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CUSPIDALITY OF SYMMETRIC POWERS
WITH APPLICATIONS

HENRY H. KIM and FREYDOON SHAHIDI

Abstract

The purpose of this paper is to prove that the symmetric fourth power of a cusp fol
on GL(2), whose existence was proved earlier by the first author, is cuspidal unle:
the corresponding automorphic representation is of dihedral, tetrahedral, or octahe
dral type. As a consequence, we prove a humber of results toward the Ramanuj
Petersson and Sato-Tate conjectures. In particular, we establish the bdﬁ?\dbq
unramified Hecke eigenvalues of cusp forms@in2). Over an arbitrary number
field, this is the best bound available at present.

1. Introduction
In this paper we prove a criterion for cuspidality of the fourth symmetric powers o
cusp forms on GI2), whose existence was established earlier by the first author. A
a consequence, we show that a cuspidal representation has a noncuspidal symm
fourth power if and only if it is of either dihedral, tetrahedral, or octahedral type
We then prove a number of corollaries toward both the Ramanujan-Petersson ¢
Sato-Tate conjectures for cusp forms on(@Lby establishing analytic properties of
several new symmetric powérfunctions attached to them.

More precisely, lef\ be the ring of adeles of a number fidld Letr = ), 7,
be a cuspidal automorphic representation ob @) with central characte®, . Fix
a positive integem, and let SyM': GL2(C) — GLm;1(C) be themth symmet-
ric power representation of GLC) on symmetric tensors of rank (cf. [28], [30]).
By the local Langlands correspondence (sée [B], [17]), Syn"(,) is well de-
fined for everyv. Then Langlands functoriality in this case is equivalent to the faci
that Syni'(7) = @, Sym"(zr,) is an automorphic representation of Gl (A). It
is convenient to introduc&™(7) = Sym"(7) ® w;* (denoted by Al(xr) in [28)).
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178 KIM and SHAHIDI

If m = 2, A%(r) = Ad(x) and it is the well-known Gelbart-Jacquet lift i@]] If

m = 3, we proved in 13] and [12] that Syn?(r) is an automorphic representa-
tion of GL4(A) and gave a criterion for when it is cuspidal. 0], the first author
proved that Syf(r) is an automorphic representation of &L). If Sym®(x) is cus-
pidal, Synf(n)is either cuspidal or unitarily induced from cuspidal representations o
GL2(A) and Glg(A). In this paper, we give a criterion for when S$n) is cuspidal.
More precisely, we have the following.

THEOREM3.3.7

A*r) = Synf(n) ® a);l is a cuspidal representation @&Ls(A), except in the

following three cases:

(1) & is monomial;

(2) = isnotmonomial and &) is not cuspidal; this is the case when there exists
a nontrivial grossencharacten such thatAd(r) ~ Ad(7) ® u;

(3)  A3(w)is cuspidal, but there exists a nontrivial quadratic characjeuch that
A3() ~ A3(m) ® n, or, equivalently, there exists a nontrivial@gsenchar-
acter y of E such thalAd(ng) ~ Ad(rg) ® x, where E/F is the quadratic
extension determined by and =g is the base change of. In this case,
A%() = o1 B op, Wwhereo, = 7(x 1) @ w, andos = Ad(r) ® (wx 7).

Cases (1), (2), and (3) are equivalent:tobeing of dihedral, tetrahedral, and
octahedral type, respectively.

We give several applications of the cuspidality of third and fourth symmetric power:
First, following Ramakrishnar3], we prove that given a cuspidal representation of
GL2(A), the set of tempered places has lower Dirichlet density of at least 34/35.

Next, we prove the meromorphic continuation and a functional equation for eac
of the sixth, seventh, eighth, and ninth symmetric polefunctions for cuspidal
representations of Gl(A). An immediate corollary (cf.47, Lemma 5.8]) is that if
m, is an unramified local component of a cuspidal representatien ), 7., then
qv_l/9 < |ayl, 1Bv] < q,}/g , where diagw,, 8,) is the Satake parameter fay. The
archimedean analogue of 1/9, using this approach, is provedjnWhenF = Q,
using the ideas in1[9], the bound 1/9 can be improved tg64 + ¢, Ve > 0. This is
the subject of an appendix ii(] by Kim and Sarnak. For an arbitrary number field,
1/9 remains the best bound available at present.

Finally, we prove that partial fifth, sixth, seventh, and eighth symmetric powe
L-functions attached to a cuspidal representatioaf GL>(A) with trivial central
character such that Syir) is cuspidal are all invertible & = 1, and we apply
this fact to the Sato-Tate conjecture (s€€]], following Serre’s method (sees(,
Appendix]). Namely, we show that for eveey > 0 there are set¥* and T~ of
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positive lower (Dirichlet) densities such that > 2 cog2r/11) — e forallv e T,
anda, < —2co927/11) + ¢ for all v € T~, wherea, = «, + B,. Note that
2cog27/11) =1.68....

2. Cuspidality of the symmetric cube
Supposer is a cuspidal representation of &lA). We review the properties of the
symmetric cube SyRtr) (see [L3]). Recall thatA3(x) = SynP(7) ® w;l.

2.1.7 a monomial cuspidal representation

Thatis,r ® n ~ & for a nontrivial gpssencharacter. Theny? = 1 andy determines

a quadratic extensio/F . According to [L4], there is a gdssencharacter of E such
thatr = 7 (x), wherer (x) is the automorphic representation whose local factor at
is the one attached to the representation of the local Weil group inducedyfraoet

x' be the conjugate of by the action of the nontrivial element of the Galois group.
Then the Gelbart-Jacquet lift (adjoint) ofis given by

Ad(r) = (xx' " B 1.

