) (cf. [21]). Consequently, the two terms R and Rsing pretty much separate
the poles of the two L-functions L(s, z’ x z) and L(s, z’, ^2pn), respectively.
When n < 2m, R 0, and therefore Rsing controls the poles of both L-

functions, and distinguishing them requires further analysis. But in all cases we
have the following weaker result (Proposition 5.3) in which we may and do
assume z’

_
’:

PROPOSITION (a) Suppose z’ comes from SOn+I(F) (nonvanishin9 condition
(5.2) of [21]), or, equivalently, L(s,z’, ^2pn has a pole at s=0. Then
L (s, z’ x z) is holomorphic at s O.
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(b) Otherwise, that is, if z’ does not come from SOn+I(F), then L(s, z’ x z) has a
pole at s 0 if and only ifcRc + Rsing Ofor some data.

Finally, we would like to thank Laurent Clozel and Robert Kottwitz for their
suggestions, comments, and interest.

2. Preliminaries.
integer > 0, let

Let F be a p-adic field of characteristic zero. For an

Wl 1 MI(F),
1

1

and

MI(F).ill --1

-1

Let J2r be a quasi-split symmetric or symplectic form of dimension 2r, defined
over F. If J2r is symmetric and V Fk is the maximal anisotropic subspace of
F2r under J2r, then we assume that

( w,)J2r Ak
Wl

with 2r 21 + k, and Ak an anisotropic form of dimension k. In the symplectic
case we take J2r U2r. For X Mn(F), we let t(X) wntXw1. If Y GLn(F),
then we set O(Y)= (y-1). Similarly, we let *(X)= u,tXu1, and O*(Y)=
t*(Y-1). We set

{ if J2r is symplectic,

otherwise,

and write e(Y) for (y-1).
Let G be the special orthogonal, or symplectic group defined with respect to

JEt. Thus, {g e GLErltgJEr# JEt}, with the superscript indicating the con-
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nected component. In the symmetric case, we assume that k > 0, since k 0 is
dealt with in [22]. (Note that this implies that k 2, and ( is then determined
by the discriminant of the associated symmetric form (see [18]).) If G is orthog-
onal, then we let E be the quadratic extension of F over which G splits.

If J2r is symplectic, let T be the maximal split torus of diagonal elements in .
If J2r is symmetric, then we take

rX1
X2

Xl
X

-1\ x1

}Xi . Gm, X - SO(A2)
Let Td be the maximal split subtorus. Thus, in the symmetric case, Ta is the col-
lection of elements of T with X 12. Let B TU be the Borel subgroup, with U
the collection of upper triangular unipotent matrices in G. Let A be the set of
simple roots of T in U, and suppose that 19 A \{en en+l}. Let

A=A(R)=((R)ker;()’where ;( is the root character attached to . Then

I2m

We assume that n is even. If M ZG(A), then M - GLn G(m), where

G(m) [ Sp2m,

SOj.,

In fact,

e.(g) )Ig GLn, h G(m) }.
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Let N l-Lo+\x+((R))N, where

Z+((R))={fl*+lfl=’c’cr>O}"o
We set P MN. Let P P(F), M M(F), and N N(F). We are interested in
determining when Ind’(n) is reducible, if rr is a discrete series representation
of M. In order to do this, we study the poles of the standard intertwining opera-
tors that arise, using the theory developed by Harish-Chandra [24]. We begin by
looking at the structure of N to determine the types of integrals that need to be
evaluated. The proof of the following lemma follows from a straightforward
matrix computation.

LEMMA 2.1.
In X

Suppose that n N, and n 0 I2m
0 0

X Then we have
In

X U2mtXUn
-J2mtXwn,

and

(2.1) Y + (Y) XX’. [[]

Remark. If n N is as above, then we may denote n by n(X, Y).
Let G GLn. For $ G, the set

is called the e-conjugacy class of in GLn(F). Furthermore, the group

is called the e-twisted centralizer of 3 in G’. We let c, be the set of e-conjugacy
classes in G’, and denote the conjugacy classes in G(m) by

Let

1
-1

go 1 GLn(F).
Oo

-1
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Note that un gown. If n 2m, we rewrite (2.1) as

(2.2) -Y9o + (Y9o) XOoO(X)

if G Sp2r, and

(2.3) Y + (Y) X(-Jnwn)(X)

if G-- SOs2r.
Let V" be the collection of e-conjugacy classes in GLn(F) for which (2.1) has

F-rational solutions. Then (2.2) shows that, if G Sp2r, then

{{Y} Y9o + O(Y9o) 9o},

where the equivalence is that of 0-skew symmetric forms. Since -Y9o + O(Y9o)
is singular only on a set of measure zero in GL,,, and there is a unique equiv-
alence class of nondegenerate 0-skew sym_metric forms, we see that X is almost
all of c,. Similarly, (2.3) shows that if G SOs2r then, up_ to a set of measure
zero, vff is the set of 0-conjugaey classes for which Y + O(Y) is equivalent to
-J,,w, as t-symmetrie forms.
Note that if { Y} e vV’, and (X, Y) is a solution to (2.1), then

y-1 + (y-1) y-1xx,:(y)-I (y-Ix)(y-Ix),"

Therefore, oAr is closed under { Y} - { y-1 }.
Let #0 be the nontrivial class in the Weyl group W(G,A). Then #0 is repre-

sented by

(WO I2m
In

The actions of w0 on M and A are (9, h) (e(9), h), and x x-1, respectively.
As in the work of Harish-Chandra, we have the following notation. For a

connected reduetive p-adic group G, we let gc(G) be the collection of equiv-
alence classes of irreducible admissible representations of G. We denote by g(G)
those classes in go(G) which are unitarizable. We let o#2(G) be the discrete series
classes. We use Oc(G) to denote the supereuspidal classes, and set g(G)=
o(G) c gc(G).

Let (z’, V’) e g(G’) and (z, V) e g(G(m)). Then z’ (R) z is a unitary super-
cuspidal representation of M. Let

I(s, z’ (R) z) IndN((Z’ (R) Idet( )ls) (R) z (R) IN).
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We denote the space of I(s, z’(R) z) by V(s, z’(R) z). To understand the reduc-
ibility of I(z’(R) z)= I(0, z’(R) z), one must determine the poles of the standard
intertwining operator

A(s, z’ (R) "c, wo)f(9) j f(wln9) dn

associated to z’(R) z (cf. [24]). Here f e V(s, z’(R) z). By Bruhat’s theorem (see
[11]) we may assume that wo(z’(R) z)-’(R) . This is equivalent to assuming- ’ [4, 7].
Suppose that LM is the L-group ofM and Lrt is the Lie algebra of LN (see [5]).

If r is the adjoint representation of LM on Lrt, then r ri @ r2, where r2
with Pn the standard representation of GLn(IE), and rl is the tensor product of Pn
with the standard representation of the L-group of G(m). Moreover, the labeling
of these representations as rl and r2 is consistent with the ordering given in [19].
Consequently, the results of [20] imply that if x is generic, then the poles of
A(s, (R) x, wo) are the same as the poles of

L(s, z’x z)L (2s, v’,

where L(s,z’x )--L(s,z’(R) z, rl). Furthermore, at most one of the two L-
functions in the product can have a pole at s 0 (cf. [20, Thm. 7.6]). The poles
of L(s, ’, ^2pn were determined by Shahidi in [21]. Thus, our work here deter-
mines which representations z give rise to a pole of L (s, x ) at s 0 for some. As explained in [20], this completely determines L(s, x z) if and z’ are
supercuspidal. The method of [20], as used in [21] and [8], can then be used to
determine L(s, z’x ) for any pair of irreducible admissible representations z
and .
Denote by N the unipotent radical opposed to N. We let

V(s, "c’ (R) "C)o {h e V(s, "c’ (R) z)lsupp h c/ modulo P}.

By a lemma of Rallis [21], it is enough to compute the poles that arise when
A(s,z (R)z, w0) is applied to functions in V(s,z (R)z)0 and evaluated at the
identity. Thus, we note the following result.

LEMMA 2.2. Let N be the unipotent radical opposed to N. If n n(X, Y) N,
then wln P if and only if Y GLn(F), in which case

wln 0 I2m Xty-1x X’ (y-1x)’ I2m 0
0 0 y y-1 y-1X In

We note, for future reference, that (Y-iX)’ X’e(Y).
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The proof of the following result is computational and is based on equation
(2.1).

LEMMA 2.3. Suppose that (X, Y) is an F-rational solution to (2.1). Then
IEm X’y-1x G(m).

