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Abstract. The purpose of this paper is to study certain quadratic unipotent Arthur parameters in the
sense of Moeglin and use them to parametrize a part of the residual spectrum of symplectic groups
over number fields, coming from the conjugacy class of Borel subgroups. In particular, using certain
identities satisfied by local intertwining operators, Arthur’s multiplicity formula is established for
them which remarkably enough appears by itself in the corresponding residue of the Eisenstein
series.

Introduction. In this paper we study certain quadratic unipotent Arthur
parameters in the sense of Moeglin [23] (cf. Section 3) and realize them as
Arthur parameters [1, 2] for certain square integrable residues of Eisenstein series
attached to the conjugacy class of Borel subgroups of a symplectic group over
a number field. Consequently, using certain local identities proved in [11], we
prove Arthur’s multiplicity formula for them (Theorem 5.1), which remarkably
enough appears by itself in the corresponding residue of the Eisenstein series.

More precisely, let G = Sp2n over a number field F with ring of adeles A F . As
in [23], we use G� = O2n+1(C ) to denote its dual group. Let �1, : : : ,�k be k distinct
nontrivial quadratic grössencharacters of F. Fix integers r1 � : : : � rk � 2
with r1 + : : : + rk � n and choose r0 such that r0 + r1 + : : : + rk = n. Then
� = �(�1, : : : ,�1| {z }

r1

, : : : , �k, : : : ,�k| {z }
rk

, 1, : : : , 1| {z }
r0

) defines a character of T(F)nT(A F ),

where T is the subgroup of diagonal elements in G. An Eisenstein series [18]
attached to a character of T(A F ) will contribute to the residual spectrum only if
the character is of the above type (Proposition 4.6).

By [14, 16], the character � defines a homomorphism of the Weil group WF

into a Cartan subgroup of SO2n+1 (C ). Composing this homomorphism with the
standard action of O2n+1(C ) on C 2n+1 will then give a completely reducible repre-
sentation of WF on C

2n+1 which decomposes according to eigenvalues �1, : : : ,�k,
and 1, with multiplicities 2r1, : : : , 2rk, and 2r0 + 1, respectively. Write C

2n+1 =
V0 � V1 � : : : � Vk, where each Vi, dim Vi = 2ri, is the eigenspace attached to
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eigenvalue �i, 1 � i � k, and V0 is the trivial eigenspace of dimension 2r0 + 1.
In this way we get an embedding of

Qk
i=0 O(Vi) � O2n+1(C ).

Now, for each i, 1 � i � k, let Oi be the unipotent orbit of O(Vi) attached to
the principal Jordan block (2ri � 1, 1). Let Oo be the principal unipotent orbit of
O(V0), i.e. the one attached to the Jordan block (2r0 + 1).

The Arthur parameter of interest to us is a homomorphism

 : WF � SL2(C ) � SL2(C ) ! O2n+1(C )

which factors through
Qk

i=0 O(Vi), sends WF to the center of
Qk

i=0 O(Vi) according
to 1
 �1 
 : : :
 �k, is trivial on the middle SL2(C ), and for which

 (1, 1,

 
1 1
0 1

!
)

belongs to
Qk

i=0 Oi. This is clearly a quadratic unipotent Arthur parameter in the
sense of Moeglin [23] (see Section 3). To  , Arthur associates a Langlands’
parameter � (see Section 3).

In this paper, we use Langlands theory of Eisenstein series [18] to construct
the representations in Π� as residues of the Eisenstein series associated to the
character � (Theorems 4.5 and 5.1). Using certain identities satisfied by local
intertwining operators which was proved in [11], we then verify Arthur’s multi-
plicity formula for these square integrable residues (Theorem 5.1). (See section 3
for Arthur’s multiciplity formula.) It is remarkable that in fact the formula itself
appears in the corresponding residue of the Eisenstein series. We note that the
local R-group C� v

for the parameter � v (see Section 3) is the Knapp-Stein

R-group of the unitary principal series Iv = IndM(Fv )
B0(Fv ) �v , where M is the Levi-

subgroup whose L-group is M� = Cent (im�+
 , G�).

The technical combinatorial part of dealing with the residues of Eisenstein
series (Proposition 4.4 and Theorem 4.5) which is an important step in the proof
is contained in Section 4. They rely on several technical lemmas about Weyl
groups and normalizing factors (Lemmas 4.7 and 4.8). The final interpretation
of Theorem 4.5 and the proof of Arthur’s multiplicity formula (Arthur’s con-
dition in the language of Moeglin [23]) is done in Section 5 (Theorem 5.1).
In particular, in Section 5 we determine Arthur parameters of the square inte-
grable residual spectrum of Sp4 (A F ) coming from the conjugacy class of Borel
subgroups. Using [12], this implies the exhaustion, i.e., that quadratic unipotent
Arthur parameters completely determine the residual spectrum of Sp4 (A ) coming
from this conjugacy class and conversely.

We expect that quadratic unipotent Arthur parameters completely parametrize
all the residual spectrum of Sp2n coming from the conjugacy class of Borel
subgroups. When these residues are unramified, i.e., when � = 1, the problem
has been completely solved by Moeglin [22, 20]. We expect that her results will
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play an important role in proving the exhaustion in general. We would like to
thank her for patiently answering many of our questions [21].

Finally in view of [23], we expect that the method of the present paper can
be equally well applied to the case of orthogonal groups.

1. Preliminaries. Let F be a field and let G = SO2n+1, Sp2n or SO2n over
F. Let Jn be the n� n matrix given by

Jn =

0
BBBBBBB@

1
1

.
.

.
1

1
CCCCCCCA

.

Let J02n =

 
Jn

�Jn

!
. Then

Sp (2n) =
�

g 2 GL(2n)j tgJ02ng = J02n

	
,

and

SO (n) =
�

g 2 GL(n)j tgJng = Jn; det(g) = 1
	

.

In each case we let T be the maximal split torus consisting of diagonal
matrices in G. Then

T(F) =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

0
BBBBBBBBBBBBBB@

l1
l2

. . .
ln

l�1
n

. . .
l�1
2

l�1
1

1
CCCCCCCCCCCCCCA

���� li 2 F�

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

,
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if G = Sp (2n) or SO (2n), and

T(F) =

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

0
BBBBBBBBBBBBBBBB@

l1
l2

. . .
ln

1
l�1
n

. . .
l�1
2

l�1
1

1
CCCCCCCCCCCCCCCCA

���� li 2 F�

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

if G = SO (2n + 1).
Let Φ(G, T) be the roots of G with respect to T . We choose the ordering

on the roots so that the Borel subgroup B is the subgroup of upper triangular
matrices in G. Let ∆ be the simple roots in Φ(G, T) given by ∆ = f�jg

n
j=1 , with

�j = ej � ej+1 for 1 � j � n� 1, and

�n =

8><
>:

en G = SO (2n + 1),
2en G = Sp (2n),
en�1 + en G = SO (2n).

We let h, i be the standard Euclidean inner product on Φ(G, T). If Φ is a root
system of type Bn, Cn, or Dn, then we denote by G(Φ) the split group with root
system Φ.

