QUADRATIC UNIPOTENT ARTHUR PARAMETERS AND RESIDUAL
SPECTRUM OF SYMPLECTIC GROUPS
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Abstract. The purpose of this paper is to study certain quadratic unipotent Arthur parameters in the
sense of Moeglin and use them to parametrize a part of the residual spectrum of symplectic groups
over number fields, coming from the conjugacy class of Borel subgroups. In particular, using certain
identities satisfied by local intertwining operators, Arthur’s multiplicity formula is established for
them which remarkably enough appears by itself in the corresponding residue of the Eisenstein
series.

Introduction. In this paper we study certain quadratic unipotent Arthur
parameters in the sense of Moeglin [23] (cf. Section 3) and realize them as
Arthur parameters[1, 2] for certain sguare integrable residues of Eisenstein series
attached to the conjugacy class of Borel subgroups of a symplectic group over
a number field. Conseguently, using certain local identities proved in [11], we
prove Arthur’s multiplicity formula for them (Theorem 5.1), which remarkably
enough appears by itself in the corresponding residue of the Eisenstein series.

More precisely, let G = Sp,,, over anumber field F with ring of adeles Ar. As
in[23], weuse G* = Oun+1(C) to denote itsdual group. Let p1, . . ., ux bek distinct

nontrivial quadratic grossencharacters of F. Fix integersry > ... > rg > 2

with ry + ... +rx < n and choose rg such that ro +r; +...+rc = n. Then

X=X, 1, vy Mk -0 ik 1,..., 1) defines a character of T(F)\T(Ag),
—— —_— —

r r fo
where T is %he subgroup of lZ:iiagonal elements in G. An Eisenstein series [18]
attached to a character of T(Ag) will contribute to the residual spectrum only if
the character is of the above type (Proposition 4.6).

By [14, 16], the character y defines a homomorphism of the Weil group We
into a Cartan subgroup of SOn.+1 (C). Composing this homomorphism with the
standard action of Ozp+1(C) on C2™1 will then give a completely reducible repre-
sentation of W on C?™*1 which decomposes according to eigenvalues ju1, . . ., 1,
and 1, with multiplicities 2rq,...,2r, and 2rg + 1, respectively. Write C2™ =
Vo® V1 ...d Vk, where each Vi, dimV,; = 2r;, is the eigenspace attached to
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eigenvalue ui, 1 <i <k, and Vy is the trivial eigenspace of dimension 2rgp + 1.
In this way we get an embedding of [T’ O(Vi) C Ozns1(C).

Now, for eachi, 1 <i <k, let O; be the unipotent orbit of O(V;) attached to
the principa Jordan block (2r; — 1,1). Let O, be the principal unipotent orbit of
O(Vp), i.e. the one attached to the Jordan block (2rg + 1).

The Arthur parameter of interest to us is a homomorphism

¥ We x S.2(C) x SL2(C) — O2na(0)

which factors through [T, O(V;), sends Wr to the center of ], O(V;) according
t01® pu1® ... R uk, istrivial on the middle S_,(C), and for which

11
¢(1,1,<0 1))

belongs to H}‘zo Oi. Thisis clearly a quadratic unipotent Arthur parameter in the
sense of Moeglin [23] (see Section 3). To v, Arthur associates a Langlands
parameter ¢,, (see Section 3).

In this paper, we use Langlands theory of Eisenstein series [18] to construct
the representations in M, as residues of the Eisenstein series associated to the
character x (Theorems 4.5 and 5.1). Using certain identities satisfied by local
intertwining operators which was proved in [11], we then verify Arthur’s multi-
plicity formula for these square integrable residues (Theorem 5.1). (See section 3
for Arthur’s multiciplity formula) It is remarkable that in fact the formula itself
appears in the corresponding residue of the Eisenstein series. We note that the
local R-group C,,, ~for the parameter ¢y, (see Section 3) is the Knapp-Stein
R-group of the unitary principal series |y = Ind'\B"o((T:VV)) Xv, Where M is the Levi-
subgroup whose L-group is M* = Cent (im¢;, GY).

The technical combinatorial part of dealing with the residues of Eisenstein
series (Proposition 4.4 and Theorem 4.5) which is an important step in the proof
is contained in Section 4. They rely on severa technical lemmas about Weyl
groups and normalizing factors (Lemmas 4.7 and 4.8). The fina interpretation
of Theorem 4.5 and the proof of Arthur’s multiplicity formula (Arthur’s con-
dition in the language of Moeglin [23]) is done in Section 5 (Theorem 5.1).
In particular, in Section 5 we determine Arthur parameters of the sguare inte-
grable residual spectrum of Sp, (Ag) coming from the conjugacy class of Borel
subgroups. Using [12], this implies the exhaustion, i.e., that quadratic unipotent
Arthur parameters completely determine the residual spectrum of Sp, (A) coming
from this conjugacy class and conversely.

We expect that quadratic unipotent Arthur parameters completely parametrize
al the residual spectrum of Sp,, coming from the conjugacy class of Borel
subgroups. When these residues are unramified, i.e., when x = 1, the problem
has been completely solved by Moeglin [22, 20]. We expect that her results will



ARTHUR PARAMETERS AND RESIDUAL SPECTRUM

play an important role in proving the exhaustion in general. We would like to

thank her for patiently answering many of our questions [21].

Finally in view of [23], we expect that the method of the present paper can

be equally well applied to the case of orthogonal groups.

1. Preliminaries. Let F be afield and let G = SOpn+1, Sp,y, Or SOz Over

F. Let J, be the n x n matrix given by

1

—vn

Sp(2n) = {g € GL(2n)| ‘95,9 = I3, } ,

and

SO(n) = {g € GL(n)| '9Jng = Jn; det(g) = 1}.

In each case we let T be the maximal split torus consisting of diagonal

matrices in G. Then

T(F) = . ,1

li € F*
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if G=5p(2n) or SO (2n), and

T(F) = 1 l € F*

if G=S0(2n+1).

Let ®(G, T) be the roots of G with respect to T. We choose the ordering
on the roots so that the Borel subgroup B is the subgroup of upper triangular
matrices in G. Let A be the ssimple roots in (G, T) given by A = {aj}j":l, with
aj=g—g+«forl<j<n-1,and

en G=S0(2n+1),
an =19 2en G = Sp(2n),
en1+€& G=S0(2n).

