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CUSPIDALITY OF SYMMETRIC POWERS
WITH APPLICATIONS

HENRY H. KIM and FREYDOON SHAHIDI

Abstract
The purpose of this paper is to prove that the symmetric fourth power of a cusp form
on GL(2), whose existence was proved earlier by the first author, is cuspidal unless
the corresponding automorphic representation is of dihedral, tetrahedral, or octahe-
dral type. As a consequence, we prove a number of results toward the Ramanujan-
Petersson and Sato-Tate conjectures. In particular, we establish the bound q1/9

v for
unramified Hecke eigenvalues of cusp forms onGL(2). Over an arbitrary number
field, this is the best bound available at present.

1. Introduction
In this paper we prove a criterion for cuspidality of the fourth symmetric powers of
cusp forms on GL(2), whose existence was established earlier by the first author. As
a consequence, we show that a cuspidal representation has a noncuspidal symmetric
fourth power if and only if it is of either dihedral, tetrahedral, or octahedral type.
We then prove a number of corollaries toward both the Ramanujan-Petersson and
Sato-Tate conjectures for cusp forms on GL(2) by establishing analytic properties of
several new symmetric powerL-functions attached to them.

More precisely, letA be the ring of adeles of a number fieldF . Let π =
⊗

v πv

be a cuspidal automorphic representation of GL2(A) with central characterωπ . Fix
a positive integerm, and let Symm

: GL2(C) −→ GLm+1(C) be themth symmet-
ric power representation of GL2(C) on symmetric tensors of rankm (cf. [28], [30]).
By the local Langlands correspondence (see [4], [5], [17]), Symm(πv) is well de-
fined for everyv. Then Langlands functoriality in this case is equivalent to the fact
that Symm(π) =

⊗
v Symm(πv) is an automorphic representation of GLm+1(A). It

is convenient to introduceAm(π) = Symm(π) ⊗ ω−1
π (denoted by Adm(π) in [28]).
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If m = 2, A2(π) = Ad(π) and it is the well-known Gelbart-Jacquet lift in [2]. If
m = 3, we proved in [13] and [12] that Sym3(π) is an automorphic representa-
tion of GL4(A) and gave a criterion for when it is cuspidal. In [10], the first author
proved that Sym4(π) is an automorphic representation of GL5(A). If Sym3(π) is cus-
pidal, Sym4(π)is either cuspidal or unitarily induced from cuspidal representations of
GL2(A) and GL3(A). In this paper, we give a criterion for when Sym4(π) is cuspidal.
More precisely, we have the following.

THEOREM 3.3.7
A4(π) = Sym4(π) ⊗ ω−1

π is a cuspidal representation ofGL5(A), except in the
following three cases:
(1) π is monomial;
(2) π is not monomial and A3(π) is not cuspidal; this is the case when there exists

a nontrivial grössencharacterµ such thatAd(π) ' Ad(π) ⊗ µ;
(3) A3(π) is cuspidal, but there exists a nontrivial quadratic characterη such that

A3(π) ' A3(π) ⊗ η, or, equivalently, there exists a nontrivial grössenchar-
acterχ of E such thatAd(πE) ' Ad(πE) ⊗ χ , where E/F is the quadratic
extension determined byη and πE is the base change ofπ . In this case,
A4(π) = σ1 � σ2, whereσ1 = π(χ−1) ⊗ ωπ andσ2 = Ad(π) ⊗ (ωπη).

Cases (1), (2), and (3) are equivalent toπ being of dihedral, tetrahedral, and
octahedral type, respectively.

We give several applications of the cuspidality of third and fourth symmetric powers.
First, following Ramakrishnan [23], we prove that given a cuspidal representation of
GL2(A), the set of tempered places has lower Dirichlet density of at least 34/35.

Next, we prove the meromorphic continuation and a functional equation for each
of the sixth, seventh, eighth, and ninth symmetric powerL-functions for cuspidal
representations of GL2(A). An immediate corollary (cf. [27, Lemma 5.8]) is that if
πv is an unramified local component of a cuspidal representationπ =

⊗
v πv, then

q−1/9
v < |αv|, |βv| < q1/9

v , where diag(αv, βv) is the Satake parameter forπv. The
archimedean analogue of 1/9, using this approach, is proved in [11]. When F = Q,
using the ideas in [19], the bound 1/9 can be improved to 7/64+ ε, ∀ε > 0. This is
the subject of an appendix in [10] by Kim and Sarnak. For an arbitrary number field,
1/9 remains the best bound available at present.

Finally, we prove that partial fifth, sixth, seventh, and eighth symmetric power
L-functions attached to a cuspidal representationπ of GL2(A) with trivial central
character such that Sym4(π) is cuspidal are all invertible ats = 1, and we apply
this fact to the Sato-Tate conjecture (see [25]), following Serre’s method (see [30,
Appendix]). Namely, we show that for everyε > 0 there are setsT+ and T− of
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positive lower (Dirichlet) densities such thatav > 2 cos(2π/11) − ε for all v ∈ T+,
and av < −2 cos(2π/11) + ε for all v ∈ T−, whereav = αv + βv. Note that
2 cos(2π/11) = 1.68. . . .

2. Cuspidality of the symmetric cube
Supposeπ is a cuspidal representation of GL2(A). We review the properties of the
symmetric cube Sym3(π) (see [13]). Recall thatA3(π) = Sym3(π) ⊗ ω−1

π .

2.1.π a monomial cuspidal representation
That is,π ⊗η ' π for a nontrivial gr̈ossencharacterη. Thenη2

= 1 andη determines
a quadratic extensionE/F . According to [14], there is a gr̈ossencharacterχ of E such
thatπ = π(χ), whereπ(χ) is the automorphic representation whose local factor atv

is the one attached to the representation of the local Weil group induced fromχv. Let
χ ′ be the conjugate ofχ by the action of the nontrivial element of the Galois group.
Then the Gelbart-Jacquet lift (adjoint) ofπ is given by

Ad(π) = π(χχ ′−1
) � η.

There are two cases.

Case 1:χχ ′−1 factors through the norm.That is,χχ ′−1
= µ ◦ NE/F for a gr̈ossen-

characterµ of F . Thenπ(χχ ′−1
) is not cuspidal. In fact,π(χχ ′−1

) = µ � µη. In
this case,

A3(π) = π(χχ ′−1
) � π = (µ ⊗ π) � (µη ⊗ π).