For G = SO (2n + 1) or Sp (2n), the Weyl group W(G=T) ' Sn n Z
n
2 . Sn acts

by permutations on the �i, i = 1, : : : , n. We will use standard cycle notation for
the elements of Sn. Thus (ij) interchanges �i and �j. If ci is the nontrivial element
in the i th copy of Z2 then ci takes �i to ��1

i . The element ci is called a sign
change because its action on Φ(G, T) takes ei to �ei. For G = SO (2n), the Weyl
group is given by W(G=T) ' Sn n Zn�1

2 . Sn acts by permutations on the �i, and
Z

n�1
2 acts by even numbers of sign changes. The requirement that the number

of sign changes be even comes from the determinant condition in SO (2n). Note
that the sign change ci is an element of O(2n) and normalizes T(F). Each ci acts
on SO (2n) by conjugation, and cn induces the nontrivial graph automorphism on
the Dynkin diagram of Φ(G, T).

2. Unipotent orbits of classical groups over C . The theory of Jordan
normal forms implies that a unipotent matrix in GLN is conjugate to J(p1) �
J(p2) � � � � � J(ps), p1 � p2 � � � � � ps, p1 + p2 + � � � + ps = N, where J(p) is
the p� p Jordan matrix with entries 1 just above the diagonal and the diagonal,
and zero everywhere else. Therefore, unipotent classes in GLN are in 1 to 1
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correpondence with partitions � of N. We use the following standard notation for
�: � = (1r1 , 2r2 , 3r3 , � � �), where rj is the number of pi equal to j.

Let G be a classical group, of type Bn (O2n+1(C )), Cn (Sp2n (C )) or Dn

(O2n(C )). We start with the following facts:
(1) X, X0 2 G are conjugate in G if and only if they are conjugate in GLN , N =

2n + 1 or 2n.
(2) Let X 2 GLN be unipotent. Then X is conjugate to an element of G if and

only if ri is even for even i in the orthogonal case and for odd i in the symplectic
case.

Therefore for G = O2n+1(C ), unipotent classes are in 1 to 1 correspondence
with partitions � of 2n + 1 such that ri is even for even i.

Let u be a unipotent element in G and let Su be its centralizer in G. Then we
have:

(3) In the orthogonal case (resp. symplectic) case, Su=S�u is k product of Z=2Z ,
where k is the number of odd (resp. even) i such that ri > 0.

Here we note that for G = GLN(C ), the centralizer ZG(S) is connected for
any subset S of G.

We say that a unipotent element u is distinguished if all maximal tori of
Cent (u, G) are contained in the center of G�, the connected component of the
identity. This is equivalent to the fact that the unipotent orbit O of u does not
meet any proper Levi subgroup of G (Spaltenstein [30, p. 67]; i.e., if L is a Levi
subgroup of a parabolic subgroup of G and u 2 L for a u 2 O, then L� = G�).
If G = O2n+1(C ), then G� = SO2n+1 (C ) and G� has trivial center. By Carter
[5], for G = O2n+1(C ) or O2n(C ), if u is a unipotent element with Jordan blocks
(1r1 , 2r2 , : : :), then the reductive part of the connected centralizer Cent (u, G)� is
of type Y

i even

Cri=2 �
Y

i odd, ri even

Dri=2 �
Y

i odd, ri odd

B(ri�1)=2.

Therefore, O is a distinguished unipotent class if and only if it has Jordan blocks
(1r1 , 3r3 , 5r5 , : : :), where ri = 0 or 1.

JACOBSON-MOROZOV THEOREM. Suppose u is a unipotent element in a semi-
simple algebraic group G. Then there exists a homomorphism �: SL2 7�! G such

that �

 
1 1
0 1

!
= u.

Here, replacing � by a conjugate under G, we can assume that �

 
a 0
0 a�1

!

is in the closure of the positive Weyl chamber in the maximal torus. In fact, by

the theory of weighted Dynkin diagrams (cf. Section 5.6 of [5]), �

 
a 0
0 a�1

!

is uniquely determined by the unipotent orbit of u as follows (Carter [5, p. 395]):
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Suppose O has Jordan blocks (d1, d2, d3, : : :). For each di, we take the set of
integers di � 1, di � 3, : : : , 3� di, 1� di. We then take the union of these sets for
all di and write this union as (�1, �2, �3, : : :) with �1 � �2 � �3 � � � �. Then

�

 
a 0
0 a�1

!
= diag (a�1 , a�2 , a�3 , : : :).(2.1)

LEMMA. ([3, Proposition 2.4]) Let u be a unipotent element and �: SL2 7�! G

be a homomorphism such that �

 
1 1
0 1

!
= u. Let S� = Cent (im�, G) � Su =

Cent (u, G) and Uu be the unipotent radical of Su. Then
(1) Su = S� � Uu, a semi-direct product. S� is reductive.
(2) The inclusion S� � Su induces an isomorphism between S�=S��ZG and

Su=S�uZG.

3. Quadratic unipotent Arthur parameters. We follow Moeglin [23]. Let
F be a number field and let WF be the global Weil group of F. For G = Sp2n, we
can take the dual group G� = O2n+1(C ). An Arthur parameter is a homomorphism

 : WF � SL2(C ) � SL2(C ) 7�! O2n+1(C ),

with the following properties: (The usual definition of Arthur parameter uses
Langlands’ hypothetical group LF. But since we are only dealing with Langlands’
quotients which come from principal series, WF is enough.)

(1)  (WF) is bounded and included in the set of semi-simple elements of G�.
(2) The restriction of  to the 2 copies of SL2(C ) is algebraic.
(3) Composing  jWF with the determinant of G� gives a quadratic character

of WF, denoted by det . We want det = 1.
We call an Arthur parameter quadratic unipotent if the following two condi-

tions are satisfied:
(4)  j1�SL2(C )�1 � 1;
(5)  jWF is trivial on the intersection of the kernels of the quadratic characters

of WF.
Because of conditions (1) and (5), the action of  (WF) gives an orthogonal

decomposition:

C
2n+1 = V0 � V1 � � � � � Vk,

where dim V0 = 2r0 +1, dim Vi = 2ri, 2r0 +1+2r1 + � � �+2rk = 2n+1, r1 � � � � � rk

and Vi is the eigenspace with eigenvalue �i. Here �1, : : : ,�k are nontrivial distinct
quadratic grössencharacters of F, viewed as characters of WF (cf. [14, 16]), and
dim Vi being even comes from condition (3).
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The parameter  factors through
Qk

i=0 O(Vi):

 : WF � SL2(C ) � SL2(C ) 7�!
kY

i=0

O(Vi).

(1) WF is mapped into the product of centers of O(Vi)

 jWF: w 7�! 1� �1(w)� � � � � �k(w) 2 f�1g � f�1g � � � � f�1g,

where f�1g is the center of O(Vi), for i = 0, : : : , k.
(2) By Jacobson-Morozov theorem,  j1�1�SL2(C ) defines a unipotent orbit of

G� of the form

kY
i=0

Oi,

where Oi is a unipotent orbit of O(Vi). Inside Oi we fix an element ui such that

 

 
1 1
0 1

!
=

kY
i=0

ui.

Let S = Cent (im , G�) and

C = S =S� ZG� .

