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Holomorphy of the 9th Symmetric Power

L-Functions for Re(s) > 1

Henry H. Kim and Freydoon Shahidi

We prove the holomorphy of the 9th symmetric power L-functions for arbitrary cusp

forms on GL(2) over a number field for Re(s) > 1 which was not available earlier in the

case of Maass forms. This complements our earlier results for invertibility and in fact

absolute convergence of the twisted symmetric power L-functions of these forms up to

degree 8 over the same interval.

Let F be a number field and denote by A its ring of adeles. Let π = ⊗vπv be a cuspi-

dal automorphic representation of GL2(A). We normalize π so that ωπ | R
∗
+ ≡ 1, where ωπ

is the central character of π and A
∗ = A

∗
1 × R

∗
+. One of the consequences of the existence

of Sym3(π) and Sym4(π) as automorphic representations of GL4(A) and GL5(A), respec-

tively, recently proved in [2, 7], is a proof of certain analytic properties of L(s, π, Symm ρ2)

for m ≤ 9 (cf. [6, 8]). While we succeeded in proving that when m ≤ 8, each of these sym-

metric power L-functions are invertible and even absolutely convergent for Re(s) > 1 (cf.

[6, 13]), no such results were obtained for L(s, π, Sym9 ρ2). In fact, all that we knew (even

though it is not stated explicitly in [6]) was that LS(s, π, Sym9 ρ2) is holomorphic and non-

vanishing for Re(s) ≥ 1, except possibly for finitely many poles and zeros on the real axis

1 ≤ s ≤ 2.

On the other hand, Gelbart and Lapid [1] have recently established zero free re-

gions for each of the L-functions obtained from Langlands-Shahidi method to the left
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of the line Re(s) = 1. This, in particular, shows the existence of such regions for

LS(s, π, Sym9 ρ2). One then expects this L-function to be nonvanishing and holomorphic

for Re(s) ≥ 1, except for a possible pole at s = 1. While we still cannot prove the

nonvanishing for 1 ≤ s ≤ 2, in this paper we prove the holomorphy of L(s, π, Sym9 ρ2)

for 1 < s ≤ 2.

The reader must note that this result is much stronger than the general results

obtained from the theory of Eisenstein series (cf. [10–12]), where one cannot rule out the

possibility of a finite number of poles on the real axis. On the other hand, our method

fails when it comes to nonvanishing for Re(s) > 1. In fact, using our method, a nonvan-

ishing result for Re(s) > 1 requires ruling out the poles for the corresponding Eisenstein

series for Re(s) > 0 (cf. [10, 11]) which presently is not possible even by means of uni-

tary duals (cf. [5]). One can of course use the fact that the Eisenstein series in this case

is holomorphic for Re(s) > 1 as we establish here, but this only proves the nonvanishing

for Re(s) > 2 which can be concluded from the absolute convergence of the L-function

for Re(s) > 2 which was proved in the full generality of our method in [11, 12].

The proof relies upon a criterion proved in [8, Proposition 4.1] by the authors of

this paper. We refer to Lemma 2 here for a reference to that.

We should point out that the fact that one can find such regions to the left of

Re(s) = 1 without the knowledge of similar results to the right of this line as in [1], must

be of no surprise. In fact, this phenomenon was already noticed in [10], where the non-

vanishing for a product of these L-functions at s = 1 was proved while similar results to

the right of Re(s) = 1 are still not available in general. They are both consequences of the

main characteristic of Eisenstein series in determining the continuous spectrum.

This paper was written to answer the question posed by Erez Lapid that, whether

in view of the results in [1] discussed earlier, one can show the holomorphy of L(s, π,

Sym9 ρ2) for Re(s) > 1. We like to thank him for that.

We will now state and prove our theorem. In it S denotes a set of places of F in-

cluding the archimedean ones such that πv is spherical for every v �∈ S.

Each πv with v �∈ S is parametrized by a diagonal element diag(αv, βv) ∈ GL2(C).