We let (,) be the standard Euclidean inner product on ®(G,T). If ® is a root
system of type B,,, C,, or Dy, then we denote by G(®) the split group with root
system &.

For G = SO(2n+ 1) or Sp(2n), the Weyl group W(G/T) ~ S, x Z5. &, acts
by permutations on the A;, i =1,...,n. We will use standard cycle notation for
the elements of S,. Thus (ij) interchanges A; and ;. If ¢; isthe nontrivial element
in the i th copy of Z, then ¢; takes )\ to /\i‘l. The element ¢; is caled a sign
change because its action on ®(G, T) takes g to —g. For G = SO (2n), the Weyl
group is given by W(G/T) ~ S, ngl. S, acts by permutations on the \;, and
zg—l acts by even numbers of sign changes. The requirement that the number
of sign changes be even comes from the determinant condition in SO (2n). Note
that the sign change ¢; is an element of O(2n) and normalizes T(F). Each ¢; acts
on SO (2n) by conjugation, and c, induces the nontrivial graph automorphism on
the Dynkin diagram of ®(G, T).

2. Unipotent orbits of classical groups over C. The theory of Jordan
normal forms implies that a unipotent matrix in GLy is conjugate to J(p1) &
J(P2) & - DIPs), PL = P2 = -+ = Ps, PL+ P2+ +ps =N, where J(p) is
the p x p Jordan matrix with entries 1 just above the diagonal and the diagonal,
and zero everywhere else. Therefore, unipotent classes in GLy are in 1 to 1
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correpondence with partitions A of N. We use the following standard notation for
Al A= (1,272,353, -.), where rj is the number of p; equal to j.

Let G be a classical group, of type By (O2n+1(C)), Cn (Sp,,(C)) or Dp
(O2n(C)). We start with the following facts:

(1) X, X" € G are conjugatein G if and only if they are conjugate in GLy, N =
2n+1or 2n.

(2) Let X € GLy be unipotent. Then X is conjugate to an element of G if and
only if rj iseven for even i in the orthogonal case and for odd i in the symplectic
case.

Therefore for G = O2,+1(C), unipotent classes are in 1 to 1 correspondence
with partitions A of 2n+ 1 such that r; is even for even i.

Let u be a unipotent element in G and let §, be its centralizer in G. Then we
have:

(3) In the orthogonal case (resp. symplectic) case, S,/ S, isk product of Z/2Z,
where k is the number of odd (resp. even) i such that rj > 0.

Here we note that for G = GLy(C), the centralizer Zg(S) is connected for
any subset S of G.

We say that a unipotent element u is distinguished if all maximal tori of
Cent (u,G) are contained in the center of G°, the connected component of the
identity. This is equivalent to the fact that the unipotent orbit O of u does not
meet any proper Levi subgroup of G (Spaltenstein [30, p. 67]; i.e., if LisalLevi
subgroup of a parabolic subgroup of G and u € L for au € O, then L° = G°).
If G = O2n+1(C), then G° = SO2n4+1 (C) and G° has trivial center. By Carter
[5], for G = Oun+1(C) or Oon(C), if uis a unipotent element with Jordan blocks
(1", 2",...), then the reductive part of the connected centralizer Cent (u, G)° is
of type

H Crij2 % H Dr;/2 % H Biri—1)/2-

i even i odd, rj even i odd, r; odd

Therefore, O is a distinguished unipotent class if and only if it has Jordan blocks
(1, 3',5',...), whereri =0 or 1.

JacoBsoN-MoRrozov THEOREM. SUppOSe U is a unipotent element in a semi-
simple algebraic group G. Then there exists a homomorphism ¢: SL, —— G such

that¢>< 119

01 =u

Here, replacing ¢ by a conjugate under G, we can assume that ¢ g a9 1
is in the closure of the positive Weyl chamber in the maximal torus. In fact, by
0
a1
is uniquely determined by the unipotent orbit of u as follows (Carter [5, p. 395]):

the theory of weighted Dynkin diagrams (cf. Section 5.6 of [5]), ¢ ( g
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Suppose O has Jordan blocks (di, d2, ds, . . .). For each d;, we take the set of
integersd, — 1,d; — 3,...,3—di, 1 — d. We then take the union of these sets for
al d;i and write this union as (£1,£2,&3,...) With &1 > & > &3> ---. Then

2.1) qs( g a91 ) = diag (&%, a%2,a%, . . ).

LemmA. ([3, Proposition 2.4]) Let ubea unipotent elementand ¢: S, — G
) é i =u lLetS, = Cent(imp,G) C §, =
Cent (u, G) and UY be the unipotent radical of S,. Then

(1) S =S, - UY, a semi-direct product. S is reductive.

(2) The inclusion Sy C S, induces an isomorphism between Sy /S;ZG and
S/SZe.

be a homomor phism such that

3. Quadratic unipotent Arthur parameters. Wefollow Moeglin [23]. Let
F be a number field and let W be the global Weil group of F. For G = Sp,,,, we
can take the dua group G* = Ozn+1(C). An Arthur parameter is a homomorphism

P WE x S2(C) x S2(C) — O2n+1(C),

with the following properties. (The usua definition of Arthur parameter uses
Langlands hypothetical group Lr. But since we are only dealing with Langlands
quotients which come from principal series, Wk is enough.)

(1) ¥(WE) is bounded and included in the set of semi-simple elements of G*.

(2) The restriction of 1 to the 2 copies of S_(C) is agebraic.

(3) Composing «|we with the determinant of G* gives a quadratic character
of WE, denoted by dety). We want dety) = 1.

We call an Arthur parameter quadratic unipotent if the following two condi-
tions are satisfied:

(4) Y|1xs,0x1 = 1,

(5) ¥ |w istrivial on theintersection of the kernels of the quadratic characters
of WE.

Because of conditions (1) and (5), the action of (W) gives an orthogonal
decomposition:

C"™ =g Vi® - & Vi,

wheredimVg = 2rg+1, dimV,; = 2rj, 2rg+1+2r1+---+2rg=2n+1,r; > -+ - > rg
and V; isthe eigenspace with eigenvalue ;. Here p1, . . ., uk are nontrivial distinct
guadratic grossencharacters of F, viewed as characters of We (cf. [14, 16]), and
dimV; being even comes from condition (3).
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The parameter ¢ factors through H!‘zo Oo(Vy):
k
i We x SL2(€) x S2(C) +— [T O(Vi).
i=0
(1) Wk is mapped into the product of centers of O(V;)
YW W— 1 x pg(W) x -« x (W) € {£1} x {£1}--- x {£1},
where {£1} is the center of O(V;), fori =0,...,k.

