
Compositio Mathematica120: 291–325, 2000.
© 2000Kluwer Academic Publishers. Printed in the Netherlands.

291

Poles of Intertwining Operators via Endoscopy;
the Connection with Prehomogeneous Vector
Spaces With an Appendix, ‘Basic Endoscopic
Data’, by Diana Shelstad

To the Memory of Magdy Assem

FREYDOON SHAHIDI∗
Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A.
e-mail: shahidi@math.purdue.edu

(Received: 25 June 1997; accepted in final form: 10 May 1999)
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Introduction

The purpose of this paper is to set the foundation for a general treatment of the
poles of standard intertwining operators and reducibility in the rank one case for
an arbitrary quasisplit group by means of the theory of endoscopy [2, 7, 20, 21, 24,
37]. This is a problem whose solution has many applications in global and local
theory and is equivalent to determining the nondiscrete tempered spectrum of these
groups as well as certain localL-functions in the important context of endoscopy.
In fact, in this paper, we shall show that in the Abelian unipotent radical case where
there are only a finite number of orbits for adjoint action, the residue is always a
finite sum of twisted orbital integrals and therefore everything is controlled by
endoscopy and when the inducing data is generic, the poles of practically every
standardL-function is determined by it.

What is important is that the presence of endoscopy persists even if the number
of orbits are infinite and here is where some very fascinating examples show up,
among them the symmetric cube of cusp forms onGL2 which we hope our future
∗ Partially supported by NSF Grant No. 9622585.
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work in this direction will shed some light on its existence. On the other hand, the
finite orbit case fits well in the theory of prehomogeneous vector spaces and allows
us to define ourL-functions as values of certain Igusa zeta functions. We hope that
this will lead us to a better understanding of possible connections of our work with
invariant theory.

To be precise, letG be a quasisplit connected reductive group over a non-
Archimedean local fieldF of characteristic zero. LetB = TU be a Borel subgroup
of G with a maximal torusT, and letP= MN , T ⊂ M , N ⊂ U be a parabolic
subgroup with Levi factorM . Let σ be an irreducible unitary supercuspidal rep-
resentation ofM = M (F ) and givenν ∈ a∗C, the complex dual of the real Lie
algebra of the split componentA of (the center) ofM , let I (ν, σ ) be the corre-
sponding induced representation. AssumeP is maximal and let̃w0 be the longest
element in the Weyl group ofA0, the maximal split torus ofT, in G modulo that of
A0 in M . LetA(ν, σ,w0) be the standard intertwining operator fromI (ν, σ ) into
I (w0(ν),w0(σ )), wherew0 is a representative for̃w0. Unlessw0(σ ) ∼= σ which
requiresw0(M ) = M , the operator has no pole atν = 0 andI (σ ) = I (0, σ ) is
irreducible. Supposew0(σ ) ∼= σ . ThenI (σ ) is reducible if and only ifA(ν, σ,w0)

is holomorphic atν = 0 (cf. [13, 15, 32, 33, 38]).
In this paper we make the assumption that the unipotent radical ofN is Abelian

and therefore the action ofM on n, the Lie algebra ofN , has a finite number of
open orbits whose union is dense inn [26]. This assumption covers a good number
of cases which come from the theory of prehomogeneous vector spaces [18, 26,
28, 30, 31, 39]. Let{ni} denote a set of representatives for the corresponding orbits
ofM in N . If N− is the opposite ofN, choosemi ∈ M such thatw−1

0 ni = min′in−i ,
n′i ∈ N , n−i ∈ N−. Let Ã be the center ofM and letw0(Ã)Ã

−1 be the subgroup of
elements of the formw0(a)a

−1, a ∈ Ã. Denote byω the central character ofσ .
Let θ = Ad(w0)|M , a semisimple automorphism ofM . Clearlyθ fixes the pair

(B ∩M ,T) as in [20]. Moreover, changingw0 by an appropriate element inA0, we
may assumeθ also fixes the splitting inU ∩M. Givenf ∈ C∞c (M) andm0 ∈ M,
let 8θ(m0, f ) =

∫
M/Mθ,m0

f (θ(m)m0m
−1)dṁ be theθ-twisted orbital integral of

f atm0. HereMθ,m0 is theθ-twisted centralizer ofm0 in M. Then the main result
of our paper, Theorem 2.5, can be stated as

THEOREM 1. Let G be an arbitrary quasisplit connected reductive algebraic
group overF with a Borel subgroupB = TU. Fix a maximal parabolic subgroup
P= MN , T ⊂ M , N ⊂ U. AssumeN is abelian and thereforeM acts onn by a
finite number of open orbits whose union is dense inn. Supposeσ is supercuspidal
and irreducible, andw0(σ ) ∼= σ . Then the intertwining operatorA(ν, σ,w0) has
a (simple) pole atν = 0 or equivalentlyI (σ ) is irreducible if and only if

∑
i

∫
Ã/w0(Ã)Ã

−1
8θ(zmi, f )ω

−1(z)dz 6= 0
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for somef ∈ C∞c (M) defining a matrix coefficient ofσ by descent. Heremi ’s,
mi ∈ M, correspond to representatives{ni} ofM in N as above.

In most applicationsA1 = Ã0, whereA1 is the connected component of the
subgroup̃A1 of all z ∈ Ã for which θ(z) = z−1. This is equivalent toG being
semisimple. Our Theorem 1 (Theorem 2.5 and Corollary 2.6) then simplifies as
(Corollary 3.3):

THEOREM 2. SupposeA1 = Ã0. ThenA(ν, σ,w0) has no pole atν = 0 unless
w0(σ ) ∼= σ and thusω2 = 1. Supposew0(σ ) ∼= σ andω1 = ω|A1 ≡ 1. Then
A(ν, σ,w0) has a (simple) pole atν = 0 or equivalentlyI (σ ) is irreducible if and
only if

∑
ε∈F ∗/(F ∗)2

∑
i 8θ(εmi, f ) 6= 0 for somef ∈ C∞c (M) defining a matrix

coefficient ofσ by descent. Heref (m) =∑Ã/A1
f (zm)ω−1(z).

Let {1}(F ) be theF -rational points of theθ-conjugacy class of 1 inM (F ). In
the event that⋃

ε

⋃
i

{εmi} = {1}(F ), ε ∈ F ∗/(F ∗)2, and M0
i = M0

1

which happens often and in our examples, Theorem 2 can be easily interpreted in
the context of the theory of endoscopy of Kottwitz, Langlands, and Shelstad [20,
21, 24, 37] as follows. HereM i is theθ-twisted centralizer ofmi.

Let M̂ be the connected component of theL-groupLM of M . The automor-
phism θ can be transferred to an automorphismθ̂ of M̂. Let H be aθ-twisted
endoscopic group ofM for which Ĥ = Cent̂θ (1, M̂)

0 and LH = Ĥ ∝ WF is
L-embedded inLM = M̂ ∝ WF by inclusion, whereWF is the Weil group. This
gives a ‘basic endoscopic data’ in the sense of Shelstad ([37], the appendix to this
paper) and we callH the basic endoscopic group attached to(M , θ).

One of the fundamental assumptions of the theory of endoscopy is the existence
(cf. [20, 24, 34, 37]) of a ‘map’f 7→ f H from C∞c (M) into C∞c (H) such that
8st
θ (γ , f ) = 8st(δ, f H) for every stronglyθ-regular θ-semisimpleγ ∈ M, if

δ ∈ H is the norm ofγ , and8st(δ, f H ) = 0, otherwise (Assumption 4.2 of
Section 4 here, paragraph 5.5 of [20], and [37]).

Now letσ be an irreducible supercuspidal representation ofM such thatw0(σ ) ∼=
σ . Let H be the basic endoscopic group attached to(M , θ). (The subgroupM θ

of elements ofM fixed by θ has the largest dimension among those fixed by
automorphisms in the class ofθ in Aut(M )/Int(M ) which preserve(B ∩M ,T).
Similarly for Ĥ = (M̂θ̂ )0.) Assume

⋃
ε

⋃
i{εmi} = {1}(F ), M0

i = M0
1 for all

i, and that the mapf 7→ f H exists.We shall sayσ comes fromH = H(F ) by
θ-twisted endoscopic transfer, if there exists a functionf ∈ C∞c (M), defining a

matrix coefficient ofσ by descent, for whichf
H
(1) 6= 0, wheref ∈ C∞c (M) is

defined as in Theorem 2.
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The reader who is familiar with the theory of endoscopy realizes that conjec-
turally this is equivalent to the fact that the homomorphism ofWF → LM which
parametrizesσ factors throughLH , theL-group ofH.

Our Theorem 2 can then be reformulated as follows (Theorem 4.5).

THEOREM 3. With assumptions as in Theorem 2, suppose⋃
ε

⋃
i

{εmi} = {1}(F ),M0
i = M0

1

for all i, and that the ‘map’f 7→ f H exists, whereH is the basic endoscopic
group attached to(M, θ). Letσ be an irreducible supercuspidal representation of
M and thatw0(σ ) ∼= σ which impliesω2 = 1. Supposeω1 = ω|A1 ≡ 1. Then
I (σ ) is irreducible if and only ifσ comes fromH = H(F ) byθ-twisted endoscopic
transfer.

Observe how this generalizes the earlier results [9, 34] in the case of Siegel par-
abolic subgroups of classical groups. This was later interpreted in terms ofK-types
in [27]. We refer to [6] and [12] for further possible connections and applications.

Our examples are given in Section 5. Our Proposition 5.1 gives a quick and
simple proof of Olšanskiǐ’s result [28] for GLn and shows that the residue is propor-
tional to the inverse of the formal degree of the inducing representation. Proposi-
tions 5.2 and 5.3 determine the reducibility for representations of SOn(F ) induced
from its GL1(F ) × SOn−2(F ) Levi subgroup. The most exotic of our examples is
the case of parabolic induction fromP= MN of an exceptional group of typeE7

for which the derived groupMD of M is of typeE6. Whenw0(σ ) ∼= σ andω = 1,
I (σ ) is irreducible if and only ifσ comes from a group of typeF4, one of the two
(in fact the larger) twisted endoscopic groups ofE6 (Proposition 5.4).

The case whenN is not Abelian which includes all the cases when the number
of orbits is infinite is harder and covers most rank one cases. The Lie algebran can
no longer be a one step nilpotent Lie algebra [26, 30]. In fact, although still the
action ofM on each step ofn has a finite number of open orbits and is a preho-
mogeneous vector space, the operatorA(ν, σ,w0) is obtained by integration over
all of N which in general will not have a finite number of open orbits under action
of M, if N is a multi-step nilpotent Lie group. In fact, this is precisely the case for
an arbitrary maximal parabolic subgroup of a classical group, a problem which has
been studied in [11, 35] with interesting conclusions. Clearly the automorphism
θ of M still exists and plays an important role if the number of orbits is infinite,
and as it did in the case of classical groups [11, 35], one expects that the theory of
endoscopy will play a crucial role in general.

Finally our short discussion in Section 6 gives a new interpretation, in fact as
an Igusa zeta function [3, 8, 16], for some of ourL-functions (cf. [33]) whenσ is
generic, giving a new context for global study. Almost all the standardL-functions
that our method provides are among these.
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Magdy Assem was one person whose work on and understanding of the theory
of prehomogeneous vector spaces and Igusa zeta functions played a role in making
me interested in the theory of prehomogeneous vector spaces (cf. [3–5]). His pre-
mature and sudden death left an empty space, both as a friend and as a colleague,
and for that I would like to dedicate this paper to his memory.