For each positive integer m, let

LS
(
s, π, Symm ρ2

)
=

∏

v�∈S

m∏

j=0

(
1 − αj

vβm−j
v q−s

v

)−1
. (1)

If m ≤ 9, we can define a local factor L(s, πv, Symm ρ2) for v ∈ S inductively (cf. [12]). For

m ≤ 8, we use the Rankin-Selberg L-functions (see [6]). For example, we define
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L(s, πv, Sym5 ρ2) using the relation

L
(
s, Sym2

(
πv

) × Sym3
(
πv

))

= L
(
s, πv, Sym5 ρ2

)
L
(
s, Sym3

(
πv

) ⊗ ωπv

)
L
(
s, πv ⊗ ω2

πv

)
.

(2)

Similarly, L(s, πv, Sym8 ρ2) comes from L(s, Sym4(πv) × Sym4(πv)). For m = 9, we use

the relation (6) below. Hence if m ≤ 9, we can define the completed L-functions L(s, π,

Symm ρ2). We refer to [6, 8] for any unexplained notation. If Sym4(π) is not cuspidal, π is

of Galois type, and we know that Symm(π) is an automorphic representation of GLm+1(A)

for all m (see [3]). Hence L(s, π, Symm ρ2) is holomorphic for all s ∈ C, except possibly at

s = 1. It is also nonvanishing for Re(s) ≥ 1. So we assume that Sym4(π) is cuspidal.

Theorem 1. (a) Let π be a cuspidal representation of GL2(A) such that Sym4(π) is cuspi-

dal. Then the 9th symmetric power L-function L(s, π, Sym9 ρ2) is holomorphic for Re(s) ≥
1, except possibly for a simple pole at s = 1. It is nonvanishing for Re(s) ≥ 1, except

possibly for finitely many simple zeros on the real axis 1 ≤ s ≤ 2.

(b) Both statements are valid for LS(s, π, Sym9 ρ2). �

Proof. Let Sym3(π) and Sym4(π) be the symmetric cube and fourth of π which are auto-

morphic representations of GL4(A) and GL5(A), respectively. Let A3(π) = Sym3(π)⊗ω−1
π ,

where ωπ is the central character of π. Let us recall how we obtained LS(s, π, Sym9 ρ2) in

[6].

Consider the case E8 − 2 of [11] (cf. [4]). Let M be a Levi subgroup of P, the max-

imal parabolic subgroup obtained by deleting α5, and denote by A its center which is

connected since G is adjoint. Since G = E8 is also simply connected, the derived group

MD of M is simply connected as well, and hence MD = SL4 × SL5. Thus

M =
(

GL1 ×SL4 × SL5

)
/
(
A ∩ MD

)
. (3)

�

As in [2, 4, 7] there is a natural map φ : M → GL4 ×GL5. Given i = 1, 2, let πi

be cuspidal representations of GL4(A) and GL5(A) with central characters ωi, i = 1, 2,

respectively. Let Σ be a cuspidal representation of M(A), induced by φ and π1, π2. Then

the central character of Σ is ωΣ = ω5
1ω8

2. We then get the L-function LS(s, π1 ⊗ π2, ρ4 ⊗
∧2ρ5) as our first L-function for the triple (G,M, Σ) (cf. [11, 12]). In fact, there are five
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L-functions in the constant term of the corresponding Eisenstein series; namely

LS
(
s, Σ, r1

)
= LS

(
s, π1 ⊗ π2, ρ4 ⊗ ∧2ρ5

)
;

LS
(
s, Σ, r2

)
= LS

(
s, π1 ⊗ (

π̃2 ⊗ ω2

)
,∧2ρ4 ⊗ ρ5

)
;

LS
(
s, Σ, r3

)
= LS

(
s, π̃1 × (

π2 ⊗ ω1ω2

))
;

LS
(
s, Σ, r4

)
= LS

(
s, π̃2,∧2ρ5 ⊗ ω1ω2

2

)
;

LS
(
s, Σ, r5

)
= LS

(
s, π1 ⊗ ω1ω2

2

)
.