Let hE V(s,’c’(R)Z)o. Fix open compact subsets L c Mn(F) and L’c
M,2m(F). We assume that, for some v’ V’, v V, we have

((, 0
h X’e(Y) I

y-1 Y-X 0))0 t, (Y-1)L,(y-1X)(v’ (R) v),
I

where L and L’ are the characteristic functions of L and L’, respectively.
Choose ’ V and V. Let , and f be the matrix coefficients of z and z
given by the pairs (v,fi) and (v, fi), respectively. Then, from Lemma 2.2,
(’ (R) ,A(s, z’ (R) z, wo)h(e)) is equal to

(2.4) J ,Y,X)
,(e(Y))f(I- X’y-1X)ldet YI -‘-Ip’> (X, Y)d(X, Y),

where the integral is over the collection of F-rational solutions (Y, X) of (2.1).
Here, pp (1/2)-’a)+\x+(o), is as in [20], (X, Y)= L(Y-1)L,(y-1x),
and d(X, ) is a choice of Haar measure on N.

[}3. The norm correspondence and its consequences. In this section, we study
the properties of the map (X, Y) I2m Xy-1x. In particular, we discuss the
relation with the norm map defined by Kottwitz and Shelstad in [14]. The
results here have the same flavor as Sections 4 and 5 of [22]. We let

G(m),Gv (m)
Oj2m(F),

if G Sp2r;

if G= SOs2,.

LEMMA 3.1. Suppose (X, Y) is a rational solution to (2.1). Further suppose
that Xg(Xg)’ XX’,for some 9 GLEm(F). Then Xg Xhfor some h Gv (m).

Proof Consider Fn and F2m as row vectors, and let U Fnx F2m. Let
be the symmetric (or symplectic) form given on F2m by J2m. Set

J2m tl2m, if G Sp2r;Jm
-J2m, if - SOs2,,
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and

W { un if Sp2r;

Wn if SOj2r.

Note that in each case, X’= J(zmtXW,. Since (Xo)(Xo)’= XX’, we have
XOJmtOtXW,= XJmtXWn, which we rewrite as XOJ,,,toX= XJ(zmtX. Let
O*" U F2m be given by 9*(v)= vo. Now, suppose that vl, v2 U, and vi
yiX, with Yi Fn. Then

(0"(/31), 0*(/32)) (/310,/320) /310JmtOt/32 ylXOmtgtXy2

ylXJmtXy2 (/31,/32).

Therefore, O* is an isometry onto a subspaee of F2m. Consequently, by Witt’s
theorem for symmetric and symplectic forms [17], we can choose h e Gv (m),
with v9 vh for all v U. Now, for each y Fn, we have yXo yXh, and so
XO Xh. ff]

Let {y-l} be the e-eonjugaey class of Y-1 in GL.(F). Suppose that (X, Y)
satisfies (2.1), and O e GLn(F). Let Wn and J,n be as in the proof of Lemma 3.1.
Then (oX)(oX)’ oXJ(zm’X’oW, oXX’e(O-). Note that

gYe(g-1) -+- z(gYe(g-1)) gYe(g)-1 + Wn-1 t(gYWn-1 tgWn)Wn

oY,(o) + (ox)(ox)’.

Thus, the orbits {X} GLn(F)\Mn2m(F) parameterize the e-conjugacy classes
for which (2.1) has an F-rational solution.
Now suppose that {X} GLn(F)\Mn2m(F) parameterizes {Y-} ff. If we

replace X with oX, then I-X’y-1x is unchanged if we replace y-1 with
e(O)- Y-0, which is also in { Y-}.

If X is changed to X oX, with 9 GLn(F), we then say that {X} param-
eterizes { y-l}, rather than {X1 } parameterizes { Y- }, to point out that (X1, Iei)
satisfies (2.1), although the classes are the same.
Now suppose {X }, X1 Xh, h GL2m(F), also parameterizes { Y- }. Then

by Lemma 3.1, h Gv (m) and

I X y-1X I (Xh)’Y-tXh I (JmthtXWn) Y-Xh

I- h-lJmtXWnY-Xh h-(I- X’Y-IX)h.

Thus, the conjugacy class of I- X’Y-X in Gv (m) is unchanged.
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LEMMA 3.2. Suppose {X1}, X1 gXh, g e GLn(F), h GL2m(F), parame-
terizes {y-l}, Ii gYe(g)-x. Then X1 GLn(F)XGv (m).
We denote the set of all conjugacy classes {I- X’Y-IX} for all possible X by

N({ y-X}). By Lemma 3.2 it defines a one-to-finite correspondence.

LEMMA 3.3. Suppose that n n(X, Y) N, with Y invertible. Then
(a) (I- X’y-1x)x’ -X’y-le(y-), and
(b) X(I X’y-1x) -e(g-1) g-Xx.

Proof. By Lemma 2.2,

0 I X’ 0 I- X’y-1x X’ X’e(Y) I 0
I X Y 0 0 y y-1 y-ix I

Comparing the (2,1)-entries, we see that

0 (I- X’Y-XX)X’e(Y) + X’Y-1,

or

(I- X’Y-XX)X’e(Y) -X’Y-x,
which gives us (a). We can rewrite this as

(I X’y-1x)JmtXW -J,,,tXW y-X Wnt yWn-X,

and thus,

J2-ml (I X’ y-1x)J2mtX _txe(ty) Y.

Since I- X’Y-X e G(m), we have

or

which proves (b).

LEMMA 3.4

(I X’ Y-xX)-’tX -txe(ty)ty,

X(I- X’y-1x)-1 -Ye(Y)X,

Suppose that X Mnx2m(F) and U FnX. Let

Hx {h G(m) Xh OhXfor some #h GLn(F)}.

If {O} U F2m then Hx G(m)
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Proof. Suppose that h Hx. Let u e U, and choose v Fn with u vX. Then
uh vXh vghX U. Thus, U is an Hx-invariant subspace of F2m. If Hx
G(m), then we know that {0} and F2m are the only invariant subspaces.

LEMMA 3.5. Suppose that n is even, and {X} 6 GLn(F)\Mnx2m(F)/Gv (m). If
(X, Y) is a rational solution to (2.1), with Y invertible, then

X(I X’ y-ix) -e(y-l) y-1x,

and I- Xy-1x Hx.
Proof. That X(I-X’y-1x)---e(Y-1)y-1x follows from Lemma 3.3.

Since X(I-X’Y-1X) gX, for some g GLn(F), we see that I-
X’Y-IX Hx.
LEMMA 3.6. Fix X in Mnx2m(f), and let U FnX. We consider f2m as a sym-

plectic or symmetric space with respect to the form J2m. If U is nondegenerate,
then Hx, the right stabilizer of U in G(m), is the stabilizer of an involution of
Gv (m). If U is degenerate, then Hx is contained in a proper parabolic subgroup of
G(m).

Proof. If U is nondegenerate, then Lemma 42.4 of [17] implies that
F2m U 2_ I/V. Of course, W U+/-. Since Uh U and h G(m), we know h sta-
bilizes W as well. Therefore, h centralizes -lt 2_ 1w. Conversely, suppose
h Stab-lu+/-lw c G(m). For each u U, we let uh u + Wl, be the decomposi-
tion of u with respect to U and W. Then u(-lv _L 1w)h =-uh =-Ul- w,
while uh(-lv 2_ lw) -Ul + Wl. Thus, Wl 0, and so Uh U; that is, h H.

If U is degenerate, then we let U W 2_ Rad U. If u e Rad U, then, for all
Ul U, we have (uh, Ul)= (U, Ulh)= 0, so h stabilizes Rad U. Since RadU
is totally isotropic, H’x c Px MxNx, where Px is the parabolic subgroup
stabilizing precisely Rad U.

PROPOSITION 3.7. Suppose that n < 2m, and take X Mnx2m(f). Fix an inver-
tible Y with (X, Y) an F-rational solution to (2.1). Then I- X’Y-X belongs to
a proper parabolic subgroup, or a proper centralizer of a singular elliptic element
of Gv (m). Moreover, {Ne(e)} is never regular elliptic.

Proof. Since n < 2m, we have U- Fnx FEra, and the first result follows
from Lemmas 3.3(b) and 3.6. The last assertion is a consequence of I- X’y-1x

having at least 2m- n eigenvalues equal to 1.

LEMMA 3.8. Suppose that I + S G(n/2). Then there is some Y GLn(F), and
a projection X M(F) with

S---X’y-1x---X’Y-1= y-1X’
Jnwny-1x,

if G Sp2r;

if
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Proof. First suppose that Jar is symmetric. For S Mn(F), we let sV=
JntSJ;1. Then S Sv is an anti-involution. Suppose I + S SOs,. Then

(I + S)Jnt(I + S) Jn,

so

SJn + JntS + SJntS O.

Therefore,

S + Sv + SSv 0,

or

Sv -(I + S)-S.

Now, applying Lemma 5.6 of [22], with A =-(I+S)-1, we can find
Y1 GLn(F), and a projection X Mn(F), with S Xv Y-Ix Xv Y1-1
Y-IX. Let Y YJnw. Then S -X’Y-X =-X’Y-, and S Y-X
JnwnY-1X.
Now suppose that J2r is symplectic. Then we repeat the above argument with

Sv untSun -t* (S), to get the result of the lemma. [--]

DEVINIa’IOr 3.9. Suppose the pair (Y,X) satisfies the hypotheses of Lemma
3.8. Then { Y-} is called the canonical section of the norm correspondence over
{Z}, where Z I- X’Y-IX (cf. [22]).