Case 2:χχ ′−1 does not factor through the norm.In this case,π(χχ ′−1
) is a cuspidal

representation. Then

A3(π) = π(χχ ′−1
) � π = π(χ2χ ′−1

) � π.

Here we use the fact thatπ(χ)E = χ � χ ′ (see [24, Proposition 2.3.1]) and that
π ′ � π = I E

F (π ′

E ⊗ χ) if π = π(χ) (see [24, §3.1]).

2.2.π not monomial
In this case, Ad(π) is a cuspidal representation of GL3(A). We recall from [13] the
following.

THEOREM 2.2.1
Let σ be a cuspidal representation ofGL2(A). Then the triple L-function LS(s,
Ad(π) × π × σ) has a pole at s= 1 if and only if σ ' π ⊗ χ and Ad(π) '

Ad(π) ⊗ (ωπχ) for some gr̈ossencharacterχ .
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By Theorem 2.2.1, we have the following.

THEOREM 2.2.2
Letπ be a nonmonomial cuspidal representation ofGL2(A). Then A3(π) is not cus-
pidal if and only if there exists a nontrivial grössencharacterµ such thatAd(π) '

Ad(π) ⊗ µ. In that case,

A3(π) = (π ⊗ µ) � (π ⊗ µ2).

3. Cuspidality of the symmetric fourth
Supposeπ is a cuspidal representation of GL2(AF ). Let A4(π) = Sym4(π) ⊗ ω−1

π .
We review the properties of Sym4(π) (see [10]).

3.1.π monomial
Supposeπ is a monomial cuspidal representation given byπ = π(χ). Then the
Gelbart-Jacquet lift ofπ is given by Ad(π) = π(χχ ′−1

) � η.

Case 1:χχ ′−1 factors through the norm.Then (see Section 2.1) since∧2(A3(π))

= A4(π) ⊕ ωπ ,

A4(π) = (π � π) � ωπ = ωπ � ωπ � µωπ � ηωπ � µηωπ .

We used the fact thatη andµ are quadratic gr̈ossencharacters.

Case 2:χχ ′−1 does not factor through the norm.Then (see Section 2.1)

A4(π) =
(
π(χ2χ ′−1

) � π
)
� ωπ = π(χ3χ ′−1

) � π(χ2) � ωπ .

3.2.π a nonmonomial representation such thatSym3(π) is not cuspidal
This is the case when there exists a nontrivial grössencharacterµ such that Ad(π) '

Ad(π) ⊗ µ. Note thatµ3
= 1. ThenA3(π) = (π ⊗ µ) � (π ⊗ µ2). Hence

∧
2(A3π) = Sym2(π) � ωπ � ωπµ � ωπµ2.

So
A4(π) = Sym2(π) � ωπµ � ωπµ2.

PROPOSITION3.2.1
Supposeπ is a nonmonomial representation such that A3(π) is not cuspidal; that is,
Ad(π) ' Ad(π) ⊗ µ. Then L(s, π, Sym4

⊗ ω−1
π ) has a pole at s= 1 if and only if

ωπ = µ or µ2. In particular, if ωπ = 1, L(s, π, Sym4) is holomorphic at s= 1.
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3.3. BothAd(π) andSym3(π) cuspidal
Throughout this paperS is always a set of places ofF such that forv 6∈ S every
representation is unramified.

The first author showed in [10] that∧2(A3(π)) is an automorphic representation
of GL6(A) and that∧2(A3(π)) = A4(π) � ωπ . HenceA4(π) is an automorphic
representation of GL5(A), either cuspidal or induced from cuspidal representations of
GL2(A) and GL3(A). We want to give a criterion for whenA4(π) is cuspidal. First
we note that

LS
(
s, σ ⊗ A3(π), ρ2 ⊗ ∧

2ρ4
)

= LS
(
s, σ × A4(π)

)
LS(s, σ ⊗ ωπ ). (1)

LEMMA 3.3.1
A4(π) is not cuspidal if and only if LS(s, σ ⊗ A3(π), ρ2 ⊗∧

2ρ4) has a pole at s= 1
for some cuspidal representationσ of GL2(A).

Proof
SinceA4(π) is either cuspidal or induced from cuspidal representations of GL2(A)

and GL3(A), A4(π) is not cuspidal if and only ifLS(s, σ × A4(π)) has a pole ats = 1
for some cuspidal representationσ of GL2(A). Our assertion follows from (1) since
LS(s, σ ⊗ ωπ ) is invertible ats = 1.

In order to find a criterion for the pole ofL(s, σ ⊗ A3(π), ρ2 ⊗ ∧
2ρ4), we need the

following unpublished result of H. Jacquet, I. Piatetski-Shapiro, and J. Shalika (cf.
[22]).

THEOREM 3.3.2 (Jacquet, Piatetski-Shapiro, and Shalika)
Let π be a cuspidal automorphic representation ofGL4(A) such that there exist a
grössencharacterχ and a finite set S of places as above for which LS(s, π,∧2

⊗

χ−1) has a pole at s= 1. Then there exists a globally generic cuspidal automorphic
representationτ of GSp4(A) with central characterχ such thatπ is the Langlands
functorial lift of τ under the natural embeddingL GSp4 = GSp4(C) ↪→ GL4(C).

The following paragraph is a brief sketch of the steps of the proof of the theorem,
which we are including at a referee’s suggestion. We thank Dinakar Ramakrishnan
for helping us with its preparation.

Theorem 3.3.2 is proved using the dual reductive pair(GO6(A), GSp4(A)). More
precisely, one considers the low-rank isogeny of SL4 and SO6 to lift a cuspidal repre-
sentationπ =

⊗
v πv of GL4(A) to one, still denoted byπ , on GO6(A), provided that

the central character ofπv is trivial on±I for eachv. One can then compute the theta
lift of π to an automorphic representation of GSp4(A) by integrating functions in the
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space ofπ in the usual way against theθ -function, a function on the two-fold cover
of GSp12(A). It is this integral that, in view of [6], is in fact equal to the residue of
LS(s, π,∧2

⊗ χ−1) ats = 1, whereχ is the central character of the theta lift. Hence
the nonvanishing of the theta lift ofπ to GSp4(A) is equivalent to the existence of a
pole forLS(s, π,∧2

⊗ χ−1) ats = 1. HereS is a finite set of places for whichv /∈ S
implies thatπv is unramified. The lift is irreducible and globally generic.