(2) By Jacobson-Morozov theorem, 1|1 1x5,(c) defines a unipotent orbit of
G* of the form

K
I10.
i=0

where O; is a unipotent orbit of O(V;). Inside O; we fix an element u; such that

1 1) &
o(s 1)1
Let S, = Cent (imy, G*) and

Cw = S/J/%ZG*

We know that Sy, is a maximal reductive subgroup of H!‘zo Cent (u;, O(W)).
ThereforeS:b =1,i.e, Sy isfiniteif and only if each u; is adistinguished unipotent
element in O(V;). Especially, since O»(C) has no distinguished unipotent element,
we have

LEmMMA. Let ¢ be a quadratic unipotent Arthur parameter. Suppose S}, = 1.
Thenrg > 2.

Now it is clear that Sy /S Zs- is equal to

K
Cent (U, O(Vo))/ Cent (U, O(Vo))° Zogve) | [ Cent (ui, O(V4))/ Cent (ui, O(V;))°.
i-1

Here Cent (u;, O(V;))/ Cent (u;, O(Vi))° ist product of Z/2Z, wheret is the num-
ber of i odd with r; > 0 in Jordan blocks.

For each place v of F, we have a map ¢y = |Wg, x SL2(C) x SL(C). As
in the global case, we can then define Sy, . But in the local case, 1iy may not be
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distinct. Suppose 1y = p2v. Then in the above formula,
Cent (ug, O(V1))/ Cent (uz, O(V1))° x Cent (uz, O(V2))/ Cent (uz, O(V2))°
must be replaced by
Cent (U1 X Uz, O(V @ V2))/ Cent (U1 X Uz, O(V1 @ V2))°.

To any Arthur parameter ¢, Arthur associatesa Langlands’ parameter ¢,,: Wr x
9 ,(C) — G* asfollows:

wz 0

Mmrw@L< >»¢mx&@zx

For quadratic unipotent Arthur parameter v, ¢, is given by

(1) $y[S2(0) = 1;

(2) (W) =TT by (W) € [T O(Vi), where each ¢y, (W) is the associated
Langlands parameter for ;: W x SLo(C) x SLo(C) —— O(Vy).

Now we recall Arthur’s conjecture. Let S, = Cent (img,,, G*) and

Co, =0, /S, Zo-

For each place v of F, we have local Arthur parameters ¢, = ¢|Wg, x SLo(C) x
2(0), aswell as Sy, Cy,, S, and Cy, . For each v, there is also a natural
map C, — Cy, and a natural surjective Cy, — Cy, . The parameter ¢y,
gives a L-packet N, which consists of Langlands' quotients.

It isapart of Arthur’sloca conjecture [1, 2] that for each place v of F, there
isaparing ( , )onCy, xMg andanenlargement My, of My ~which allows
an extenson of ( , ) to Cy, x My, suchthat = € My, C My, if and only if the
function (-, 7) liesin the image of Cy,, in Cy, .

We define the global Arthur packet IT,, to be the set of irreducible represen-
tations m = ®ymy of G(A) such that for each v, m, belongs to M,,. Define the
global pairing on Cy, x MMy, by

(X, ) :H<XV,7rV>,

for 7 = ®@ymy € My and x € Cy, with image xy in Cy, .

Arthur’s conjecture (Global).

(1) The representations in the packet corresponding to ¢ may occur in the
discrete spectrum if and only if S isfinite, i.e,, S, = 1. We call such an Arthur
parameter elliptic.
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(2) For an eliptic Arthur parameter ¢, there is a positive integer d,, and
a homomorphism €,: C, —— {£1} such that the multiplicity with which any
7 € My, occurs discretely in L2(G(F)\G(A)) is

d¢
3.1 — E € 7).

For quadratic unipotent Arthur parameters, we have
LemmA. (Moeglin [23]) For ¢ quadratic unipotent, e, istrivial.

In Section 4, we restrict ourselves to the case where the unipotent orbits

O; have Jordan blocks (2ri — 1,1) fori = 1,..,k and (2rp+ 1) for i = 0, i.e,

the ones with the most weighted Dynkin diagrams (cf. [5]). We will construct

representationsin My, as residues of Eisenstein series associated to the character

X = X(p1, ooy i1y e ey ks -y ko L, .., 1), Wherery > rp > -2 > r and 'S
——

rp g fo
are mutualy distinct and quadratic grossencharacters.
In Section 5, we interpret the result of Section 4 in terms of Arthur parameters
and prove the multiplicity formula (3.1).

4. Residual spectrum of Sp,,. We fix a nontrivial additive character n =
®yny of A/F and let £(z, 1) be the Hecke L-function with the ordinary I'-factor so
that it satisfies the functional equation £(z, 1) = e(z, ;1)é(1—z, 1), where e(z, 1) =
1, €(z v, mv) is the usua e-factor (see [8, p. 159]). If w isthe trivial character
1o, then we write simply £(2) for £(z, 10). We have the Laurent expansion of £(2)
az=1

f(z):zc(_F?L+a+..._

Let oY be the coroot corresponding to o € ®*(G, T). Explicitly, for o =

eg—g,a'(\)=tL....\..., 27 L) e T(F) for 1 < i <j < n. For
i i
a=ga+g, a’(N) :t(l,...,/i\,...,/j\,...,l), for1<i<j<n Fora=2g,
av(\) =t@1,...,),...,1) for 1 <i < n. Here dots represent 1.
|

Let X(T)g (resp. X*(T)g) be the group of F-rational characters (resp. cochar-
acters) of T. There is a natural pairing (,): X(T)e x X*(T)g — Z. For o, 5 €
®(G,T), (B,aY) = 2(8,a)/(a, ), where (, ) is the standard inner product in
®(G,T). Let wj =e; +---+g. Then ws,...,wpy are the fundamental weights of
G with respect to (G, T). Since G is simply connected, X(T)g = Zw1 + - - - + Zwn,
and X*(T)g = Zo +---+Zay. Set a* = X(Mr @R, af = X(T)r ® C, and
a=X*(Mr®R =Hom (X(T)g, R), ac = X*(T)r @ C. The positive Weyl chamber
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ina*is
C" = {A e a*|{A\,a") >0, for dl « positive roots}