Remark. We have called this the canonical section since it is the natural
extension of the unique section defined at every generic point Z, that is, those Z
for which X I, through I / Y- Z. Observe that this applies to almost all Z.

LEMMA 3.10. Suppose that G SOj2 and g G(n). Then the dimension of the
g-fixed vectors in Fan is even.

Proof. We know that G G(n) splits over a quadratic extension ElF. Thus,
G(E)- SOEn(E). By Lemma 5.8 of [22], we know that the dimension of the
fixed-point set of g in E2n is even. Suppose that V is the fixed-point set of g in
FEn. Let v e E2n, with gv v. We write v civi, with vi e FEn, and ci E. We
may assume that (vi} and {ci} are linearly independent over F. Extending {vi}
to an F-basis of F2n, we write gvi ] ijvj, with j e F. Since gv , cigvi v,
we see that ] civi , , civ. Comparing coefficients, and using the linear
independence of {ci} over F, we see that (ij) is the identity matrix, that is,
vi V, for each i. Thus, dimF(V) dime(V @rE), and this last is the dimension
of the g fixed points in E2n, and hence is even.
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LEMMA 3.11.
fibers.

Suppose that n 2m. Then Ne" JV" --+ cg is surjective with finite

Proof. First suppose that Jn is symmetric. Suppose I- S G(m), and choose
a projection XMn(F) with S=X’Y-XX=X’y-I=-JnwnY-1X, as in
Lemma 3.8.
Now, we have

(I + Jnwny-1x)Jn(I -tXtytx’) Jn,

which implies

Jnwn y-1XJn JntX Y-XtX’ Jnwn y-1XJntXt Y-ltX’.

Thus

Y-IX + (Y-I)x y-1xJntxty-lwnX y-IXX’(y-I)X.

Note that if v is in the image of X, then v Xv, so Y-iv +/(Y-1)v--
y-1XX,(y-1)v, or Y + (Y))v XX’v.
So we need to show_ that we can choose (X, _Y) satisfying (2.1) on ker X. Since

kerX = ker(Y- XX O(Y- )X) =_ ker(Y- XX 0(Y- )), we need to show that we
can choose (Y, X) so that Y + O(Y) 0 on ker X. We know that J,,w,, y-Ix--
-X’-, and Jnwn(y-1)X -X’O(Y-1)X. Note that O(X) is also a projection,
and O(X) =-w,JlX,. Thus,_both Y-1lkrx and t(Y-a)lrX are isomorphisms
onto kert(X). (N_ote that -O(X) is the matrix denoted by X’ in [2_2].) For
v F", we let O(v) t(WnV). Note that O(v)O(Y-1) tvty-lw,, O(Y-av).
Choose bases : and t for kerX and ker0(X), respectively. Then we see that
the matrix of Y-l[kerX with respect to , t,_ is equal to the matrix of
O(Y-a)lkx with respect to the bases t(), and 0(:’). Note that kerX is pre-
cisely the fixed-point space of I- X’Y-1X in Fn, and thus, by Lemma 3.10, we
can choose a unique (up to 0-conjugaey) Y with Y-11x a 0-skew symmetric
matrix. For such a choice of (,X), we now have Y-I+(Y-1)X=
Y-1XX’O(Y-1), and thus (2.1) is satisfied.
Suppose now that Jn is symplectic. If I- S Sp2n(F), then we can choose

a projection X Mn(F) and Y GLn(F) so that S X’y-1x X’Y-1

-y-ix, as in Lemma 3.8. Using an argument similar to the one above, we see
that

y-1X + *(Y-1)X y-1XX’*(y-i)X.

Then we again have (2.1) on the image of X. Note that, in this ease, X’=
u,tXu, =-t*(X), and-X’= t*(X) is a projection. Moreover,-X’y-I=
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Y-1X, and -X’O*(Y-1) *(Y-I)X. Thus, both y-1 and/*(Y-) carry kerX
isomorphically onto ker(-X’). Thus, the argument reduces to showing that we
can choose Y so that

YlkerS + *(YlkerS) 0.

Note that O*(Y) -Y if and only if Ygown t(Ygown). However, on any vector
space, one can always find a symmetric invertible transformation. For example,
taking YIkx (W.ao)lkoX UIkoX, we get the desired element of GLn.
To prove that Ne has finite fibers we use the following result.

LEMMA 3.12. If (Y,X) is an F-rational solution to (2.1), then Ne({Y-})
determines the semisimple part of {e(Y-) Y-} in GLn(F) uniquely.

Proof. Changing Y to an e-conjugate, we can assume that X is a projection.
Suppose that v is in the left image ImX of X. Then vX v, so by Lemma 3.3,
ve(Y-I)Y-X =-v(1-X’Y-X). Suppose v is in the left kernel kerX of X.
Then v(Y + (Y)) vXX’ 0, so ve(Y-) y-1 -v. Therefore, the matrix of
e(Y-)Y-I with respect to a basis of Fn which respects Fn= ImX kerX is
(acting on the right)

-(I- Xty-lX)llmx ).0 -I

Thus, the semisimple part of {e(Y-) Y-} is uniquely determined by N({ Y-}),
completing the lemma. [-q

Now, the finiteness of the fibers is as in [22].

COROLLARY 3.13. If n > 2m, then the statement ofLemma 3.11 is true.

Proof Let j (n/2) m, and consider the injection

(" )
of G(m) into G(n/2). By Lemma 3.11, there are X Mn(F) and Y GLn(F)
with
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Let X (X1 X2 S3), with X1,X3 6 Mnj(F), and X2 Mnx2m(F). Then

X’ X
xf

where X[’ =-WtXiW;1, and 14 is as in the proof of Lemma 3.1. We now
have

X’’Y-’ II X’Y-’X I XY-’ (X, X2 X3).
X,y-

Thus, by inspection, I2m Xy-1X2 h. The finiteness of the fiber follows from
that of the case n 2m.

Finally, let N-1 denote the canonical section of the norm correspondence
defined before. Then, by Lemma 3.11, N
LEMMA 3.14. The map N c

_
c, is continuous.

Proof The proof is similar to the proof of Lemma 5.16 of [22]. I-1

Note that 0* fixes the standard splitting of GLn, while 0 does not. However,
0"= Int(#0)0, where #0 diag{1,-1, 1,-1...,-1}. Suppose that F 1. Let
T be the torus of diagonal matrices in GL,,. We define 0’ by o.(Y)=
YO*(Y), for Y T.

If Y diag{al,...,an}, then O*(Y) diag{a-,...,a,a{}. Therefore,
YO* (Y) diag{aa-1, a2a-_l,..., ana{1}. Consequently,

ker/0" {diag{al, a2,..., an/2, an/2,..., a2, al}}.

Let Y0 diag{a,... ,an 1, 1,..., 1}. Then

(I- O*)(Yo) YoO*(Yo)-1 diag{al,... an/2, an/2, ,a2, al} + ker/o,.

Therefore, ker/0. (I- 0*)T. (Of course, this is the same as in [22], since
SO., is split over F. For Sp2n, it also follows from [22], since S02, and Sp2,
share the diagonal Cartan.)
Now suppose that F is not necessarily algebraically closed. Let Tn be a

Cartan subgroup of G(n/2), defined over F. Choose a 0*-stable pair (B’, T’) of
GLn, with T’ defined over F, such that there is an isomorphism TI-I T. is
defined over F [14].
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LEMMA 3.15. The map Y YO* Y) from T’ to T’ has

(T’)’ {tlO*(t) t}

as its image, can be identified with the projection of T’ onto T,, and is defined
over F.

Proof. The proof follows from the above observations and the argument of
Lemma 5.17 of [22]. t--]

LEMMA 3.16. Assume n 2m.
(a) Suppose that F is algebraically closed. Let { Y} e W c, be e-semisimple,

with Y in an e-stable Caftan subgroup of GLn. Then, there is an X Mn(F)
that satisfies (2.1) with Y so that I-X’y-1x is semisimple in G(n/2).
Moreover, e(y-1)Y-1 belongs to G(n/2), and I-X’Y-1X is GLn(F)-
conjugate to -e(Y-I)Y-1. Furthermore, every GLn(F)-conjugate of
_e(y-1) y-1 belongs to the image of { y-l} under Ne.

(b) Suppose F is not necessarily algebraically closed. If there is an X in Mn(F)
such that I- X’Y-1X is semisimple in G(n/2), then all the remaining state-
ments of (a) are valid as well. If {y-l} X corresponds to {X} {I},
that is, for almost all Y, then the GLn(f)-conjugates of-e(y-1)Y-1

exhaust the image of { y-i} under the norm map Ne.
(c) In either case, the semisimple part of every conjugacy class in Ne({Y}) is

GLn(F) conjugate to {-t(Y-1) y-1 }.