We now look at how the Satake parameter behaves under the mapL GSp4 =

GSp4(C) ↪→ GL4(C). Supposeτv is an unramified representation given by Ind
GSp4
B µ

⊗ ν ⊗ λ, whereµ, ν, λ are unramified quasicharacters ofF×
v andµ ⊗ ν ⊗ λ is the

character of the torus which assigns to diag(x, y, ty−1, t x−1) the valueµ(x)ν(y)λ(t).
Note that the central character isχv = µνλ2.

Then the Satake parameter corresponding toτv is (see, e.g., [31, p. 95])

diag(µνλ, µλ, λ, νλ).

Here we identifyµ with µ($); we do the same withν andλ. The Satake parameter
for ∧

2(πv) is

diag(µ2νλ2, µνλ2, µν2λ, µλ2, νλ2, µνλ2)

= diag(χvµ, χvν, χv, χvµ
−1, χvν

−1, χv).

Hence, ifσv is an unramified representation of GL2(Fv) given byπ(η1, η2), then

L(s,σv ⊗ πv, ρ2 ⊗ ∧
2ρ4)

−1

=

2∏
i =1

(1 − χvηi µ
±1q−s

v )(1 − χvηi ν
±1q−s

v )(1 − χvηi q
−s
v )

×

2∏
i =1

(1 − χvηi q
−s
v )

= L
(
s, (σv ⊗ χv) × τv

)−1
L(s, σv ⊗ χv)

−1. (2)

HereL(s, (σv⊗χv)×τv) is the degree 10 Rankin-SelbergL-function for GL2 × GSp4.
Note that ifτ ′ is any irreducible constituent ofτ |Sp4(A), then

L
(
s, (σv ⊗ χv) × τv

)
= L

(
s, (σv ⊗ χv) × τ ′

v

)
.

We now apply the above observation toA3(π), whereπ is a cuspidal represen-
tation of GL2(A). Since∧

2(A3(π)) = A4(π) � ωπ , LS(s, A3(π), ∧2
⊗ ω−1

π ) has a
pole ats = 1. So there exists a generic cuspidal representationτ of GSp4(A) with
central characterωπ . Let τ ′ be any irreducible constituent ofτ |Sp4(A). Then by (1)
and (2), we have

LS
(
s, σ × A4(π)

)
= LS

(
s, (σ ⊗ ωπ ) × τ ′

)
.
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Recall that if we consider the maximal Levi subgroup GL2 × Sp4 ⊂ Sp8 with the
cuspidal representation(σ ⊗ ωπ ) ⊗ τ ′ (see [27]), we obtain the followingL-function
as a normalizing factor in the constant term of the Eisenstein series:

LS
(
s, (σ ⊗ ωπ ) × τ ′

)
LS(2s, ωσ ω2

π ).

Note that if(ωσ ω2
π )2

6= 1, (σ ⊗ ωπ ) ⊗ τ ′ is not self-contragredient. Hence we have
the following.

PROPOSITION3.3.3
If (ωσ ω2

π )2
6= 1, then LS(s, (σ ⊗ ωπ ) × τ ′) is holomorphic at s= 1.

Proof
By following the proof of [8, Theorem 3.2], we can show that the completedL-
functionL(s, (σ ⊗ωπ )× τ ′) is entire. Since(σ ⊗ωπ )⊗ τ ′ is not self-contragredient,
by [7, Proposition 2.1] the global intertwining operatorM(s, (σ ⊗ ωπ ) ⊗ τ ′, w0) is
holomorphic for Res > 0. Using [8, Proposition 3.4], the local normalized intertwin-
ing operatorsN(s, (σv ⊗ωπv )⊗τ ′

v, w0) are holomorphic and nonzero for Res ≥ 1/2.
Hence we see that theL-functionL(s, (σ ⊗ωπ )×τ ′)L(2s, ωσ ω2

π ) is holomorphic for
Res ≥ 1/2. SinceL(2s, ωσ ω2

π ) has no zeros for Res ≥ 1/2, L(s, (σ ⊗ ωπ ) × τ ′) is
holomorphic for Res ≥ 1/2. Our assertion follows from the functional equation.

Using the integral representation, we have the following.

THEOREM 3.3.4 (Ginzburg-Rallis-Soudry [3])
If ωσ ω2

π = 1, then LS(s, (σ ⊗ ωπ ) × τ ′) is holomorphic at s= 1.

Proof
This follows immediately from the integral representation forLS(s, (σ ⊗ ωπ ) × τ ′).
The possible poles come from the poles of the Eisenstein series attached to(GL2, σ ⊗

ωπ ) for the split group SO5, which in turn come from the poles of symmetric square
L-functionLS(s, σ ⊗ ωπ , Sym2). The lastL-function is entire ifωσ ω2

π = 1.

COROLLARY 3.3.5
If ωσ ω2

π = 1, or if (ωσ ω2
π )2

6= 1, then LS(s, σ × A4(π)) is holomorphic at s= 1.

PROPOSITION3.3.6
Letπ be a cuspidal representation ofGL2(A) such that both5 = Ad(π) and A3(π)

are cuspidal. Then the following are equivalent.
(1) A4(π) is not cuspidal.
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(2) There exists a quadratic extension E/F such that A3(π) ' A3(π) ⊗ η,
whereη is the quadratic gr̈ossencharacter attached to E/F via class field
theory. This means that the base change(A3(π))E is not cuspidal. (Note that
A3(πE) ' (A3(π))E.)

(3) There exists a quadratic extension E/F such that5E ' 5E ⊗ χ for a non-
trivial gr össencharacterχ of E, where5E is the base change of5 to E.

Proof
Consider

LS
(
s, (σ ⊗ ωπ ) × 5 × 5

)
= LS

(
s, (σ ⊗ ωπ ) × 5

)
LS

(
s, σ ⊗ A3(π), ρ2 ⊗ ∧

2ρ4
)
.