- {iw a,->o}.

i=1

Let B = TU be the Borel subgroup, where U is the unipotent radical. Let
K be the standard maximal compact subgroup of G(A.,) and for v finite, let
Ky = G(Oy), where Oy is the ring of integers of F. Then K = K X []yfinite Kv
is the maximal compact subgroup of G(A) and G(A) = B(A)K. The embedding
X(T)r — X(T)g, induces an embedding a, — a, where a, = Hom (X(T)g,, R).
There exists a homomorphism Hg: T(A) — a, defined by

exp(x, Ha(t)) = [ [ Ix(®)lv,

where x € X(T)r and t = (t,). We will extend Hg to G by making it trivial on U
and K. If we define Hg,: Ty — ay, by

O =1y,

where y € X(T)g,, t € Ty, and gy is the number of elements in the residue field,
when v is finite, and by

exp(x, He, () =[x,

for v infinite, then

exp(x, Ha(®) = [ exp(x. He, &) JT av*"&.

V=00 v<oo

Observe that for amost al v, t, € G(Oy) on which Hg, is trivia. Thus the
product isin fact finite.

4.1. Definition of Eisenstein series. For ug, ..., un grossencharacters of
F, we define a character x = x(u1, - - -, un) Of T(A) by

X1y )AL, - o5 An) = a(A1) - - - pn(An).
Let 1(x) be the space of functions @ on G(A) satisfying ®(utg) = x(t)P(g) for

anyue U(A), t € T(A) and g € G(A). Then for each A € ag, the representation
of G(A) on the space of functions of the form

gr— @(g) exp(A\ + ps, He(Q9)), @ € 1(x),
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is equivaent to I (A, x) = 'B?SX ® exp (A, Hg( )). We form the Eisenstein series:

E(g.f.N= >  f(9)

YEBFN\G(F)

where f = d eMreHB()) ¢ | (A, x) and pg is the half-sum of positive roots, i.e.,
pB = w1 + - +wp. It converges absolutely for ReA € C* + pg and extends to a
meromorphic function of A. It is an automorphic form and the constant term of
E(g,f,A\) along B is given by

Eo(g,f,A) = E(ug,f,A)du= > M(w,A,x)f(9),
U(F)\U(4) wew

where W is the Wey! group of T and

M(w, A, x)f(g) = f(wtug) du.
wU(AW—1NU(A)\U(A)

Then M(w, A\, x) defines an intertwining map from I (A, x) to I(wA, wy) and sat-
isfies a functional equation of the form

M(wiwz, A\, x) = M(Wq, WoAA, Wox )M (W2, A, X).

Let S be a finite set of places of F, including al the archimedean places such
that for every v ¢ S xv, nv are unramified and if f = ®f,, forv ¢ S f, is the
unique K, -fixed function normalized by f,(g,) = 1. We have

M(w, A\, x) = @AW, A, xv).
Then by applying Gindikin-Karpelevic method, we can see that for v ¢ S

LA oY) xw o) =

Aw A= T o T eany ™

a>0,wa<0

where f\, is the Ky-fixed function in the space of I(WA,wy) (cf. [6, 17, 18, 27,
28]). For any v, let

H L(<A1av>’Xv oaY)

fv(W) = L(A ) + 1, xv 0 a¥)e((A, oY), xy o ¥, mv)’

a>0wa<0

We normalize the intertwining operators A(w, A\, xy) for al v by

A(W! /\! XV) = rV (W)R(W! /\! XV)



412 HENRY H. KIM AND FREYDOON SHAHIDI
Let R(w, A\, x) = @yR(w, A, xy) and

H E((NaY),xoaY)

r(w) = Myry(w) = (N aY) +1,x 0aV)e((A aY),x oaY)

a>0wa<0

R(w, A\, x) satisfies the functional equation
R(wiwa, A\, x) = R(wy, WoA\, Wax)R(Wo, A\, X),

for any wy, wo. We know, by Winarsky [32] for p-adic cases and by Shahidi [26,
p. 110] for real and complex cases that

(4.1) AwWA ) [ LN aY)xwoa’)t

a>0wa<0

is holomorphic for any v. So for any v, R(w, A\, xy) is holomorphic for A with
Re((A\,a")) > —1, for al positive a with wae < 0. For x = x(p1, - - -, fn),

pipt, fora=g —q
xoa' =< puipj, fora=g+gandi<]j
i for a = 2¢.

For a € ®*, let S, = {A € af|(\,a¥) = 1}. We call S, asingular hyper-
plane. We say that E(g,f,/\) has a pole of order | at /g if /g is the intersection
of | singular hyperplanes in general position on which the Eisenstein series has
a simple pole.

Langlands’ theory [18, 25] says that L3(B) is generated by square integrable
iterated residues of E(g,f,/\) at poles of order n.

We recall Langlands sguare integrability criterion for autormorphic forms
through their constant terms in our case ([18, p. 104] or [9, p. 187]). We write
the intertwining operator M(w, A\, x) as follows:

MW, A, Y)f () = T(w, A, x)d(g)e\reHe(@),
Suppose the iterated residue of Eg(g,f,A) at A =3 is given by

Res; Eo(g,f,A) = Y Resg T(w, A, )P(g)elFreHe(@),
weQ

Here Q is the set of all w € W which contribute a nonzero residue. Then we
have

LemmA. (Langlands) Resg E(g,f, A\) issquareintegrableif and only if Re(w/3)
isin — {2 aaila > 0} for all w € Q.
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For W C @*, we define r(w, A\, W) by

H E((N, ), x oY)

r(w, A\, W) = E((N, V) + 1, xoaY)e((N,aV), x oY)

acW,wa<0

Observe that we have suppressed the dependence of r(w, A, W) on Y.

4.2. Residues of the Eisenstein series. We start with

ProrosiTion 4.1. Let E(g, f, A) bethe Eisenstein seriesassociated to thetrivial
character. Its constant term Eg(g, f, /A) is given by

Eo(g.f,A) = ) r(w, A, ®")Rw, A, Df.
wew

Let Ao = pg bethe half-sumof positiveroots. Then only w = wp, thelongest element
of the Weyl group, contributes a pole of order n, and theresidue of E(g,f,A) at Ag
is constant.