Proof Assume that F is algebraically closed. Suppose that Jn is symmetric
and that A GLn(F) satisfies AJn tA Wn. Since Y is O-semisimple, there is an
X1 e Mn(F) with I-Xty-1x1 semisimple in SOn(F) (the split form). Here
X" -wn tXlwn. Let X XIA. Then

I- X’Y-1X I + Jnt(X1A)wny-1x1A I + Jn tA tXlWny-1x1A

I + A-lwn tx "lWny-1X1A A-I(I_ X y-1X1)A.

Since I- Xty-1x1 is semisimple in SOn(F), we see that I- X’Y-1X is semi-
simple in SOs, (F).
On the other hand, if Y is O*-semisimple, then there is an h Spzn(F) with

Y1 hYh-1 diag{al,..., an}. Then

Y1 + * (Y1) diag{al + an, a2 + an-I,..., al + an}.

Let v/Z1, and

X1 idiag{al + an, a2 q- an-l,... ,an + an/2+l, 1,..., 1}.
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Then X -idiag{1,..., 1, an + an/2+l,.. ,al + an}. Therefore, SlS Y1 +
*(Y1). Note that

I X y-1X -diag{a{lan, alan_l,..., a-lal),

which is semisimple. Letting X h-iX1, we have that

I- X’Y-’X I- XO*(h)h-1Ylh(h-lX1) I- XY-lx
is semisimple.

So, in either case, we can choose X e Mn(F) with the desired property. Now,
since Y belongs to a e-stable Cartan, we see that e(Y-1) y-1 is semisimple in
G(n/2). Choose Y2, which is e-conjugate to Y, and a projection X2 satisfying (2.1)
with Y, such that I X2’ Y2-1X2 I X’ Y-1X. Then e( Y2-1) Y2-1 is conjugate to
e(Y-) Y-. By the proof of Lemma 3.12, we see that -e(Y-) Y- has matrix

(I X2 Y-Ix2)IImx * )0 I

with respect to a basis that respects Fn-- ImX2 kerX2. Thus, the eigen-
values of-e(Y-1)Y-1 different from 1 are among those of I-Xyflx2. Since
Y belongs to an e-stable Cartan subgroup of GLn(F), we see that
Y-le(Y-1) =e(Y-1)Y-1, and thus Yle(Yfl) and e(yfl)Y-1 have the same
eigenvalues. Consequently, the eigenvalues of I- X’Y-1X I- X2Y-IX2
which are not equal to 1 are among those of-e(Y{l)f1, and, therefore,
I- X’Y-1X and -e(Y-1) -1 are GLn(F)-conjugate. This proves part (a). Parts
(b) and (c) follow from part (a).

LEMMA 3.17. Assume n 2m. Suppose that Y+(Y)= XXr, and Z
I- X’Y-X. Let # Ge,y(F), and suppose that there is an h G(n/2) with
oX Xh. Then h, whose class modulo the ri#ht stabilizer of X is uniquely deter-
mined, belongs to Gz(F). Conversely, suppose h Gz(F), and (X, Y) 9ires the
canonical section over Z. If there is some # G(F) with #X Xh, then we can
choose such a # in G,r(F).

Proof. We only need to prove the converse. Recall that

W. ( u, if ( Sp2r;

wn, if ,= SOs2,.

Then in each case, X’ -JntXWn-1, and from Lemma 3.8 we have

X’Y-1X Xty-1 _JnWn-1 y-1X.
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Set X" -Wn tXWn-1 -(X). Then X" Wn-IjIxt, and thus,

X"y-1x X"y-1 y-Xx.

Further note that -X" is a projection, since X is.
Take U XF", U (-X")F", U2 {vlXv=O}, and U {vlX"v=O}.

Then Y- U1 U, and Y- U2 U. If we set (v) t(Wv) tvW-, then
this is an isomorphism of F which takes U to U’ and U to U, where U F"X
and U’ F"(-X"). Now e(Y) takes U’ to U.

Suppose that h-IX’y-1Xh X’Y-IX. Then

Jnt(h-lXty-1Xh)Wn Jnt(Xty-1x)wn,

which gives

h-lX’e(Y)Xh X’e(Y)X.

A straightforward computation shows that

G,e(y) G’ (G’ )e,y-1 8 e,Y

Note that I + X" and I- X are projections, and

(I + Xu) Y-i (I- X) (I + X") y-1 y-1 (I- X).

We now take g G’ with gX Xg. Then e(g)- y-lg y-1 and soe,Y

(3.1) (I + X")e(9)- y-19(I- X) (I + X") Y-I (I X),

which implies that

(3.2) e(g)- (I + X") y-l(i X)g (I + X") Y-(I- X).

Let gV be defined by gVlv ---Xh[v and gV Iv2 (I-X)glv. If v e U, then

9
v Xv gVv Xhv. If v U2, then JnWny-1Xhv hJnWny-1Xv O, and so,
Xhv 0 gV Xv. Thus, gVX Xh.

If v z U1, then we know that y-Iv U. Note that

_X,,e(gV )-1 y-lgV v e(h)- (-X")Y-Xhv

-e(h)-1 Wn-ljlx’y-1Xhv

_e(h) -1 wn-ljlhX’r-lv
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-e(h)-1 wn-lth-ljlx’y-lv

e(h)-le(h)(-Xu) y-iv

-X"y-lv.

Furthermore, we see that

(I + S")e(gv )-1 Wn(I X)Wn-1Wntgv Wn-1

Wnt(gV (l- X))Wn-1 Wnt((I- X)g)Wn-1

8()-1 (I + X").

Thus, we have

(I + X")e(gv )-1 y-lgV v 8(g)-I (I -{-- X") y-1Xhv 0 (I + X") Y-iv,

since y-1Xhv U.
Now suppose that v U2. Then

_Xtts(lV )-1 y-lgv v e(h)(-X") y-1 (I X)gv

e(h)(-X")(I + X")Y-lgv 0 -X"Y-lv.

Finally, we see that

(I + X")e(gv )-1 y-IgV v 8(g)-1 (I at- Xt’) y-1 (I X)gv

(I + X")y-1 (I- X)v (I + X")Y-v,

the next to last equality coming from (3.2), and the final one from the definition
of U2. So, 9

v is the desired element.

We can now state the final result of this section. This allows us to determine
the residues of the intertwining operator given in (2.4) via the theory of twisted
endoscopy.

LEMMA 3.18. Suppose that n 2m.
(a) For SO,, the norm correspondence No agrees with the norm map of

Kottwitz and Shelstad on the intersection of r with stron#ly O-re#ular O-
semisimple conjugacy classes in GLn.
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(b) For Sp2r, the norm correspondence No* agrees with the negative of the
norm map of Kottwitz and Shelstad on the intersection of A/" with strongly
O*-regular O*-semisimple conjugacy classes in GLn.

Proof. (a) follows from the argument of Lemma 5.21 of [22], since SOj2n
splits over L. For (b) we simply note that if TrI is a Cartan subgroup of Sp2n
defined over F, and T is a 0*-stable Cartan of GLn, with Tn ---’ T. defined over
F, then No.({Y})= {-Y-IO*(Y-1)}, which is the negative of the norm map
defined in [14]. [--]

Remark. The appearance of the minus sign in (b) appears somewhat incon-
gruous with the results of [22]. However, this does not affect the location of the
poles of the intertwining operator, because it only has the effect of multiplying
the residue by a scalar, namely, co(-1), where o9 is the central character of z.
However, the sign may be of some arithmetic significance, and this question
should be addressed in the future.

[}4. The poles of intertwining operators. We return now to the computation
of the poles of the intertwining operator A(s, z’ (R) z, wo) discussed in Section 2.
We use the results of Section 3 to determine the residues of these integrals. We
begin with the following proposition.

PROPOSITION 4.1. Assume n 2m. Suppose the e-conjugacy class {y-l} is e-
regular. Then Ne({g-1}) consists of a single conjugacy class in Gv of a regular
semisimple element in G. Assuming that Y and e(Y) commute, that is, that
y-le(y-I) is in G, then the converse is true, that is, if Ne({Y-1}) is regular, then
{ y-1 } is e-regular (and hence is e-semisimple).

Proof. Suppose the e-conjugacy class (y-l} is e-regular. Then up to GLn()-
conjugation, e(y-1)Y-1 is a regular semisimple element of G. Choose Y2-1,
e-conjugate to Y-, and a projection X2 satisfying (2.1) with Y2, such that

I-X.Y-X2 I-X’Y-IY. By Lemma 5.10 of [22], the eigenvalues of
e(Y-)Y-1 different from 1 are among those of the semisimple part of
I-X2yIx2. Since Y-le(y-11 is GLn(F)-conjugate to e(Y-1)Y-1, one sees
that the eigenvalues of -e( Y2)- Y2-1 and Y2- e( Y2)- are the same. Therefore,
one can apply the argument of Lemma 5.10 of [22] to the equation in Lemma
3.3(a) to show that the eigenvalues of the semisimple part of I- XY2--1X2 that
are not 1 are also among those of-e(Y2)-IY-1. Then the semisimple parts of
I X’y-1x and -e(Y)- Y- are GLn()-conjugate. But -e(Y)-1Y-1 is
GLn(’)-conjugate to a regular element in G, and therefore, I- X’y-1x must be
semisimple and regular.