We know that S is a maximal reductive subgroup of
Qk

i=0 Cent (ui, O(Vi)).
Therefore S� = 1, i.e., S is finite if and only if each ui is a distinguished unipotent
element in O(Vi). Especially, since O2(C ) has no distinguished unipotent element,
we have

LEMMA. Let  be a quadratic unipotent Arthur parameter. Suppose S� = 1.
Then rk � 2.

Now it is clear that S =S� ZG� is equal to

Cent (u0, O(V0))=Cent (u0, O(V0))�ZO(V0)

kY
i=1

Cent (ui, O(Vi))=Cent (ui, O(Vi))
�.

Here Cent (ui, O(Vi))=Cent (ui, O(Vi))� is t product of Z=2Z , where t is the num-
ber of i odd with ri > 0 in Jordan blocks.

For each place v of F, we have a map  v =  jWFv � SL2(C ) � SL2(C ). As
in the global case, we can then define S v . But in the local case, �iv may not be
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distinct. Suppose �1v = �2v . Then in the above formula,

Cent (u1, O(V1))=Cent (u1, O(V1))� � Cent (u2, O(V2))=Cent (u2, O(V2))�

must be replaced by

Cent (u1 � u2, O(V � V2))=Cent (u1 � u2, O(V1 � V2))�.

To any Arthur parameter  , Arthur associates a Langlands’ parameter � : WF�

SL2(C ) 7�! G� as follows:

� (w, 1) =  

 
w, 1,

 
jwj

1
2 0

0 jwj�
1
2

!!
, � j1� SL2(C ) � 1.

For quadratic unipotent Arthur parameter  , � is given by
(1) � jSL2(C ) � 1;
(2) � (w) =

Qk
i=0 � i(w) 2

Qk
i=0 O(Vi), where each � i(w) is the associated

Langlands parameter for  i: WF � SL2(C ) � SL2(C ) 7�! O(Vi).
Now we recall Arthur’s conjecture. Let S� = Cent (im� , G�) and

C� = S� =S�� ZG� .

For each place v of F, we have local Arthur parameters  v =  jWFv � SL2(C ) �
SL2(C ), as well as S v , C v , S� v

and C� v
. For each v, there is also a natural

map C 7�! C v and a natural surjective C v 7�! C� v
. The parameter � v

gives a L-packet Π� v
which consists of Langlands’ quotients.

It is a part of Arthur’s local conjecture [1, 2] that for each place v of F, there
is a pairing h , i on C� v

�Π� v
and an enlargement Π v of Π� v

which allows
an extension of h , i to C v �Π v such that � 2 Π� v

� Π v if and only if the
function h�,�i lies in the image of Ĉ� v

in Ĉ v .
We define the global Arthur packet Π to be the set of irreducible represen-

tations � = 
v�v of G(A ) such that for each v, �v belongs to Π v . Define the
global pairing on C � Π by

hx,�i =
Y
v

hxv ,�vi,

for � = 
v�v 2 Π and x 2 C with image xv in C v .

Arthur’s conjecture (Global).
(1) The representations in the packet corresponding to  may occur in the

discrete spectrum if and only if S is finite, i.e., S� = 1. We call such an Arthur
parameter elliptic.
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(2) For an elliptic Arthur parameter  , there is a positive integer d and
a homomorphism � : C 7�! f�1g such that the multiplicity with which any
� 2 Π occurs discretely in L2(G(F)nG(A )) is

d 
jC j

X
x2C 

� (x)hx,�i.(3.1)

For quadratic unipotent Arthur parameters, we have

LEMMA. (Moeglin [23]) For  quadratic unipotent, � is trivial.

In Section 4, we restrict ourselves to the case where the unipotent orbits
Oi have Jordan blocks (2ri � 1, 1) for i = 1, .., k and (2r0 + 1) for i = 0, i.e.,
the ones with the most weighted Dynkin diagrams (cf. [5]). We will construct
representations in Π� as residues of Eisenstein series associated to the character
� = �(�1, : : : ,�1| {z }

r1

, : : : ,�k, : : : ,�k| {z }
rk

, 1, : : : , 1| {z }
r0

), where r1 � r2 � � � � � rk and �i’s

are mutually distinct and quadratic grössencharacters.
In Section 5, we interpret the result of Section 4 in terms of Arthur parameters

and prove the multiplicity formula (3.1).

4. Residual spectrum of Sp2n. We fix a nontrivial additive character � =

v�v of A =F and let �(z,�) be the Hecke L-function with the ordinary Γ-factor so
that it satisfies the functional equation �(z,�) = �(z,�)�(1�z,��1), where �(z,�) =Q

v �(z,�v , �v ) is the usual �-factor (see [8, p. 159]). If � is the trivial character
�0, then we write simply �(z) for �(z,�0). We have the Laurent expansion of �(z)
at z = 1:

�(z) =
c(F)
z� 1

+ a + � � � .

Let �_ be the coroot corresponding to � 2 Φ+(G, T). Explicitly, for � =
ei � ej, �_(�) = t(1, : : : ,�

i
, : : : ,�

j
�1, : : : , 1) 2 T(F) for 1 � i < j � n. For

� = ei + ej, �_(�) = t(1, : : : ,�
i
, : : : ,�

j
, : : : , 1), for 1 � i < j � n. For � = 2ei,

�_(�) = t(1, : : : ,�
i
, : : : , 1) for 1 � i � n. Here dots represent 1.

Let X(T)F (resp. X�(T)F) be the group of F-rational characters (resp. cochar-
acters) of T . There is a natural pairing h, i: X(T)F � X�(T)F 7�! Z. For �,� 2
Φ(G, T), h�,�_i = 2(�,�)=(�,�), where ( , ) is the standard inner product in
Φ(G, T). Let !i = e1 + � � � + ei. Then !1, : : : ,!n are the fundamental weights of
G with respect to (G, T). Since G is simply connected, X(T)F = Z!1 + � � � + Z!n

and X�(T)F = Z�_1 + � � � + Z�_n . Set a
� = X(T)F 
 R , a

�
C

= X(T)F 
 C , and
a = X�(T)F
R = Hom (X(T)F, R ), aC = X�(T)F
C . The positive Weyl chamber
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in a
� is

C+ = fΛ 2 a
�jhΛ,�_i > 0, for all � positive rootsg

=

(
nX

i=1

ai!ij ai > 0

)
.

Let B = TU be the Borel subgroup, where U is the unipotent radical. Let
K1 be the standard maximal compact subgroup of G(A 1) and for v finite, let
Kv = G(Ov), where Ov is the ring of integers of F. Then K = K1 �

Q
vfinite Kv

is the maximal compact subgroup of G(A ) and G(A ) = B(A )K. The embedding
X(T)F ,! X(T)Fv induces an embedding av ,! a, where av = Hom (X(T)Fv , R ).
There exists a homomorphism HB: T(A ) 7�! a, defined by

exph�, HB(t)i =
Y
v

j�(tv)jv ,

where � 2 X(T)F and t = (tv). We will extend HB to G by making it trivial on U
and K. If we define HBv : Tv 7�! av , by

q
h�,HBv (t)i
v = j�(t)jv ,

where � 2 X(T)Fv , t 2 Tv , and qv is the number of elements in the residue field,
when v is finite, and by

exph�, HBv (t)i = j�(t)jv ,

for v infinite, then

exph�, HB(t)i =
Y

v=1

exph�, HBv (tv)i
Y

v<1

q
h�,HBv (tv )i
v .