Proof. Note that {a|{pg,«") = 1} isthe set of simple roots. Therefore, pg is
the intersection of the n singular hyperplanes S, for simple roots «. But

{w|wa < 0,for all simple roots a} = {wp, the longest Weyl group elements in W}.
Therefore, the residue at A = pg is

(*) ®V RV(WOl PB» XV)fV1

where f, € Iy(ps, xv)- But R, (Wo, pB, xv)lv(ps, xv) is the Langlands quotient,
which is constant. Therefore, the residue is constant.

Remark 1. Here the half-sum of positive roots corresponds, by (2.1), to the
unipotent orbits with Jordan blocks (2n + 1) for G* = O2,41(C), (2n— 1,1) for
G* = Oxn(0), resp. i.e, pg = L&y + Zey +---. We note that Ao and wo satisfy
(Ao, &) =0 and wo/\g = —/A\g, the first only valid for G = SOy,

For x a nontrivial character, we can assume, after conjugation, that xy =
X(Ml!lull’uk!!uk’ll!1’r0++rk=n! rlZZrk

o

r Ik
Let E(g,f,\) be the Eisenstein series associated to the character x.

ProrosiTION 4.2. The Eisenstein serieshasa pole of order nonlyif ry > 2 and
ui 1Isa quadratic grossencharacter fori =1,. .., k.
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We divide the set of positive rootsd™* as follows:
Pr={e+q, 1<i<j<n}
q)2={6(1+i:l:a’1+j1 1S I <J SrZ}i

dy = {erl+---+rk_1+i Tt €4y 1< i <j <l

Do = {& ottt i, 1 <0 <j<ro, 26 +.4r+i, 1=1,...,10},

®p = & — i P

@,,..., Py areroot systems of type D, and @g isaroot system of type C,,. This
corresponds to the decomposition O(V1) x - - - x O(Vk) x O(Vo) C Oon+1(C). Let W
be the Wey! group corresponding to ®; fori = 0,...,k. Let A = Ap+-- -+ A+ /g,
where Ai = 8rp4.tr_ #1680 +etr 41+ oo+ F 8rpetr € fOr i = 1,000k and
N0 = &+ s #1641 + o - - + 36

We recall the following well-known result (Carter [5, p. 47]).

ProrosiTioN 4.3. Let A be a set of simple roots and W be the associated Weyl
group. Let w, be the simple reflection with respect to « € A. Then W is generated
by thew,,, a € A. Let 6 be a subset of A and Wj be the subgroup of W generated
by thew,,, a € 6. Then each coset wWj, has a unique element dy characterized by
any of the following equivalent properties:

(1) dyb >0
(2) dyisof minimal length in wWj; and
(3) For any x € Wy, [(dyx) = 1(dp) + 1(X).

We apply Proposition 43 to A = {e1 — e,...,en-1 — e} ad 0 = A —
{&, — €41, €41, — Erptrptls - - - Brpttr, — Erptry+1 ). LEL D be the set of such
distinguished coset representatives. Then we have

ProposiTION 4.4. TheconstanttermEp(g, f, A) = > ew F(W, A, HRW, A, x)f
can be written as

k
IT D rwi, Al @) > r(wo, Ao, Do)

i=1 wi eW, WoEWp

375 r(dows - - - wiwo, Pp)R(dews - - - Wi, A, X)f,
deD ceC

where C isthe set spanned by G, Cry+r,, - - -, Cry+...4ry - HEre G’s are sign changes
in the Weyl group: itsaction on ®(G, T) takes g to —g,.

Let Ag =A1g+ -+ Axo +/Noo, Where Aj is the half-sum of positive roots
in®; fori=0,...,k Then
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THEOREM 4.5. Theresidue of Eg(g,f,A) at Ag isgiven by

k
(4.2) > (©)R(@AWo, Ao, X) [T (1 + R(Crpweesn)),

deD i=1
where wg is determined by Ag and () signifies a constant. It is square integrable.

It isinstructive to consider first asimple case to illustrate our method, namely,
x = x(, - .., m), pnontrivial and quadratic. The main idea of our proof is already
contained in this simple case.

Leted;={ag+g, 1<i<j<nfad®d={2¢, i=1...,n}. Then
for a € @1, yoaV =1 and for o € ®,, x o is nontrivial. Let W; be the
Wey! group associated to ®;. It is a Weyl group of type Dy. Here #{W /W) = 2
and the nontrivial coset has a distinguished coset representetive, i.e., C,. It is the
unique element which satisfies ¢,®; > 0. Here for w € W,

{a >0 cwa <0} ={ae®| wa<O0}U{ae P cywa< 0}.
Therefore the constant term of the Eisenstein seriesis

D rwe, A, ®1)(r(we, A, D2)RW, A, x) +1(Caws, A, D2)R(Cawa, A, X))
wyeW

We consider the residue at A = Ag, the half-sum of positive roots of ®;. Since
(No,&r) = 0, the last term is holomorphic on every singular hyperplane. The
first term has a pole of order n a w = wp, the longest element of W;. Since
Wol\o = —/N\g, Wog = e, for some k < n depending on i. Therefore, for
a=2¢,i=1.,n—1 wa < 0if and only if cpwpax < 0. So r(wp, Ao, P2) =
r(caWo, o, @2), and the residue is

(*)R(cnWo, Ao, X)(1 + R(cn, Ao, X)),
since CaWoCh = Wo.

4.3. Proof of Proposition 4.2. We need

ProrosiTioN 4.6. If one of 1 isnot a quadratic grossencharacter or r; = 1 for
some i > 0, then the Eisenstein series has no pole of order n. In particular, for
X = x(fy -y phyv1, ... 1h,) (if r4 > 1, u is not quadratic), the Eisenstein series

——

ri
has no pole of order n.
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Proof. Let

®; ={e—-g, 1<i<j<r},
q)2 = {ef1+i:l:a'1+j1 1§|<J Ser 26(1+i! |:111r2}1
®3 = O — DU D,

Then ®; is aroot system of type Ar,_1 and ®,, a root system of type C,,. For
a € ®3, y oV isnontrivial. Let W, be the Weyl group of @&; fori = 1,2. Let
N = N1+ /Ny, where Ay = g€ + -+ + &, &, and Az = & 41641 + -+ + anen.
Then WiW, is Wj in Proposition 3 with § = A — {e&, — &,+1}. Let D be the set
of distinguished coset representatives for W/WiW,. For d € D, w; € W; and
Wo € Wz,
{a > 0 dwiwoor < O} = {Oé € q31|W105 < 0}
U{a € P2 woa < 0}
U{a € dP3| dwiwoa < 0}.