1. Preliminaries

Let F be a non-Archimedean field of characteristic zero. Denote byO its ring
of integers and letP be the unique maximal ideal ofO. Let q be the number of
elements inO/P and fix a uniformizing element$ for which |$ |F = q−1, where
| |F = | | denotes an absolute value forF normalized in this way.

Let G be a quasisplit connected reductive algebraic group overF . Fix a Borel
subgroupB and writeB = TU, whereU is the unipotent radical ofB andT is a
maximal torus there. LetA0 be the maximal split torus ofT. Let1 be the set of
simple roots ofA0 in the Lie algebra ofU.

Denote byP= MN a standard parabolic subgroup ofG in the sense thatN ⊂ U.
AssumeT ⊂ M . Let θ ⊂ 1 be the subset of1 such thatM = M θ .

As usual, we useW = W(A0) to denote the Weyl group ofA0 in G. Given
w̃ ∈ W , we usew to denote a representative for̃w.

LetX(M )F be the group ofF -rational characters ofM . Denote byA the split
component of the center ofM . ThenA ⊂ A0. Let

a = Hom(X(M )F ,R) = Hom(X(A)F ,R)

be the real Lie algebra ofA. Set

a
∗ = X(M )F ⊗Z R = X(A)F ⊗Z R

anda∗C = a∗ ⊗R C to denote its real and complex duals.
Given an algebraic groupH over F , we will useH = H(F ) to denote its

subgroup ofF -rational points, thus identifyingH = H(F ). We then haveG, B, T ,
U , P ,M, N , A, A0.

Forν ∈ a∗C andσ an irreducible admissible representation ofM, let

I (ν, σ ) = IndMN↑Gσ ⊗ q〈ν,HP ()〉 ⊗ 1,

whereHP is the extension of the homomorphismHM : M → a = Hom(X(M )F ,R)
to P , extended trivially alongN , defined byq〈χ,HM(m)〉 = |χ(m)|F for all χ ∈
X(M )F .

Fix w̃ ∈ W(A0) = W such that̃w(θ) ⊂ 1, whereθ generatesM = M θ . Let
N− = N−θ be unipotent subgroup opposed toN = Nθ . SetNw̃ = U ∩ wN−w−1.

Let V (ν, σ ) be the space ofI (ν, σ ). Forh ∈ V (ν, σ ), denote by

A(ν, σ,w)h(g) =
∫
Nw̃

h(w−1ng)dn, (1.1)



296 FREYDOON SHAHIDI

the standard intertwining operator fromI (ν, σ ) into I (w(ν),w(σ )). The integral
converges absolutely forν in some cone ina∗C and extends meromorphically to all
of a∗C (cf. [32, 38]).

Whenσ is tempered, the cone of convergence of (1.1) equals to what one usu-
ally calls the positive Weyl chamber, denoted by(a∗C)

+. Everyν ∈ (a∗C)+ satisfies
Re〈ν,Hα〉 > 0 for everyα ∈ 1 − θ and conversely, whereHα is the standard
coroot attached toα andν is realized as an element of(a0)

∗
C. Herea0 is the real

Lie algebra ofA0.
In the special case whenσ is also (unitary) supercuspidal, the poles ofA(ν, σ,w)

all lie ona∗ (cf. [38]).
For both local and global reasons it is very important to determine the poles

of A(ν, σ,w) ([13, 19, 33]). It is well known (e.g. Theorem 2.1.1 of [32]) that
A(ν, σ,w) can be written as a product of such operators for which the parabolic
subgroups are maximal or of parabolic rank one. These are what one usually calls,
rank one operators.

Let us concentrate on one important application of our knowledge of these
poles. AssumeP= MN is maximal. If LM denotes theL-group of M , it then
acts by adjoint action, denoted byr, on the Lie algebra ofLn of LN , theL-group
of N. If we use⊕mi=1

Lni to denote the gradation ofLn underLM (cf. [22, 33, 36]),
then eachLni is invariant underLM. Let ri = r|Lni. Assume moreover thatσ is
generic (cf. [32, 33]). Fors ∈ C and eachi, 1 6 i 6 m, let L(s, σ, ri) be the
localL-function attached toσ andri in [33]. They are simply polynomials inq−s
whose constant terms are normalized to be 1 and are the local components for the
corresponding global functional equations satisfied by globally generic cusp forms.

Assumeα is the unique simple root inN and letρ be half the sum of positive
roots inN. Denote bỹα = 〈ρ, α〉−1ρ ∈ a∗. Thensα̃ ∈ a∗C for eachs ∈ C. Finally
let w̃0 be the longest element inW modulo that in the Weyl group ofA0 in M .
SinceP is maximal, this is the only element ofW which is of interest.

Now supposeσ is (unitary) supercuspidal. It then follows from Lemma 7.5 of
[33] thatL(s, σ, ri) ≡ 1 for i > 3. Moreover we can restate the following result
from [33].

THEOREM 1.1. Supposeσ is an irreducible (unitary) generic supercuspidal rep-
resentation ofM. Then

∏2
i=1L(is, σ, r̃i )

−1A(sα̃, σ,w0) is a nonzero and holomor-
phic operator as a function ofs, i.e., poles of

∏2
i=1L(is, σ, r̃i ) are precisely those

ofA(sα̃, σ,w0).

As soon as theL-functionsL(s, σ, r̃i) are determined from Theorem 1.1 for
supercuspidalσ , the machinery ofL-functions developed in [33, 36] determines
them for any irreducible admissibleσ . In particular, this leads to a determination
of the nondiscrete tempered spectrum ofG by means of the theory ofR-groups
(cf. [10, 13, 19]). We refer to [23], [25], and [33] for further applications of these
L-functions.
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The purpose of this paper is to determine the poles ofA(ν, σ,w) in the rank
one case and with a supercuspidal inducing data (not necessarily generic), when
the action ofM on the Lie algebran of N has only a finite number of open orbits
whose is dense inn. The case whenn is a one step nilpotent Lie algebra then falls in
this class as a consequence of the theory of prehomogeneous vector spaces [18, 19,
26, 30, 39]. The results are interpreted in terms of the theory of twisted endoscopy
[20, 21, 24, 37] and may be considered as a bridge between a number of deep and
diverse disciplines such as number theory, harmonic analysis and representation
theory of local group, invariant theory, theory of prehomogeneous vector spaces,
and finally the theory of endoscopy.

The case of the infinite number of orbits which covers most cases is much
harder. In the case of classical groups, we have already encountered the problem
in [11, 35]. We hope to formulate the general case in a future paper. The possible
hints that one may get towards some very important global problems makes the
whole project quite worthwhile.

2. Poles of Operators

From now on assumeP= MN is maximal. Letσ be an irreducible unitary super-
cuspidal representation ofM. Fix s ∈ C. Let w̃0 be the longest element in the
Weyl groupW of A0 in G modulo that of the Weyl group ofA0 in M . Let w0

denote a representative inG for w̃0. In what follows we shall compute the poles
of A(ν, σ,w0) as a function ofν ∈ a∗C. Observe that to compute the operator
A(ν, σ,w0), ν ∈ a∗C, it is enough to takeν ∈ a∗C/z

∗
C, wherez is the real Lie algebra

of the connected center ofG and therefore one would only need to determine the
poles ofA(sα̃, σ,w0) as a function ofs.

The operatorA(ν, σ,w0) has a pole atν = ν0 if and only ifA(ν, σν0, w0) has a
pole atν = 0, whereσν0 = σ ⊗ q〈ν0,HM()〉. It will therefore be enough to determine
when one has a pole atν = 0. There are certain cases that one can dispose of
immediately. The operatorA(ν, σ,w0) has a pole atν = 0 only if w̃0(θ) = θ and
w0(σ ) ∼= σ . Thus from now on we shall assume Ad(w0) : M → M, sending
Ad(w0) : A→ A, and thatw0(σ ) ∼= σ .

It is then clear thatNw̃0 = w0N−w−1
0 = N. By Lemma 4.1 of [34], it is enough

to determine the pole of

∫
N

h(w−1
0 n)dn (2.1)

atν = 0 for anyh in V (ν, σ ) which is supported inPN−, the open cell.
Givenm ∈ M, from now on letw0(m) = w−1

0 mw0, i.e.,w0(m) = Ad(w0)(m).
By the assumption on the support off we only need to integrate over part ofN

for whichw−1
0 n ∈ PN−.
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Given ni ∈ N , where at the momenti is just an index to signify a specific
element ofN , for whichw−1

0 ni ∈ PN−, write

w−1
0 ni = pin−i = min′in−i , (2.2)

wheremi ∈ M, n′i ∈ N , andn−i ∈ N−.
Let M act onN andN− by adjoint action. Let CentM(ni) = Mni be the cen-

tralizer of ni in M, i.e.,Mni = {m ∈ M |Ad(m)ni = ni}. Denote byMn−i =
CentM(n

−
i ) andMn′i = CentM(n′i) centralizers ofn−i andn′i in M, respectively.

They are all stabilizers of the action ofM at these points and, moreover,Mni (F ) =
Mni and so on, whereMni is the centralizer ofni in M . Finally letMt

mi
= CenttM(mi)

be the twisted (by means ofw0) centralizer ofmi in M; simply Mt
mi
= {m ∈

M |w0(m)mim
−1 = mi} Again M t

mi
(F ) = Mt

mi
. We start with the following

lemma.

LEMMA 2.1. (a)The groupsMni , Mn−i , andMn′i are all equal and are all contained
in M t

mi
.

(b) AssumeN is Abelian and therefore the adjoint action ofM on n, the Lie
algebra ofN , has a unique Zariski-denseM -orbit Ad(M )ni (cf. [26, 39]), then
[M t

mi
: Mni ] is finite and independent ofni in its orbit. Similar statements are true

for [Mt
mi

:Mni ].
Proof. The decomposition (2.2) determinespi , mi, n′i, andn−i uniquely as a

function ofni. ThusMni ⊂ Mn−i ,Mni ⊂ Mn′i , and finallyMni ⊂ M t
mi

, using

w−1
0 mnim

−1 = (w0(m)pim
−1)(mn−i m

−1),

m ∈ M with mnim−1 ∈ N .
Now write n−i = p−1

i w
−1
0 ni and apply the same uniqueness argument to get

Mn−i ⊂ Mni and so on, completing the proof of part (a).
For part (b) assume[M t

mi
: Mni ] is not finite. ChooseXi ∈ n such thatni =

exp(Xi). The orbit Ad(M )Xi is Zariski-open dense inn and may be realized as
M/Mni . The quotientM t

mi
/Mni then imbeds inn through Ad(M t

mi
)Xi. SinceM t

mi

is an algebraic group, dimension ofM t
mi
/Mni must be positive. Choose a linetX

in n with an infinite intersection withM t
mi
/Mni = Ad(M t

mi
)Xi. We may and will

assumeX ∈ M t
mi
/Mni . Takea ∈ A such thatα(a) = t and tX ∈ M t

mi
/Mni ,

whereα is the simple root ofA in n. Clearlym(exp(tX)) = mi = m(expX).
But exp(tX) = Ad(a)(expX) implies thatmi = Adt (a)mi = w0(a)mia

−1. We
may assumew0(a) = a−1. It is therefore enough thata−2 6= 1. But this is clearly
possible by the infinitely many choices fort that we have.