There are two cases.

Case 1:XX’_l factors through the nornThat is,XX/‘1 = o Ng/ for a giossen-
characten of F. Thenz(x x'~1) is not cuspidal. In factz (xx' 1) = p B un. In
this case,

Ay =m(x' DR = (@ 7) B (un ® 7).

Case 2:)()("l does not factor through the norrm this casen(xx’_l) is a cuspidal
representation. Then

A =a(xx DR =x(x%% HBx

Here we use the fact that(x)ge = x B x’ (see R4, Proposition 2.3.1]) and that
7' Rr=I1E@E®x) if 1 =m(x) (see p4, §3.1]).

2.2.7t not monomial
In this case, Adr) is a cuspidal representation of glA). We recall from [L3] the
following.

THEOREM2.2.1

Let o be a cuspidal representation dbL2(A). Then the triple L-function &(s,
Ad(r) x m x o) has a pole at s= 1if and only ifo >~ 7 ® x and Ad(wr) =~
Ad(m) ® (wr x) for some gossencharactey .
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By Theorem 2.2.1, we have the following.

THEOREM2.2.2

Letsr be a nonmonomial cuspidal representation@if»(A). Then A(x) is not cus-
pidal if and only if there exists a nontrivial §ssencharacten such thatAd(zr) ~
Ad(7) ® w. In that case,

M) = (r @ p) B (7 @ u?).

3. Cuspidality of the symmetric fourth
Supposer is a cuspidal representation of GlAF). Let A*(r) = Synf(7) ® w; .
We review the properties of Sytr) (see [L0]).

3.1.7 monomial
Supposer is a monomial cuspidal representation givensby= m(x). Then the
Gelbart-Jacquet lift of is given by Adx) = 7 (x x' 1) B 1.

Case 1:x x' ! factors through the norniThen (see Section 2.1) sine€(A3(r))
= A4(7T) 69 a)Tfa

A4(7T) =@ X)) Bw; = w; B, B uw, Bno, B unw,.

We used the fact thatandu are quadratic grssencharacters.
Case 2:;()(/_l does not factor through the norfhen (see Section 2.1)
Aty = (r(x2x TH R ) Bor = n(3x' ™) Br(x?) Bor.

3.2.7 a nonmonomial representation such tiS3ine(xr) is not cuspidal
This is the case when there exists a nontriviélsgencharacter such that Adr) ~
Ad(7) ® u. Note thatu® = 1. ThenA3(x) = (7 @ n) B (x ® u?). Hence

/\2(A3n') = Symz(n) H w, B w, B a)n,uz.

So
A4(7'[) = Symz(ﬂ) H w,u H a)n,uz.

PROPOSITION3.2.1

Supposer is a nonmonomial representation such that(#) is not cuspidal; that is,
Ad(rr) ~ Ad(rr) ® u. Then (s, 7, Synf ® w1) has a pole at s= 1 if and only if
wr = por u2.In particular, if w, = 1, L(s, 7, Syrrf‘) is holomorphic at s= 1.
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3.3. BothAd(r) andSynT(xr) cuspidal
Throughout this pape8 is always a set of places & such that forv ¢ S every
representation is unramified.

The first author showed irL.[] that A2(A3(xr)) is an automorphic representation
of GLg(A) and thatr2(A3(r)) = A*(w) B w,. Hence A%(x) is an automorphic
representation of GJ(A), either cuspidal or induced from cuspidal representations o
GL,(A) and Glg(A). We want to give a criterion for wheA*(xr) is cuspidal. First
we note that

Ls(s, 0 ® A3(n), p2 ® A%pa) = Ls(s,0 x A*(m))Ls(S, 0 @wr). (1)

LEMMA 3.3.1
A%@r) is not cuspidal if and only if k(s, 0 ® A3(xr), p2 @ A2ps) has a pole at s= 1
for some cuspidal representationof GL2(A).

Proof

Since A%(r) is either cuspidal or induced from cuspidal representations Gf(SL
and Glz(A), A%(xr) is not cuspidal if and only it 5(s, o x A*(r)) has apole & = 1
for some cuspidal representationof GL2(A). Our assertion follows from (1) since
Ls(s, 0 ® wy) is invertible ats = 1. O

In order to find a criterion for the pole df(s, o0 ® A3(), p2 ® A%pa), we need the
following unpublished result of H. Jacquet, I. Piatetski-Shapiro, and J. Shalika (¢

[27]).

THEOREM 3.3.2 (Jacquet, Piatetski-Shapiro, and Shalika)

Let 7 be a cuspidal automorphic representation®@i4(A) such that there exist a
grossencharactely and a finite set S of places as above for whick(d, , A2 ®
x~ 1 has a pole at s= 1. Then there exists a globally generic cuspidal automorphic
representatiorr of GSpy(A) with central charactery such thatr is the Langlands
functorial lift of T under the natural embeddiﬁgGSQ = GSp(C) — GL4(C).

The following paragraph is a brief sketch of the steps of the proof of the theorer
which we are including at a referee’s suggestion. We thank Dinakar Ramakrishn
for helping us with its preparation.