Observe that for almost all v, tv 2 G(Ov) on which HBv is trivial. Thus the
product is in fact finite.

4.1. Definition of Eisenstein series. For �1, : : : ,�n grössencharacters of
F, we define a character � = �(�1, : : : ,�n) of T(A ) by

�(�1, : : : ,�n)(t(�1, : : : ,�n)) = �1(�1) � � ��n(�n).

Let I(�) be the space of functions Φ on G(A ) satisfying Φ(utg) = �(t)Φ(g) for
any u 2 U(A ), t 2 T(A ) and g 2 G(A ). Then for each Λ 2 a

�
C

, the representation
of G(A ) on the space of functions of the form

g 7�! Φ(g) exphΛ + �B, HB(g)i, Φ 2 I(�),
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is equivalent to I(Λ,�) = Ind
B"G

�
 exp (Λ, HB( )). We form the Eisenstein series:

E(g, f , Λ) =
X

2B(F)nG(F)

f (g),

where f = Φ ehΛ+�B,HB( )i 2 I(Λ,�) and �B is the half-sum of positive roots, i.e.,
�B = !1 + � � � + !n. It converges absolutely for Re Λ 2 C+ + �B and extends to a
meromorphic function of Λ. It is an automorphic form and the constant term of
E(g, f , Λ) along B is given by

E0(g, f , Λ) =
Z

U(F)nU(A )
E(ug, f , Λ) du =

X
w2W

M(w, Λ,�)f (g),

where W is the Weyl group of T and

M(w, Λ,�)f (g) =
Z

wU(A )w�1\U(A )nU(A )
f (w�1ug) du.

Then M(w, Λ,�) defines an intertwining map from I(Λ,�) to I(wΛ, w�) and sat-
isfies a functional equation of the form

M(w1w2, Λ,�) = M(w1, w2Λ, w2�)M(w2, Λ,�).

Let S be a finite set of places of F, including all the archimedean places such
that for every v =2 S, �v , �v are unramified and if f = 
fv , for v =2 S, fv is the
unique Kv-fixed function normalized by fv(ev) = 1. We have

M(w, Λ,�) = 
vA(w, Λ,�v).

Then by applying Gindikin-Karpelevic method, we can see that for v =2 S,

A(w, Λ,�v)fv =
Y

�>0,w�<0

L(hΛ,�_i,�v � �
_)

L(hΛ,�_i + 1,�v � �_)
f̃v ,

where f̃v is the Kv-fixed function in the space of I(wΛ, w�) (cf. [6, 17, 18, 27,
28]). For any v, let

rv(w) =
Y

�>0,w�<0

L(hΛ,�_i,�v � �
_)

L(hΛ,�_i + 1,�v � �_)�(hΛ,�_i,�v � �_, �v )
.

We normalize the intertwining operators A(w, Λ,�v) for all v by

A(w, Λ,�v) = rv(w)R(w, Λ,�v).
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Let R(w, Λ,�) = 
vR(w, Λ,�v) and

r(w) = Πvrv(w) =
Y

�>0,w�<0

�(hΛ,�_i,� � �_)
�(hΛ,�_i + 1,� � �_)�(hΛ,�_i,� � �_)

.

R(w, Λ,�) satisfies the functional equation

R(w1w2, Λ,�) = R(w1, w2Λ, w2�)R(w2, Λ,�),

for any w1, w2. We know, by Winarsky [32] for p-adic cases and by Shahidi [26,
p. 110] for real and complex cases that

A(w, Λ,�v)
Y

�>0,w�<0

Lv(hΛ,�_i,�v � �
_)�1(4.1)

is holomorphic for any v. So for any v, R(w, Λ,�v) is holomorphic for Λ with
Re (hΛ,�_i) > �1, for all positive � with w� < 0. For � = �(�1, : : : ,�n),

� � �_ =

8><
>:
�i�

�1
j , for � = ei � ej

�i�j, for � = ei + ej and i < j
�i, for � = 2ei.

For � 2 Φ+, let S� = fΛ 2 a
�
C
jhΛ,�_i = 1g. We call S� a singular hyper-

plane. We say that E(g, f , Λ) has a pole of order l at Λ0 if Λ0 is the intersection
of l singular hyperplanes in general position on which the Eisenstein series has
a simple pole.

Langlands’ theory [18, 25] says that L2
d(B) is generated by square integrable

iterated residues of E(g, f , Λ) at poles of order n.
We recall Langlands’ square integrability criterion for autormorphic forms

through their constant terms in our case ([18, p. 104] or [9, p. 187]). We write
the intertwining operator M(w, Λ,�) as follows:

M(w, Λ,�)f (g) = T(w, Λ,�)Φ(g)ehwΛ+�B,HB(g)i.

Suppose the iterated residue of E0(g, f , Λ) at Λ = � is given by

Res� E0(g, f , Λ) =
X
w2Ω

Res� T(w, Λ,�)Φ(g)ehw�+�B,HB(g)i.

Here Ω is the set of all w 2 W which contribute a nonzero residue. Then we
have

LEMMA. (Langlands) Res� E(g, f , Λ) is square integrable if and only if Re (w�)
is in �f

P2n
i=1 ai�ijai > 0g for all w 2 Ω.
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For Ψ � Φ+, we define r(w, Λ, Ψ) by

r(w, Λ, Ψ) =
Y

�2Ψ,w�<0

�(hΛ,�_i,� � �_)
�(hΛ,�_i + 1,� � �_)�(hΛ,�_i,� � �_)

.

Observe that we have suppressed the dependence of r(w, Λ, Ψ) on �.

4.2. Residues of the Eisenstein series. We start with

PROPOSITION 4.1. Let E(g, f , Λ) be the Eisenstein series associated to the trivial
character. Its constant term E0(g, f , Λ) is given by

E0(g, f , Λ) =
X
w2W

r(w, Λ, Φ+)R(w, Λ, 1)f .

Let Λ0 = �B be the half-sum of positive roots. Then only w = w0, the longest element
of the Weyl group, contributes a pole of order n, and the residue of E(g, f , Λ) at Λ0

is constant.

Proof. Note that f�jh�B,�_i = 1g is the set of simple roots. Therefore, �B is
the intersection of the n singular hyperplanes S� for simple roots �. But

fwjw� < 0, for all simple roots �g = fw0, the longest Weyl group elements in Wg.

Therefore, the residue at � = �B is

(�)
v Rv(w0, �B,�v )fv ,

where fv 2 Iv(�B,�v ). But Rv(w0, �B,�v)Iv(�B,�v) is the Langlands’ quotient,
which is constant. Therefore, the residue is constant.

Remark 1. Here the half-sum of positive roots corresponds, by (2.1), to the
unipotent orbits with Jordan blocks (2n + 1) for G� = O2n+1(C ), (2n � 1, 1) for
G� = O2n(C ), resp. i.e., �B = �1

2 e1 + �2
2 e2 + � � �. We note that Λ0 and w0 satisfy

(Λ0, en) = 0 and w0Λ0 = �Λ0, the first only valid for G = SO2n.