Suppose now that Y + (Y) XX’, with y-le(y)- G(F), and assume
Ne({Y-1}) contains a regular semisimple element (I-X’Y-X}. Again by
Lemma 3.3(a), and the argument of Lemma 3.12, the conjugacy class of
I- X’Y-X is completely determined by the semisimple part of {-Y-le(y-1)},
a conjugacy class in G(F). That is, the eigenvalues of the first are among those of
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the second. Moreover, by Lemma 3.12, the semisimple part of the conjugacy
class of-e(Y-1)-1 is completely determined by I-X’y-1x. Since
{I-X’Y-X} is regular semisimple in G(F), and Y-e(Y-) G(F), we con-
elude that -e(Y-) is regular and semisimple. Therefore, {Y-} is e-regular.
In fact, let (Y,e) represent an element in the nonidentity component
of GLn x (1,e}. Write su, with s semisimple and u unipotent. Then
y2 s2u2 y-le(y-). If Y-e(Y-) is semisimple, then u2 u 1, and thus Y
is e-semisimple and e-regular. [-]

COROLLARY 4.2. Suppose n > 2m. For almost all reoular elliptic conjuoacy
classes {h} G(m), the collection of e-conjuoacy classes, N-l({h}) is parame-
terized by a unique e-reoular, e-conjuoacy class in GL2,n(ff).
Proof For almost all regular semisimple classes in G(m), there is a choice of

Y2 GL2m(F) that satisfies (2.1) with X2 I2m, so that I-X’2Y-Ix2 {h}. In
particular, Y2 + (Y2)= I,. By Proposition 4.1, the e-conjugacy class of 2 is
e-regular and uniquely determined by h. Let j (n-2m)/2, as in Corollary
3.13. Let

I2m Mn2m(F).
0jx2m

ThenX’=(O I’ O),and

o 0)XX 0 I2m 0
o o o

Let

If G is orthogonal, then

(Y) / W2m W2m



TEMPERED SPECTRUM OF QUASI-SPLIT CLASSICAL GROUPS

Similarly, if G is sympleetie, then we have

(Y) (- 1)Ju2m tY2
u -// (- 1)u

(y:)

b

277

Therefore,

o o o)Y+:(Y)= 0 I2m 0 =XX’.
o o o

Moreover, we see that I2m Xty-1x I2m It2mY h.
It remains to check that for almost all Y2, the class of Y satisfying (2.1) is,

up to GLn(F)-e-conjugacy, of the form given in the previous paragraph. First
observe that for almost all Y satisfying (2.1) with

(0)
Yacts semisimply on the direct sum of the image and the kernel of XX’, both of
which are invariant under e, since Y2 is e-regular. Moreover, Y must be e-skew
symmetric on ker(XX’) and can therefore be given in the form diag(J1, Y2,J2)
with diag(J1,J2) e-symmetric (G symplectic) or e-skew symmetric (G orthog-
onal), proving our assertion.

LEMMA 4.3. Suppose that e F2\F. Let o diag{, 1, , 1,..., 1} e GSp2m.
Then

N,({r’}) -N,({r’})o,

for any ?’e ff. Similarly, let e NE. Take go GLk(F) with OoAktOo oAk.
Let oo diag{Odm-(k/E), gO, Im-(k/2)} GOS2m. Then

Ne({oy’}) o’lNe({)’t})oo,

for all {y’} e vU.
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Proof Let 0v-- aI2m. In the sympleetie case, av= ao(ao), while in the
orthogonal ease, av jlooJn too. Let y-I {yt}. Then Xav X’ aY + (aY),
while Xav X’ (Xao)(Xao)’. Since Ne({ay’}) is the eonjugaey class given by

I- (Xo)’(Y)-I(Xo),

we have

I- (Xxo)t(xy)-I(Xo) o1(I- Xty-1x)txo [’--]

Let ff and c, be the sets of conjugacy classes in G(m) and e-conjugacy classes
in GLn(F), respectively. Suppose that n 2m. Let T be a Cartan subgroup of
G(n/2), defined over F. By Lemma 3.3.B of [14], there is a 0*-stable Cartan
subgroup T’ of GLn with an isomorphism T : T., which is defined over F.
Furthermore, this isomorphism induces the imaoe map (n/2)/oL, between
semisimple classes in cg and 0*-semisimple 0*-conjugacy classes in GLn. We set

if G(n/2) is symplectic,
if G(n/2) is orthogonal.

(See [22, 7].) Let h" T’ T’ge be given by right multiplication by 9e. Then, up
to a sign, we see that the diagram

Ttge

commutes on the set of strongly 0*-regular elements of T’. (Recall that an ele-
ment of T’ is called strongly 0*-regular if G.,t is abelian.) Since T’ is 0*-stable,
we can, in the language of {}3.1 of [14], take 1, to see that h-1 is the map m
of [14].

LEMMA 4.4. Let T be a Caftan subgroup of G(n/2) defined over F. Then there
is a O*-stable Caftan T’ of G’(n), such that the diagram

T

T T N8
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commutes up to a sign on all stronoly O*-stronoly reoular O*-semisimple elements
of T’(F). Furthermore, T- T, induces the image map (V(;’" If t* T’ is O*-
strongly regular, then Cento, (*, G’) (T’)*
Proof We only need to prove the last statement. If * is strongly 0*-regular,

then Cent0,(*, G’) is a maximal torus in G’, stable under Int(6*)o 0". Since

T, T’ is a maximal torus and T’ is 0*-stable, we have Cent0,(6*, G’)=

We must eventually integrate over twisted conjugacy classes in /. By Propo-
sition 4.1 and the surjectivity of the norm correspondence, up to a set of measure
zero, these twisted conjugacy classes are parameterized by regular semisimple
conjugacy classes in G. There may be two regular conjugacy classes in G which
parameterize the same class in A/. This will be taken into account as we inte-
grate over all of the Cartan subgroups of G. We can therefore fix a representa-
tive T for each conjugacy class of Cartan subgroups of G that are defined over
F. Let d7 be a Haar measure for T T(F). Then by Lemma 3.15, the last part of
Lemma 4.4, Proposition 4.1, and upon computing the Jacobian for the corre-
sponding open immersion in page 227 of [1] (or Theorem 3.2 of [23]), the mea-
sure IW(T)l-lDo,(7’)ld7 as T ranges provides us with a measure for yl/’. Here
{7} is in No*({7’}) for each e-regular {7’g} in X and

Do* (7’) det(Ad(7’) o 0* 1)

as described in [14]. We introduce the positive multiple IW(T)I- since, because
of surjectivity of the norm correspondence, we may and do transfer the inte-
gration to one on G for which the measure for integration over semisimple
conjugacy classes of G coming from the conjugacy class of T is, in fact,
IW(T)I-ID(e)I d7, as suggested by the Weyl integration formula.
By Lemma 4.5.A of [14],

/1({7}, {7’}) --IDo,(’)l/ID()l

is bounded on {({N0*(7’)}, {7’})}. Suppose {7} is regular and semisimple. Define

/1({7},{r’})
0,

if {7} N({7’}) and 7’ is e-regular;
otherwise.

Observe that ID( )l [D(7-1)1
For each regular semisimple conjugacy class {7} e rg, define

z’((7}) {(7’}1 FX\F, (7} Ne(((7’)-l})}
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We set

O,
if {),) Ne({(")-l});
otherwise.

Finally, let

Oe(((}), f’) E
{’} ’({})

The main part of the residue of the intertwining operator at s 0 comes from
the regular elliptic elements in the form of the Weyl integration formula applied
to the class function ,(({?)), if), that is, as a pairing between characters and
twisted characters (cf. Section 5). More precisely, the contribution from these
regular elliptic classes has the form

RG(f,f’) E#(T/)Iw(r)l I @({y},f,)@(al({y}),f’)ID()l d,
{Tf} T

where {Ti) runs over the conjugacy classes of elliptic Caftan subgroups of
G G(m) and T/= Ti(F). For each i, tt(T/) is the measure of T/. Observe that
by the way that our transfer factor A is defined; this is, in fact, an integration
over e-conjugacy classes in /" (since the norm correspondence is surjective).