Although Ad(wo) is an inner automorphism forG, its restriction toM may
be outer. Letθ = Ad(w0)|M . Clearly θ is a semisimple automorphism ofM . It
preserves the pair(B ∩M ,T), as required in [20], sinceT = T(F ) andA0 share
same Weyl groups. Moreover changingw0 by an appropriate element inA0, we
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may assume thatθ also fixes the splitting inU ∩M . Observe that any change inw0

by right translation by an element inT will changemi in decomposition (2.2). But,
up to conjugation by an element ofT , Mni andM t

mi
= M i will remain unchanged.

We record this information as:

LEMMA 2.2. The automorphismθ of M preserves the pair(B ∩M ,T) and can
be arranged so that it also fixes the splitting inU ∩M . Givenni ∈ Ni, the T -
conjugacy class of the groupM i, theθ-twisted centralizer ofmi in M , is indepen-
dent of the choice ofw0 for w̃0 in his class moduloT .

We shall now set out to compute the residue for the pole of (2.1) atν = 0. When
σ is generic andν = sα̃, this determines the poles ofL(2s, σ, r2)L(s, σ, r1). We
should point out that knowing the poles of a localL-function is equivalent to its
full knowledge.

We may assumeh is supported inPN−. The main assumption of this paper is
that N is Abelian. ThenM acts onn, the Lie algebra ofN, with a Zariski-dense
orbit O0 (cf. [26, 39]). ThusO0(F ) = ⋃

i{Oi}, Oi ⊂ n and the complement of⋃
i exp(Oi) in N is of measure zero.
Givenn ∈ N with w−1

0 n ∈ PN−, writew−1
0 n = mn′n−, m ∈ M, n′ ∈ N , and

n− ∈ N− as in (2.2). Define

d∗n = q〈ρ,HM (m)〉 dn, (2.3)

where as beforeρ = ρP is half the sum of roots inN . We need:

LEMMA 2.3. Given i, let ni ∈ exp(Oi) denote an arbitrary element. Then the
measured∗ni is an invariant measure onM/Mni and thus induces one on its
quotientM/Mi (Lemma 2.1.b).

Proof. Fix m ∈ M. We need to show d∗(m−1nim) = d∗ni. We know that

d(m−1nim) = q〈−2ρ,HM (m)〉dni. (2.3.1)

But

w−1
0 m−1nim = w0(m

−1)mim ·m−1n′im ·m−1n−i m

gives the decomposition (2.2) form−1nim. Thus

d∗(m−1nim) = q〈ρ,HM (w0(m
−1)mim)〉d(m−1nim). (2.3.2)

Using the definition ofHM we have:

q〈ρ,HM (w0(m
−1)mim)〉 = q〈ρ,HM (w0(m

−1))〉+〈ρ,HM(m)〉 · q〈ρ,HM (mi)〉
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and

q〈2ρ,HM(w0(m
−1))〉 = ∣∣ρ2(w0(m

−1))
∣∣ = |ρ2(m)| = q〈2ρ,HM (m)〉,

whereρ2 denotes 2ρ as a rational character ofM . The lemma is now a consequence
of (2.3.1) applied to (2.3.2).

Finally givenν ∈ a∗C, let σν = σ ⊗ q〈ν,HM( )〉. Then (2.1) can be written as

∑
i

∫
exp(Oi)

q〈ρ,HM (mi)〉σν(mi)h(n−i )dni

=
∑
i

∫
exp(Oi)

q〈ν,HM(mi)〉σ (mi)h(n−i )q
〈ρ,HM (mi)〉 dni (2.4)

=
∑
i

∫
exp(Oi)

q〈ν,HM(mi)〉σ (mi)h(n−i )d∗ni,

wherew−1
0 ni = min′in−i according to decomposition (2.2).

Using Lemma 2.3, each d∗ni induces a measure dṁ onM/Mi so that (2.4) can
be written as∑

i

∫
M/Mi

∑
m0∈Mi/Mni

q〈ν,HM(w0(m)mim
−1)〉×

×σ (w0(m)mim
−1)h(mm0n

−
i m
−1
0 m−1)dṁ, (2.5)

where we have now fixed a representativeni for each orbitOi. The representatives
mi andn−i are defined through decomposition (2.2).

For the purpose of computing the residue we may assume that there exists a
Schwartz function8 onn−, the Lie algebra ofN−, such thath(expX) = 8(X)h(e),
whereX ∈ n−. Let n−i = expX−i , X

−
i ∈ n−. Then

mm0n
−
i m
−1
0 m

−1 = exp(Ad(m−1)Ad(m−1
0 )X

−
i ),

and therefore (2.5) can be written as∑
i

∫
M/Mi

∑
m0

8(Ad(m−1)Ad(m−1
0 )X−i )q

〈ν,HM(w0(m)mim
−1)〉×

×σ (w0(m)mim
−1)h(e)dṁ. (2.6)

To study the poles, it is enough to evaluate an arbitrary elementṽ in the contra-
gredient space ofσ at (2.6). Givenm ∈ M, let ψ(m) = 〈σ (m)h(e), ṽ〉 be the
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corresponding matrix coefficient. We have therefore arrived at∑
i

∫
M/Mi

∑
m0

q〈ν,HM(w0(m)mim
−1)〉×

×8(Ad(m−1)Ad(m−1
0 )X−i )ψ(w0(m)mim

−1)dṁ. (2.7)

What we have done up to now has required no use of the fact thatσ is super-
cuspidal which we shall invoke next. But it is good to record this as:

PROPOSITION 2.4.Let σ be an irreducible admissible representation ofM and
assume thatM acts onn by a finite union of open orbits{Oi} which is dense inn.
Then the poles ofA(ν, σ,wo) are the same as those of∑

i

∫
M/Mi

∑
m0∈Mi/Mni

q〈ν,HM(w0(m)mim
−1)〉8(Ad(m−1)Ad(m−1

0 )X−i )×

×ψ(w0(m)mim
−1)dṁ (2.4.1)

as8 ranges among Schwartz functions onn− andψ among matrix coefficients for
σ , with absolute convergence for(2.4.1) for Re〈ν,Hα〉 sufficiently large.

Now assumeσ is supercuspidal. Let̃A be the center ofM . ThenÃ0 hasA as its
split component. Given a matrix coefficientψ , there exists a functionf ∈ C∞c (M)
such thatψ(m) = ∫

Ã
f (am)ω−1(a)da, whereω is the central character ofσ . As a

result (2.7), or equally (2.4.1), can now be written as∑
i

∫
Ã

∫
M/Mi

∑
m0

ω−1(a)q〈ν,HM(w0(m)mim
−1)〉8(Ad(m−1)Ad(m−1

0 )X−i )×

×f (aw0(m)mim
−1)dṁ da. (2.8)

Our manipulations being formal up to now will soon be justified.
Under our assumption thatw0(σ ) ∼= σ , we haveω(w0(a)a

−1) = 1 for all
a ∈ Ã and therefore, up to the constant[Ã′:Z(G)]−1 in which Ã′ is the subgroup
of elements ofÃ fixed byw0, we can further invoke (2.8) as∑

i

∫
z∈Ã/w0(Ã)Ã

−1

∫
a∈Ã/Z(G)

∫
M/Mi

∑
m0

8(Ad(m−1)Ad(m−1
0 )X−i )×

×q〈ν,HM(w0(m)mim
−1)〉 · f (zw0(am)mi(am)

−1)ω−1(z)dṁda dz. (2.9)

HereZ(G) is the center ofG. Changingm to a−1m, (2.9) can now be written as∑
i

∫
M/Mi

∫
z∈Ã/w0(Ã)Ã

−1
θν(m)f (zw0(m)mim

−1)×

×q〈ν,HM(w0(m)mim
−1)〉ω−1(z)dz dṁ, (2.10)
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where

θν(m) =
∫
Ã/Z(G)

∑
m0

8(Ad(am−1)Ad(m−1
0 )X−i )q

〈ν,HM(w0(a
−1)a)〉 da. (2.11)

It follows from the compactness of support off thatzmust belong to a compact
subset ofÃ/w0(Ã)Ã

−1. In fact, one may identifỹA/w0(Ã)Ã
−1 with a disjoint

finite union
⋃
j ajZ(G)

0, whereZ(G)0 denotes theF–points of the connected
component of the center ofG. Changingf with Raj f for eachj , we may assume
that z ∈ Z(G)0. If z` ∈ {w0(m)mim

−1|m ∈ M} ∩ Z(G)0, ` = 1,2, thenz1 and
z2 areM − θ-conjugate, and consequentlyz2 = 1, z = z1z

−1
2 , usingw0(z) = z.

It therefore follows that the above intersection is finite and thusz must belong to a
compact subset ofZ(G)0 and consequentlỹA/w0(Ã)Ã

−1.
On the other hand for eachi, m must belong to a bounded set (compact ifmi

is semisimple) inM/Mi (cf. [1, 29]). Consequently Ad(a)X−i must belong to a
compact set inn−. Using the compactness of̃A/AZ(G), we may assumea is in
A/A ∩ Z(G). Since orbits ofni are open,X−i ’s must all be nonzero and therefore
|α(a)| or equally|ρ(a)| must be bounded above.

To compute the residue, it would be enough to assume|ρ(a)| is small enough
to dispose of8 in (2.11). Using the computation in the proof of Lemma 2.3
q〈ν,HM(w0(a

−1)a)〉 = q〈2ν,HM(a)〉. The pole therefore comes from∫
a∈A/Z(G)∩A
|ρ(a)|<κ

q〈2ν,HM(a)〉 da, (2.12)

whereκ is some real bound.
Supposeν = sρ, s ∈ C. Then (2.12) can be written as∫

a∈A/Z(G)∩A
|ρ(a)|<κ

|ρ(a)|2s da. (2.13)

The integral (2.13) converges for Re(s) > 0 and can in fact be computed as a
geometric series in|ρ(aα)|2s, whereaα ∈ A, with |α(aα)| = q−2. In particular the
pole is simple.

Looking back at (2.10) one can now easily conclude that the residue atν = 0,
i.e. s = 0, is proportional to

[Mi :Mni ]
∑
i

∫
z∈Ã/w0(Ã)Ã

−1

∫
M/Mi

f (zw0(m)mim
−1)ω−1(z)dṁdz. (2.14)

The constant of proportionality depends only onG and M and in particular is
independent ofσ .

From (2.14), it is clear that the residue is a sum of certain integrals of twisted
orbital integrals and must be formulated in the language of orbital integrals and



POLES OF INTERTWINING OPERATORS VIA ENDOSCOPY 303

endoscopy. Givenf ∈ C∞c (M) andm0 ∈ M, define theθ-twisted orbital integral
for f atm0 by

8θ(m0, f ) =
∫

M/Mθ,m0

f (θ(m)m0m
−1)dṁ, (2.15)

whereMθ,m0 = Mθ,m0(F ) is the θ-twisted centralizer ofm0 in M. We refer to
Lemma 2.2 for the properties ofθ . We have now arrived at

THEOREM 2.5. Assumeσ is supercuspidal andw0(σ ) ∼= σ . The intertwining
operatorA(ν, σ,w0) has a (simple) pole atν = 0 if and only if∑

i

∫
Ã/w0(Ã)Ã

−1

8θ(zmi, f )ω
−1(z) dz 6= 0, (2.5.1)

for somef ∈ C∞c (M) defining a matrix coefficient ofσ by descent. Heremi ’s
correspond to representatives{ni} for the action ofM on N throughw−1

0 ni =
min

′
in
−
i .