For � a nontrivial character, we can assume, after conjugation, that � =
�(�1, : : : ,�1| {z }

r1

, : : : ,�k, : : : ,�k| {z }
rk

, 1, : : : , 1| {z }
r0

), r0 + � � � + rk = n, r1 � � � � � rk.

Let E(g, f , Λ) be the Eisenstein series associated to the character �.

PROPOSITION 4.2. The Eisenstein series has a pole of order n only if rk � 2 and
�i is a quadratic grössencharacter for i = 1, : : : , k.
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We divide the set of positive rootsΦ+ as follows:
Φ1 = fei � ej, 1 � i < j � r1g,
Φ2 = fer1+i � er1+j, 1 � i < j � r2g,

...
Φk = fer1+���+rk�1+i � er1+���+rk�1+j, 1 � i < j � rkg,
Φ0 = fer1+���+rk+i�er1+���+rk+j, 1 � i < j � r0, 2er1+���+rk+i, i = 1, : : : , r0g,
ΦD = Φ+ �

Sk
i=0 Φk.

Φ1,: : : ,Φk are root systems of type Dn and Φ0 is a root system of type Cn. This
corresponds to the decomposition O(V1)�� � ��O(Vk)�O(V0) � O2n+1(C ). Let Wi

be the Weyl group corresponding to Φi for i = 0, : : : , k. Let Λ = Λ1 + � � �+Λk +Λ0,
where Λi = ar1+���+ri�1+1er1+���+ri�1+1 + � � � + ar1+���+rier1+���+ri for i = 1, : : : , k and
Λ0 = ar1+���+rk+1er1+���+rk+1 + � � � + anen.

We recall the following well-known result (Carter [5, p. 47]).

PROPOSITION 4.3. Let ∆ be a set of simple roots and W be the associated Weyl
group. Let w� be the simple reflection with respect to � 2 ∆. Then W is generated
by the w�, � 2 ∆. Let � be a subset of ∆ and W� be the subgroup of W generated
by the w�, � 2 �. Then each coset wW� has a unique element d� characterized by
any of the following equivalent properties:

(1) d�� > 0;

(2) d� is of minimal length in wW�; and

(3) For any x 2 W�, l(d�x) = l(d�) + l(x).

We apply Proposition 4.3 to ∆ = fe1 � e2, : : : , en�1 � eng and � = ∆ �

fer1 � er1+1, er1+r2 � er1+r2+1, : : : , er1+���+rk � er1+���+rk+1g. Let D be the set of such
distinguished coset representatives. Then we have

PROPOSITION 4.4. The constant term E0(g, f , Λ) =
P

w2W r(w, Λ, Φ+)R(w, Λ,�)f
can be written as

kY
i=1

X
wi2Wi

r(wi, Λi, Φi)
X

w02W0

r(w0, Λ0, Φ0)

�
X
d2D

X
c2C

r(dcw1 � � �wkw0, ΦD)R(dcw1 � � �wkw0, Λ,�)f ,

where C is the set spanned by cr1 , cr1+r2 , : : : , cr1+���+rk . Here ci’s are sign changes
in the Weyl group: its action on Φ(G, T) takes ei to �ei.

Let Λ0 = Λ1,0 + � � � + Λk,0 + Λ0,0, where Λi,0 is the half-sum of positive roots
in Φi for i = 0, : : : , k. Then
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THEOREM 4.5. The residue of E0(g, f , Λ) at Λ0 is given by

X
d2D

(�)R(dw0, Λ0,�)
kY

i=1

(1 + R(cr1+���+ri))f ,(4.2)

where w0 is determined by Λ0 and (�) signifies a constant. It is square integrable.

It is instructive to consider first a simple case to illustrate our method, namely,
� = �(�, : : : ,�), � nontrivial and quadratic. The main idea of our proof is already
contained in this simple case.

Let Φ1 = fei � ej, 1 � i < j � ng and Φ2 = f2ei, i = 1, : : : , ng. Then
for � 2 Φ1, � � �_ = 1 and for � 2 Φ2, � � �_ is nontrivial. Let W1 be the
Weyl group associated to Φ1. It is a Weyl group of type Dn. Here #(W=W1) = 2
and the nontrivial coset has a distinguished coset representative, i.e., cn. It is the
unique element which satisfies cnΦ1 > 0. Here for w 2 W1,

f� > 0j cnw� < 0g = f� 2 Φ1j w� < 0g [ f� 2 Φ2j cnw� < 0g.

Therefore the constant term of the Eisenstein series is

X
w12W1

r(w1, Λ, Φ1)(r(w1, Λ, Φ2)R(w1, Λ,�) + r(cnw1, Λ, Φ2)R(cnw1, Λ,�)).

We consider the residue at Λ = Λ0, the half-sum of positive roots of Φ1. Since
(Λ0, en) = 0, the last term is holomorphic on every singular hyperplane. The
first term has a pole of order n at w = w0, the longest element of W1. Since
w0Λ0 = �Λ0, w0ei = �ek, for some k < n depending on i. Therefore, for
� = 2ei, i = 1, .., n � 1, w0� < 0 if and only if cnw0� < 0. So r(w0, Λ0, Φ2) =
r(cnw0, Λ0, Φ2), and the residue is

(�)R(cnw0, Λ0,�)(1 + R(cn, Λ0,�)),

since cnw0cn = w0.

4.3. Proof of Proposition 4.2. We need

PROPOSITION 4.6. If one of � is not a quadratic grössencharacter or ri = 1 for
some i > 0, then the Eisenstein series has no pole of order n. In particular, for
� = �(�, : : : ,�| {z }

r1

, �1, : : : , �r2) (if r1 > 1, � is not quadratic), the Eisenstein series

has no pole of order n.
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Proof. Let

Φ1 = fei � ej, 1 � i < j � r1g,

Φ2 = fer1+i � er1+j, 1 � i < j � r2, 2er1+i, i = 1, : : : , r2g,

Φ3 = Φ+ � Φ1 [Φ2.

Then Φ1 is a root system of type Ar1�1 and Φ2, a root system of type Cr2 . For
� 2 Φ3, � � �_ is nontrivial. Let Wi be the Weyl group of Φi for i = 1, 2. Let
Λ = Λ1 + Λ2, where Λ1 = a1e1 + � � � + ar1er1 and Λ2 = ar1+1er1+1 + � � � + anen.
Then W1W2 is W� in Proposition 3 with � = ∆� fer1 � er1+1g. Let D be the set
of distinguished coset representatives for W=W1W2. For d 2 D, w1 2 W1 and
w2 2 W2,

f� > 0: dw1w2� < 0g = f� 2 Φ1jw1� < 0g

[f� 2 Φ2jw2� < 0g

[f� 2 Φ3j dw1w2� < 0g.

Using (4.1), we write the constant term of the Eisenstein series

E0(g, f , Λ) =
X
w2W

r(w, Λ, Φ+)R(w, Λ,�)f

as follows:

E0(g, f , Λ) =
X
w2W

r̃(w, Λ, Φ+)
v =2S f̃v 

v2SÃ(w, Λ,�)fv ,

where Ã(w, Λ,�) is the expression (4.1) and

r̃(w, Λ, Φ+) =
Y

�2Φ+,w�<0

�S(hΛ,�_i,�)
�S(hΛ,�_i + 1,�)

,

where �S(z,�) =
Q

v =2S L(z,�v) is the partial Hecke L-function. Then we have

E0(g, f , Λ) =
X

w12W1

r̃(w1, Λ1, Φ1)
X

w22W2

r̃(w2, Λ2, Φ2)

X
d2D

r̃(dw1w2, Λ, Φ3)
v =2S f̃v 

v2SÃ(dw1w2, Λ,�)fv .