Theorem 3.3.2 is proved using the dual reductive (ads(A), GSp(A)). More
precisely, one considers the low-rank isogeny of 8hd SQ to lift a cuspidal repre-
sentationt = ), , of GL4(A) to one, still denoted by, on GQ;(A), provided that
the central character af, is trivial on =1 for eachv. One can then compute the theta
lift of 7 to an automorphic representation of G&p) by integrating functions in the
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space ofr in the usual way against tiefunction, a function on the two-fold cover
of GSp,(A). It is this integral that, in view of¢, is in fact equal to the residue of
Ls(s, m, A2® x 1) ats = 1, wherey is the central character of the theta lift. Hence
the nonvanishing of the theta lift of to GSp(A) is equivalent to the existence of a
pole forLs(s, 7, A2 ® x 1) ats = 1. HereSis a finite set of places for which¢ S
implies thatr, is unramified. The lift is irreducible and globally generic.

We now look at how the Satake parameter behaves under the- G&m, =
GS(C) — GL4(C). Suppose, is an unramified representation given byir?ﬂ* u
®v ® A, wherep, v, A are unramified quasicharactersigf andu @ v ® A is the
character of the torus which assigns to diagy, ty—1, tx—1) the valuew (X)v (y)A(t).
Note that the central charactenjs = vA2.

Then the Satake parameter corresponding tis (see, e.g.,d1, p. 95])

diag(uvi, i, A, vi).
Here we identifyu with u(z); we do the same with andA. The Satake parameter
for A2(wr,) is
diag(?va2, wvA?, w2, pi?, va2, uoa?)
= diag(ott, xov: X Xolt” 5 xov™h ).
Hence, ifo, is an unramified representation of &IE,) given byx (n1, 12), then
L(s,00 ® 7y, p2 ® A2pa)~?

2
=[] = xomin™a; %)@ — xuniv=ra, (A — xuni, ®)
i=1

2
<[] = xomiay®
i=1
= L(S’ (oy ® xv) X Tv)_ll-(sv oy ® Xv)_l- (2

HereL (s, (0,®xy) X 1) is the degree 10 Rankin-Selbdrefunction for GLp x GSpy.
Note that ifz is any irreducible constituent afisp, a), then

L(s. (00 ® xv) x ) = L(s, (00 ® xu) X T}).

We now apply the above observationA8(rr), wherer is a cuspidal represen-
tation of GLp(A). Sincen?(A3(n)) = A*(r) B w,, Ls(s, A3(1), A% ® o7 1) has a
pole ats = 1. So there exists a generic cuspidal representatiohGSp,(A) with
central charactet, . Let " be any irreducible constituent afsp,a). Then by (1)
and (2), we have

Ls(s. o x A4(71)) =Ls(s, (0 ® wy) x T').
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Recall that if we consider the maximal Levi subgroup,GdSp, C Sp; with the
cuspidal representatidir ® w,) ® t’ (see R7]), we obtain the following.-function
as a normalizing factor in the constant term of the Eisenstein series:

Ls(s, (0 ® wz) x T')Ls(2S, wo02).

Note that if (w, ©2)? # 1, (0 ® w;) ® ' is not self-contragredient. Hence we have
the following.

PROPOSITION3.3.3
If (wo2)? # 1, then Ls(s, (0 ® wy;) x t’) is holomorphic at s= 1.

Proof

By following the proof of B, Theorem 3.2], we can show that the completed
functionL (s, (c ® w,) x ') is entire. Sinc&o ® w,) ® t’ is not self-contragredient,
by [7, Proposition 2.1] the global intertwining operatdr(s, (c ® w;) ® t’, wo) is
holomorphic for Res > 0. Using B, Proposition 3.4], the local normalized intertwin-
ing operatorsN (s, (o, @ wy,) @1, wo) are holomorphic and nonzero for Re- 1/2.
Hence we see that thefunctionL (s, (c ®w;) x T/)L(2s, a)(,a)jz,) is holomorphic for
Res > 1/2. Sincel (2s, a)(,a)?,) has no zeros for Re> 1/2, L (s, (0 Q@ wy) x ') is
holomorphic for Res > 1/2. Our assertion follows from the functional equationz

Using the integral representation, we have the following.

THEOREM 3.3.4 (Ginzburg-Rallis-Soudna])
If waa)ﬁ = 1, then Lg(s, (o0 ® w,) x t’) is holomorphic at s= 1.

Proof

This follows immediately from the integral representationlfeys, (c ® w,) x /).
The possible poles come from the poles of the Eisenstein series attackdio ®
wy) for the split group S@, which in turn come from the poles of symmetric square
L-functionL s(S, 0 ® wy, Symz). The lastL-function is entire ifwgwﬁ =1. m|

COROLLARY 3.3.5
If wew? =1, or if (wyw2)? # 1, then Ls(s, o x A*(r)) is holomorphic at s= 1.

PROPOSITION3.3.6

Lets be a cuspidal representation GfL(A) such that botHT = Ad(r) and A(xr)
are cuspidal. Then the following are equivalent.

(1)  A*@) is not cuspidal.
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(2) There exists a quadratic extensiory[E such that &(r) ~ A3(nr) ® 7,
wheren is the quadratic gbssencharacter attached to/E via class field
theory. This means that the base chagé(x))e is not cuspidal. (Note that
A¥(re) = (A%(m))E.)

(3)  There exists a quadratic extensionf [E such thatllTg ~ ITg ® x for a non-
trivial gr dssencharactey of E, wherellg is the base change of to E.

Proof
Consider

Ls(s, (0 ® wz) x T x IT) = Ls(S, (0 @ ) x M)Ls(s, 0 ® A3(), p2 ® /\2,04).