SinceLS(s, (σ ⊗ωπ )×5) does not have a pole or a zero ats = 1, LS(s, (σ ⊗ωπ )×

5 × 5) has a pole ats = 1 if and only if LS(s, σ ⊗ A3(π), ρ2 ⊗ ∧
2ρ4) has a pole at

s = 1.
Statement (1) implies statement (2). SinceA4(π) is not cuspidal,LS(s, σ ⊗

A3(π), ρ2 ⊗ ∧
2ρ4) has a pole ats = 1 for someσ by Lemma 3.3.1. Hence, by

Corollary 3.3.5,ω2
= 1, ω 6= 1, whereω = ωσ ω2

π . Let E/F be the quadratic exten-
sion attached toω via class field theory. Let(A3(π))E be the base change ofA3(π).
Consider the equality

LS

(
s,σE ⊗

(
A3(π)

)
E, ρ2 ⊗ ∧

2ρ4

)
= LS

(
s, σ ⊗ A3(π), ρ2 ⊗ ∧

2ρ4
)
LS

(
s, (σ ⊗ ω) ⊗ A3(π), ρ2 ⊗ ∧

2ρ4
)
.

Note thatLS
(
s, σE ⊗ (A3(π))E, ρ2 ⊗ ∧

2ρ4
)

has a pole ats = 1 if and only if
LS(s, (σE ⊗ ωπE ) × 5E × 5E) has a pole ats = 1.

Suppose that(A3(π))E is cuspidal. Then5E 6' 5E ⊗ χ for any nontrivial
character by Theorem 2.2.2. Ifσ is not monomial, thenσE is cuspidal, and hence
LS(s, σE ⊗(A3(π))E, ρ2⊗∧

2ρ4) is holomorphic ats = 1. If σ is monomial, thenσE

is an automorphic representation induced from two grössencharacters. Hence again
LS(s, (σE ⊗ ωπE ) × 5E × 5E) is holomorphic ats = 1. ThereforeLS(s, σ ⊗

A3(π), ρ2 ⊗ ∧
2ρ4) is holomorphic ats = 1 for anyσ . This is a contradiction.

Statement (2) is equivalent to statement (3). Suppose(A3(π))E is not cuspi-
dal. Since(A3(π))E is equivalent toA3(πE), A3(πE) is not cuspidal. So Ad(πE) '

Ad(πE)⊗χ for a nontrivial gr̈ossencharacter ofE. Since5E is equivalent to Ad(πE),
we have5E ' 5E ⊗ χ for a nontrivial gr̈ossencharacterχ of E.

Statement (3) implies statement (1). Letσ ′
= σ ⊗ ωπ = π(χ) be the monomial

representation of GL2(AF ) attached toχ . Letη be the quadratic character attached to
E/F . Thenσ ′

E = χ � χ ′. Consider the equality

LS(s, σ
′

E × 5E × 5E) = LS(s, σ
′
× 5 × 5)LS

(
s, (σ ′

⊗ η) × 5 × 5
)
.
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Then LS(s, σ ′

E × 5E × 5E) = LS(s, (χ ⊗ 5E) × 5E)LS(s, (χ ′
⊗ 5E) × 5E).

Sinceχ ⊗ 5E ' 5E, LS(s, (χ ⊗ 5E) × 5E) has a pole ats = 1. Hence either
L(s, σ ′

× 5 × 5) or LS(s, (σ ′
⊗ η) × 5 × 5) has a pole ats = 1. This implies that

eitherLS(s, σ ⊗ τ, ρ2 ⊗ ∧
2ρ4) or LS(s, (σ ⊗ η) ⊗ τ, ρ2 ⊗ ∧

2ρ4) has a pole ats = 1.
HenceA4(π) is not cuspidal.

By the above proposition, we see the following.

THEOREM 3.3.7
A4(π) = Sym4(π) ⊗ ω−1

π is a cuspidal representation ofGL5(A) except in the fol-
lowing three cases:
(1) π is monomial;
(2) π is not monomial and A3(π) is not cuspidal; this is the case when there exists

a nontrivial grössencharacterµ such thatAd(π) ' Ad(π) ⊗ µ;
(3) A3(π) is cuspidal and there exists a nontrivial quadratic characterη such that

A3(π) ' A3(π) ⊗ η, or, equivalently, there exists a nontrivial grössenchar-
acterχ of E such thatAd(πE) ' Ad(πE) ⊗ χ , where E/F is the quadratic
extension determined byη. In this case, A4(π) = σ1 � σ2, whereσ1 =

π(χ−1) ⊗ ωπ andσ2 = Ad(π) ⊗ (ωπη).

Proof
We only need to prove the last assertion. By the proof of Proposition 3.3.6,LS(s, σ̃1×

A4(π)) has a pole ats = 1. ConsiderL(s, Ã3(π) × (A3(π) ⊗ η)). It has a pole at
s = 1 sinceA3(π) ' A3(π) ⊗ η. By formal calculation,

LS

(
s,Ã3(π) ×

(
A3(π) ⊗ η

))
= LS

(
s, π, Sym6

⊗ (ω−3
π η)

)
LS

(
s, A4(π) ⊗ (ω−1

π η)
)

× LS
(
s, Ad(π) ⊗ η

)
LS(s, η)

= LS

(
s,

(
Ad(π) ⊗ (ω−1

π η)
)
× A4(π)

)
LS(s, η).

TheL-functionL(s, η) has no zeros ats = 1, and therefore

LS

(
s,

(
Ad(π) ⊗ (ω−1

π η)
)
× A4(π)

)
has a pole ats = 1. Henceσ2 = Ad(π) ⊗ (ωπη).

We note that sinceχ is a nontrivial cubic character,χ |A∗
F

= 1, and the central
character ofπ(χ) is η · χ |A∗

F
= η.

COROLLARY (of the proof )
Letπ be a cuspidal representation ofGL2(AF ) such that A3(π) is cuspidal. If A4(π)
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is not cuspidal, then L(s, π, Sym6
⊗ (ω−3

π η)) has a pole at s= 1. Hereη is as in
Theorem 3.3.7(3).

Finally, based on Langlands’s calculations in [18], it is reasonable to claim the fol-
lowing.