(4)

More precisely, let M(s, Σ) be the main part of the constant term for the Eisenstein series

attached to (G,M, Σ). Then

MS(s, Σ) =

5∏

i=1

LS
(
is, Σ, r̃i

)

LS
(
1 + is, Σ, r̃i

) ⊗v∈S A
(
s, Σv

)
, (5)

where MS(s, Σ) is the restriction of M(s, Σ) to functions in the induced space I(s, Σ) of

the form f = fS ⊗ ⊗v�∈Sf0
v, where fS ∈ ⊗v∈SI(s, Σv), while each f0

v is the G(Ov)-invariant

(spherical) function in I(s, Σv) whose value at ev equals to f0
v(ev) = xv, v �∈ S. Here the

vectors {xv ∈ H(Σv) | v �∈ S} are the fixed M(Ov)-invariant vectors which were used to

decompose Σ to Σ = ⊗vΣv. The operators A(s, Σv) are the standard local intertwining

operators originating from I(s, Σv).

We apply the above to π1 = A3(π) and π2 = Sym4(π). By standard calculations,

we have

LS
(
s, π1 ⊗ π2, ρ4 ⊗ ∧2ρ5

)

= LS
(
s, π, Sym9 ρ2

)
LS

(
s, π, Sym7 ρ2 ⊗ ωπ

)
LS

(
s, π, Sym5 ρ2 ⊗ ω2

π

)2

× LS
(
s, Sym3(π) ⊗ ω3

π

)2
LS

(
s, π ⊗ ω4

π

)
.

(6)

Here LS(s, π, Sym7 ρ2 ⊗ ωπ)LS(s, π, Sym5 ρ2 ⊗ ω2
π)2LS(s, Sym3(π) ⊗ ω3

π)2LS(s, π ⊗ ω4
π) is

invertible for Re(s) > 1 by [6, Propositions 4.2 and 4.5]. So it is enough to prove that

LS(s, Σ, r1) is holomorphic for Re(s) > 1. To proceed we need the following.

Lemma 2. Suppose Σv is spherical and tempered. Then for each s with Re(s) > 1, the

induced representation I(s, Σv) is irreducible, and hence it is not unitary. �

Proof. By [8, Proposition 4.1], we only need to prove that
∏5

i=1 L(1 − is, Σv, ri) is holomor-

phic for Re(s) > 1. Here L(s, Σv, ri) =
∏

j(1 − αjq
−s
v )−1, and since Σv is tempered, |αj| = 1

for all j. Our result follows. �
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Ramakrishnan has proved in [9] that π = ⊗vπv has infinitely many tempered

spherical components. In fact, he showed that the lower Dirichlet density of the set of

places, where πv is tempered, is greater than 9/10. (In [6], we improved this to 34/35.)

Choose a πv which is spherical and tempered. Then Σv is spherical and tempered.

Since I(s, Σv) is not unitary for Re(s) > 1, MS(s, π) is holomorphic at least up to

Re(s) > 1. In fact, if MS(s, Σ) has a pole at a point s with Re(s) > 1, its residue will identify

a quotient of I(s, Σ) as a constituent of the space of automorphic forms. This implies that

the corresponding quotient of I(s, Σv) is unitary for Re(s) > 1 which is a contradiction.

It then follows from (5) that

5∏

i=1

LS
(
is, Σ, r̃i

)

LS
(
1 + is, Σ, r̃i

) (7)

is holomorphic for Re(s) > 1 since each local intertwining operator A(s, Σv) is nonvan-

ishing. Since LS(s, Σ, ri) is invertible for Re(s)>2 (cf. [11]), we conclude that LS(s, Σ, r̃1) is

holomorphic for Re(s) > 1.

