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WHITTAKER MODELS FOR REAL GROUPS

FREYDOON SHAHIDI

Introduction. Whittaker functions were first introduced for the principal
series representations of Chevalley groups by H. Jacquet [3]. Later, they were
pursued by G. Schiffmann for algebraic groups of real rank one [12]. They
played a very important role in the development of the Hecke theory for GLn

through the work of H. Jacquet, R. P. Langlands, I. I. Piatetski-Shapiro, and J.
A. Shalika [4, 5]. More precisely, they were the main tools for the definitions of
local and global L-functions and e-factors. They also appeared quite useful in
the development of the Hecke theory for other groups (cf. [10]), as well as in the
definition of the local y-factors of certain functional equations [13, 14],
particularly in their factorization. There seems to be other evidence of interest,
especially in the work of W. Casselman, B. Kostant [7], and G. Zuckerman.

The analytic behavior of these functions is much simpler when the ground
field is non-archimedean; a good account of their analytic properties and some
interesting formulas for certain class of such functions may be found in a recent
paper of W. Casselman and J. A. Shalika [2]. But when the ground field is
archimedean, these functions were believed to behave in a rather complicated
manner. In fact, this has been one of the main obstacles in the development of
the Hecke theory for number fields.

To make a more precise statement of the problem, we let G be a split
reductive algebraic group over R. We fix a maximal torus T of G and we let B
be a fixed Borel subgroup of G containing T. We write B = M0AU, the
Langlands decomposition of B with T=M0A, and fix a non-degenerate
(unitary) character x of U (see section 1).

Now, let IT be a continuous representation of G on a Frechet space V. Denote
by (̂ oo > ^oo) trie corresponding differentiable representation. Topologize V^
with the relative topology inherited from C°°(G, V). Let VK be the subspace of
^-finite vectors of F, where K is a fixed maximal compact subgroup of G with
G = KB. We say that the representation (7r, V) is non-degenerate, if there exists
a continuous linear functional A on V^, called a Whittaker functional, such that

\{m(u)v) = X(u)X(v) (ueU,vG VJ.

Then for every v G V^, the Whittaker function Wv is defined to be
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The corresponding embedding of V into the left regular representation of G is
called a Whittaker model for IT. When IT is unitary and irreducible, it follows
from [5] that this model is unique.

One may also consider the same concept for the representations of Lie
algebras. They may be called "algebraically non-degenerate representations" as
we do so in section 3 of the present paper, and they have been investigated by B.
Kostant in a very interesting paper [7]. (The same results were obtained
independently by W. Casselman and G. Zuckerman for the group GLW(R).)

Now, let ag be the complex dual of a, the real Lie algebra of A, and denote by
Mo the set of all the (unitary) characters of Mo. Fix v Ea£, TJ G Mo and define
the principal series representation I(v,7)) of G as in section 1. In [3] Jacquet
proved that the Whittaker integrals (see proposition 1.1 here), which are
originally defined only inside the positive Weyl chamber, can be continued to
holomorphic functions of v on the whole a£. His results are restricted to K4inite
vectors and unfortunately do not extend easily to the smooth vectors.

The main results of this paper, Theorems 2.1 and 2.2, carry out this extension
and show that these analytic continuations do in fact define a Whittaker
functional for /(*>, 17).

The proof follows the same ideas as those of Jacquet [3]. In section 2.1, we
prove a result (corollary 2.1.1) similar to lemma 1.11 of [3]. This is done by
means of a result of G. Schiffmann [12].

Intertwining integrals are discussed in section 2.2. They are necessary for the
results proved in section 2.3 and are based on the results of [12].

Finally in section 2.3, we prove the main lemma, lemma 2.3.1, which replaces
lemma 3.2 of [3]. The proofs of proposition 2.3.1 and theorem 2.1 now follow
almost the same line as those of proposition 3.3 and theorem 3.4 of [3].

The proof of lemma 2.3.1 requires introduction of certain convergence factors
(mainly F-functions) to replace the nice existing formulas for ^-finite functions
on SL2(R) which no longer exist for the C°°-functions on an arbitrary algebraic
group of rank one. They seem to be related to the normalizing factors of
intertwining integrals (see lemma 2.3.3).

The proofs are quite general, and we believe that they work for an arbitrary
algebraic group. This is examined in the Appendix for a certain class of
quasi-split groups (which are the only groups to be studied by [7]), where we
have also given new proofs for some of the results of sections 2.2 and 2.3.