Using (4.1), we write the constant term of the Eisenstein series

Eo(g.f.A) = ) r(w, A, ®")RW, A, y)f
weW

as follows:

Eo(g,f,/\) = Z T(w, A, (D+) ®V¢va & ®V€SA(W!/\! X)va
wew

where A(w, A\, x) is the expression (4.1) and

) o Es(iA a¥), x)
A2 aedJH/zKO (N a¥) +1, %)

where £5(z, x) = [Iv¢sL(z xv) is the partial Hecke L-function. Then we have

Eo(9.f,A) = ) F(wi, AL, ®1) Y F(wz, Az, @2)

wyeWy wWoeW5

Z ?(dW1W2, /\, CDS) ®V¢S i(‘v & ®VGSA(dW1W2- /\- X)fv-
deD

A(w, A\, x) is entire and ¥(w, A, ®3) is holomorphic on any singular hyperplane.
Any pole of the first term is an intersection of < r; — 1 singular hyperplanes
in genera position and any pole of the second term is an intersection of < ry
singular hyperplanes in general position. Therefore, any pole of the Eisenstein
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series is an intersection of < rp +r, — 1 < n singular hyperplanes in general
position. This proves Proposition 4.6.

Proposition 4.2 is now immediate.

4.4. Proof of Proposition 4.4. First we prove the assertion for

X=X(Ma---1H,V1,---1Vn—r1)v
———

r

where p is nontrivial, quadratic and 1. and v are distinct for all j.
Let x1=x(p,...,p) and x2 = x(v1,...,vn-r,). Let
r
1
O ={egtg, 1<i<j<r},
Oy={e+itey, 1<i<j<n-ry, 264, i=1...,n-r1},

P3=P-PUDPr={ete,, i=1...,r,j=1,...,n—r1, 2g,i=
1,...,I’1}.

Then for o € ®1, yoaV =1. For a € ®,, yoa" = y20a" and for o € ®3,
x o aV is nontrivial. Let W; be the Weyl group associated to @;, i = 1,2. Let

N=N1+Np, Ar =€ +---+a 6, and Az = &, +1641 + - - + ann. We apply
Proposition4.3toA={e;—ey,...,en_1—eandf =A—{e, —e,+1}. Let Dy
be the set of distinguished coset representatives. Then we need

Lemma 4.7. D = Dg U Dgc;, is the set of distinguished coset representatives
for W/WiWa, i.e, d € D if and only if d(®; U ®2) > 0.

Proof. Since Dy contains no sign changes, it follows immediately that d(®, U
®,) > 0 for al d € D. It can be easily checked that #D = #(W/W;W5). We
therefore only need to show that each coset has a unique coset representative in
D. Suppose d; € D for i = 1,2 and d; *dz = wywz € WiWa. Then dp = dywyws.
Using dba > O for adl o € @, implies that dywiw,a > 0. Here wy and w,
commute and wya = « for o € ®,. Therefore, we have diwor > 0 for all
a € @y or woar > 0 for al a € ®,. Thisimplies that wp = 1. In the same way,
we have wi = 1. This proves the lemma.

Ford € D, wy € Wy and wp € Wh,

{a >0 dwywoax < 0} = {a € DPg|Wix < O}
U{a € Pzl woa < 0}
U{a € P3| dwiwoa < 0}.
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Then the constant term of E(g,f,A) is given by

(43) Y r(wi, AL, ®1) Y r(wa, Az, D)

w1 EW, wo eW5
- (r(dwawg, A, @3)R(dwawg, A, x) + r(der, Wi, A, Dz)R(der, Wiwz, A, X)).
deDg

In order to apply induction, let x = x( 1, ..., f1, 42, - - -y 2, V1, - - -, 1), F1 +

f r2
ro+1 =n. Let x2 = x(p2,-..,p2,01,-..,1). We repeat the above for y, and
N——o—

r2
divide @, as follows:

CD4 = {a’l‘i'i + e(1+j! 1 S I < J S r2}l
CD5 = {erl+r2+i + e(1+l’2+jl 1 S I < J S Ia 26(1+l‘2+i1 I = 11 LY |}1
P = Py — Dy U Ps.

Let Wi be the Weyl group of ®; for i =4,5. Then D' = Dgs U Dy Cy, 41, IS the
set of distinguished coset representatives for W, /W4Ws, where Dy is the set of
distinguished coset representatives for

9/ = {a’l‘i'l - a‘1+2’ ce Bn1 — a’]} - {erl+r2 - e(1+l‘2+1}-

Then one can show that DyDy: is the set of distinguished coset representativesin
Proposition 4.3 for {e; —€,...,en 1 — €} — {&, — & +1, €41, — Erp4rp+1} AN

DD’ = DyDg U D0D0’Cr1 U Dng/Cr1+r2 U DnglCrlcrlﬂz

is the set of distinguished coset representatives for W/W;W,;Ws, i.e., d € DD’ if
and only if d(®; U ®4 U ®5) > 0. Proposition 4.4 now follows by induction.

4.5. Proof of Theorem 4.5. We apply induction and start with the equation
(4.3). Suppose the first term has a pole at Ao and wi = Wj,, contributes the
pole. Let A = A1p+ A2. We need

LemmA 4.8. For eachwo € W,

(AW, o W2, A\, @3) = 1(der, Wa, W2, A, P3).

Proof. Recall the properties of wy and A1o: (A10,€,) = 0 and wiA1g =
—/\1,0.

Therefore, (A, ") = 0 for a = 2e;,. For i < ry, wig = +e, k < r; and
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wig, = te,. Sofor a =g +e4,26, 1 =1,...,ri—1, ) =1...,n—ryg,
dwiwoar < O if and only if dc,, wiwoar < O since WiWaar = Cr, WiWocr.
For o = &, + &+, we have

Lemma 4.9. Only one of the following is possible: either « satisfies both
dwiwoar < 0 and dc;, WwiWoar < O, or « and &, F &+ satisfy only one inequality.

Proof. Suppose dwiwo(&r, & €,+j) = d( — &, F &,+k). Then dc, wiwo(er, +
€,+) = d(er, F &,+). Since d is a permutation, we have our assertion. The other
case is similar, completing the lemma.