COROLLARY 2.6. Assumeσ is supercuspidal andw0(σ ) ∼= σ . Let I (σ ) =
I (0, σ ). ThenI (σ ) is irreducible if and only if (2.5.1) is nonzero for some choice
of f ∈ C∞c (M) defining a matrix coefficient ofσ by descent.

3. The Semisimple Case

LetO be theM–orbitM/M i of mi, i.e. theM − θ-conjugacy class ofmi . It will be
the same for alli and

⋃
i{mi} ⊂ O(F), where{mi} denotes theM − θ-conjugacy

class ofmi . Next, using̃A = Ã0Z(G), observe thatw0(Ã)Ã−1 ⊂ A1 and in fact
w0(Ã)Ã−1 = A1. HereA1 is the connected component of the subgroupÃ1 of all
z ∈ Ã for which θ(z) = z−1. It then follows from the finiteness ofH 1(Z(G)) that
[A1 : w0(Ã)Ã

−1] <∞.

(3.1) Suppose for eachz ∈ A1 and eachi, {zmi} = {mj } for somej . This is
particularly the case if

⋃
i{mi} = O(F). In fact, if

⋃
i{mi} = O(F), then given

z ∈ A1, choosez0 ∈ A1 such thatz = z2
0. Thenzmi = θ(z−1

0 )mi(z
−1
0 )−1 and

therefore
⋃
i{mi} = O(F) implies{zmi} = {mj } for somej . Moreover, if{zmi} =

{zmj}, then {mi} = {mj }, and therefore under (3.1) the map{zmi} → {mj} is
one–one and onto. The residue (2.5.1) of Theorem 2.5 can now be written as∑

ε∈A1/w0(Ã)Ã
−1

ω1(ε)
∑
i

∫
Ã/A1

8θ(zmi, f ) ω
−1(z)dz, (3.2)

whereω1 = ω|A1. Theorem 2.5 can now be stated as follows:
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PROPOSITION 3.1.Let A1 be the connected component ofÃ1 = {z ∈ Ã|θ(z) =
z−1}. Let ω1 = ω|A1. Assume for eachz ∈ A1 and eachi, {zmi} = {mj } for
somej . This is in particular the case if

⋃
i{mi} = O(F). ThenA(ν, σ,w0) has no

pole atν = 0 unlessw0(σ ) ' σ andω1 ≡ 1. If w0(σ ) ' σ andω1 = 1, then
A(ν, σ,w0) has a (simple) pole atν = 0 if and only if∑

i

∫
Ã/A1

8θ(zmi, f )ω
−1(z)dz 6= 0

for somef ∈ C∞c (M) defining a matrix coefficient ofσ by descent.

In most of the examples we shall encounter,A1 = Ã0 which forcesG to be
semisimple, and conversely. The following corollary will then cover those cases.
The corollary is quite important and will be referred to on several occasions, par-
ticularly in connection with endoscopy.

Observe thatA1/w0(Ã)Ã
−1 ' F ∗/(F ∗)2.

COROLLARY 3.2. AssumẽA0 = A1. ThenA(ν, σ,w0) has no pole atν = 0
unlessw0(σ ) ' σ and thusω2 = 1.

(a) Assumew0(σ ) ' σ andω1 = ω|A1 ≡ 1. Let f ∈ C∞c (M) be defined by
f (m) = ∑

Ã/A1
f (zm)ω−1(z). ThenA(ν, σ,w0) has a (simple) pole atν = 0 if

and only if∑
i

∑
ε∈F ∗/(F ∗)2

8θ(εmi, f ) 6= 0 (3.2.1)

for somef ∈ C∞c (M) defining a matrix coefficient ofσ by descent.
(b) Suppose assumption(3.1)holds andω1 6= 1. ThenA(ν, σ,w0) has no poles

at ν = 0.

COROLLARY 3.3. AssumẽA0 = A1 andw0(σ ) ' σ leading toω2 = 1.
(a) Supposeω1 = ω|A ≡ 1. ThenI (σ ) = I (0, σ ) is irreducible if and only

if (3.2.1) is non–zero for somef ∈ C∞c (M) defining a matrix coefficient ofσ by
descent.

(b) Assume(3.1)holds andω1 6= 1. ThenI (σ ) is reducible.

4. Connection with Endoscopy

Let G be a quasisplit connected reductive group overF . Throughout this section
we shall freely use notation and results from [20] and [37] as well as [21] and
[24]. Let (B,T) be a pair inG, whereB is a Borel subgroup with a maximal torus
T. Let θ be an automorphism ofG fixing (B,T), i.e., θ(B) = B andθ(T) = T.
The groupG being quasisplit, has anF -splitting. More precisely, there exists a
collection {X} of root vectors, one for each simple root ofT in B, such that the
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triple (B,T, {X}) is preserved by0 = Gal(F/F). The automorphisms ofG which
preserve(B,T, {X}) then split the exact sequence

1→ Int(G)→ Aut(G)→ Aut(G,B,T, {X})→ 1.

We shall finally assume thatθ preserves the splitting(B,T, {X}).
Let (Ĝ, ρ, ηG) be aL–group data forG. ThenĜ is a connected reductive group

overC, ρ is anL–action of0 on Ĝ, andηG:9(G)∨ → 9(Ĝ) is a0-bijection
between canonical based root data (cf. [20]). The automorphismθ of G induces bi-
jectionsθ : 9(G)→ 9(G) andθ∨: 9(G)∨ → ψ(G)∨. Let θ̂ be an automorphism
of Ĝ which induces the bijectionηG · θ∨ · η−1

G on 9(Ĝ). Let (B,T , {X}) be a
0-splitting of Ĝ which we assume is preserved byθ̂ . There is no harm in assuming
T = T̂ and we in fact will.

For the purpose of this discussion, we may assumeG is simply connected. Then
Gθ andTθ , i.e., the subgroups ofG andT, whose elements are fixed byθ , are con-
nected. Otherwise we need to take(Gθ )0 and(Tθ )0. If R(G,T) is the set of roots
of T in G, letRres(G,T) = {αres= α|Tθ;α ∈ R(G,T)}. Then by (1.3.4) of [20],
the set ofindivisible roots inRres(G,T) coincides withR(Gθ ,Tθ ). Similarly we
haveRres(Ĝ, T̂ ) which can be identified with{(α∨)res= α∨|T̂ θ̂ ;α∨ ∈ R∨(G,T)}
sinceT̂ θ̂ is connected,̂G being adjoint and̂θ preserving a splitting. HereR∨(G,T)
is the set of coroots ofT in G. Observe that by (1.3.8) of [20]αres 7→ (α∨)res is a
well-defined0-bijection betweenRres(G,T) andRres(Ĝ, T̂ ).

Let s = 1 and letĤ be the identity component of Centθ̂ (1, Ĝ) as in (2.1) of [20].
ThenLH = Ĥ ∝ WF is anL-group,L-embedded by inclusion inLG = Ĝ ∝ WF .
We now refer to [37], where this particular case of twisted endoscopy, as called
appropriately by Shelstad the ‘basic endoscopic data’, is studied in detail. Being
an appendix to our paper, we shall freely refer to its definitions and results. In
particular, we define:

DEFINITION 4.1. The groupH whoseL-group LH = Cent̂θ (1, Ĝ)
o ∝ WF is

L-embedded by inclusion inLG is called the basic endoscopic group attached to
(G, θ).

Next we reformulate the discussion on transfer in [37] as

ASSUMPTION 4.2.Let G and θ be as in Lemma4.1. Let H be the basic en-
doscopic group attached to(G, θ). Givenf ∈ C∞c (G), there exists a function
f H ∈ C∞c (H) such that

8st
θ (γ , f ) = 8st(δ, f H), (4.2.1)

for every stronglyθ-regular θ-semisimpleγ ∈ G(F ) if δ ∈ H is the norm ofγ ,
and8st(δ, f H) = 0 otherwise. Here8st

θ (γ , f ) =
∑

γ ′∼γ 8θ(γ
′, f ), whereγ ′ runs
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over representatives for allθ-conjugacy classes{γ ′} which lie inside the stableθ-
conjugacy class ofγ . Similarly are the stable ordinary orbital integrals8st(δ, f H)

defined.

We refer to paragraph (5.5) and Section 3 of [20] as well as all of [37] for the
definition of norm and the detailed discussion of matching stated above.

We continue with the assumption thatθ preserves theF -splitting (B,T, {X}).
Moreover, we assume for a moment thatG is simply connected. ThenGθ and
Tθ are both connected. Sinceθ preserves{X}, simple roots inR(Bθ ,Tθ ) are ex-
actly the restriction toTθ of simple roots inR(B,T), identifying the Weyl group
�(Gθ ,Tθ ) with �(G,T)θ . ConsequentlyGθ has the largest dimension among
those fixed by automorphisms in the class ofθ in Aut(G)/Int(G) which preserve
the pair(B,T). In conclusionGθ (Ĝθ̂ , respectively) which is theθ-twisted central-
izer of 1 in G, a connected group, has the largest dimension (as a group overF )
for suchθ ’s (θ̂ ’s, respectively) in their class preserving the pair(B,T). One can
in fact remove the assumption thatG is simply connected and conclude the same
statement about the dimension ofGθ .

In particular, in the notation of Corollary 3.2, if it happens that for some (and
thus all) i, M i has the largest possible dimension for the elements in the class of
θ which preserve(B ∩ M ,T), whereθ is assumed to fix anF -splitting, then the
M − θ-conjugacy class ofmi intersects the center ofM . In fact, let ti ∈ T lie
in this conjugacy class (cf. Lemma 3.2.A of [20] sincemi ’s are θ-semisimple).
Theθ-twisted centralizerM t

ti
of ti is isomorphic (overF ) with M i = M t

mi
. Since

M0
i = (M θ )0, we will see thatM t

ti
has the same dimension asM θ . But M t

ti
is the

fixed point set of Int(ti)◦ θ and for it to have the largest dimension which is that of
Mθ , Int (ti)must be trivial. Now, multiplyingw0 by a central element if necessary,
we may assume that theM − θ-conjugacy class ofmi intersectsÃ0. It therefore
follows that

⋃
i{mi} ⊂ {1}(F ), where{1}(F ) is theF -rational points of{1}.

Now assume

⋃
ε

⋃
i

{εmi} = {1}(F ), ε ∈ F ∗/(F ∗)2.

Moreover, assumeM0
i = M0

1 for all i. We shall now reformulate Lemma 9 of
[37] in our notation as follows:

PROPOSITION 4.3.Suppose Assumption4.2 is satisfied for the groupM and the
automorphismθ of M , whereG andθ are as in Corollary3.2. In particular A1 =
Ã0. Assume further that

⋃
ε

⋃
i

{εmi} = {1}(F ) and M0
i = M0

1 for all i.
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Let H be the basic endoscopic group attached to(M , θ). Givenf ∈ C∞c (M),
definef as in Corollary3.2 and letf

H ∈ C∞c (H) be as in Assumption4.2. Then∑
ε∈F ∗/(F ∗)2

∑
i 8θ(εmi, f ) 6= 0, if and only iff

H
(1) 6= 0.

DEFINITION 4.4. SupposeG, M andθ are as in Proposition4.3,⋃
ε

⋃
i

{εmi} = {1}(F ), M0
i = M0

1 for all i,

and that Assumption4.2is valid forM andθ . Letσ be an irreducible supercuspidal
representation ofM such thatw0(σ ) ∼= σ . Assumeω1 = ω|A1 ≡ 1. We shall
sayσ comes fromH = H(F ) by θ-twisted endoscopic transfer, whereH is the
basic endoscopic group attached to(M , θ), if there exists a functionf ∈ C∞c (M),
defining a matrix coefficient ofσ by descent, for whichf

H
(1) 6= 0.