SincelL (s, (o ® w;) x IT) does not have a pole or a zersat 1, Ls(S, (0 Q wy) x
I1 x IT) has a pole as = 1 if and only if Ls(s, 0 ® A3(r), p2 ® A2p4) has a pole at
s=1.

Statement (1) implies statement (2). Sind&(r) is not cuspidal,Ls(s, o ®
A3(1r), p2 ® A2ps) has a pole as = 1 for someo by Lemma 3.3.1. Hence, by
Corollary 3.3.50% = 1, # 1, wherew = w, 2. Let E/F be the quadratic exten-
sion attached te via class field theory. LetA3(x))e be the base change 8f(x).
Consider the equality

Ls(&oE ® (A3(JT))E, 02 ® A2p4)
= Ls(s, 0 ® A3(), p2 ® A2p4)Ls(S, (0 ® ) ® A3(m), p2 ® A2pa).

Note thatL s(s, o ® (A3(1))e, p2 ® A%p4) has a pole as = 1 if and only if
Ls(s, (0E @ wre) x ITE x ITE) has a pole as = 1.

Suppose thatA3(x))e is cuspidal. Thedlg % Tl ® x for any nontrivial
character by Theorem 2.2.2. df is not monomial, themg is cuspidal, and hence
Ls(s, o Q@ (A3(1))E, p2® A2pa) is holomorphic as = 1. If o is monomial, themg
is an automorphic representation induced from twisgencharacters. Hence again
Ls(s, (0 ® wre) x IIg x Ig) is holomorphic ats = 1. ThereforeLs(s, 0 ®
A3(), p2 ® A?py) is holomorphic as = 1 for anyo. This is a contradiction.

Statement (2) is equivalent to statement (3). Supp@s&r))g is not cuspi-
dal. Since(A3())E is equivalent toA3(rg), A3(rg) is not cuspidal. So Adrg) ~
Ad(e)® x for a nontrivial gdssencharacter &. Sincellg is equivalent to Adrg),
we havellg >~ I1g ® x for a nontrivial gbssencharactey of E.

Statement (3) implies statement (1). bét= 0 ® w, = 7(x) be the monomial
representation of GI(A ) attached tgy. Letn be the quadratic character attached to
E/F. Thenog = x B x'. Consider the equality

Ls(s,og x Mg x Eg) = Ls(s, 0’ x T x M)Ls(s, (6’ ® n) x IT x ).
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ThenLg(s, 0’{5 x Mg x TIg) = Ls(s, (x ® Mg) x Me)Ls(s, (x' ® Mg) x Ig).
Sincey ® Mg ~ Ilg, Ls(s, (x ® Ig) x IIg) has a pole as = 1. Hence either
L(s,0’ x I x M) or Ls(s, (' ® n) x I1 x IT) has a pole at = 1. This implies that
eitherLs(s, 0 @ 7, p2 @ A2pa) or Ls(s, (0 ® ) ® T, p2 ® A2ps) has a pole & = 1.
HenceA*(xr) is not cuspidal. O

By the above proposition, we see the following.

THEOREM3.3.7

A*(r) = Synf(n) ® a);l is a cuspidal representation @Ls(A) except in the fol-

lowing three cases:

(1) & is monomial;

(2) = isnotmonomial and &) is not cuspidal; this is the case when there exists
a nontrivial grossencharacter such thatAd(r) ~ Ad(7) ® u;

(8)  A3(w) is cuspidal and there exists a nontrivial quadratic charagteuch that
A3() ~ A3(m) ® n, or, equivalently, there exists a nontrivial@gsenchar-
acter y of E such thalAd(ng) ~ Ad(rg) ® x, where E/F is the quadratic
extension determined by. In this case, A(wr) = o1 B 02, Wwhereo; =
7(x D) ® wy andor = Ad() ® (wr ).

Proof
We only need to prove the last assertion. By the proof of Proposition 3.3(6, 61 x

A%(r)) has a pole as = 1. ConsiderL (s, A3(r) x (A3() ® n)). It has a pole at
s = 1 sinceA3(r) ~ A3(n) ® . By formal calculation,

Ls(sﬁ(vn) x (P(m) ® n))

= Lg(s, 7, SynP ® (o) Ls(s, A*(m) ® (w;'n)
x Ls(s, Ad() ® n)Ls(s, n)

- Ls(s, (Ad(m) ® (7 1n)) x A4(n)>L3(s, 7).
The L-functionL (s, n) has no zeros & = 1, and therefore
L 3<s, (Ad(m) ® (w7 1n)) x A4(n))

has a pole at = 1. Henceoz = Ad(r) ® (wrn).
We note that since is a nontrivial cubic charactemAE = 1, and the central
character ofr (x) isn - xlax =mn. O

COROLLARY (of the proof)
Letsr be a cuspidal representation 6,(Af) such that &) is cuspidal. If A(xr)
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is not cuspidal, then (s, =, Symﬁ® (w;3n)) has a pole at s= 1. Heren is as in
Theorem 3.3.7(3).

Finally, based on Langlands’s calculations i8]} it is reasonable to claim the fol-
lowing.

CONJECTURE

Letr be a nonmonomial cuspidal representatiorGifo(A). Then

(1)  SymP(x) is not cuspidal if and only if is of tetrahedral type;

(2) SymP(x) is cuspidal, butSynf'(x) is not, if and only ifz is of octahedral
type;

()  Synf'(r) andSynP () are cuspidal, busynP(x) is not, if and only ifr is of
icosahedral type.