If o = &, + &,4j satisfy dwiwoa < 0, then (A, V) = (A2, &,4j) and

5((/\21 el’1+j)1 ,U’VJ)
E((A2, er1+j) +1, ,LLZ/])E((/\z, a'l+j)v /U/j)
£~ (P2, @111 1) .
E(— (N2, &p49) + 1, py)e( — (N2, €rp49), 1)

using the functional equation &(z, ) = e(z, 1)€(1—z, ) for p anontrivial quadratic
grossencharacter.

This proves Lemma 4.8.

It now follows that the residue at A, as a function of Ay, is

D r(wz, Az, ®2)( D ()R(Awawn 0, A, x)(L +R(Cr,)),
Wo W, deD

where_ W10 = Cr; Wy, SINCE Cr;Wa,,Cr; = Wa,,. Theorem 4.5 now follows by
applying induction. We only need:

ProrosiTIoN 4.10. Theresiduein Theorem 4.5 is square integrable.

Proof. By Langlands' Lemma and the fact that wo/\g = —/A\g, it is enough to
show that d/\g is a linear combination of simple roots with positive coefficients
forany d € D.

First of all, it is easy to see that any linear combination of g’'s with non-
negative coefficients which contains e; is a linear combination of simple roots
with positive coefficients. Ag satisfies this property. Since d is a permutation, it
is enough to show that d/Ag contains e;.

Recall the property of Ao that Ag contains ey, € +1, . . ., €+ +r+1. AlSO re-
cal the property of d € D from Proposition 4.3: df > 0 where § = {e; —
€, 61— 6 fU{6+1 — €2, Brparpm 1 — By J U U { @y bl —
€ry+rp+.. 41y#2,...0 €n—1 — €n}. Hence, one of ey, €41, ..+, Bry4rpr. 1 IS SENL 1O €
by d € D. So d/\g contains e;.
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5. Arthur parameters for the residual spectrum. In this section we in-
terpret Theorem 4.5 in terms of Arthur parameters. Recall the quadratic Arthur
parameters in our case: we have a decomposition C?™ = Vo @ V1 & -+ @ Vi,
where dimVg = 2rg+ 1, dmV; =2r; fori=1,...,kK,ri1 >ro > .- >r > 2,
ro+---+rc = n, and embedding [T, O(V;) C O2+1(C). Leét p1,...,ux be
distinct quadratic grossencharacters and O; be the unipotent orbits with Jordan
blocks (2ri — 1,1) fori = 1,...,kand (2ro + 1) for i = O (see the remark after
Proposition 4.1). Then the Arthur parameter of interest to us is the homomorphism

k
w: W|: X S_Z(C) X S_z(C) — HO(V|) C 02n+1((C),
i=0

satisfying:

(1) YIWe: wi— 1 x pg(w) x -+ X (W) € {£1} x {£1} x --- x {£1},
where {£1} is the center of O(V;) fori =0,...,k;

(2) Y]1xs,0x1 = 1; and

(3) by Jacobson-Morozov theorem, v|1x1x 9 ,(c) defines the unipotent orbit
[T, O; of G*.

Recall that we are considering the residue of the Eisenstein series at Ag =
N1p + ...+ No + Noo, Where each A is the half-sum of (positive) roots in
®,i =0,1,...,k The character x and the quasicharacter exp(A\o,Hg( )) of T
may be viewed as homomorphisms from W into “T (cf. [14, 16]). The unipotent
orbits O; are determined by A through Jacobson-Morozov's theorem. Then the
associated Langlands parameter ¢, i.e., the homomorphism

¢y W x S2(C) — Oxne1(C)

defined by ¢,|S.2(C) =1 and

_ wz 0
sw=ofur (7).

iS¢y, = x®@exp(No, He()) (cf. [1]). Its nontempered part isgy, = exp(No, He( )).

Let M* = Cent (im@z, G*). Since (Ao, g) =0fori =rq,ro+ro, ..., ri+...+ry,
the Levi subgroup M which has M* as its L-group, will be, up to isomorphism,
of the form GLp, x ... x GLp, x Spy,, Where ny, ..., n; are determined by Ao.

The parameter Ag may not be in the positive Weyl chamber of the split
component of M. But one can choose an element W' in the Weyl group of shortest
length so that A\g = W/A\g belongs there. Then, using the functional equation, the
Eisenstein series attached to A and x’ = wx will have a pole of order nat A = A.
The Arthur parameter which is determined only up to conjugacy will not change.
From now on we shall assume that /g is in the positive Weyl chamber of the
split component of M.
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For each place v, decompose ¢y, as ¢y, = &y, - ¢,, asin [1]. The param-
eter ¢y, factors through M* and is the Langlands parameter for the (tempered)
constituents of the unitary principal series |, = Indgo((FFVv)) Xv = ®imy,;, of M(Fy),
where Bp = BN M. For each my, let My = J(myi ® exp(Ao, Hp( ))) be the
corresponding Langlands quotient [4, 19], where P = MN. Then for each v the
L-packet parametrized by ¢, isTy, = {My;} (cf. [1, 19]). The R-group for the
parameter ¢y, , i.e,, Cy4, isthe same as the R-group of |, for each v in the sense
of Knapp-Stein (cf. [7, 10, 11, 13]).

By theorem C,, of [10], the R-group C,,, of Iy is a subgroup of the group
generated by the sign changes ¢;, i =rq,r1+ro,r1+...+rg, aproduct of 2-groups.
Moreover, if the sign change ¢+ _+; in (4.2) does not belong to C,,, for some
i, then the normalized operator R(Cr,+...+r;) acts like identity.

Let 7(xv) = {mv,}. Then, given aplace v, in [11] Keys and Shahidi defined
apairing ( , )onCy, xm(xy). Weextend the pairing ( , )toCy, xM, as
in Arthur [1, p. 9] by setting (7, My;) = (7v, 7y ). This can further be extended
to Cy, x Mgy, , using the surjection C;, — C, ~for each v ([1, p. 11]). Let
N = ®yMy; where almost all My ; are spherical. Then N € I'I%, the (global) L-
packet of ¢,,. Finaly set (7,M) =], (7, My;), where 7y, is the image of 7 under
the map C;, — C,,. We need to be more precise since this is an infinite product.
For each place v, the corresponding pairing in [11] is defined by means of a
nontrivial additive character of F,. Fix a nontrivia additive character n = ®yny
of A/F. At each place v, there is a unique representation my o € {7y} whichis
generic with respect to n, and for which (r,,my ) = 1 for al 7, € Cy, . If 7 is
unramified and {my j} contains a spherical representation (which is eguivalent to
xv being unramified), then it is my o. Consequently the product [T, (w,My;) isa
finite product. Moreover (-, 1) does not depend on the choice of 7.