Let us first check the convergence of RG. It is enough to show that

O(, f,)O,(/({}), f’)[D()[ dy,
()

converges for any elliptic torus T of G(n/2). By Theorem 14 of [10], the function

ID()ll/Z(, f) is bounded on the intersection of T(F), with the regular set of
G. Therefore, we are reduced to proving the convergence of

Oe(({y}),f’)lD(y)[ 1/2d.
(v)

It is enough to show that each integral in the sum converges absolutely, that is,
that

(V
IOe(y’ge, f’){ X ({?}, {y’})ID(Y)l 1/ dy

o, ({r’})={r}

converges for every e FX2\F. We are therefore reduced to showing the con-
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vergence of

(4.1) f Io’(7’,Rwf’)l IDo’(’)I ID()I -/2 d’.
JN

Since O0. is a tempered distribution, the fu,nction O0" (7’, f’)IDo,
is bounded on the intersection of T0.(F) with the 0 -regular set [6], [10]. Now
the convergence of (4.1) follows from the boundedness of x({,},{7’}) 1/2

(Lemma 4.5.A of 14]).
Let Mv -GLn(F)x Gv act on N by the adjoint action, where GV=

Gv (m) Oj., if G(m) SOj and Gv (m) Sp2m, otherwise. Then the orbit of
n(X, Y) N consists of pairs (#Xh-, #Ye(#)-1) e N, with # G’ and h Gv

The stabilizer Av of the action at n(X, Y) consists of all those pairs (#, h) with
# G,y(F) for which #X Xh. Then h GVz where Z I- X’y-1x and GVz
is the centralizer of Z in Gv (m). By abuse of both notation and terminology,
identify Av as a subgroup of both GVz(F) and G’,,y(F) through projection onto
its components.
To compute (2.4) we first integrate over each orbit of N under Mv The mea-

sure d*(X, Y) IdetYI-(p’)d(X, Y) is an invariant measure on these orbits. In
fact, it can be easily checked that

d*(gXh-l,gYe(#)-1) d*(X, Y),

since

d(gXh- gYe(g) -1) Idetgl(2pP,)d(X, Y).

One can then write d* (X, Y) as a product of measures d(X, Y) and d(X, Y),
the first one for integration over the orbit of (X, Y) under Mv and the
second to run over all such orbits. (They both are specified later.) Then
d(y-1s, e(Y)) d(X, Y). Since d*(S, Y) and d(S, Y) are both invariant
under the action of Mv so is d’(X, Y). Let dfi be a measure on Av Fix mea-
sures dg and dh on GLn(F) and Gv (F) so that the measure d’(X, Y) on each
orbit is given by the quotient of dhdg by dfi. Consider the map (g,h)
(gXh-1, g Ye(g)-) from GLn(F) x Gv (F) to the orbit of (X, Y). Changing our
representative for the orbit from (X, Y) to (Y-X,e(Y)) changes (g,h) to
(gY-, h). Thus, the measures dg and dh are unchanged by this change of repre-
sentative. Also, changing (X, Y) to (y-1x, e(Y)) changes Av to (Y, I)Av (Y, I)-,
and therefore leaves dfi invariant. Thus, d’(X, Y) d’(Y-X,e(Y)), and there-
fore d*(Y-X,e(Y)) d*(X, Y).
Making this change of variables, the integral in (2.4) can be expressed as

(4.2) ,(Y)f(I X’y-1X)L(e(Y)-).,(X)IdetYI d*(X, Y).
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Let a’ be the central character of z’. Since we are assuming that z’ is self-dual,
o" is trivial. We choose f’ C(G’) so that

qt’(9’) lz f’(zo’)c’(z-) dz"
(G’)

Making this substitution, we rewrite (4.2) as

f’(zY)f(I X’y-1x)oo’(z)ldetYlS (e(Y)-l),,(X) d*(X, Y) dz.

There is a map from the orbit of n(X, Y) under Mv onto G’/Av x AV\Gv
whose fiber is homeomorphic to XAv The integration over the orbit is then
equal to the integration over the product of G’/Av x AV\Gv with XAv The
contribution to (4.3) from the orbit of n(X, Y) under the action of Mv is then

z)
e (FX2)\.F

f’(oYe(o)-l)f(h-Zh) Idet(oYe(o)-l)l do dhd(Xho)

Jz L(Z-29Ye(o)-1)L’(z-loXhh) Idetzl-2’ dxz’
(G’)

where L (L). Observe that we have suppressed the dependence of on other
parameters X, Y, f, f, L, and L’. Breaking the variables further,

,/;(,,, z)

(4.4)
Idet(gYe(g)-1)1 do dh do0 dXho

lz L(Z-2Oye(o)-l)L’(z-lgoXhh) Idetzl-2 dxz’
(’)

where G,r G;,y(F) and GVz GVz(F).
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Let Zj’s be representatives for the G-orbits inside the GV-orbit of Z. Note that
there are either one or two G-orbits in each Gv -orbit. Denote by

f(h_lZjh)dhO(Zj, fz)
Gz(F)\G

and

(z, L) IG/F)\ f(h-lZh) dh

the corresponding orbital integrals. Finally, let

,s(aY, f’) IGt/G:,y(F) f’(agYe(g)-l) Idet(gYe(g)-)lS dg.

Clearly,

e,s(o Y, f’) e(Y, f’) /--,o .Io,/tKy(F
f’(agYe(g)-l)dg

is the corresponding twisted orbital integral.
Suppose first that n 2m. Assume (Y,I) satisfies (2.1) and Z I-I’Y-1.

Note that I’=-I if G is symplectic and is -JnW,,, otherwise. (If G is a split
orthogonal group then, again, I’=-I and Z I+ Y-.) Then Gz(F)-
G,y(F) - Av Let

(4.5)

,(s,Z)

Iz L(Z-2Oye(o)-l)L’(z-lohh) [detz[-2s dXz"
(G’)

f’(oYe(o)-x)f(h-Zh) Idet(oYe(9)-)l dhd9 dho

Then if(s, Z) (s, Z).
Let L(l,s)= (1- q-S)-1 denote the local Heeke L-function attached to the

trivial character 1. We have the following result.

LEMMA 4.5. Let n 2m. Assume that Y is e-reoular. Then (s, Z) converoes
absolutely for Re s > 0. Suppose further that (Y,1) satisfies (2.1), that is, for
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almost all twisted conjugacy classes in ,4/. Then (s, Z) also converges absolutely

for Re s > O, and there exists a function Ez(s) E(s, Z, Y, f, f’, L, L’), which as

a function of s is entire, such that (s,Z) Ez(s) if Z is regular and nonelliptic,
and

z)

O,s(Y, f’)O(Zj, f)#(Gz,(F))) qb(Y’Z)SL(l,2ns)
te (F)2\F J

for Re s > 0 if Z is regular elliptic. Here b(Y, Z) is an integer depending on the
data f, f’, L, U, as well as Y and Z. In particular,

Res O(s, Z) (2n log q)-I
s=O

@e(Y, f’)dg(Zj, f)#(Gzj (F))
(F)2\F

ifZ is regular elliptic, and

Res q, (s, Z) 0
s=O

ifZ is regular but nonelliptic.

Proof We prove the lemma when X I. The convergence of O(s,Z)
can be proved the same way. We may assume L (therefore, L) and L’ are
both basic neighborhoods of 0. Clearly f’(eg Ye(9)-1)L(z-29 Ye(9)-1) 0 unless
oYe(9)-a zZLc e-1 supp (f’) for some e. A standard argument using the sup-
port of f’ then implies that Idetz must be bounded below with the bound
depending only on L and f’. Since Y and Z are e-semisimple and semisimple,
respectively, we may assume g and h in (4.5) belong to compact sets supp(g)
and supp(h) of G’/G,y(F) and GVz(F)\Gv depending upon Y, Z, f, and f’,
respectively.
To study the convergence of (4.5), we may assume h0 is in the F-points of

the split component of G (i.e., the connected component of Gz), which we may
further assume are given by diagonal matrices. Write z diag(z, z,..., z), and

By the compactness of supp(g) and supp(h), L,(z-19hoh)= 0, unless z-lho
belongs to a compact subset of M,(F), that is, Izail > and Iza[-ll > to, for some
> 0. Consequently, Izl > x. Moreover, there exists a 1 > 0 such that if

Iz-lai-Xl < x and Iz-ail < tea, then supp(o)z-hoTsupp(h) c L’, since both
supp(g) and supp(h) are compact. Here T is the compact part of G. Observe
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that xl > x. Consequently, with such a z and h0, h is free to change over all its
compact support leading to (Z, f), which vanishes if the split component of

G is nontrivial (cf. [22]). Otherwise GVz(F) is compact.
Let r/ be the lower bound given by f’ and L on [z[. We use x instead of r/

if x > r/. We may assume xl/x is a nonnegative integral power of q. Choose a
nonnegative integer rn so that [to-m[ =/el/K:. Then [to-mzai[ > x, ]to-mT,al[
/1, and [to-mg[ > ///1// > /’]. Consequently, for all z with Izl > x/x, we can
drop both L and L’ and integrating over all z flto-m, with fl o, and all of
G(F), we get

(4.6) (Zj, f.c)e.,s(aY, f’) q-2mns#(rn).
a(FX)2\F

Here Io-el =/,]R71// and #(m) is equal to

-(m-d) lal < q(m-d)
dXai

times the measure of the compact part of GVz(F). Moreover, d is given by
Xl qd. The series clearly converges for Re s > 0. If GVz(F) is not compact, then
(4.6) vanishes. The remaining values of z, that is, rlXl/X > Izl only lead to an
entire function in s. The proof is now complete. VI

COROLLARY 4.6. Let Ti be a Caftan subgroup ofG. Denote by Ti’ the subset of
regular elements of T/: Ti(F). Let ogi be a compact subset of Ti’. Then #iven
f,, f’, L, and L’, b b( Y, Z) and Ez can be chosen independent of Y and Zfor all
Z egi.