Ã(w, Λ,�) is entire and r̃(w, Λ, Φ3) is holomorphic on any singular hyperplane.
Any pole of the first term is an intersection of � r1 � 1 singular hyperplanes
in general position and any pole of the second term is an intersection of � r2

singular hyperplanes in general position. Therefore, any pole of the Eisenstein



ARTHUR PARAMETERS AND RESIDUAL SPECTRUM 417

series is an intersection of � r1 + r2 � 1 < n singular hyperplanes in general
position. This proves Proposition 4.6.

Proposition 4.2 is now immediate.

4.4. Proof of Proposition 4.4. First we prove the assertion for

� = �(�, : : : ,�| {z }
r1

, �1, : : : , �n�r1 ),

where � is nontrivial, quadratic and � and �j are distinct for all j.
Let �1 = �(�, : : : ,�| {z }

r1

) and �2 = �(�1, : : : , �n�r1 ). Let

Φ1 = fei � ej, 1 � i < j � r1g,
Φ2 = fer1+i � er1+j, 1 � i < j � n� r1, 2er1+i, i = 1, : : : , n � r1g,
Φ3 = Φ � Φ1 [ Φ2 = fei � er1+j, i = 1, : : : , r1, j = 1, : : : , n � r1, 2ei, i =

1, : : : , r1g.
Then for � 2 Φ1, � ��_ = 1. For � 2 Φ2, � ��_ = �2 ��

_ and for � 2 Φ3,
� � �_ is nontrivial. Let Wi be the Weyl group associated to Φi, i = 1, 2. Let
Λ = Λ1 + Λ2, Λ1 = a1e1 + � � � + ar1er1 and Λ2 = ar1+1er1+1 + � � � + anen. We apply
Proposition 4.3 to ∆ = fe1� e2, : : : , en�1 � eng and � = ∆�fer1 � er1+1g. Let D�

be the set of distinguished coset representatives. Then we need

LEMMA 4.7. D = D� [ D�cr1 is the set of distinguished coset representatives
for W=W1W2, i.e., d 2 D if and only if d(Φ1 [Φ2) > 0.

Proof. Since D� contains no sign changes, it follows immediately that d(Φ1[

Φ2) > 0 for all d 2 D. It can be easily checked that #D = #(W=W1W2). We
therefore only need to show that each coset has a unique coset representative in
D. Suppose di 2 D for i = 1, 2 and d�1

1 d2 = w1w2 2 W1W2. Then d2 = d1w1w2.
Using d2� > 0 for all � 2 Φ2 implies that d1w1w2� > 0. Here w1 and w2

commute and w1� = � for � 2 Φ2. Therefore, we have d1w2� > 0 for all
� 2 Φ2 or w2� > 0 for all � 2 Φ2. This implies that w2 = 1. In the same way,
we have w1 = 1. This proves the lemma.

For d 2 D, w1 2 W1 and w2 2 W2,

f� > 0: dw1w2� < 0g = f� 2 Φ1jw1� < 0g

[f� 2 Φ2jw2� < 0g

[f� 2 Φ3j dw1w2� < 0g.
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Then the constant term of E(g, f , Λ) is given by

X
w12W1

r(w1, Λ1, Φ1)
X

w22W2

r(w2, Λ2, Φ2)(4.3)

�
X

d2D�

(r(dw1w2, Λ, Φ3)R(dw1w2, Λ,�) + r(dcr1w1w2, Λ, Φ3)R(dcr1w1w2, Λ,�)).

In order to apply induction, let � = �(�1, : : : ,�1| {z }
r1

,�2, : : : ,�2| {z }
r2

, �1, : : : , �l), r1 +

r2 + l = n. Let �2 = �(�2, : : : ,�2| {z }
r2

, �1, : : : , �l). We repeat the above for �2 and

divide Φ2 as follows:

Φ4 = fer1+i � er1+j, 1 � i < j � r2g,

Φ5 = fer1+r2+i � er1+r2+j, 1 � i < j � l, 2er1+r2+i, i = 1, .., lg,

Φ6 = Φ2 � Φ4 [Φ5.

Let Wi be the Weyl group of Φi for i = 4, 5. Then D0 = D�0 [D�0cr1+r2 is the
set of distinguished coset representatives for W2=W4W5, where D�0 is the set of
distinguished coset representatives for

�0 = fer1+1 � er1+2, : : : , en�1 � eng � fer1+r2 � er1+r2+1g.

Then one can show that D�D�0 is the set of distinguished coset representatives in
Proposition 4.3 for fe1 � e2, : : : , en�1 � eng � fer1 � er1+1, er1+r2 � er1+r2+1g and

DD0 = D�D�0 [ D�D�0cr1 [ D�D�0cr1+r2 [ D�D�0cr1cr1+r2

is the set of distinguished coset representatives for W=W1W4W5, i.e., d 2 DD0 if
and only if d(Φ1 [ Φ4 [Φ5) > 0. Proposition 4.4 now follows by induction.

4.5. Proof of Theorem 4.5. We apply induction and start with the equation
(4.3). Suppose the first term has a pole at Λ1,0 and w1 = wΛ1,0 contributes the
pole. Let Λ = Λ1,0 + Λ2. We need

LEMMA 4.8. For each w2 2 W2,

r(dwΛ1,0w2, Λ, Φ3) = r(dcr1wΛ1,0w2, Λ, Φ3).

Proof. Recall the properties of w1 and Λ1,0: (Λ1,0, er1 ) = 0 and w1Λ1,0 =
�Λ1,0.

Therefore, hΛ,�_i = 0 for � = 2er1 . For i < r1, w1ei = �ek, k < r1 and
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w1er1 = �er1 . So for � = ei � er1+j, 2ei, i = 1, : : : , r1 � 1, j = 1, : : : , n � r1,
dw1w2� < 0 if and only if dcr1w1w2� < 0 since w1w2� = cr1w1w2�.

For � = er1 � er1+j, we have

LEMMA 4.9. Only one of the following is possible: either � satisfies both
dw1w2� < 0 and dcr1w1w2� < 0, or � and er1 � er1+j satisfy only one inequality.

Proof. Suppose dw1w2(er1 � er1+j) = d( � er1 � er1+k). Then dcr1w1w2(er1 �

er1+j) = d(er1 � er1+k). Since d is a permutation, we have our assertion. The other
case is similar, completing the lemma.

If � = er1 � er1+j satisfy dw1w2� < 0, then hΛ,�_i = �(Λ2, er1+j) and

�((Λ2, er1+j),��j)
�((Λ2, er1+j) + 1,��j)�((Λ2, er1+j),��j)

�
�(� (Λ2, er1+j),��j)

�(� (Λ2, er1+j) + 1,��j)�(� (Λ2, er1+j),��j)
= 1,

using the functional equation �(z,�) = �(z,�)�(1�z,�) for � a nontrivial quadratic
grössencharacter.