We should finally mention that by theorem 5.1 of [11] the action of each
normalized operator R(7) in (4.2) on a component I is according to the pairing
(r,M). (The rank one characters coming from x in the normalized operators
R(C),i =rq,r1+ro,...,r1 +...+1g, ae al nontrivia and therefore the global
sign of theorem 5.1 of [11] is 1 for all of them.)

Applying (4.2) to I = @My € My, now implies that the residue is equal
to

(5.1) > (HR(EWo, Ao, x) Y (X, .

deD XEC¢I/)

It is now clear that since C,,, is abelian, (5.1) is nonzero if and only if (-, 1)
is the trivial character. We can therefore reformulate Theorem 4.5 as:

Treorem 5.1. 1N appears in L2(G(F)\G(A)) if and only if (-, M) isthe trivial
character, i.e., the Arthur condition (cf. [23]) holds.
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Since Cy, is abelian, this is equivalent to the fact that there exists a positive
integer dy, such that M € My, appears with multiplicity

Z (x,M).

X€C¢¢

dy _ gy
m Z(x,m— c

x€Cy Cs,

This proves the global Arthur conjecture on the multiplicity formula for the
residual spectrum.

Remark 2. We remark that, in the sum (5.1), wo/\g = —/\g and d/Ag = A\g and
dy = x imply d = 1. Therefore there is no cancellation among the summands and
the residue is a sum of isomorphic images of the Langlands’ quotient.

5.1. Special case of G = Sp,. The dua group G* = Os(C) has only
one distinguished orbit, namely the principal one given by the Jordan block
(5). The corresponding unipotent parameter then parametrizes the constants, the
only spherical residue of Sp, (cf. [22]). To parametrize the rest of the residual
spectrum, we construct quadratic unipotent Arthur parameters in the sense of
Moeglin asfollows: Thereisanatural embedding of O4(C) into Os(C) by sending

A B A 0B
( C D ) €E04(C)into] 0 1 0 | inOsC).
C 0D

For 1 anontrivial quadratic grossencharacter of F, we define ¢ as follows:

(1) ¥|We: wi— p(w) € {£1} = Center of O4(C);

(2 Y1 x Lp(C) x1=1; and

(3) ¥]1 x 1 x SLo(C) determines a unipotent orbit with Jordan blocks (3,1)
in O4(C).

By conjugation and by (2.1), we can assume that

" ( g a91 ) = diag(a% 1,1,1,a2).

The associated Langlands parameter ¢, is, by definition, ¢,,: Wr x SL5(C) +—
Os(O):
(1) ¢y|92(C) =1,
w2 0

(2) du (W) = d(w, ( 0 it
The nontempered part of ¢, is

)) = diag (4u(w) W], (W), 1, (W), p(w) W] ).

¢+(w) = diag (], 1,1, 1, |w| ).

Therefore Cent (img.+, O5(C)) = C* x O3(C) = M* with M = F* x SL»(F), the
Levi subgroup of the non-Siegel parabolic subgroup of Sp,.
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The tempered part of ¢, is

by (W) = diag (u(w), (W), 1, (W), u(w)) € M*.
Therefore

Cent (impy, O5(C)) = Cent (img3, M*) = C* x Op(C) x {£1}.

Cent (impy;, Os(C))/Za- Cent (i, Os(C))° = {1}.

For each place v, we can see that ¢;, is the Langlands parameter for tem-
pered representations {4 (u)}, where 7. (u) is the irreducible constituents of
Ind¥ x(u, ;1) and ¢y, is the Langlands parameter for the Langlands’ quotients
{Js ()} of IndS 7 (1) ® elerHP()) (see [12] for more details).

Now we calculate S, = Cent (imy), Os(C)). Let u be a distinguished unipo-
tent element with Jordan block (3,1) in O4(C). Since p is a nontrivial quadratic
grossencharacter, S;; =1and

Sy/S)Zs- = Cent (U, 04(C))/ Cent (u, Oa(C))°.

Here Cent (u, O4(C))/ Cent (u, 04(C))° ~ Z/2Z x 7,/27. Among the remaining
automorphic forms in the Arthur packet of ¢ are the cuspidal representations
studied by Howe and Piatetski-Shapiro (cf. [1], example 2.4.2).

This parametrizes the residual spectrum of Sp, obtained in [12], where Kim
obtained this as the residue of the Eisenstein series associated to x = x(u, 1)
at N\ = e1. It was also proved there that quadratic unipotent Arthur parameters
exhaust the whole residual spectrum of Sp,, coming from Borel subgroups. We
observe that since O4(C) has only one distinguished unipotent orbit, namely the
orbit (3, 1), our result covers the result of [12], coming from this conjugacy class,
except for the constants.

5.2. One extreme case. We give an example which was our motivation
for the general result: Let G = Sp,, and x = x(u1,-- -, fens p1, - - -, 4n), Where
w's are mutually distinct and quadratic. Then the Eisenstein series has a pole at
No=¢€ + --+¢, and the residue is given by

2n
> (#R(der. .. cn Ao x) [ @+ R, Ao, ),
deD i=n+1

where D is the set of permutations s which satisfy s(i) < s(i+n) fori=1,...,n.
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Remark 3. The above technique can be used for GL,, to prove that the Eisen-
stein series associated to x = x(, ..., i, V1, .. ., ,) hasno pole of order n—1 if
——

r
w and v; are distinct. Thisis a very 1special case of the remarkable result proved
by Moeglin and Waldspurger [24].
We divide ®* as follows:

®: g-g, 1<i<j<nn
Dy epi—Ege, 1<i<j<r
q)3: a_al"'j’ i:11---,r17j:1,...,r2

For a € ®3, x o ¥ isnontrivial. Let W; be the Weyl group associated to @; for
i =1,2. We apply Proposition 4.3t0 § = A—{e, —e+1}. Then Wy = WiWs. Let
D be the set of distinguished coset representatives for W/W;Ws. Then as in the
proof of Proposition 4.6, we can show that the constant term of the Eisenstein
series Eg(g,f,\) attached to f € I (A, x) has at most poles of order < n— 1.
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