Proof This follows from the corollary to Lemma 19 of [10], which implies
that the compact sets supp(#) and supp(h) of the proof of Lemma 4.5 can in fact
be chosen to be the same for all Z coi.

To calculate the residue for the intertwining operator, we must now integrate
over all the orbits of the action of Mv on N. We do this by integrating over all
the e-regular e-conjugacy classes in A/’.

First assume n 2rn. We must integrate (s, Z) over orbits of N under the
action of Mv Almost all of these orbits are parameterized by e-regular con-
jugacy classes in V’. Therefore removing a set of measure zero from these orbits,
we may integrate ,(s,Z) over e-regular (and e-semisimple) e-conjugacy classes
{Y} in 4. Then, by Proposition 4.1, {Z} N({Y-1}) is regular and semi-
simple in Gv (F).

Let {Ti} denote a complete set of conjugacy classes of Cartan subgroups of G
defined over F. We now must integrate over A/’. As we discussed before, using
Proposition 4.1 and the surjectivity of the norm correspondence, we instead
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integrate over wi T, using measures

Now suppose n > 2m. Then for almost all { Y} , we can choose a repre-
sentative diag(Jl,#, J2), with 0 GL2m(F) e-regular in GL2m(F) as in Corollary
4.2. More precisely, we may assume X Mnx2m(F) has the form

I2m
0jx2m

with j-- (n/2)- m. Moreover, as in Corollary 4.2, we may assume Y preserves
the kernel and the image of XX’ for almost all Y, and therefore Y must be e-
skew symmetric on ker(XX’). Consequently, diag(J1,J2) must be either sym-
metric (G symplectic) or skew symmetric (G orthogonal) on this kernel. Outside
of a set of measure zero, the twisted conjugacy classes in X now form a fiber
bundle with finite fibers coming from the twisted conjugacy classes of possible
diag(J, J2). The base of the fiber bundle is parameterized by e-conjugacy classes
{Y-} in GL2m(F) such that Y is the second component of a rational solution
to (2.1) whenever GL2m x G(m) is considered as a Levi subgroup of G(3m),
and we may use 0*-stable Cartan subgroups of GL2m and their F-isomorphisms
with Tfs as in the case n 2m. Here {Ti}i is a complete set of representatives
for the conjugacy classes of Cartan subgroups of G. We then get measures
KI(’i, 7)ID()I dYi on the T/’s, and by surjectivity we need to integrate over k..) T/
for each fiber. The integral over the whole fiber bundle is then achieved by using
the image correspondence s defined precisely as in the case n 2m, but still
integrating over w T/. Still assuming n > 2m and choosing

X Xo I2m
0jx2m

equation (4.4) can now be written as

eGzV (F)\Gv Iho e czV (F)
f’(gYe(g)-1)f(h-1Zh)

Idet(gYe(g)-)l do dhdho

L CL(z-2gYe(g)-X)"(z-lgXhh)]detzl-2s dz"
(’)
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Lemma 4.5 is now valid for (s, Z) (s, Z) even if n > 2m, and in what follows
we may assume n > 2m.
For each G-conjugacy class of Cartan subgroups of G, choose a representative

Ti. Given i, let T/be the subset of regular elements in T/= Ti(F). For ), T/’, let

where the sum is over all {Y} for which Ne({Y-1}) contains {}. Let coi be a
compact subset of T’. By the absolute convergence of intertwining operators for
Re s > 0 (cf. [24]) we see that (4.3) is equal to

W(T)I-’ I (s, )IO()l d + W(T)1-1 1 (s, )IO()l d,

Let

R,(s) IW(T)I- l (s, y)ID(y)I

By Corollary 4.6,

Ro,(s) hi(s) + IW(T)1-1 Io o(, L)o(({}), f’)ID()I d,. #(Ti)qbSL(1,2ns),

if Ti is anisotropic, where hi(s) is an entire function of s. Otherwise, Ro,(s) is
entire. Clearly,

Res R,o,(s)
s=0

(2n lg q)-I Y’(T)I W(T)I-a I (’ L)(’({}), f’)lD()l d,

where the sum ’_,i’ is understood to be over conjugacy classes of anisotropic
Cartan subgroups Ti of G. Thus, the residue of the operator at s 0 equals

(2nlgq)-lY’#(T)lW(T)l-11o tI)(, f)(({7}), f’)ID(7)I d7

+ Res W(T/)I-1 Is=O T’\oi
(s, 7)ID(7)I d),.
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Letting COl T/’ for all i, the residue is then equal to

f’) + IW(T )1-1 lim Res fcRG(f,,
@--,T s=O JT,\

(s, )ID()l d,

where c (2n log q)-l. Here RG is defined the same way as in the case n 2m.
Now suppose that n < 2m, and consider the injection

Im-(n/2) )h--, h
Im-(n/2)

of G(n/2) into G(m). Let N" /ff c be the e-norm correspondence from
e-conjugacy classes r in GLn(F) to conjugacy classes in G(m). Suppose
that X Mnx2m(F) and Y GLn(F) satisfy Y + (Y) XX’. Note that
rankX’Y-xX < n, and so at most n eigenvalues of I-X’Y-1X are different
from 1. Thus, the semisimple part of the conjugacy class {I- X’y-1x’} has a
representative in G(n/2). Now let cv be the subset of ff consisting of those con-
jugacy classes of G(m) whose semisimple parts meet G(n/2). Then we see that
Ne" .A/’_.. rv.
LEMMA 4.7. If n < 2m, then the norm correspondence Ne has finite fibers.

Proof. We only need to show that if Y GLn(F) and X Mn2m(F) satisfy
(2.1), then I-X’y-1x determines the semisimple part of e(Y-I)Y-. But, by
Lemma 3.3, we have e(-)Y-X -X(I- XrY-xX). We may suppose that X
is in row echelon form, with the last n- r rows of X identically zero. We thus
have the decomposition Fn= Fr@ Fn-r, with XIFr an injection into F2m, and
XIF._r =0. Consequently, the matrix of e(y-1)Y-1 with respect to a basis
respecting the above decomposition of Fn is ( --*i), with A determined by
I- X’Y-IX. Thus, N has finite fibers. ]

Continuing with our study of the case n < 2m, we notice that again almost all
of the e-conjugacy classes in ff can be parameterized by regular semisimple
conjugacy classes in cv or by regular semisimple conjugacy classes in G(n/2).
More precisely, for G SOj, we set X (0nxj In 0nj), with j (2m- n)/2.
Then

X Jn In Wn

w 0

-Jnwn
Ojxn
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Thus, XIX =-Jnwn--Y+(Y). If G Sp2r, and j is even, then we take
XI=(O In 0), as above. We have X1X =-In= Y+(Y). If jisodd, then
we take X1 (0 un 0). Then again we see that X1X =-In Y + (Y). In
all but this last case, the identity

I2m X Y-1X1 Z ( IJ
Zl

with Z1 in the image of the norm correspondence for y-1 in the case n 2m, is
now obvious. Thus, the parameterization of almost all the e-conjugaey classes in
ff is as claimed in these eases. In the ease where G SpEr and j is odd, then

I2m X y-1X In Un Y- Un

n + y-l))

Since Y satisfies (2.1) with X In, we know that Z In + y-1 Sp2n, and
thus e(Z1) Z1, or (Z1) Zi-1. Therefore, g:(t(I + y-l)) =t ZI. Thus,

with Z as before.
We again choose a complete set of representatives {Ti}i for the conjugacy

classes of Cartan subgroups in G(n/2). None of the Ti is elliptic in G G(m).
By Lemma 3.2, the contribution from almost all the orbits is given by

z) E

f’(9Ye(o)-1)f(h-lZh)

Idet(vYe(v)-l)l do dhd(Xlho)

l L(Z-2OYe(o-1))’(z-gSxhh)ldetzl-2 dz’
z(w)
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where X, is as above and Z I-XIY-1X,. Moreover, XIGVz(F)_ G,y(F),
and therefore the formula for O(s, Z) can be written as

O(s, z)

f’(gYe(g-1))f(h-lZh)
eGVz(f)\Gv eG,r(t)

Idet(gYe(g-1))l dg dhdgo

f L(z-2gYe(g-1))L,(z-lggoS,h)ldetz1-2 dz,
dz(G,)

which is exactly the same expression as the one given in the case n > 2m, with
the roles of Gv (F) and G,r(F), as well as h0 and g0, interchanged. Using the
image correspondence, again we define (s, Z) as in the other cases. The inte-
gration of (s, 7) now is over wi T, and an argument similar to those used
before applies. But this time RG(f, f’) 0, since O(,, f) 0 for all elliptic 7.
Observe that although the integration is only over regular semisimple conjugacy
classes in G(n/2), the orbital integrals O(-,f) are computed over all of
G G(m).
We state our result as follows.