Remark. The final form of part (3) of the conjecture is an outcome of a number o
communications with J.-P. Serre as well as calculations dori.in [

The purpose of our next proposition is to demonstrate the first two parts of the co
jecture.

PROPOSITION3.3.8

Let be a nonmonomial cuspidal representatiorGifa(A). Then

(1)  SynP(x) is not cuspidal if and only ifr is of tetrahedral type;

(2)  SymP(x) is cuspidal, buBynt'(x) is not, if and only ifr is of octahedral type.

Proof

Part (1) is L3, Lemma 6.5]. Part (2) is proved the same way. In fact, observe first the
by Proposition 3.3.6(3) there exists a quadratic extenBiofR such thaflg = Mg ®

x for a nontrivial gbssencharacter. Notice thatllg = Ad(srg) and that therefore
Ad(g) = Ad(g) ® x. By Theorem 2.2.2, Sy?mnE) is not cuspidal, and therefore,
by part (1),7 is of tetrahedral type. Consequently, there exists a two-dimension:
tetrahedral representatiart of We such thattg = n(og). Sinceog is invariant
under GalE/F), it can be extended to a two-dimensional continuous representatic
o of WE, which is now octahedral. Let’ = = (o), which is of octahedral type.
Clearly, 7 = ng, and thereforer” = = ® n® for somea = 0, 1, wherey is the
grossencharacter attachedEgF . Buto is unique only up to twisting by a power of
n, and therefore by changing the choicenaf necessary, we have = ' = 7 (o).

We are done. O
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4. Applications

We give several applications of cuspidality of third and fourth symmetric powers. |
this section we letr = ), 7, be a cuspidal representation of &K) unless other-
wise specified. Letr, be an unramified local component with the Satake paramete
diaglay, By). Seta, () = oy + By.

THEOREM4.1
Let S) be the set of places wherg is tempered. Then

8(S()) = g—g.

Proof

We follow [23]. Let w be the central character of Leta, = a,(x). Then by direct

computation we see thag (Syn? (7)) = a2—w, anda, (A*(r)) = w; la*—3a2+w,.
Form, k, | nonnegative integers to be chosen below, let

n = mlw] Bk Syt (r) BIA* (7).
Then
ay(n) = Mw, + k(as —wy) +1 (a)v_laf)‘ — 38_5 + wy)
= (M—Kk+Dawy, + (k- 3)a2 +lw, tal.

Let T(z, 2) = {v| |a,| = 2}. Then note that fov € T (7, 2), @, = aq", By =
aq™", for |a| = 1 andr > 0 (see P3, Claim 4.6]). So except for finitely many places,
S() = {vllay] <2}. Ifv e T(m,2),a =a(@ +97"). So

|ay ()] = m+ 3k +5l.
Hencev € T(, m+ 3k + 51). Thus, by P3, (4.4)],

m? + k2 + 12

(T K+5)) <M K+
S(T(m, m+3k+8)) < g o

This holds for every choice of (nonnegative) triplgs, k, ). It can be verified that
the minimum of the right-hand side occurs whes 3m, | = 5m, yielding

_ 1
3(T(mr,2) < —.
(Ter.2) = 3¢ -
Higher symmetric power L-functions and the Sato-Tate conjecture
In the following, letr = ), 7, be a cuspidal representation of &K), and letSbe
a finite set of places, including the archimedean ones, suchrfhatunramified for
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v ¢ S. Let diaga,, B,) be the Satake parameter fey for v ¢ S. Then the partial
mth symmetric powet -function is defined to be

m
L(s, my, Sym™~t =[] - o« Bla, ).
i=0

Ls(s, 7, Syn") = [ ] L(s. 7y, Syn™).
vg¢S

PROPOSITION4.2

Letr be a cuspidal representation &fL2(A) such thatSyrr?(n) is cuspidal. Then
Ls(s, m, Sym'5) is invertible forRes > 1; that is, it is holomorphic and nonzero for
Res > 1.

Proof
Consider

Ls(s, SynP(r) x Synt(r)) = Ls(s, 7, SynP)Ls(s, SynP (1) ® wr )Ls(s, 7 @ w2).

Note thatL (s, SynP(r) ® wr)Ls(s, 7 & w?,) is invertible for Res > 1. Note also
that the left-hand side is invertible for Re> 1. Hence our result follows. O

PROPOSITION4.3

Let = be a cuspidal representation GfL,(A) such thatSym?(xr) is cuspidal. Then
every partial sixth symmetric power L-function has a meromorphic continuation an
satisfies a standard functional equation. Moreove®3f = 1, they are all invertible
for Res > 1.

Proof
By standard calculations,

Ls(s, SynP(r) x Syn?(x))
= Ls(s, 7, SymP)Ls(s, Synt () ® wr ) Ls(s, SynP(r) ® w2)Ls(s, w3).

Meromorphic continuation and a functional equation follow.

If @2 = 1, then Sym(r) is self-contragredient. This implies that the left-
hand side has a pole at= 1, while in the right-hand sidé (s, »3) has a pole at
s = 1. By assumption, Syf’mﬂ) is either cuspidal or of the form; B o2, where
o1 ando» are cuspidal representations of &A) and Glg(A), respectively. Hence
Ls(s, Synf(7) ® wr)Ls(s, Symf () ® w?) is invertible for Res > 1. This implies
our last claim. m|
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PROPOSITIONA.4
If Synf* () is cuspidal, then partial sixth symmetric power L-functions are all invert-
ible for Res > 1.