We can now reformulate our result in the language of endoscopy as follows:

THEOREM 4.5. SupposeG, M , andθ are as in Proposition4.3,⋃
ε

⋃
i

{εmi} = {1}(F ), M0
i = M0

1 for all i,

and that Assumption4.2 is valid forM andθ . Letσ be an irreducible supercuspidal
representation ofM and thatw0(σ ) ∼= σ . Thenω2 = 1. Supposeω1 = ω|A1 ≡ 1.
ThenI (σ ) is irreducible if and only ifσ comes fromH = H(F ) by θ-twisted
endoscopic transfer.

5. Examples and Connection with Prehomogeneous Vector Spaces

In this section we shall produce a good number of interesting examples where the
situation of Theorem 2.5 happens. Most cases fall into the setting of Corollary 3.3
and Proposition 4.3 (under Assumption 4.2). Let us start with the most well known
of all cases, the case of GLn and reprove Olšanskiǐ’s result [28]. The proof is
remarkably simple and beautiful, and recaptures the inverse of the formal degree
as the residue of the intertwining operator atν = 0.

PROPOSITION 5.1.Fix positive integersm, n and letσ1 and σ2 be irreducible
unitary supercuspidal representations ofGLm(F ) and GLn(F ), respectively. Let
σ = σ1 ⊗ σ2. Thenwo(σ ) ∼= σ if and only ifm = n andσ1

∼= σ2. Assumem = n
andσ1

∼= σ2. ThenA(ν, σ,w0) always has a (simple) pole atν = 0. The residue
(2.5.1) is proportional to the inverse of the formal degree ofσ .

Proof. We need to consider the Levi GLn × GLn inside GL2n. Let h1 andh2,
hi ∈ C∞c (GLn(F )), define matrix coefficients ofσ1 andσ2, respectively. Seth =
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h1⊗h2. ClearlyA = Ã = F ∗ ×F ∗. MoreoverN = Mn and there is one open orbit
coming fromm1 = In ∈ Mn(F). By Theorem 2.5, we need to calculate∫

A/w0(A)A
−1
8θ(z, h)ω

−1(z)dz, (5.1.1)

whereω = ω1⊗ ω2 with ωi the central character ofσi, i = 1,2.
SetM = GLn ×GLn and denote byM1 the twisted centralizer ofm1 = In = I

in M . ThenM1 = {(m,m) |m ∈ GLn} and thereforeM/M1 can be identified with
GLn(F ) which we realize as

M/M1
∼= {(I,m) |m ∈ GLn(F )}. (5.1.2)

WriteA = {(z1, z2) | zi ∈ Zn(F ) ∼= F ∗}. Then

w0(A)A
−1 = {(z, z−1) | z ∈ Zn(F )}. (5.1.3)

Using identification (5.1.2), (5.1.1) can be written as∫
(z1,z2)∈A/w0(A)A

−1

∫
m∈GLn(F )

h1(z1m)h2(z2m
−1)×

×ω−1
1 (z1)ω

−1
2 (z2)dmd(z1, z2). (5.1.4)

Breaking the integration over GLn(F ) to one overZn(F ) and another overZn(F )\
GLn(F ), (5.1.4) equals∫

(z1,z2)∈A/wo(A)A−1

∫
z∈Zn(F )

∫
m∈Zn(F )\GLn(F )

×

×h1(z1zm)h2(z2z
−1m−1)ω−1

1 (z1)ω
−1
2 (z2)dṁdz d(z1, z2). (5.1.5)

But identifying integration overZn(F ) with w0(A)A
−1 via (5.1.3), one can tele-

scope the first two integrals in (5.1.5) to imply∫
Zn(F )\GLn(F )

(∫
z1∈Zn(F )

h1(z1m)ω
−1
1 (z1)dz1

)
×

×
(∫

z2∈Zn(F )
h2(z2m

−1)ω−1
2 (z2)dz2

)
dṁ. (5.1.6)

If

〈σ1(m)v1, ṽ1〉 =
∫
Zn(F )

h1(zm)ω
−1
1 (z)dz

and

〈σ2(m)v2, ṽ2〉 =
∫
Zn(F )

h2(zm)ω
−1
2 (z)dz,
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denote the corresponding matrix coefficients defined byh1 andh2, respectively,
then (5.1.6) can be written as∫

Zn(F )\GLn(F )
〈σ1(m)v1, ṽ1〉〈σ2(m

−1)v2, ṽ2〉dṁ, (5.1.7)

which is precisely the Schur orthogonality relation of Harish-Chandra [14]. It is
simply equal to zero unlessσ1

∼= σ2 in which case equals d(σ1)
−1〈v1, ṽ2〉〈v2, ṽ1〉,

where d(σ1) is the formal degree ofσ1. Observe that this nonvanishing is precisely
equivalent tow0(σ ) ∼= σ .

Another reductive case when Theorem 2.5 can be applied is the case of Siegel
parabolics for unitary groups. We refer to [9] for this case.

Our remaining examples are taken from the semisimple case to which we can
apply Corollary 3.2. Moreover,

⋃
ε

⋃
i{εmi} = {1}(F ) andM0

i = M0
1 for all i in

each case (as we verify them individually) and we can therefore apply our results
from Section 4. The only exception is the case of Proposition 5.2. We leave out
the case of Siegel parabolic for the group SO2n as it was treated earlier in [34].
With the exception of Proposition 5.2, in each caseLn = Ln1 (notation as in first
section), i.e.,m = 1 andr = r1 is irreducible.

There are two new cases of classical groups which fall immediately into this
category. We shall treat them first.

Let G = SOm andM = GL1 × SOm−2. Let P = MN be the corresponding
standard parabolic subgroup. TheF -points ofN can be identified withFm−2 and
GL1(F ) × SOm−2(F ) acts onFm−2 by N 3 X 7→ aXh−1, a ∈ GL1(F ), h ∈
SOm−2(F ).

We first consider the case ofm = 2n + 1. ThenM = GL1 × SO2n−1 and
MD = SO2n−1 is adjoint and has no outer automorphisms. In this caseM0

i =
SO(2n − 2) (cf. [31] and Lemma 2.1(b)) and since SO(2n − 1) has no outer
automorphisms,mi ’s will not be central and therefore the interpretation in terms
of twisted endoscopy given in Theorem 4.5 will not apply. On the other hand the
twisted orbital integrals in (2.5.1) now become basically ordinary ones and the
nonvanishing condition (5.2.1) of the next proposition may now be handled by
ordinary endoscopy [24]. We leave this to a future paper. But whenσ is generic,
i.e. has a Whittaker model, the theory ofL–functions developed in [33, 36] applies.
In fact, in this casem = 2 andL(s, σ, r2) = L(s, ω2) = L(s,1) which always has
a pole ats = 0. Thus ifσ is generic supercuspidal, thenI (σ ) is always irreducible.
We reformulate Theorem 2.5 and the above observation here as follows:

PROPOSITION 5.2. (a)Let P = MN be the standard parabolic subgroup of
SO2n+1 whose Levi subgroupM ' GL1×SO2n−1. Letσ be an irreducible unitary
supercuspidal representation ofM. Supposew0(σ ) ' σ . ThenI (σ ) is irreducible
if and only if∑

i

∑
ε∈F ∗/(F ∗)2

ω(ε)8θ(εmi, f ) 6= 0 (5.2.1)
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for somef ∈ C∞c (M) defining a matrix coefficient ofσ by descent.
(b) Assume, moreover, thatσ is generic. ThenI (σ ) is always irreducible.

Now supposem = 2n. ThenM = GL1 × SO2n−2. Let {α1, · · · , αn} be the
simple roots ofSO2n. ThenM is generated by{α2, · · · , αn}. Supposen is even,
thenwG

0 (αi) = −αi, 1 6 i 6 n, wherewG
0 is the longest element in the Weyl

group of A0 in G. On the other hand,wM
0 (αi) = −αi , 2 6 i 6 n − 2, while

wM
0 (αn−1) = −αn andwM

0 (αn) = −αn−1, where againwM
0 has the same mean-

ing for M . Consequentlyw0(αi) = αi,2 6 i 6 n − 2, w0(αn−1) = αn, and
w0(αn) = αn−1. We therefore conclude thatθ is defined by the graph automor-
phism of the Dynkin diagram of SO2n−2. The case of oddn leads to a similar
result. The graph automorphism is the one which sendsαn−1 to αn and vice versa,
while fixing other simple roots. (Unlessn = 5, the Dynkin diagram of SO2n−2

always has a unique nontrivial automorphism.) To apply Theorem 4.5 or Corollary
3.3, we need to assumeθ fixes, say, the standard splitting of SO2n−2. Observe that
Ĥ = Cent̂θ (1, M̂)

0 = SO2n−3(C) (cf. [15]). ThenH = Sp2n−4.
Next we need to verify other conditions of Theorem 4.5 or Corollary 3.3. We

will first show that open orbits ofN under the action of̃M = GL1(F )×O2n−2(F )

are parametrized by classes{ε} in F ∗/(F ∗)2, ε ∈ F ∗. With notation as in [35],
N is parametrized by pairs(X, Y ), XX′ = 2Y , X ∈ F 2n−2, Y ∈ F . Here tX′ =
−Xw2n−2 and for each positive integerr, wr ∈ Mr(F) has nonzero entries which
are equal to 1 only on its second diagonal. The open orbits come fromY ∈ F ∗
and from now on we assumeY 6= 0. If (X, Y ) and(X1, Y1) are in the same orbit
of M̃, thenY andY1 must be in the same class{ε}. Now supposeY = a2Y1,
a ∈ F ∗. WriteX = aX1h with h ∈ GL2n−2(F ). ThenXX′ = 2Y andX1X

′
1 = 2Y1

imply X1hh
′X′1 = X1X

′
1 and by Witt’s Theorem we may assumeh ∈ O2n−2(F ).

(See Lemma 4.1 of [35]). SinceXX′ is a regular isotropic quadratic form, it is
universal. Therefore any such orbit appears inN .

We first show that ifω1 6= 1, thenI (σ ) is reducible. Givenn1 = n(X1, Y1)

and n2 = n(X2, Y2) both in N with Yi ∈ F ∗ and ε = Y2Y
−1
1 nonsquare in

F ∗, choosem ∈ M such thatn2 = mn1m
−1. Let mi ∈ M be as before so that

w−1
0 ni = min

′
in
−
i , i = 1,2. Write m = diag(a,m0, a

−1), a ∈ F
∗
, m0 ∈

SO2n−2(F ). Thena2 = ε andm2 = θ(m)m1m
−1. If m1 = diag(a1,m

′
1, a
−1
1 ),

thenm2 = diag(ε−1a1, θ(m0)m
′
1m
−1
0 , εa−1

1 ) and sincea1 andε−1a1 have different
classes modulo squares inF ∗, one concludes that{m1} 6= {m2}. Soon we will
show{1}(F ) =⋃ε{ε}. Since

⋃
i{mi} ⊂ {1}(F ), this will imply

⋃
i{mi} =

⋃
ε{ε}.