THEOREM 4.8. Let 2e min(n, 2m) and denote by {Ti} a complete set of rep-
resentatives for the conju#acy classes of Cartan subgroups of G(e). For each i, let
coi denote a compact subset of Ti’, the set of regular elements of Ti. Then the inter-
twining operator A(s, z’ (R) z, wo) has a pole at s 0 if and only if

cRc(f, f’) + E W(T)I-1 lim Res J ffc(s, )lD()l d 0,
o-T s=0 T/\o

for some choice of the data f, f’,L, and L’. Here c (2nlogq)-1. Ifn < 2m, then
Rc(f, f’) 0for all f and f’, and therefore it is the nonvanishing of

IW(T)1-1 lim Resf (s,)lD()l
oiT s=O JT,\o

that determines the pole of the operator at s O.

COROLLnRV 4.9. Suppose that z’ - ’.
(a) The induced representation I(C (R) ) is irreducible if and only if

f’) + IW(T/)I- lim Res [ pc(s, ,)lD(9,)l d, 0cRG(f, o-T s=0 JT/\o

for some choice of the data.
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(b) Assume z is generic. If I(z’(R) z) is irreducible, then I(s, z’(R) z), s e IR, is
reducible exactly at s

___
1/2 or s + 1, and at only one of these pairs.

Remark 4.10.
complicated term

When n > 2m, the residue is the sum of cRG and the more

IW(T/)1-1 lim Resf
oi--,T s=0 JT,\o

In the next section, we relate the nonvanishing of the second term to the simple
nonvanishing condition of Proposition 5.1 of [21], that is, in terms of the theory
of twisted endoscopy that discusses the equivalence of this nonvanishing with z’
coming from SOn+ (F).

Remark 4.11. Clearly Theorem 4.8 and Corollary 4.9 are valid for the split
even special orthogonal groups and are the correct versions of what was origi-
nally stated as Theorems 7.8 and 8.1 in [22]. In fact, although the main term
RG of Theorem 7.8 of [22] is correct, the singular terms given there are too
optimistic and are consequences of a gap in the proof of Theorem 7.8 of [22].
However, in Proposition 5.2 of the next section, using L-functions, we relate the
singular terms from the two different versions to each other. We refer the reader
to the introduction for further comments.

5. The connection with twisted endoscopy and L-functions. We now show
how the results from Section 4 can be related to the theory of twisted endoscopy
and L-functions.

Let ;t be the distribution character of z. By the work of Harish-Chandra,
[10], [11], we know that ;t is given by a locally integrable function, which we
also denote by . From [12] and [7], we can choose a matrix coefficient f for z
such that (y, f)- Z(y), for all regular semisimple y e G. The matrix coeffi-
cient f is then called a pseudocoefficient.

Since z’ - ’ -(z’)e, we see that z’ extends to a representation of the dis-
connected group GLn(F)< {1,e}. This comes from fixing an equivalence z’(e)
between z and (z’)e. The e-twisted distribution character of z’ is defined by
Z,(f’) trace(z’(f)z’(e)). In [6] Clozel showed that there is a locally integrable
function, also denoted by Z,, on the e-regular elements such that

Z,(g)f’(g) dg,

with Z’ the center of G’. Kottwitz and Rogawski [15] proved the existence of
e-twisted pseudocoefficients. That is, there exists a matrix coefficient @, of z’
such that (y’, ,)= ;,(y’) for every e-regular element y’ GLn(F). Thus, by
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choosing f’ Cc(GLn(F)), which defines ,, we have

I)e(({}), f’) A(),, )")Z,(?’),
,’ ({,})

and we denote this by ;,(({})).
Let n 2m. Then, by the above observations, we can choose f and f’ so that

the regular term becomes

Rc;(f, f’) -(T)I W(T)1-11: Z(’)Z,(((7)))ID(’)I d.

Thus, RG defines a pairing between the character of v, and the e-twisted char-
acter ;t, of z’. Consequently, we expect that the nonvanishing of RG(fi, f) must
in part point towards z coming from z via twisted endoscopy [2], [3], [13],
[14]. For our purposes, we define the notion of endoscopic transfer below.
Observe that RG makes sense and is convergent for any discrete series .

DEFINITION 5.1. A self-dual irreducible supercuspidal representation z’ of G’
is said to be the e-twisted endoscopic transfer of a discrete series representation z
of G(n/2) if g(f,f’) 0, for some matrix coefficient f of z, and some

f’ Cc(GLn(F)) defining onefor z’.

Assume n > 2m, and resume our assumption that z and z’ are supercuspidal.
We expect that the Rankin-Selberg product L-function L(s, z’ x z), which was
formally defined in [20], must satisfy the following (defining) condition:

L(s, z’ z) has a pole at s 0 if and only ifR(f, f’) v Ofor
somef andf, or equivalently, if and only if z comes by twisted
endoscopyfrom z (Definition 5.1).

As discussed in the next few paragraphs, this seems to be in complete agree-
ment with definitions given in [21].
We must now study the singular contributions, and we therefore continue with

our assumption n > 2m, and let

f’) [W(T/)[ -1 lim Res fRsing(fz,
oiT s=0 JT,\oi

pc(s, ,)IDff)l d,

so that the residue of the intertwining operator A(s, z’ (R) z, w0) at s 0 can be
written as

cRc(f,, f’) + Rsing(f,,
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where c (2n log q)-l. Observe that we have suppressed the dependence of Rsing
on L and L’.
Our goal in what follows is to separate out the poles coming from the two L-

functions L(s, z z) and L(s, ’, ^2p,) by means of the nonvanishing of RG and
Rsing, respectively, when n > 2m.
By Lemma 4.5, Rsing(f, ft) 0 if and only if the process of taking the resi-

due and integration can be interchanged. On the other hand, the theory of L-
functions discussed earlier demands the existence of poles coming from those of
L(s, z’, A2pn) at s 0.’ Such poles depend on z’ alone and cannot be reflected in
the nonvanishing of RG. Consequently, one must expect Rsing 0 in general,
as we discuss below. Therefore, the fact that interchanging the process of taking
the residue at s 0 and integration must be checked is not just an analytic
impediment, but rather a fact that reflects deep arithmetic connections that
govern the problem.
Now, let us assume that z’ comes from SOn+I(F) as explained in Proposition

5.1 and Theorem 7.6 of [21], or in other words, L(s, z’, ^2pn has a pole at s 0.
Then, by the simplicity of the pole of A(s, z’ (R) z, wo) at s 0, L(s, z’ x ) must
be holomorphic there. (See below and the discussion after Definition 5.1.) More-
over, assume that z is such that R(f, f’) 0 for all f and f’. We expect this
to be true for all z anyway, if z comes from SOn+I(F). Then, by the theory of
L-functions [20] as explained before,

L(s, z’ x z)-L(2s, z’, ^2pn)-A(s z’ (R) z, wo)

must be nonzero and holomorphic. This implies that Rsing(fz, f’) 0 for some
data. We therefore have the following result.

PRO,OSIXIOr 5.2. Suppose n > 2m. Assume that z’ comesfrom SOn+ (F). Then
Rsing :/: 0 for any irreducible unitary supercuspidal representation z of G(m) from
which z’ does not come by twisted endoscopy (Definition 5.1). (We expect this to
be the case for every irreducible unitary supercuspidal representation z of G(m) if
z’ comesfrom SOn+l (F).)
When n < 2m, the term R 0, and therefore the control of the poles of both

L-functions lies within Rsing, which now constitutes the whole residue. Further
analysis of the term Rsing is now necessary to distinguish the two L-functions.
We conclude the paper by stating a result about L(s, z’ x z) for any even n

and any m with no further assumption on the relation between z and z’. We may
and do assume that z’ - ’.

PROPOSITION 5.3. (a) Suppose z’ comesfrom SOn+l (F) (nonvanishing condition
(5.2) of [21]), or equivalently, L(s,z’, ^2pn has a pole at s=0. Then
L(s, z’ x z) is holomorphic at s O.

(b) If z’ does not come from SOn+(F), then L(s, z’ x z) has a pole at s 0 if
and only if cRc + Rsing Ofor some data.
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Proof The proposition is a consequence of the simplicity of the poles of
A(s, z (R) z, Wo), Theorem 4.8, and the holomorphy and nonvanishing of

L(s, z’ x "c)-L(2s, "c’, ^2p,,)-A(s, "c’ (R) "c, wo).
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