This proves Lemma 4.8.
It now follows that the residue at Λ, as a function of Λ2, is

X
w22W2

r(w2, Λ2, Φ2)(
X
d2D

(�)R(dw2w1,0, Λ,�)(1 + R(cr1)),

where w1,0 = cr1wΛ1,0 since cr1wΛ1,0cr1 = wΛ1,0 . Theorem 4.5 now follows by
applying induction. We only need:

PROPOSITION 4.10. The residue in Theorem 4.5 is square integrable.

Proof. By Langlands’ Lemma and the fact that w0Λ0 = �Λ0, it is enough to
show that dΛ0 is a linear combination of simple roots with positive coefficients
for any d 2 D.

First of all, it is easy to see that any linear combination of ei’s with non-
negative coefficients which contains e1 is a linear combination of simple roots
with positive coefficients. Λ0 satisfies this property. Since d is a permutation, it
is enough to show that dΛ0 contains e1.

Recall the property of Λ0 that Λ0 contains e1, er1+1, : : : , er1+:::+rk+1. Also re-
call the property of d 2 D from Proposition 4.3: d� > 0 where � = fe1 �

e2, : : : , er1�1 � er1g [ fer1+1 � er1+2, : : : , er1+r2�1 � er1+r2g [ : : :[ fer1+r2+:::+rk+1 �

er1+r2+:::+rk+2,:::, en�1 � eng. Hence, one of e1, er1+1, : : : , er1+r2+:::+rk+1 is sent to e1

by d 2 D. So dΛ0 contains e1.
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5. Arthur parameters for the residual spectrum. In this section we in-
terpret Theorem 4.5 in terms of Arthur parameters. Recall the quadratic Arthur
parameters in our case: we have a decomposition C

2n+1 = V0 � V1 � � � � � Vk,
where dim V0 = 2r0 + 1, dim Vi = 2ri for i = 1, : : : , k, r1 � r2 � � � � � rk � 2,
r0 + � � � + rk = n, and embedding

Qk
i=0 O(Vi) � O2n+1(C ). Let �1, : : : ,�k be

distinct quadratic grössencharacters and Oi be the unipotent orbits with Jordan
blocks (2ri � 1, 1) for i = 1, : : : , k and (2r0 + 1) for i = 0 (see the remark after
Proposition 4.1). Then the Arthur parameter of interest to us is the homomorphism

 : WF � SL2(C ) � SL2(C ) 7�!
kY

i=0

O(Vi) � O2n+1(C ),

satisfying:
(1)  jWF: w 7�! 1 � �1(w) � � � � � �k(w) 2 f�1g � f�1g � � � � � f�1g,

where f�1g is the center of O(Vi) for i = 0, : : : , k;
(2)  j1�SL2(C )�1 � 1; and
(3) by Jacobson-Morozov theorem,  j1�1�SL2(C ) defines the unipotent orbitQk

i=0 Oi of G�.
Recall that we are considering the residue of the Eisenstein series at Λ0 =

Λ1,0 + : : : + Λk,0 + Λ0,0, where each Λi,0 is the half-sum of (positive) roots in
Φi, i = 0, 1, : : : , k. The character � and the quasicharacter exphΛ0, HB( )i of T
may be viewed as homomorphisms from WF into LT (cf. [14, 16]). The unipotent
orbits Oi are determined by Λ0 through Jacobson-Morozov’s theorem. Then the
associated Langlands’ parameter � , i.e., the homomorphism

� : WF � SL2(C ) ! O2n+1(C )

defined by � jSL2(C ) = 1 and

� (w) =  

 
w, 1,

 
jwj

1
2 0

0 jwj�
1
2

!!
,

is � = �
exphΛ0, HB( )i (cf. [1]). Its nontempered part is �+
 = exphΛ0, HB( )i.

Let M� = Cent (im�+
 , G�). Since (Λ0, ei) = 0 for i = r1, r1 +r2, : : : , r1 +: : :+rk,

the Levi subgroup M which has M� as its L-group, will be, up to isomorphism,
of the form GLn1 � : : :� GLnr � Sp2k, where n1, : : : , nr are determined by Λ0.

The parameter Λ0 may not be in the positive Weyl chamber of the split
component of M. But one can choose an element w0 in the Weyl group of shortest
length so that �0 = w0Λ0 belongs there. Then, using the functional equation, the
Eisenstein series attached to � and �0 = w0� will have a pole of order n at � = �0.
The Arthur parameter which is determined only up to conjugacy will not change.
From now on we shall assume that Λ0 is in the positive Weyl chamber of the
split component of M.
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For each place v, decompose � v as � v = �� v
� �+

 as in [1]. The param-
eter �� v

factors through M� and is the Langlands parameter for the (tempered)

constituents of the unitary principal series Iv = IndM(Fv )
B0(Fv ) �v = �i�v,i, of M(Fv),

where B0 = B \ M. For each �v,i, let Πv ,i = J(�v,i 
 exphΛ0, HP( )i) be the
corresponding Langlands quotient [4, 19], where P = MN. Then for each v the
L-packet parametrized by � v is Π� v

= fΠv,ig (cf. [1, 19]). The R-group for the
parameter � v , i.e., C� v

is the same as the R-group of Iv for each v in the sense
of Knapp-Stein (cf. [7, 10, 11, 13]).

By theorem Cn of [10], the R-group C� v
of Iv is a subgroup of the group

generated by the sign changes ci, i = r1, r1 + r2, r1 + : : :+ rk, a product of 2-groups.
Moreover, if the sign change cr1+:::+ri in (4.2) does not belong to C� v

for some
i, then the normalized operator R(cr1+:::+ri) acts like identity.

Let �(�v) = f�v,ig. Then, given a place v, in [11] Keys and Shahidi defined
a pairing h , i on C� v

��(�v). We extend the pairing h , i to C� v
�Π� v

as
in Arthur [1, p. 9] by setting h�v , Πv,ii = h�v ,�v,ii. This can further be extended
to C v � Π� v

, using the surjection C v ! C� v
for each v ([1, p. 11]). Let

Π = 
vΠv,i where almost all Πv,i are spherical. Then Π 2 Π� , the (global) L-
packet of � . Finally set h� , Πi =

Q
vh�v , Πv,ii, where �v is the image of � under

the map C ! C v . We need to be more precise since this is an infinite product.
For each place v, the corresponding pairing in [11] is defined by means of a
nontrivial additive character of Fv . Fix a nontrivial additive character � = 
v�v

of A =F. At each place v, there is a unique representation �v,0 2 f�v,ig which is
generic with respect to �v and for which h�v ,�v,0i = 1 for all �v 2 C� v

. If �v is
unramified and f�v,ig contains a spherical representation (which is equivalent to
�v being unramified), then it is �v,0. Consequently the product

Q
vh�v , Πv,ii is a

finite product. Moreover h�, Πi does not depend on the choice of �.
We should finally mention that by theorem 5.1 of [11] the action of each

normalized operator R(� ) in (4.2) on a component Π is according to the pairing
h� , Πi. (The rank one characters coming from � in the normalized operators
R(ci), i = r1, r1 + r2, : : : , r1 + : : : + rk, are all nontrivial and therefore the global
sign of theorem 5.1 of [11] is 1 for all of them.)