Applying Assumption (3.1) this implies that ifω1 6= 1, thenI (σ ) is reducible.
As we discussed before open orbits ofN underM̃ are parametrized by hyper-

surfacesXX′ = εZ2, X ∈ F 2n−2, Z ∈ F ∗, ε ∈ F ∗/(F ∗)2, or theF -equivalence
classes of quadratic formsQ(X,Z) = XX′ − εZ2 which are quadratic forms in
2n− 1 variables,ε ∈ F ∗/(F ∗)2. Observe thatQ is then equivalent toQ1(X,Z) =
ε(XX′ −Z2), using the equivalence ofXX′ andεXX′. Its orthogonal group is split
O2n−1(F ). Let us call the corresponding open orbit, theε-orbit.
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Let (X0, Z0) be a point in theε-orbit. ThenQ(X0, Z0) = 0 implies that it is
Q-isotropic. Observe that ifaX0h

−1 = X0, a ∈ F ∗, h ∈ O2n−2(F ), then

Q(aX0h
−1, Z) = a2Q(X0, Za

−1) = Q(X0, Z).

SinceX0X
′
0 6= 0, this impliesa2 = 1 or a = ±1. Thus to determine thẽM-

stabilizerM̃ε of X0, we need to findh ∈ O2n−2(F ) such that(±1, h)X0 = X0.
Define (±1, h)(X,Z) = (±Xh−1, Z). We shall first find allh ∈ O2n−2(F ) for
which (1, h)(X0, Z0) = (X0, Z0).

Consider O2n−1(F ) and O2n−2(F ) as orthogonal groups for matrices
diag(−εw2n−2,−ε) and−εw2n−2, respectively. It then gives an embedding of
O2n−2(F ) into O2n−1(F ) as well asU ⊂ V , corresponding quadratic spaces. By
an appropriate change of coordinates inU , the matrix−εw2n−2 can be written as
diag(−ε,−εw2n−4, ε). This gives an embedding of split O2n−3(F ) into O2n−2(F ).
ChooseX0 = (0, · · · ,0,1) ∈ U = F 2n−2. Then identifyingX0 with its im-
ages under equivalences,Q(X0,1) = 0. The stabilizer ofX0 in O2n−2(F ) is now
O2n−3(F ), the split orthogonal group in 2n−3 variables. Sinceh and{±1} are both
in O2n−3(F ), we may disregard±1 as the stabilizer will not change. The group
M̃ε is therefore the split orthogonal group in 2n − 3 variables, independent ofε.
Observe thatMi = M̃ε ∩M = M1 for all i andε. Moreover

⋃
i{mi} = {1}(F ). In

fact theM − θ-conjugacy classes in{1}(F ) are parametrized by elements of

ker(H 1(O(2n− 3))→ H 1(SO(2n− 2))),

where the groups are both split and therefore of highest Witt index. Identifying
elements ofH 1(O(2n− 3)) with equivalence classes of quadratic forms in 2n− 3
variables and those inH 1(SO(2n−2))with equivalence classes of quadratic forms
in 2n−2 variables with same discriminant but different Witt indices, we see that no
form with a Witt index less thann−1 can be in the kernel. The correspondingM−
θ-conjugacy classes then have split O(2n − 3) as stabilizers and are parametrized
by F ∗/(F ∗)2 to account for different discriminants. It is easily checked that ifε =
diag(ε, I, ε−1) isM − θ-conjugate toε′ = diag(ε′, I, ε′−1), thenε andε′ have the
same class modulo(F ∗)2. Thus{1}(F ) = ⋃

ε{ε} =
⋃
i{mi}. Applying Theorem

4.5 and Corollary 3.3 and taking into account thatÃ = Ã1 = GL1 × {±1} and
A = A1 = GL1, we have

PROPOSITION 5.3.Let P = MN be the standard parabolic subgroup ofSO2n

whose Levi subgroupM ∼= GL1×SO2n−2. Letσ = ω1⊗τ be an irreducible unitary
supercuspidal representation ofM whose central character isω = ω1 ⊗ ωτ . The
representationI (σ ) is irreducible unlessw0(σ ) ∼= σ . Supposew0(σ ) ∼= σ . Then
ω2 = ω2

1 = 1. Supposeω1 6= 1. ThenI (σ ) is reducible. Assumeω1 = 1. Then
I (σ ) is irreducible if and only ifτ comes fromSp2n−4(F ) by θ-twisted endoscopic
transfer.
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We conclude our examples with the exotic case of an exceptional group. LetG
be an exceptional group of typeE7, either simply connected or adjoint. LetM be
the Levi subgroup ofG generated by the rootsα1, · · · , α6, where the roots are as
in the Dynkin diagram ofE7 as follows:

In both casesM ∼= (GL1 × E6)/〈ζ3〉, whereζ3 is a primitive 3rd root of 1 and
MD is the simply connectedE6.

SincewG
0 (αi) = −αi, 16 i 6 7, while

wM
0 (α1) = −α6, wM

0 (α2) = −α2, wM
0 (α3) = −α5,

wM
0 (α4) = −α4, wM

0 (α5) = −α3, and wM
0 (α6) = −α1,

one has

w0(α1) = α6, w0(α2) = α2, w0(α3) = α5,

w0(α4) = α4, w0(α5) = α3, w0(α6) = α1.

Thus,θ is defined by the unique nontrivial graph automorphism of the Dynkin dia-
gram ofE6. If we again assume thatθ fixes a splitting, then̂H = Cent̂θ (1, M̂)

0 ∼=
F4(C) (cf. [15], page 514, or Proposition 47 of [31]). Consequently,H = F4.

One needs to check the remaining condition of Theorem 4.5. We start with a
general discussion. In the general setting of Corollary 3.3 in whichÃ0 = A1 is the
only restriction, we consider the projectionM → M/Ã0 = M , whereÃ0 is the
connected component of̃A. We shallassumeM/Ã0 = M = M (F ). This is the
case ifÃ is connected, i.e.̃A = Ã0, using standard lemmas (cf. [22]).

If m ∈ M andOm denotes itsM−θ-conjugacy class, thenOm gives theM−θ-
conjugacy class ofm, whereOm andm denote images ofOm andm under the
projectionM → M , i.e.Om = Om. Hereθ is the automorphic ofM induced from
θ . Moreover, formi ∈ M, i = 1,2, if Om1 ∩ Om2 6= φ, thenm1 = m′2 for some
m′2 ∈ Om2. Similar statements are true forM − θ-conjugacy classes and those of
M − θ-classes.

One can check that ifm ∈ M, thenM t
m = M

t

m, whereM t
m andM

t

m are the
θ-twisted andθ-twisted centralizers ofm andm in M andM , respectively.

SupposeO is aM − θ-conjugacy class inM andO(F) = ⋃
j Oj (F ), where

Oj(F )’s areM − θ-conjugacy classes. LetO be the image ofO andassumethat
O(F) consists of a singleM − θ-conjugacy class, thenOj(F ) = O(F) for all j .
LetO1(F ) = {m′1},m′1 ∈ M. ThenO(F) = {m′1}. By the previous observations,
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we can choose representativesm′j ∈ Oj(F ), j = 2, . . ., such thatm′j = m′1. Thus
m′j = aj · m′1, aj ∈ A. Changingm′j in its orbit, we may assumem′j = εm′1 for

someε ∈ F ∗/(F ∗)2. ThusO(F) = ⋃ε∈F ∗/(F ∗)2{εm′1}. MoreoverM t
m′j
= M

t

m′j
=

M
t

m′1
for all j .

In the present case ofM = (GL1 × E6)/〈ζ3〉 insideE7, A = Ã and therefore
M is adjointE6. ThusM/A = M = M(F). LetO be theM − θ-conjugacy class
of m1. The arguments of Sato–Kimura in Proposition 47 and Example 39 of [31]
are valid for an algebraically closedp-adic field, if one appeals to [17] for minor
appropriate changes forp–adic fields. The generic stabilizer ofn1 must haveF4 as
its connected component. By part (b) of Lemma 2.1,M0

1 = M0
m1
= F4. As before

let m1 ∈ O be the image ofm1. By our earlier comments,M t
m1
= M j = M

t

mj

will have a connected component of typeF4. ButM
t

m1
is just the fixed point set

of Int(m1) ◦ θ and since it has the largest dimension, it must fix a splitting inM .
SinceM is adjoint, the fixed point setM

t

m1
of such an automorphism must be

connected (cf. the discussion at the end of Section 1.1 of [20]). ThusM
t

m1
= F4.

Now using the triviality ofH 1(F4), F4 being simply connected,O(F) = {m1}, the
M − θ-conjugacy class ofm1. As before{m1} = {1}. By the previous discussion

O(F) =
⋃

ε∈F ∗/(F ∗)2
{εm1} = {m1}(F ) = {1}(F ) =

⋃
ε

⋃
i

{εmi}.

Here {m1} is as earlier just theM − θ-conjugacy class and does not denote the
projection moduloA. Finally observe thatM t

mi
= M i = M

t

mi
= M

t

m1
= F4 for all

i. This impliesM0
i = M0

1 for all i as needed. We can now apply Theorem 4.5 to
get:

PROPOSITION 5.4.LetG be a group of typeE7 and letP = MN be a parabolic
subgroup whose Levi component has a derived group of typeE6. Fix (B,T) as be-
fore and in particular such thatB ⊂ P andT ⊂ M . Letσ be an irreducible unitary
supercuspidal representation ofM with central characterω. The representation
I (σ ) is irreducible unlessw0(σ ) ∼= σ . Supposew0(σ ) ∼= σ . Thenω2 = 1. Assume
ω = 1. ThenI (σ ) is irreducible if and only ifσ comes fromF4(F ) by θ-twisted
endoscopic transfer. (One expects that ifw0(σ ) ∼= σ , thenσ either comes from
F4(F ) or SO9(F ).)

Remark.The stabilizerM θ of θ in M is {±1} ·F4. This follows from paragraph
1.1 of [20] which impliesM θ = Aθ (M θ )0.
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6. L-Functions as Igusa Zeta Functions

With notation as in Section 1, letr be the action ofLM onLn and writer = ⊕mi=1ri .
With the exception of Proposition 5.2, in all the examples of Section 5,m = 1, and
whenσ is generic, theL-functionL(s, σ, r̃1) is precisely the normalized inverse
polynomial which gives the poles ofA(sα̃, σ,w0) (Theorem 1.1). Observe that for
the case of odd orthogonal groups (Proposition 5.2), the standardL–function is
always trivial asL(s, σ, r̃2) = L(s, ω2) has always a pole sinceω2 = 1 and the
poles of intertwining operators are simple. On the other hand in all our examples,
the poles ofA(sα̃, σ,w0) are obtained by integrating an appropriate test function
over the union of open orbits of action ofM on theF -vector spacen, the Lie
algebra ofN . Thus theL-functionL(s, σ, r̃1) is the Igusa zeta-function (cf. [3. 8,
16]) attached to open orbits of adjoint action ofM on the prehomogeneous vector
spacen and an appropriate test function (function8ψ in Equation (2.4.1)). We
state our result as follows.

THEOREM 6.1. Letσ be an irreducible unitary generic supercuspidal represen-
tation ofM, whereP = MN is as in Propositions5.1, 5.3 and5.4. ThenL(s, σ, r̃1)
is the Igusa zeta-function attached to the open orbits of action ofM on n, the Lie
algebra ofN , and an appropriate test function. In each case, theL-function is the
standardL-function. On the other hand, if one is in the situation of Proposition
5.2, thenL(s, σ, r̃1) ≡ 1.
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Abstract. We make some remarks about the simplest example of a set of endoscopic data in general
twisted endoscopy. We call it thebasicset of data. It is associated with purely stable transfer. Our
purpose here is simply to describe some immediate consequences and simplifications of the general
constructions for this example.