Proof
Consider the equality

Ls(s, Symf(x) x Synf(n))
= Ls(s, 7, SynP)Ls(s, Synf (1) ® wr)Ls(s, Symf(r) ® w?).

Since the left-hand side ards(s, Synf'(7) ® w,)Ls(s, Synf(r) ® »?) are invert-
ible for Res > 1, the same holds fdr (s, 77, Syn?P). O

COROLLARY
Letr be a cuspidal representation 6fL, such thatSyn?(x) is cuspidal. lfw3 # 1
and Syn?(x) is self-contragredient, then(s, 7z, Synf) has a pole at s= 1.

PROPOSITION4.5

Letr be a cuspidal representation 6iL,(A) such thaSyn?(xr) is cuspidal. Then ev-
ery partial seventh symmetric power L-function has a meromorphic continuation ar
satisfies a standard functional equation. Moreover, they are all invertibIBRésr> 1.

Proof
By standard calculations,

Ls(s, SynP(x) x Synf(x))
= Ls(s, 7, Sym’)Ls(s, 7, Syn? ® wz)Ls(s, SynP(7) ® w?)Ls(s, 7 ® ).

Meromorphic continuation and functional equations then follow. By assumptior
Synf'(x) is either cuspidal or of the formy B o2, wheres; ando, are cuspidal
representations of GI(A) and Glz(A), respectively. Hence the left-hand side is in-
vertible for Res > 1.

In the proof of Proposition 4.2, usings(s, (Synf(7) ® wyx) x Synf(r)), one
can see that s(s, 7, Syrr? ® wy) is invertible for Res > 1. From this, we obtain our
assertion. O

PROPOSITION4.6

Letr be a cuspidal representation 6fL, such thatSyn?(r) is cuspidal. Then every
partial eighth symmetric power L-function has a meromorphic continuation and sa
isfies a standard functional equation. $ynf'(xr) is cuspidal andv? = 1, then they
are all invertible forRes > 1.
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Proof
By standard calculations,

Ls(s, Synt'(r) x Synt(r))
= Ls(s, 7, SynP)Ls(s, 7, Syn? ® w,)Ls(s, Synf(7) ® w?)
x Lg(s, Synf(m) ® w3)Ls(s, o).

This proves the meromorphic continuation and functional equation. If*Gymis
cuspidal andoj; = 1, then Syrfi(r) is self-contragredient. Hence the left-hand side
has a simple pole a= 1, while in the right-hand side (s, wﬁ) has a simple pole at

s = 1. By Proposition 4.4, and by considerihg(s, Symz(n) x (Symf(7) @ wy)),

we see that

Ls(s, m, Sym6 Q wrx) Ls(S, Syn’f‘(n) ® a),zr) Lg(s, Symz(rr) & a)f,’)

is invertible for Res > 1. This completes our claim. O

PROPOSITIONA.7

Let be a cuspidal representation GfL»(A) such thatSyn?(xr) is cuspidal. Then
every partial ninth symmetric power L-function has a meromorphic continuation an
satisfies a standard functional equation s;/m“(n) is cuspidal, then k(s, «, SyrrP)

has at most a simple pole or a simple zero at 4. If Synf'(xr) is not cuspidal, then
Ls(s, 7, Syrr19) is invertible forRes > 1.

Proof

Suppose first that Syhir) is cuspidal. Consider the casg — 2 of [27]. Let M be

a maximal Levi subgroup, and denote Bythe connected component of its center.
Since Eg is simply connected, the derived groiyp of M is simply connected as
well, and hencéMlp = Sl4 x SLs. Thus

M = (GL1 x Sly x SLs)/(AN Mp),

whereAN Mp >~ Z/20Z. Letwj, i = 1, 2, be cuspidal representations of £4)
and Gls(A) with central charactersj, i = 1, 2, respectively. Letrjg, i = 1, 2, be
ireducible constituents of1|si,a) andma|sisa), respectively. Thelk = wdwd ®
10 ® 120 can be considered a cuspidal representatioMof). We then get the

L-function L(s, 11 ® 72, 04 ® A2ps) as our firstL-function. In fact, there are five
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L-functions in the constant term of the Eisenstein series, namely,

Ls(s, ,11) = Ls(s, 711 ® 72, pa ® A%ps),

Ls(s, =,12) = Ls(s, 711 ® (72 ® w2), A2p4 ® ps),
Ls(s. =, r3) = Ls(s, 71 x (12 ® wiw2)),

Ls(s, B, r4) = Ls(S, 72, A205 ® w109),

Ls(S, B, r5) = Ls(S, 71 ® w103).

(See p7] for the trivial central character case arid]for the general case for detailed
calculations.) Each of thé-functions, especiallys(s, Z, r1), has a meromorphic
continuation and satisfies a standard functional equation 25¢e [

We apply the above to; = A3(xr) andro = Synf (). By standard calculations,
we have

Ls(S,771 ® 72, pa ® A2ps)
= Ls(s, 7, SynP)Ls(s, 7, Sym’ @ wy)Ls(s, 7, SynP @ w2)?
x Lg(s, SymP(r) ® a);:’)zLS(s, T ® o).