CONJECTURE

Letπ be a nonmonomial cuspidal representation ofGL2(A). Then
(1) Sym3(π) is not cuspidal if and only ifπ is of tetrahedral type;
(2) Sym3(π) is cuspidal, butSym4(π) is not, if and only ifπ is of octahedral

type;
(3) Sym4(π) andSym5(π) are cuspidal, butSym6(π) is not, if and only ifπ is of

icosahedral type.

Remark.The final form of part (3) of the conjecture is an outcome of a number of
communications with J.-P. Serre as well as calculations done in [9].

The purpose of our next proposition is to demonstrate the first two parts of the con-
jecture.

PROPOSITION3.3.8
Letπ be a nonmonomial cuspidal representation ofGL2(A). Then
(1) Sym3(π) is not cuspidal if and only ifπ is of tetrahedral type;
(2) Sym3(π) is cuspidal, butSym4(π) is not, if and only ifπ is of octahedral type.

Proof
Part (1) is [13, Lemma 6.5]. Part (2) is proved the same way. In fact, observe first that
by Proposition 3.3.6(3) there exists a quadratic extensionE/F such that5E ∼= 5E ⊗

χ for a nontrivial gr̈ossencharacterχ . Notice that5E = Ad(πE) and that therefore
Ad(πE) ∼= Ad(πE)⊗χ . By Theorem 2.2.2, Sym3(πE) is not cuspidal, and therefore,
by part (1),πE is of tetrahedral type. Consequently, there exists a two-dimensional
tetrahedral representationσE of WE such thatπE = π(σE). SinceσE is invariant
under Gal(E/F), it can be extended to a two-dimensional continuous representation
σ of WF , which is now octahedral. Letπ ′

= π(σ), which is of octahedral type.
Clearly,π ′

E
∼= πE, and thereforeπ ′ ∼= π ⊗ ηa for somea = 0, 1, whereη is the

grössencharacter attached toE/F . But σ is unique only up to twisting by a power of
η, and therefore by changing the choice ofη if necessary, we haveπ ∼= π ′

= π(σ).
We are done.
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4. Applications
We give several applications of cuspidality of third and fourth symmetric powers. In
this section we letπ =

⊗
v πv be a cuspidal representation of GL2(A) unless other-

wise specified. Letπv be an unramified local component with the Satake parameter
diag(αv, βv). Setav(π) = αv + βv.

THEOREM 4.1
Let S(π) be the set of places whereπv is tempered. Then

δ
(
S(π)

)
≥

34

35
.

Proof
We follow [23]. Let ω be the central character ofπ . Let av = av(π). Then by direct
computation we see thatav(Sym2(π)) = a2

v−ωv andav(A4(π)) = ω−1
v a4

v−3a2
v+ωv.

Form, k, l nonnegative integers to be chosen below, let

η = m[ω] � k Sym2(π) � l A4(π).

Then

av(η) = mωv + k(a2
v − ωv) + l (ω−1

v a4
v − 3a2

v + ωv)

= (m − k + l )ωv + (k − 3l )a2
v + lω−1

v a4
v .

Let T(π, 2) = {v| |av| ≥ 2}. Then note that forv ∈ T(π, 2), αv = αqr , βv =

αq−r , for |α| = 1 andr ≥ 0 (see [23, Claim 4.6]). So except for finitely many places,
S(π) = {v| |av| ≤ 2}. If v ∈ T(π, 2), av = α(qr

+ q−r ). So∣∣av(η)
∣∣ ≥ m + 3k + 5l .

Hencev ∈ T(η, m + 3k + 5l ). Thus, by [23, (4.4)],

δ
(
T(η, m + 3k + 5l )

)
≤

m2
+ k2

+ l 2

(m + 3k + 5l )2
.

This holds for every choice of (nonnegative) triples(m, k, l ). It can be verified that
the minimum of the right-hand side occurs whenk = 3m, l = 5m, yielding

δ
(
T(π, 2)

)
≤

1

35
.

Higher symmetric power L-functions and the Sato-Tate conjecture
In the following, letπ =

⊗
v πv be a cuspidal representation of GL2(A), and letSbe

a finite set of places, including the archimedean ones, such thatπv is unramified for
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v /∈ S. Let diag(αv, βv) be the Satake parameter forπv for v /∈ S. Then the partial
mth symmetric powerL-function is defined to be

L(s, πv, Symm)−1
=

m∏
i =0

(1 − αm−i
v β i

vq−s
v ),

LS(s, π, Symm) =

∏
v /∈S

L(s, πv, Symm).

PROPOSITION4.2
Let π be a cuspidal representation ofGL2(A) such thatSym3(π) is cuspidal. Then
LS(s, π, Sym5) is invertible forRes ≥ 1; that is, it is holomorphic and nonzero for
Res ≥ 1.

Proof
Consider

LS
(
s, Sym2(π)×Sym3(π)

)
= LS(s, π, Sym5)LS

(
s, Sym3(π)⊗ωπ

)
LS(s, π ⊗ω2

π ).

Note thatLS(s, Sym3(π) ⊗ ωπ )LS(s, π ⊗ ω2
π ) is invertible for Res ≥ 1. Note also

that the left-hand side is invertible for Res ≥ 1. Hence our result follows.

PROPOSITION4.3
Let π be a cuspidal representation ofGL2(A) such thatSym3(π) is cuspidal. Then
every partial sixth symmetric power L-function has a meromorphic continuation and
satisfies a standard functional equation. Moreover, ifω3

π = 1, they are all invertible
for Res ≥ 1.

Proof
By standard calculations,

LS
(
s, Sym3(π) × Sym3(π)

)
= LS(s, π, Sym6)LS

(
s, Sym4(π) ⊗ ωπ

)
LS

(
s, Sym2(π) ⊗ ω2

π

)
LS(s, ω

3
π ).

Meromorphic continuation and a functional equation follow.
If ω3

π = 1, then Sym3(π) is self-contragredient. This implies that the left-
hand side has a pole ats = 1, while in the right-hand sideL(s, ω3

π ) has a pole at
s = 1. By assumption, Sym4(π) is either cuspidal or of the formσ1 � σ2, where
σ1 andσ2 are cuspidal representations of GL2(A) and GL3(A), respectively. Hence
LS(s, Sym4(π) ⊗ ωπ )LS(s, Sym2(π) ⊗ ω2

π ) is invertible for Res ≥ 1. This implies
our last claim.
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PROPOSITION4.4
If Sym4(π) is cuspidal, then partial sixth symmetric power L-functions are all invert-
ible for Res ≥ 1.