Mathematics Subject Classifications (1991):11F72, 11R34, 22E35, 22E50, 22E55.

Key words: twisted endoscopy, orbital integrals, transfer factors.

The ingredients for twisted endoscopy ([KS]) are a connected reductive algebraic
groupG over a fieldF (here local non-Archimedean, characteristic zero), anF -
automorphismθ of G, and a cocycle which we can ignore since our interest is
in representationsπ for which π is exactly equivalent toπ ◦ θ . Modulo an inner
twisting of both automorphism and group (see Section 3.1 of [KS]), we have that
G is quasisplit overF andθ preserves anF -splitting ofG. These will be our as-
sumptions throughout, although often they are unnecessarily restrictive or a simple
modification yields the general case.

There is a set of endoscopic data attached to(G, θ) that is basic in several
ways. First, we expect a stable transfer of orbital integrals, one that is as invariant
as possible. Second, the definition of transfer is as simple as possible, the transfer
factors being essentially trivial on the most regular elements. At the same time, the
construction of transfer factors for a general endoscopic group ([KS]) measures, in
a certain sense, the variation from this simple case (see especially the fundamental
term1III in Section 4.4 of [KS]). For the example of cyclic base change for GL(n)

the basic set is essentially the only set of endoscopic data. It also appears signifi-
cant in applications such as [Sha] which is the motivation for our final observation
(Lemma 9).

1. Definitions

To form the basic set of endoscopic data for(G, θ), we start with the strong invari-
ants, that is, the identity component(G∧)1 of the group of invariants, ofθ∧ in G∧.
This group is preserved under the action of the Weil groupWF onG∧, becauseθ∧
is constructed to preserve a0-splitting ofG∧ and so commutes with the action of
0. Further, from the0-splitting ofG∧ we may construct a0-splitting of (G∧)1,
with 0 acting by restriction of the action onG∧. Namely, for the Borel subgroup
in (G∧)1 we take the intersection of the Borel subgroup inG∧ with (G∧)1, for the
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maximal torus in(G∧)1 the intersection of that inG∧ with (G∧)1 and then construct
the root vectors in the usual way, following Steinberg (see Section 1.1 in [KS]). We
have then thatLG1 = (G∧)1 ∝ WF is anL-group,L-embedded by inclusion in
LG = G∧ ∝ WF . We will call LG1 theL–group of strong invariants forθ∧. Let
G1 be a dual quasisplit group overF . We shall refer toG1 as thecoinvariantgroup
for G.

In the caseG is a torus, the coinvariant groupG1 is the torus of coinvariants
of θ . In general, a maximal torus inG1 is naturally isomorphic to the coinvariants
of θ in a θ–admissible maximal torus inG, etc. In some cases, such as cyclic base
change,G1 is naturally isomorphic to the (strong) invariants ofθ in G, but even
in these cases it is convenient to work expressly with the coinvariant group. On
the other hand, ifG is GL(n), with n odd, andθ is transpose-inverse (followed
by a suitable inner automorphism, since we are insisting here thatθ preserve an
F -splitting), then the coinvariant groupG1 is symplectic, while the groupG1 of
strong invariants is special orthogonal, andG1,G1 are of dual type.

The basicset of endoscopic data for(G, θ) is (G1,
L G1, id, incl), that is, the

tuple consisting of the coinvariant group forθ , theL-group of strong invariants for
θ∧, the identity element ofG∧, and the inclusion of theL-group of strong invariants
for θ∧ in LG. The defining properties for a set of endoscopic data ((2.1) in [KS])
are readily verified.

2. Relative Transfer Factors

For the basic set of endoscopic data, passage to az-pair as in Section 2.3 of [KS]
is unnecessary, because the datumLG1 is anL-group. The transfer factor1(γ, δ)
is then defined in [KS] forγ strongly regular inG1(F ) andδ stronglyθ-regular
inG(F). Note that we have replacedstrongly G-regularin [KS] by strongly regu-
lar. This is allowed by Lemma 2 below. Recall that1(γ, δ) = 0 unlessγ is a norm
of δ. We shall start with the canonicalrelative transfer factor attached to two norm
pairs.

LEMMA 1. The relative transfer factors forG1 are trivial, that is1(γ, δ; γ ′, δ′) =
1 for all strongly regularγ, γ ′ in G1(F ) that are norms of stronglyθ-regular δ, δ′,
respectively, inG(F).

Proof. 1 is the product of four terms, three of which depend on additional
choices in general. We will show that in the present case all four terms are equal
to 1, whatever those additional choices may be. First,1I is a quotient, each term
of which is defined by a certain pairing in (Abelian) Galois cohomology (see[KS],
Section 4.2 for definitions). This amounts to evaluating a multiplicative character
at some element in a finite abelian group. ForG1, the element is the identity, since
our endoscopic datums is the identity element ofG∧.

The term1II is again a quotient, and we use Lemma 4.3.A of [KS] to evaluate
each term in this quotient. Observe that every restricted rootαres of types R1 and
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R2 is from H(= G1), whereasnoneof the restricted roots of type R3 is from H

(see Section 1.1 of [KS] for a summary of the relevant facts due to Steinberg). We
see then from the cited lemma that there are no nontrivial contributions to1II . The
same remark about the types of restricted roots also implies that the discriminant
term1IV is trivial (see Lemma 4.5.A of [KS]).

We are then left with the one genuinely relative term1III . Because it is not nec-
essary to pass toz-pairs we can use the constructions of the first part of Section 4.4
in [KS]. The term1III is defined by a certain pairing (of Galois hypercohomology
classes) and again it is enough to show that one of them, in this case the classA

represented by the hypercocycle labelled(A−1, sU ), is the identity element. The
elementsU is the identity, because our endoscopic datums is the identity element
inG∧. ForAwe recall the paragraph in [KS] before Lemma 4.4.B. Observe that the
L-group of strong invariants forθ∧ appears in the construction whatever the endo-
scopic groupH , andA measures how embeddings inLG of L-groups of maximal
tori in H differ from those of theL-groups of (isomorphic) maximal tori inG1.
Following the actual construction shows that for the basic set of endoscopic data
eachA(w),w ∈ WF , is the identity element. Note that the last datum, the inclusion
homomorphism inLG of theL-group of strong invariants forθ∧, is significant here.

This completes the proof of the lemma.

3. Transfer Factors

The transfer factor1(γ, δ) for G1 may now be normalized so that1(γ, δ) = 1 if
γ is strongly regular and a norm of stronglyθ-regularδ, and1(γ, δ) = 0 if γ is
strongly regular and not a norm of stronglyθ-regularδ (see Section 5.1 of [KS]).

Before continuing, we record the following:

LEMMA 2. A strongly regular element inG1(F ) is stronglyG-regular.
Proof. This is a supplement to Lemma 3.3.C of [KS]. We use the notation from

that lemma without further explanation. We assume that the elementγ is strongly
regular inH(F) = G1(F ) but not stronglyG-regular. Then there is an element, say
ω, of the Weyl group�θ(G, T ) realized in Centθ (δ∗,G). Recall that in the present
setting we haveG = G∗, θ = θ∗; the elementδ∗ in the θ-admissible maximal
torusT is not, however, to be identified withδ, the given element with normγ (the
definition ofnorm in Section 3.3 of [KS] extends naturally to strongly regularγ ).
But any element of�θ(G, T ) is realized in theθ-invariants. A short calculation
then shows thatω(δ∗) ≡ δ∗(mod(1 − θ)T). This then implies thatω(γ ) = γ .
That is impossible because�(H, TH ), a subgroup of�θ(G, T ) under our various
identifications, coincides with�θ(G, T ) in the caseH is G1 (see Section 1.1 of
[KS]). Thusγ is stronglyG-regular and the assertion of the lemma is proved.

Remark1. The lemma is true for any set of endoscopic data that islarge in the
sense of Remark 2 below.
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4. Norms inG1

The definition of norm in [KS] does not guarantee that a stronglyθ-regular element
has a norm in a given endoscopic group. However we do have the following:

LEMMA 3. Every stronglyθ-regular element inG(F) has a (strongly regular)
norm inG1(F ).

Proof. We return to Lemma 3.3.B of [KS] in which a maximal torusTH over
F in an endoscopic groupH is shown to embed overF as the coinvariantsTθ in
someθ-admissible maximal torus overF in G. What we need to show now is that:

(a) givenδ stronglyθ-regular inG(F) (= G∗(F )) there is aθ-admissible maximal
torusT overF in G and an elementδ∗ in T (F ) such thatδ∗ is θ-conjugate to
δ and the image ofδ∗ in Tθ isF -rational, i.e.σ (δ∗) ≡ δ∗mod(1− θ)T , σ ∈ 0,
and

(b) there is a maximal torusTH overF in H which embeds, in the manner of the
lemma, as the coinvariants of the maximal torusT given in (a).

Thenδ evidently has a norm inTH(F ), completing the proof of the lemma.
To prove (a) we first choose an arbitraryθ-stable pair(B ′, T ′) in G with T ′

defined overF and then takeg ∈ G(F) such that(B(δ), T (δ))g = (B ′, T ′), where
on the left we have chosen some Int(δ) ◦ θ-stable pair. Observe thatδ′ = g−1δθ(g)

lies in T ′(F ) and that for anyσ in 0 we haveσ (g)−1g normalizesT ′ and(T ′)θ ,
and acts as an elementωσ of �θ(G, T ′) such thatσ (δ′) = ωσ (δ

′) andσ (ε) =
ωσ(ε) for ε in g−1Gδθ(F )g ⊂ T ′(F )θ . We can then apply the usual argument with
Steinberg’s Theorem (on rational elements in semisimple conjugacy classes in a
simplyconnected quasisplit group) to geth inGθ(F) such thatσ (h)−1h normalizes
T ′ and(T ′)θ , and acts asωσ on them. We then setB = hB ′h−1, T = hT ′h−1 and
δ∗ = hδ′h−1 = hδ′θ(h)−1, and observe that the statement of (2a) is true with these
choices.

For (b) we again use Steinberg’s Theorem, this time forH = G1 (or, more
precisely, its simply-connected cover). To follow the usual argument we need to
know that any element of�θ(G, T ) lies in�(H, TH), (if TH is embedded asTθ
overF), as is true.

This completes the proof of the lemma.

Remark2. The assertion (b), and hence also the lemma, is true for any large
set of endoscopic data, by which we mean the Weyl group forH is the full set
of θ-invariants in the Weyl group forG. If the system of restricted roots associ-
ated toθ is reducedthenH must be the coinvariant groupG1, but in even in the
simplest nonreduced exampleG = GL(3) with θ transpose-inverse (followed by
an inner autorphism in order to preserve anF -splitting), bothG1 = SL(2) and
H = PGL(2) are attached to large sets of data.

We also note the following simple corollary of Lemma 3.3.B of [KS]:
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LEMMA 4. LetTH be a maximal torus overF in H . Then the stronglyG-regular
elements inTH (F ) that are norms form the stronglyG-regular elements in a neigh-
borhood of the identity inTH(F ).

Proof. HereH can be arbitrary but(G, θ) must be as we have assumed. We
chooseT as in the cited lemma and observe that because the restriction ofθ to
the derived group ofG is semisimple [St], the image ofZ(F)T 1(F ) under the
natural projectionT → Tθ is open inTθ (F ), whereZ denotes the center ofG and
T 1 = T ∩G1. The lemma then follows.