The meromorphic continuation and functional equatior. gfs, , Syn™) now fol-
low from those ofL s(s, 71 ® 72, p4 ® A%ps5). Moreover,

Ls(s, 7, Sym’ ® w)Ls(s, 7, SymP ® w2)?Ls(s, SynP(r) ® 3 )°Ls(s, 7 ® w?)

is invertible ats = 1 by Propositions 4.2 and 4.5. So it is enough to prove tha
Ls(s, &, r1) has at most a simple pole or simple zerg at 1.

By [26], the produ<:t]_[i5:l Ls(1 +is, X, rj) does not have a zero at= 0.
But none of theL-functionsLs(s, X, ri), i = 3,4,5, has a pole a8 = 1. In fact,
they are all entire and have no zeros forRe 1. (See T] for the casers and
a)la)% = 1. The general case can be seen to be the same by observing that the twi:
exterior squard_-function appears as the normalizing factor of a certain Eisenstei
series if we consider Spjp (cf. [11]). Alternatively, by direct calculation, we have
Ls(s, Z,rq) = Ls(s, 7, SynP @ w2d)Ls(s, SynP(r) ® wl’). The necessary prop-
erties of Ls(s, 7, SynmP ® w1®), and in particular its invertibility as = 1, are now
obtained by considerings(s, Symf () x (Synf'(x) ® w%)) in the proof of Proposi-
tion 4.4.) The second-function, Ls(s, X, r2), appears as the firgt-function in the
caseDg — 3. Hence it has at most a simple polesat= 1. Alternatively, by direct
calculation, we see that, sine&(A3(7)) = A*(7) ® wy,

Ls(s.m1 ® (72 ® w2), A*pa ® ps)
= Ls(s synfm) x (Synfr) @ 0f) ) Ls(s. Synfr) @ ).
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HenceL s(s, 11 ® (772 ® wo), A%pa @ ps) has at most a simple pole sit= 1 and is
invertible for Res > 1. Thereforel s(s, X, r1) has at most a simple zerosat 1.

By [27], the product]‘[i‘r’=1 Ls(s, X, rj) has at most a simple pole at= 1.
However,]'[?=2 Ls(is, X, ri) has no zeros & = 1. ThereforeL s(s, £, r1) has at
most a simple pole &= 1.

Next, suppose Syhir) is not cuspidal. Then Syhir) = o1 B oo, whereo and
o> are cuspidal representations of £K) and GLz(A), respectively. In this case, by
standard calculations,

Ls(s,7m1 ® 72, pa ® A% ps)

= Ls(s, 1 x 01 X 02)Ls(S, 71 ® woy) Ls(S, 71 X (62 ® wy,)).
HereL s(s, 71 ® wsy)Ls(S, 71 X (62 ® wy,)) is invertible for Res > 1. By [13],
Ls(s, w1 X 01 x 02) = Ls(s, 71 % (01 K 02)),

whereo1 X o7 is the functorial product that is an automorphic representation o
GLg(A). Sinceoy is monomial (see Theorem 3.3.7), by the main theoreml&f, [

o1 X o2 is either cuspidal or unitarily induced from two cuspidal representations c
GL3(A). Hencel s(s, m1 x 01 x 02) is invertible for Res > 1, and therefore the same
conclusion holds fotg(s, 7, Syn?). O

PROPOSITION4.8

Let = be a cuspidal representation &Lo(A) such thatSyn? () is cuspidal. Let
diag(ay, By) be the Satake parameter for an unramified local component. The
layl, 1By] < q,}/g. If Synf'(r) is not cuspidal, then the full Ramanujan conjecture
is valid.

Proof
If Sym* () is cuspidal, use Proposition 4.7 arit¥] Lemma 5.8]. If Syrfi() is not
cuspidal, then by Proposition 3.3:8s of Galois type for whiche,| = |8, = 1. O

The following result coincides with Langlands’s calculationsifi]]

PROPOSITION4.9

Let 7 be a nonmonomial cuspidal representation@if,(A) with a trivial central

character. Suppose m 9.

(1)  Suppos&ynt(r) is not cuspidal. Then &(s, 7, Sym") is invertible at s= 1,
except for m= 6, 8; the L-functions ls(s, 77, SynP) and Ls(s, , Synf) each
have a simple pole ats 1.
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(2)  Suppos&ynt(r) is cuspidal, buBynf' () is not. Then Is(s, 7, Sym™) is in-
vertible ats= 1form=1, ..., 7and m= 9; the L-function Ls(s, =, Synf)
has a simple pole at s 1.

Proof
(1) By Theorem 2.2.2 and Section 3.2,

Sym(nr) = (r @B @u?),  Synf(r) = Symf(r) B u B u?

whereu is a nontrivial gpssencharacter such that&d ~ Ad(r) ® 1. We explicitly
calculateL s(s, 7, Sym™). Let IT = Syn? (). Then

Ls(s, 7, Syn?) = Ls(s, 7 ® p)Ls(s, 7 ® u?),
Ls(s, 7, Synf) = Ls(s, L s(s, u)Ls(s, u?).

They are both invertible for Re> 1. From the equality in Proposition 4.2, we have
Ls(s, 7, Sym'5) = Ls(s, m)Ls(s, m @ w)Ls(s, m ® u?), which is clearly invertible
for Res > 1.

Using the equality in Proposition 4.3, we hake(s, r, Syr‘r15) = Lg(s, 1)?
-Lg(s, 1). Sincel (s, IT) is invertible ats = 1, Lg(s, 7, Syme) has a simple pole at
s=1.

From the equality in Proposition 4.5, we have

Ls(s, 7, Sym’) = Ls(s, 7)°Ls(S, 7 @ w)Ls(s, 7 @ u?).