Proof
Consider the equality

LS
(
s, Sym2(π) × Sym4(π)

)
= LS(s, π, Sym6)LS

(
s, Sym4(π) ⊗ ωπ

)
LS

(
s, Sym2(π) ⊗ ω2

π

)
.

Since the left-hand side andLS(s, Sym4(π) ⊗ ωπ )LS(s, Sym2(π) ⊗ ω2
π ) are invert-

ible for Res ≥ 1, the same holds forLS(s, π, Sym6).

COROLLARY

Letπ be a cuspidal representation ofGL2 such thatSym3(π) is cuspidal. Ifω3
π 6= 1

andSym3(π) is self-contragredient, then L(s, π, Sym6) has a pole at s= 1.

PROPOSITION4.5
Letπ be a cuspidal representation ofGL2(A) such thatSym3(π) is cuspidal. Then ev-
ery partial seventh symmetric power L-function has a meromorphic continuation and
satisfies a standard functional equation. Moreover, they are all invertible forRes ≥ 1.

Proof
By standard calculations,

LS
(
s, Sym3(π) × Sym4(π)

)
= LS(s, π, Sym7)LS(s, π, Sym5

⊗ ωπ )LS
(
s, Sym3(π) ⊗ ω2

π

)
LS(s, π ⊗ ω3

π ).

Meromorphic continuation and functional equations then follow. By assumption,
Sym4(π) is either cuspidal or of the formσ1 � σ2, whereσ1 andσ2 are cuspidal
representations of GL2(A) and GL3(A), respectively. Hence the left-hand side is in-
vertible for Res ≥ 1.

In the proof of Proposition 4.2, usingLS(s, (Sym2(π) ⊗ ωπ ) × Sym3(π)), one
can see thatLS(s, π, Sym5

⊗ ωπ ) is invertible for Res ≥ 1. From this, we obtain our
assertion.

PROPOSITION4.6
Letπ be a cuspidal representation ofGL2 such thatSym3(π) is cuspidal. Then every
partial eighth symmetric power L-function has a meromorphic continuation and sat-
isfies a standard functional equation. IfSym4(π) is cuspidal andω4

π = 1, then they
are all invertible forRes ≥ 1.
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Proof
By standard calculations,

LS
(
s, Sym4(π) × Sym4(π)

)
= LS(s, π, Sym8)LS(s, π, Sym6

⊗ ωπ )LS
(
s, Sym4(π) ⊗ ω2

π

)
× LS

(
s, Sym2(π) ⊗ ω3

π

)
LS(s, ω

4
π ).

This proves the meromorphic continuation and functional equation. If Sym4(π) is
cuspidal andω4

π = 1, then Sym4(π) is self-contragredient. Hence the left-hand side
has a simple pole ats = 1, while in the right-hand sideL(s, ω4

π ) has a simple pole at
s = 1. By Proposition 4.4, and by consideringLS(s, Sym2(π) × (Sym4(π) ⊗ ωπ )),
we see that

LS(s, π, Sym6
⊗ ωπ )LS

(
s, Sym4(π) ⊗ ω2

π

)
LS

(
s, Sym2(π) ⊗ ω3

π

)
is invertible for Res ≥ 1. This completes our claim.

PROPOSITION4.7
Let π be a cuspidal representation ofGL2(A) such thatSym3(π) is cuspidal. Then
every partial ninth symmetric power L-function has a meromorphic continuation and
satisfies a standard functional equation. IfSym4(π) is cuspidal, then LS(s, π, Sym9)

has at most a simple pole or a simple zero at s= 1. If Sym4(π) is not cuspidal, then
LS(s, π, Sym9) is invertible forRes ≥ 1.

Proof
Suppose first that Sym4(π) is cuspidal. Consider the caseE8 − 2 of [27]. Let M be
a maximal Levi subgroup, and denote byA the connected component of its center.
SinceE8 is simply connected, the derived groupMD of M is simply connected as
well, and henceMD = SL4 × SL5. Thus

M = (GL1 × SL4 × SL5)/(A ∩ MD),

whereA ∩ MD ' Z/20Z. Let πi , i = 1, 2, be cuspidal representations of GL4(A)

and GL5(A) with central charactersωi , i = 1, 2, respectively. Letπi 0, i = 1, 2, be
irreducible constituents ofπ1|SL4(A) andπ2|SL5(A), respectively. Then6 = ω5

1ω
8
2 ⊗

π10 ⊗ π20 can be considered a cuspidal representation ofM(A). We then get the
L-function L(s, π1 ⊗ π2, ρ4 ⊗ ∧

2ρ5) as our firstL-function. In fact, there are five
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L-functions in the constant term of the Eisenstein series, namely,

LS(s, 6, r1) = LS(s, π1 ⊗ π2, ρ4 ⊗ ∧
2ρ5),

LS(s, 6, r2) = LS
(
s, π1 ⊗ (π̃2 ⊗ ω2), ∧

2ρ4 ⊗ ρ5
)
,

LS(s, 6, r3) = LS
(
s, π̃1 × (π2 ⊗ ω1ω2)

)
,

LS(s, 6, r4) = LS(s, π̃2, ∧
2ρ5 ⊗ ω1ω

2
2),

LS(s, 6, r5) = LS(s, π1 ⊗ ω1ω
2
2).

(See [27] for the trivial central character case and [11] for the general case for detailed
calculations.) Each of theL-functions, especiallyLS(s, 6, r1), has a meromorphic
continuation and satisfies a standard functional equation (see [27]).

We apply the above toπ1 = A3(π) andπ2 = Sym4(π). By standard calculations,
we have

LS(s,π1 ⊗ π2, ρ4 ⊗ ∧
2ρ5)

= LS(s, π, Sym9)LS(s, π, Sym7
⊗ ωπ )LS(s, π, Sym5

⊗ ω2
π )2

× LS
(
s, Sym3(π) ⊗ ω3

π

)2
LS(s, π ⊗ ω4

π ).