5. Transfer

We recall the expected transfer of orbital integrals associated with the basic set of
endoscopic data as:

CONJECTURE. Givenf ∈ C∞c (G(F)) there existsf1 ∈ G1(F ) such that
Ost(γ, f1) = Oθ

st (δ, f ) if strongly regularγ ∈ G1(F ) is a norm of (stronglyθ-
regular)δ ∈ G(F), andOst(γ, f1) = 0 if strongly regularγ ∈ G1(F ) is not a
norm.

HereOst(γ, f1) is simply the sum of the integrals off1 along the conjugacy
classes in the stable conjugacy class ofγ , andOθ

st (δ, f ) is the sum of the integrals
of f along theθ-twisted conjugacy classes in the stableθ-twisted conjugacy class
of θ . Invariant measures are normalized in the usual way; we will say a little more
about this below.

The conjecture is known to be true for archimedeanF ([RS]). In the present
case,F nonarchimedean and of characteristic zero, it amounts to some familiar
problems about the behavior of orbital integrals around the identity; we forgo a
more detailed discussion of this. What we will do here is simply toassume that the
conjecture is true near the identity inG1(F ). This means we have an equality of
functionsOst= Oθ

st on the strongly regular elements around the identity inG1(F ).
Here the functionOθ

st is defined byOθ
st(γ ) = Oθ

st(δ, f ) if γ is a norm ofδ, and
Oθ

st(γ ) = 0 if γ is not a norm. We remark in passing that the equality is extended,
with just a little care, to all regular elements.

6. Germ Expansion I

Let D1(γ ) be the usual normalizing factor for the (unstabilized) orbital integral
O(γ, f1) andDG(δ) be that for theθ-twisted orbital integralOθ(δ, f ). ThenD1(γ ) =
DG(δ) if δ has normγ ; this was the assertion1IV = 1 in Lemma 1. BecauseD1

is stably invariant andDG is stablyθ-twisted invariant, we can replaceOst = Oθ
st

by an equality of normalized integrals which we write as8st = 8θ
st.

Each side of8st = 8θ
st has a Shalika germ expansion around the identity in

each Cartan subgroupT1(F ) of G1(F ). We shall compareconstant terms (that is,
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the contributions from identity elementsεG1 on the left andεG on the right) in the
caseT1 is elliptic, and work on a neighborhood of the identity sufficiently small
that all its strongly regular elements are norms of elements inZ(F)T 1(F ), with
notation as in the proof of Lemma 4 In fact, to shorten arguments we will later
assume that the restriction ofθ to Z is semisimple, allowing us, in particular, to
omitZ(F) from the last sentence.

Each term in8st(γ ) is a normalized orbital integral8(γ ′, f1), whereγ ′ is a
representative sufficiently close to the identity for a conjugacy class in the stable
conjugacy class ofγ . It therefore contributesc(γ ′)f1(εG1) to the constant term
in the germ expansion of8st , where the constantc(γ ′) depends on the choice of
invariant measures defining the orbital integral. By Rogawski’s Theorem, which
describes the constant explicitly, we can choose measures in such a way as to have
c(γ ′) = c(γ ) (see [K]). We then conclude that the constant term for the expansion
of 8st is c0f1(εG1), wherec0 is nonzero.

By definition,8θ
st (γ ) is the sum, over representativesδ for the θ-twisted con-

jugacy classes of elements inG(F) with γ as norm, of the normalizedθ-twisted
orbital integrals8θ(δ, f ). Some of these elementsδ are near the identity inG(F)
and we can immediately do a uniform version of the usual Harish Chandra descent
around the identity elementεG in G(F) for theseδ. For generalδ, however, we
need some preparation.

7. A Stableθ-Twisted Conjugacy Class

Observe thatεG is θ-semisimple [KS] sinceInt (εG) ◦ θ = θ is a quasi-semisimple
automorphism [St]. More general considerations then lead us to define thestable
θ-twisted conjugacy classof εG to be the set of all elements inG(F) that are
θ-twisted conjugate toεG in G(F), that is, to consist of all elementsε in G(F)
of the form ε = g−1θ(g), with g ∈ G(F). Then Int(g) maps Centθ (ε,G)0 to
G1 = Centθ (εG,G)0 = (Gθ)0 and moreover:

LEMMA 6. Int(g) : Centθ (ε,G)0→ G1 is an inner twist.
Proof. Let σ ∈ 0. Thengσ (g)−1 is fixed by θ . But becauseθ preserves a

splitting ofG we have thatGθ = ZθG1 (see [KS, Section 1.1]), whereZ is the
center ofG. The lemma then follows.

In general, theθ-twisted conjugacy classes in the stableθ-conjugacy class of
εG are parametrized by the classes inH 1(0,Gθ) which vanish inH 1(0,G) under
the map given by attaching the cocycleσ → gσ (g)−1 to g−1θ(g). In particular,
they are finite in number. We shall consider the case in [Sha]. Namely, we assume
that eachθ-twisted conjugacy class in the stableθ-twisted conjugacy class ofεG
contains an elementε such thatCentθ (ε,G)0 is quasisplit overF . Then all attached
cohomology classes have trivial image under the map induced by the projection
Gθ → (Gθ )ad = G1

ad. As we shall see, theθ–twisted conjugacy classes are then
parametrized (with multiplicity) by the kernel ofH 1(0,Zθ)→ H 1(0,Z).
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LEMMA 7. Suppose thatε ∈ G(F) is of the formg−1θ(g), g ∈ G(F), and that
Centθ (ε,G)0 is quasisplit overF . Then, after replacingε by aθ-twisted conjugate
element if necessary, we may assume thatCentθ (ε,G)0 coincides withG1 and that
bothε andg are central inG.

Proof. Takeε as in the statement of the lemma. Then Int(g) : Centθ (ε,G)0→
G1, an inner twist of quasisplit groups, must be anF -isomorphism. Multiplying
g on the left by an element ofG1, as we may, we can then assume that Int(g)

induces a map between given pairs(B ′, T ′) and (B, T ) in G such that all four
groupsB ′, T ′, B, T are defined overF and(B1 = B ∩G1, T 1 = T ∩G1

) is part
of anF -splitting forG1. We now multiplyg on the right by a suitable element of
G(F) and assume thatg lies in T . But thenNα(ε) = Nα(g−1θ(g)) = 1 for all
rootsα of T in G and so Centθ (ε,G)0 = G1 (see [KS, Section 1.3]).

Second, we multiplyg by an element ofT 1 to assume Int(g) preserves anF -
splitting ofG1. Then, examining the action ofg on root vectors inG1, we find that
α(g) = α(θ(g)) for all rootsα of T in G. Thusε = g−1θ(g) is central inG.

The last step is to show thatg lies in G1Z. Let gad be the image ofg under
the natural projection ofG onto its adjoint groupGad. Thenθad(gad) = gad, where
θad(gad) = (θ(g))ad as usual, and sogad lies in (Gad)

θad. But this group is connected
(see [KS, Section 1.1]) and so it is the image ofG1 under the natural projection.
This implies thatg lies inG1Z, and so again we can multiplyg on the left by an
element ofG1 to get centralg such thatε = g−1θ(g). This completes the proof of
the lemma.

If we now set

Z1 = Z(F) ∩ {z−1θ(z) : z ∈ Z(F)} and

Z2 = Z(F) ∩ {g−1θ(g) : g ∈ G(F)}
then, arguing as in the lemma, we have thatZ2 is contained inZ1. Moreover a
set of representatives (complete and irredundantwill always be assumed in this
terminology) for the cosets ofZ2 in Z1 provides us with a set of representatives
for the θ-twisted conjugacy classes in the stableθ-twisted conjugacy class of the
identity elementεG. We write a representative asεi = z−1

i θ(zi), with z1 = ε1 = εG.

Remark3. If we want to allow redundancy in counting theθ-twisted conjugacy
classes then we can setZ3 = {z−1θ(z) : z ∈ Z(F)}, so thatZ3 ⊂ Z2 andZ1/Z3 is
isomorphic toK= Ker(H 1(0,Zθ)→ H 1(0,Z)) in the usual manner. The group
K then yields[Z2 : Z3] representatives for each of theθ-twisted conjugacy classes.

8. Germ Expansion II

We return to the germ expansion of8θ
st (γ ) for strongly regularγ sufficiently close

to the identity in an elliptic Cartan subgroupT1(F ). As promised, to make the
arguments a little shorter we shall assume the restriction ofθ to Z is semisimple.
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Then we can choose stronglyθ-regularδ in T 1(F ) nearεG with γ as norm, and do
it in such a way thatγ → δ is smooth. The elementδ is strongly regular inG1.
Choose a set of representativeswj for the conjugacy classes in the stable conjugacy
class (no twisting) ofδ in G1(F ), withw1 = εG.

LEMMA 8. {w−1
j εiδwjεi, wj as above} is a set of representatives for theθ-

conjugacy classes of elements inG(F) with normγ .
Proof. Supposeδ′ = w−1δθ(w) is an arbitraryθ-twisted stable conjugate ofδ.

Thenwσ(w)−1 lies inT θ = Centθ (δ,G), σ ∈ 0. Thusw−1θ(w) lies inG(F) and
so is stablyθ-twisted conjugate toεG. Then there isg in G(F) and somei such
thatg−1w−1θ(w)θ(g) = εi = z−1

i θ(zi) and sow′ = wgz−1
i lies inGθ = ZθG1.

Write w′ = zw1, accordingly. Thenδ′ is θ-twisted conjugate to(w1)−1εiδw
1 and

moreoverw1σ (w1)−1 lies in T 1, σ ∈ 0. It is now easy to complete the argument
that eachθ–twisted conjugacy class has a representative as in the statement of the
lemma, and check there is no redundancy. Thus the lemma is proved.

We now apply Harish Chandra’s Compactness Principle to descend uniformly
from G(F) to G1(F ) (see Section 1 of [LS] for similar arguments). This yields
functionsfi ∈ C∞c (G1(F )) such that∑

j

8(w−1
j δwj , fi) =

∑
j

8θ(w−1
j εiδwj , f )

for eachi. The left side is a normalized stable orbital integral8st(δ, fi) forG1(F ).
Its germ expansion around the identity element has constant termcifi(εG1) =
ciO

θ (εi, f ), where the term on the right is the integral off along theθ-twisted
conjugacy class ofεi. Rogawski’s Theorem again shows that measures can be
normalized so that allci are the same and nonzero. We then conclude that the
constant term in the germ expansion of8θ

st(γ ) is c1
∑

i O
θ(εi, f ). This sum is a

stable distribution, and so we write it asOθ
st(εG, f ). To finish our comparison of

the constant terms we have:

LEMMA 9. There is a nonzero constantc such thatc.f1(εG1) = Oθ
st(εG, f ).

Remark4. A closer look at the various constants shows that we can normalize
measures so thatc = 1 (see [K]). Here we useq(G1) = q(G1), whereq(∗) denotes
theF -rank of the derived group of∗.

Remark5. It is no more difficult to handle the general case, that is, to drop the
assumption from [Sha] on the structure of the stableθ-twisted conjugacy class of
the identity. However, to defineOθ

st (εG, f )we must then insert the sign(−1)q(εi) in
front of each termOθ(εi, f ) before summing, whereq(εi) = q((Centθ (εi,G))0).

Remark6. An analogous result forF archimedean is shown using a limit for-
mula of Harish Chandra in place of Shalika germs.
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