Applying (4.2) to Π = 
vΠv ,i 2 Π� now implies that the residue is equal
to

X
d2D

(�)R(dw0, Λ0,�)
X

x2C� 

hx, ΠiΠ.(5.1)

It is now clear that since C� is abelian, (5.1) is nonzero if and only if h�, Πi
is the trivial character. We can therefore reformulate Theorem 4.5 as:

THEOREM 5.1. Π appears in L2(G(F)nG(A )) if and only if h�, Πi is the trivial
character, i.e., the Arthur condition (cf. [23]) holds.
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Since C is abelian, this is equivalent to the fact that there exists a positive
integer d such that Π 2 Π� appears with multiplicity

d 
jC j

X
x2C 

hx, Πi =
d 
jC� j

X
x2C� 

hx, Πi.

This proves the global Arthur conjecture on the multiplicity formula for the
residual spectrum.

Remark 2. We remark that, in the sum (5.1), w0Λ0 = �Λ0 and dΛ0 = Λ0 and
d� = � imply d = 1. Therefore there is no cancellation among the summands and
the residue is a sum of isomorphic images of the Langlands’ quotient.

5.1. Special case of G = Sp4. The dual group G� = O5(C ) has only
one distinguished orbit, namely the principal one given by the Jordan block
(5). The corresponding unipotent parameter then parametrizes the constants, the
only spherical residue of Sp4 (cf. [22]). To parametrize the rest of the residual
spectrum, we construct quadratic unipotent Arthur parameters in the sense of
Moeglin as follows: There is a natural embedding of O4(C ) into O5(C ) by sending 

A B
C D

!
2 O4(C ) into

0
B@ A 0 B

0 1 0
C 0 D

1
CA in O5(C ).

For � a nontrivial quadratic grössencharacter of F, we define  as follows:
(1)  jWF: w 7�! �(w) 2 f�1g = Center of O4(C );
(2)  j1� SL2(C ) � 1 � 1; and
(3)  j1 � 1 � SL2(C ) determines a unipotent orbit with Jordan blocks (3,1)

in O4(C ).
By conjugation and by (2.1), we can assume that

 

 
a 0
0 a�1

!
= diag (a2, 1, 1, 1, a�2).

The associated Langlands parameter � is, by definition, � : WF � SL2(C ) 7�!
O5(C ):

(1) � jSL2(C ) � 1,

(2) � (w) =  (w,

 
jwj

1
2 0

0 jwj�
1
2

!
) = diag (�(w)jwj,�(w), 1,�(w),�(w)jwj�1).

The nontempered part of � is

�+(w) = diag (jwj, 1, 1, 1, jwj�1).

Therefore Cent (im�+, O5(C )) = C
� � O3(C ) = M� with M = F� � SL2(F), the

Levi subgroup of the non-Siegel parabolic subgroup of Sp4.
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The tempered part of � is

�� (w) = diag (�(w),�(w), 1,�(w),�(w)) 2 M�.

Therefore

Cent (im� , O5(C )) = Cent (im�� , M�) = C
� � O2(C ) � f�1g.

So

Cent (im� , O5(C ))=ZG� Cent (im� , O5(C ))� ' f�1g.

For each place v, we can see that �� v
is the Langlands parameter for tem-

pered representations f��(�)g, where ��(�) is the irreducible constituents of
IndM

B �(�,�) and � v is the Langlands parameter for the Langlands’ quotients
fJ�(�v)g of IndG

P ��(�)
 ehe1,HP( )i (see [12] for more details).
Now we calculate S = Cent (im , O5(C )). Let u be a distinguished unipo-

tent element with Jordan block (3,1) in O4(C ). Since � is a nontrivial quadratic
grössencharacter, S� = 1 and

S =S� ZG� ' Cent (u, O4(C ))=Cent (u, O4(C ))� .

Here Cent (u, O4(C ))=Cent (u, O4(C ))� ' Z=2Z � Z=2Z . Among the remaining
automorphic forms in the Arthur packet of  are the cuspidal representations
studied by Howe and Piatetski-Shapiro (cf. [1], example 2.4.2).

This parametrizes the residual spectrum of Sp4 obtained in [12], where Kim
obtained this as the residue of the Eisenstein series associated to � = �(�,�)
at Λ0 = e1. It was also proved there that quadratic unipotent Arthur parameters
exhaust the whole residual spectrum of Sp4, coming from Borel subgroups. We
observe that since O4(C ) has only one distinguished unipotent orbit, namely the
orbit (3, 1), our result covers the result of [12], coming from this conjugacy class,
except for the constants.

5.2. One extreme case. We give an example which was our motivation
for the general result: Let G = Sp4n and � = �(�1, : : : ,�n,�1, : : : ,�n), where
�’s are mutually distinct and quadratic. Then the Eisenstein series has a pole at
Λ0 = e1 + � � � + en and the residue is given by

X
d2D

(�)R(dc1 : : : cn, Λ0,�)
2nY

i=n+1

(1 + R(ci, Λ0,�))f ,

where D is the set of permutations s which satisfy s(i) < s(i + n) for i = 1, : : : , n.



424 HENRY H. KIM AND FREYDOON SHAHIDI

Remark 3. The above technique can be used for GLn to prove that the Eisen-
stein series associated to � = �(�, : : : ,�| {z }

r1

, �1, : : : , �r2) has no pole of order n�1 if

� and �i are distinct. This is a very special case of the remarkable result proved
by Moeglin and Waldspurger [24].

We divide Φ+ as follows:

Φ1 : ei � ej, 1 � i < j � r1

Φ2 : er1+i � er1+j, 1 � i < j � r2

Φ3 : ei � er1+j, i = 1, : : : , r1, j = 1, : : : , r2

For � 2 Φ3, � � �_ is nontrivial. Let Wi be the Weyl group associated to Φi for
i = 1, 2. We apply Proposition 4.3 to � = ∆�fer1 �er1+1g. Then W� = W1W2. Let
D be the set of distinguished coset representatives for W=W1W2. Then as in the
proof of Proposition 4.6, we can show that the constant term of the Eisenstein
series E0(g, f , Λ) attached to f 2 I(Λ,�) has at most poles of order < n� 1.
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[25] , Décomposition spectrale et séries d’Eisenstein, paraphrase sur l’Ecriture, mimeograph

notes, 1990.
[26] F. Shahidi, Whittaker models for real groups, Duke Math. J. 47 (1980), 99–125.
[27] , On certain L-functions, Amer. J. Math 103 (1981), 297–356.
[28] , On the Ramanujan conjecture and finiteness of poles for certain L-functions, Ann. of Math.

127 (1988), 547–584.
[29] A. Silberger, Introduction to Harmonic Analysis on Reductive p-adic Groups, Math. Notes, vol. 23,

Princeton Univ. Press, Princeton, NJ, 1979.
[30] N. Spaltenstein, Classes Unipotentes et Sous-groupes de Borel, Lecture Notes in Math., vol. 946, Springer-

Verlag, New York, 1982.
[31] M. Tadic, Representations of p-adic symplectic groups, Compositio Math. 90 (1994), 123–182.
[32] N. Winarsky, Reducibility of principal series representations of p-adic Chevalley groups, Amer. J. Math.

100 (1978), 941–956.