The meromorphic continuation and functional equation ofLS(s, π, Sym9) now fol-
low from those ofLS(s, π1 ⊗ π2, ρ4 ⊗ ∧

2ρ5). Moreover,

LS(s, π, Sym7
⊗ ωπ )LS(s, π, Sym5

⊗ ω2
π )2LS

(
s, Sym3(π) ⊗ ω3

π

)2
LS(s, π ⊗ ω4

π )

is invertible ats = 1 by Propositions 4.2 and 4.5. So it is enough to prove that
LS(s, 6, r1) has at most a simple pole or simple zero ats = 1.

By [26], the product
∏5

i =1 LS(1 + is, 6, r i ) does not have a zero ats = 0.
But none of theL-functionsLS(s, 6, r i ), i = 3, 4, 5, has a pole ats = 1. In fact,
they are all entire and have no zeros for Res ≥ 1. (See [7] for the caser4 and
ω1ω

2
2 = 1. The general case can be seen to be the same by observing that the twisted

exterior squareL-function appears as the normalizing factor of a certain Eisenstein
series if we consider Spin2n (cf. [11]). Alternatively, by direct calculation, we have
LS(s, 6, r4) = LS(s, π, Sym6

⊗ ω15
π )LS(s, Sym2(π) ⊗ ω17

π ). The necessary prop-
erties ofLS(s, π, Sym6

⊗ ω15
π ), and in particular its invertibility ats = 1, are now

obtained by consideringLS(s, Sym2(π)× (Sym4(π)⊗ω15
π )) in the proof of Proposi-

tion 4.4.) The secondL-function,LS(s, 6, r2), appears as the firstL-function in the
caseD8 − 3. Hence it has at most a simple pole ats = 1. Alternatively, by direct
calculation, we see that, since∧2(A3(π)) = A4(π) ⊕ ωπ ,

LS
(
s,π1 ⊗ (π̃2 ⊗ ω2), ∧

2ρ4 ⊗ ρ5
)

= LS

(
s, Sym4(π) ×

(
Sym4(π) ⊗ ω5

π

))
LS

(
s, Sym4(π) ⊗ ω7

π

)
.
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HenceLS(s, π1 ⊗ (π̃2 ⊗ ω2), ∧
2ρ4 ⊗ ρ5) has at most a simple pole ats = 1 and is

invertible for Res > 1. ThereforeLS(s, 6, r1) has at most a simple zero ats = 1.
By [27], the product

∏5
i =1 LS(is, 6, r i ) has at most a simple pole ats = 1.

However,
∏5

i =2 LS(is, 6, r i ) has no zeros ats = 1. ThereforeLS(s, 6, r1) has at
most a simple pole ats = 1.

Next, suppose Sym4(π) is not cuspidal. Then Sym4(π) = σ1 � σ2, whereσ1 and
σ2 are cuspidal representations of GL2(A) and GL3(A), respectively. In this case, by
standard calculations,

LS(s,π1 ⊗ π2, ρ4 ⊗ ∧
2ρ5)

= LS(s, π1 × σ1 × σ2)LS(s, π1 ⊗ ωσ1)LS
(
s, π1 × (σ̃2 ⊗ ωσ2)

)
.

HereLS(s, π1 ⊗ ωσ1)LS(s, π1 × (σ̃2 ⊗ ωσ2)) is invertible for Res ≥ 1. By [13],

LS(s, π1 × σ1 × σ2) = LS
(
s, π1 × (σ1 � σ2)

)
,

whereσ1 � σ2 is the functorial product that is an automorphic representation of
GL6(A). Sinceσ1 is monomial (see Theorem 3.3.7), by the main theorem of [13],
σ1 � σ2 is either cuspidal or unitarily induced from two cuspidal representations of
GL3(A). HenceLS(s, π1 ×σ1 ×σ2) is invertible for Res ≥ 1, and therefore the same
conclusion holds forLS(s, π, Sym9).

PROPOSITION4.8
Let π be a cuspidal representation ofGL2(A) such thatSym3(π) is cuspidal. Let
diag(αv, βv) be the Satake parameter for an unramified local component. Then
|αv|, |βv| < q1/9

v . If Sym4(π) is not cuspidal, then the full Ramanujan conjecture
is valid.

Proof
If Sym4(π) is cuspidal, use Proposition 4.7 and [27, Lemma 5.8]. If Sym4(π) is not
cuspidal, then by Proposition 3.3.8,π is of Galois type for which|αv| = |βv| = 1.

The following result coincides with Langlands’s calculations in [18].

PROPOSITION4.9
Let π be a nonmonomial cuspidal representation ofGL2(A) with a trivial central
character. Suppose m≤ 9.
(1) SupposeSym3(π) is not cuspidal. Then LS(s, π, Symm) is invertible at s= 1,

except for m= 6, 8; the L-functions LS(s, π, Sym6) and LS(s, π, Sym8) each
have a simple pole at s= 1.
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(2) SupposeSym3(π) is cuspidal, butSym4(π) is not. Then LS(s, π, Symm) is in-
vertible at s= 1 for m = 1, . . . , 7 and m= 9; the L-function LS(s, π, Sym8)

has a simple pole at s= 1.

Proof
(1) By Theorem 2.2.2 and Section 3.2,

Sym3(π) = (π ⊗ µ) � (π ⊗ µ2), Sym4(π) = Sym2(π) � µ � µ2,

whereµ is a nontrivial gr̈ossencharacter such that Ad(π) ' Ad(π)⊗µ. We explicitly
calculateLS(s, π, Symm). Let 5 = Sym2(π). Then

LS(s, π, Sym3) = LS(s, π ⊗ µ)LS(s, π ⊗ µ2),

LS(s, π, Sym4) = LS(s, 5)LS(s, µ)LS(s, µ
2).

They are both invertible for Res ≥ 1. From the equality in Proposition 4.2, we have
LS(s, π, Sym5) = LS(s, π)LS(s, π ⊗ µ)LS(s, π ⊗ µ2), which is clearly invertible
for Res ≥ 1.

Using the equality in Proposition 4.3, we haveLS(s, π, Sym6) = LS(s, 5)2

·LS(s, 1). SinceL(s, 5) is invertible ats = 1, LS(s, π, Sym6) has a simple pole at
s = 1.