For v ∈ S, let L(s, Σv, r̃i) be the local L-factors defined in [12], i = 1, . . . , 5. We

showed in [4, Proposition 4.9] that the local L-factors L(s, Σv, r̃i) are holomorphic for

Re(s) ≥ 1. Hence the completed L-function L(s, Σ, r̃1) is holomorphic for Re(s) > 1. This

proves that the completed L-function L(s, π, Sym9 ρ2) is holomorphic for Re(s) > 1.

All other assertions are implicit in the proof of [6, Proposition 4.7]. For the sake

of completeness, we state it here explicitly. Due to the normalization of π, the poles of

the Eisenstein series for Re(s) > 0 are on the real axis. So the poles of
∏5

i=1 LS(is, Σ, r̃i)/

LS(1 + is, Σ, r̃i) for Re(s) > 0 are all real. However, we showed in the proof of [6, Proposi-

tion 4.7] that for each i = 2, 3, 4, 5, LS(s, Σ, r̃i) is invertible for Re(s) ≥ 1. Hence the poles of

LS(s, Σ, r̃1)/LS(1 + s, Σ, r̃1) for Re(s) ≥ 1/2 are all on the real axis. Inductively, this implies

that the poles of LS(s, Σ, r̃1) for Re(s) ≥ 1/2 are on the real axis. Since LS(s, π, Sym7 ρ2 ⊗
ωπ)LS(s, π, Sym5 ρ2 ⊗ ω2

π)2LS(s, Sym3(π) ⊗ ω3
π)2LS(s, π ⊗ ω4

π) is invertible for Re(s) ≥ 1,

(6) implies that the possible poles of LS(s, π, Sym9 ρ2) for Re(s) ≥ 1 are all real. Hence

LS(s, π, Sym9 ρ2) has no poles for Re(s) ≥ 1 except possibly at s = 1. We proved in [8,

Proposition 7.2] that LS(s, π, Sym9 ρ2) has at most a simple pole or a simple zero at s = 1.

The Eisenstein series is holomorphic for Re(s) = 0, and the possible poles for

Re(s) > 0 are on the real axis, and they are simple. Therefore by considering the non-

constant term of the Eisenstein series, we conclude that the same is true for the possi-

ble zeros of
∏5

i=1 LS(1 + is, Σ, r̃i) for Re(s) > 0. Consequently, since for each i = 2, 3, 4, 5,

LS(s, Σ, r̃i) is invertible for Re(s) ≥ 1, the possible zeros of LS(s, Σ, r̃1) for Re(s) ≥ 1 are on
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the real axis, and they are simple. Since LS(s, Σ, r̃1) is absolutely convergent for Re(s) >

2, it is nonvanishing there. Using the fact that LS(s, π, Sym7 ρ2 ⊗ ωπ)LS(s, π, Sym5 ρ2 ⊗
ω2

π)2LS(s, Sym3(π) ⊗ ω3
π)2LS(s, π ⊗ ω4

π) is invertible for Re(s) ≥ 1, from (6), we see that

LS(s, π, Sym9 ρ2) is nonvanishing for Re(s) ≥ 1, except possibly for finitely many simple

zeros on the real axis with 1 ≤ s ≤ 2. This completes the proof of Theorem 1.

Remark 3. We refer to [5] for a generalization of our argument and other results for 1/2 <

Re(s) < 1.

For the sake of completeness, we conclude by recording a result from [13] due to

the authors of this paper, proving the absolute convergence of twisted symmetric power

L-functions for m ≤ 8. We refer to [13] for some of its consequences.

Let χ = ⊗vχv be an idele class character of A
∗ and assume χv is unramified for all

v �∈ S. Let

LS
(
s, π, Symm ρ2 ⊗ χ

)
=

∏

v�∈S

m∏

j=0

(
1 − αj

vβm−j
v χv

(

v

)
q−s

v

)−1
. (8)

Theorem 4 (cf. [13]). The partial L-functions LS(s, π, Symm ρ2 ⊗χ) are all absolutely con-

vergent for Re(s) > 1 for all m ≤ 8 and every idele class character of A
∗, unramified

outside S. �
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