Hence it is invertible for Re > 1.

For Ls(s, 7, Synf), consider the equality in Proposition 4.4 with, = 1;
we havelg(s, IT x IT) = Lg(s, 7, SymG)Lg(s, w)Ls(s, u?). Hencels(s, IT x
) = Ls(s, IM)2Ls(s, 1)Ls(s, w)Ls(s, u?). Then from the equality in Proposi-
tion 4.6, Ls(s, m, Synf) = Lsg(s, M)2Ls(s, w)Ls(s, u?)Ls(s, 1), and therefore
Ls(s, 7, Synf) has a simple pole &= 1.

For Ls(s, 7, SynP), consider the equality in Proposition 4.7 with = 1; by
standard calculations, we see that

Ls(s, 7, SynP) = Ls(s, 7 ® n)°Ls(s, 7 ® n2)?Ls(s, 7).

We therefore conclude thaits(s, 7, Syrr?) is invertible for Res > 1.

(2) In this case, Syfir) = o1 B 02, whereoy and o, are cuspidal repre-
sentations of Gk(A) and Glg(A), respectively. Ifw, = 1, thenoi1 and oo are
self-contragredient. We only have to discuss the case 8. Consider the equal-
ity in Proposition 4.6 withw, = 1 in which the left-hand side has a double pole at
s =1.ButLg(s, 7, SynP)Ls(s, 7, Synf)Ls(s, 7, Syn?) is invertible ats = 1. Thus
Ls(s, 7, Synf) has a simple pole &= 1. O
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Remark. The above proposition is no longer true if the central character is not trivie
(see Proposition 3.2.1, Corollaries to Theorem 3.3.7 and Proposition 4.4).

We now give an application of these properties of symmetric pdwémctions to
the Sato-Tate conjecture (se&5], [30]). This we do by following Serre’s method
(see B0, Appendix]). In what follows, letr = ), 7, be a cuspidal representation of
GL2(A) with a trivial central character such that SYm) is cuspidal. We also assume
thatrr satisfies the Ramanujan-Petersson conjecture. Recall that ayjedet, + 8.,
wherer, is an unramified local component with the Satake parametefaiag,).

We use exactly the same notation as &,[Appendix]. First let us calculate
Th(X), the polynomial that gives the trace of théh symmetric power of an element
of SLy(C) whose trace i:

To=1, Ty =X, To=x2-1, Ta = x3 — 2x,
Ta=x*—3x%2+1, Ts = x° — 4x3 + 3x, Te=x®—5Bx*+6x2—1,
T7 = x’ — 6x° + 10x% — 4x, Tg = x8 — 7x% + 15x% — 10x? + 1,
To = x® — 8x” 4 21x° — 20x3 + 5x.

Next recall the quantity

qufN Tn(av)
m(N)

where thenth symmetric powel-function has an orderk, ats = 1 andz(N)
is the number of places such thgt < N. Hencel (Tg) = 1 and|(T,) = 0 for
n=1,...,8 by Propositions 4.2-4.6. Lét{(Tg) = k. By Proposition 4.7, we know
thatk € {—1, 0, 1}.

We now calculated (x™):

I (Th) = N”—r>noo = kn,

1 (x) =0, I (x?) =1, 1(x3) =0, I (x% =2,
1 (x%) =0, I (x® =5, I (x") =0, | (x8) =14, I (x% = k.
With notation as in 30, Appendix],d = 9 andm = 4. Using this, we can
calculate the orthogonal polynomiaRg, Py, ..., P4 to get
Po=1, PL=Ti =X, Po=To=x?—-1, P3=Ts = x> — 2%,
Pp=Ta=x*—3x2+1, Ps = Ts — k(x* — 3x% + 1).
There are three possibilities:
(1)  k=0:Ps=Ts=x>—4x3+ 3x; the roots are-+/3, —1, 0, 1, v/3;

(2 k=1P5=T5—Ts4 = x> — x* — 4x3 + 3x%2 4+ 3x — 1; the roots are
—2cog2kr/11),k=1,2,3,4,5;
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(8 k=-1:P5 = Ts+ Ts = x° + x* — 4x3 — 3x2 + 3x + 1; the roots are
2 cog2kr/11), k = 1, 2, 3, 4, 5. Note that 2 co@r/11) = 1.68. ...

THEOREM4.10
For everye > 0, there are sets T and T~ of positive lower (Dirichlet) density such
thata, > 1.68... —ecforallve TTanda, < —1.68... +cforallve T—.

Remark. In [30, Appendix] and £3], where the third, fourth, and fifth symmetric
powerL-functions were used, the resultds > V2 —e.

In the next proposition, we do not assume the Ramanujan-Petersson conjecture fo

PROPOSITION4.11

Let s be a cuspidal representation &L, (A) with a trivial central character. Then
for everye > 0, there exists a set T of positive lower (Dirichlet) density such tha
lay| > 1.68... —eforallveT.

Remark. Let o be a two-dimensional continuous representation\gf, the Weil
group of F /F. Assume that there exists an automorphic cuspidal representation
of GL2(A) preserving root numbers amdfunctions for pairs (cf.16], [13]). This is
possible except perhaps wheris icosahedral of special kind (cfL3, §10]). Whero

is of icosahedral type and(o) exists,L (s, Sym4 o) is afive-dimensional irreducible,
and therefore entire, Artih-function. But it is not primitive since Syfw is mono-
mial (cf. [9]). We refer to P] for an interesting application of this to automorphic
induction.
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