From the equality in Proposition 4.5, we have

LS(s, π, Sym7) = LS(s, π)2LS(s, π ⊗ µ)LS(s, π ⊗ µ2).

Hence it is invertible for Res ≥ 1.
For LS(s, π, Sym8), consider the equality in Proposition 4.4 withωπ = 1;

we haveLS(s, 5 × 5) = LS(s, π, Sym6)LS(s, µ)LS(s, µ2). HenceLS(s, 5 ×

5) = LS(s, 5)2LS(s, 1)LS(s, µ)LS(s, µ2). Then from the equality in Proposi-
tion 4.6, LS(s, π, Sym8) = LS(s, 5)2LS(s, µ)LS(s, µ2)LS(s, 1), and therefore
LS(s, π, Sym8) has a simple pole ats = 1.

For LS(s, π, Sym9), consider the equality in Proposition 4.7 withωπ = 1; by
standard calculations, we see that

LS(s, π, Sym9) = LS(s, π ⊗ η)2LS(s, π ⊗ η2)2LS(s, π).

We therefore conclude thatLS(s, π, Sym9) is invertible for Res ≥ 1.
(2) In this case, Sym4(π) = σ1 � σ2, whereσ1 and σ2 are cuspidal repre-

sentations of GL2(A) and GL3(A), respectively. Ifωπ = 1, thenσ1 and σ2 are
self-contragredient. We only have to discuss the casem = 8. Consider the equal-
ity in Proposition 4.6 withωπ = 1 in which the left-hand side has a double pole at
s = 1. ButLS(s, π, Sym6)LS(s, π, Sym4)LS(s, π, Sym2) is invertible ats = 1. Thus
LS(s, π, Sym8) has a simple pole ats = 1.
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Remark.The above proposition is no longer true if the central character is not trivial
(see Proposition 3.2.1, Corollaries to Theorem 3.3.7 and Proposition 4.4).

We now give an application of these properties of symmetric powerL-functions to
the Sato-Tate conjecture (see [25], [30]). This we do by following Serre’s method
(see [30, Appendix]). In what follows, letπ =

⊗
v πv be a cuspidal representation of

GL2(A) with a trivial central character such that Sym4(π) is cuspidal. We also assume
thatπ satisfies the Ramanujan-Petersson conjecture. Recall that we letav = αv +βv,
whereπv is an unramified local component with the Satake parameter diag(αv, βv).

We use exactly the same notation as in [30, Appendix]. First let us calculate
Tn(x), the polynomial that gives the trace of thenth symmetric power of an element
of SL2(C) whose trace isx:

T0 = 1, T1 = x, T2 = x2
− 1, T3 = x3

− 2x,

T4 = x4
− 3x2

+ 1, T5 = x5
− 4x3

+ 3x, T6 = x6
− 5x4

+ 6x2
− 1,

T7 = x7
− 6x5

+ 10x3
− 4x, T8 = x8

− 7x6
+ 15x4

− 10x2
+ 1,

T9 = x9
− 8x7

+ 21x5
− 20x3

+ 5x.

Next recall the quantity

I (Tn) = lim
N→∞

∑
qv≤N Tn(av)

π(N)
= kn,

where thenth symmetric powerL-function has an order−kn at s = 1 andπ(N)

is the number of places such thatqv ≤ N. HenceI (T0) = 1 and I (Tn) = 0 for
n = 1, . . . , 8 by Propositions 4.2–4.6. LetI (T9) = k. By Proposition 4.7, we know
thatk ∈ {−1, 0, 1}.

We now calculateI (xn):

I (x) = 0, I (x2) = 1, I (x3) = 0, I (x4) = 2,

I (x5) = 0, I (x6) = 5, I (x7) = 0, I (x8) = 14, I (x9) = k.

With notation as in [30, Appendix], d = 9 andm = 4. Using this, we can
calculate the orthogonal polynomials,P0, P1, . . . , P4 to get

P0 = 1, P1 = T1 = x, P2 = T2 = x2
− 1, P3 = T3 = x3

− 2x,

P4 = T4 = x4
− 3x2

+ 1, P5 = T5 − k(x4
− 3x2

+ 1).

There are three possibilities:
(1) k = 0: P5 = T5 = x5

− 4x3
+ 3x; the roots are−

√
3, −1, 0, 1,

√
3;

(2) k = 1: P5 = T5 − T4 = x5
− x4

− 4x3
+ 3x2

+ 3x − 1; the roots are
−2 cos(2kπ/11), k = 1, 2, 3, 4, 5;
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(3) k = −1: P5 = T5 + T4 = x5
+ x4

− 4x3
− 3x2

+ 3x + 1; the roots are
2 cos(2kπ/11), k = 1, 2, 3, 4, 5. Note that 2 cos(2π/11) ∼= 1.68. . . .

THEOREM 4.10
For everyε > 0, there are sets T+ and T− of positive lower (Dirichlet) density such
that av > 1.68. . . − ε for all v ∈ T+ and av < −1.68. . . + ε for all v ∈ T−.

Remark. In [30, Appendix] and [23], where the third, fourth, and fifth symmetric
powerL-functions were used, the result isav >

√
2 − ε.

In the next proposition, we do not assume the Ramanujan-Petersson conjecture forπ .

PROPOSITION4.11
Let π be a cuspidal representation ofGL2(A) with a trivial central character. Then
for everyε > 0, there exists a set T of positive lower (Dirichlet) density such that
|av| > 1.68. . . − ε for all v ∈ T .

Remark. Let σ be a two-dimensional continuous representation ofWF , the Weil
group ofF/F . Assume that there exists an automorphic cuspidal representationπ(σ)

of GL2(A) preserving root numbers andL-functions for pairs (cf. [16], [13]). This is
possible except perhaps whenσ is icosahedral of special kind (cf. [13, §10]). Whenσ
is of icosahedral type andπ(σ) exists,L(s, Sym4 σ) is a five-dimensional irreducible,
and therefore entire, ArtinL-function. But it is not primitive since Sym4 σ is mono-
mial (cf. [9]). We refer to [9] for an interesting application of this to automorphic
induction.
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