Finally in section 3, we make certain observations concerning the Whittaker
functional of a certain class of non-degenerate representations, and prove a
result on non-degeneracy of the representations induced from such representa-
tions (proposition 3.2). In fact, in light of the results of W. Casselman, B.
Kostant [7], D. Vogan [17], and N. Wallach, they are nothing but the functionals
whose explicit existence is proved in section 2.

As it was mentioned before, the most important application of these results is
the analytic continuation of the zeta functions of the pairs of representations of
GLW(R) and GLW(R). This in turn will lead us to the definition of the
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corresponding local and global L-functions. This is the subject of a work in
progress of H. Jacquet and J. A. Shalika. They may also be used to prove certain
non-vanishing theorems for these L-functions (cf. [6]). Finally, they are
necessary to establish certain functional equations (cf. [13] and [14]), and in fact
this has been the first reason for the author to consider this problem.

I would like to thank Joseph Shalika, William Casselman and Nolan Wallach
for their interest and many useful discussions and communications.

1. Preliminaries on non-degenerate representations. Let G be a split
reductive algebraic group over R. Fix a maximal split torus T of G over R. We
use B to denote a fixed Borel subgroup of G containing T. Put U for its
unipotent radical. Let g be the Lie algebra of G. We use lt(g) to denote the
complex universal enveloping algebra of g.

We write i? = M0AU, the Langlands' decomposition of B with T = M0A. Let
a be the Lie algebras of A. By assumption on G, it is also the Lie algebra of T.

Let \p denote the set of roots of g with respect to a. We use A,\p + , and \p~ for

simple, positive and negative roots, respectively. We have

NL? g

with root spaces ga.
For a E vp, we define Ha by

a(H)=K(H,Ha) V//E[a,a],

where K denotes the Killing form on [g, g] and

2a
a = (a, a) '

Let W be the Weyl group of G. For every a E *// let wa E W be the
corresponding reflection. Put w7 for the longest element of W. W acts on T in
usual manner.

Let K be a maximal compact subgroup of G relative to T, so that G = KB. We
shall use the same notation for the corresponding groups of R-rational points.

We use Mo to denote the group of (unitary) characters of Mo. We put ag for
the complex dual of a. Then one-dimensional representations of B, trivial on U,
are of the form ye", 17 E Mo and v E a£ where ev is defined by

Here log : A -> a is the inverse of the exponential map exp :a->A.
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Using the notation of [12], given w in W let:

S(w) = [v G a£ | Re(v(Ha)) > 0, Va G A(w)}, where

A(w) = (a G \p+ | w(a) G i | / " j .

We denote the principal series representation Ind^^Tje" of G by /(*>, 17),
j> G a£ and 17 G Mo . More precisely, this is the left regular representation of G on
the Hilbert space V(v, 17) of the complex functions f on G satisfying

(1) f(xmoau) = 7](mQl)e~(v+()Hloga)f(x) for all a G A, m0GM0, u G £/,
x G G, and

(2) fK\f(k)\2dk < 00.
Now, let 77 be a continuous representation of G on a Frechet space K. Denote

by (^oo, ^oo) the corresponding differentiable representation of G on the space
of differentiable vectors of V. Then g and consequently U(g) will act on the
space VK of /f-finite vectors of V^, and VK is dense in Vr

00 when it is equipped
with the relative topology induced from the Schwartz topology of C°°(G, V).
Consequently Viy.r])^ and V{v,y\)K will denote the smooth and AT-finite
functions in V(v, 17), respectively. From now on, we shall equip V^ with the
relative Schwartz topology, With this topology V^ is a Frechet space.

We call a character x of U non-degenerate if its restriction to every non-trivial
subgroup Uw, Uw = wUw~l O U9 w G W, is non-trivial. Clearly x = IlaeAXa^
where each x« is a non-trivial character of Ua. Here Ua denotes the connected
subgroup of U whose Lie algebra is ga . Throughout this paper, we shall fix a
non-degenerate character x of U.

Now, let (77, V) be a continuous representation of G as before. We shall call
(77, V) a non-degenerate representation if there exists a continuous linear
functional X on V^ such that:

When 77 is irreducible and unitary, it follows from [15] that X is unique. More
precisely, if V* denotes the space of continuous linear functionals on V^
satisfying (1.1), then DimcK* < 1. Such functionals are called Whittaker
functionals.

Now, let P D B be a parabolic subgroup of G. Put TV for its unipotent radical.
Fix a Levi component M for P with M D T. We have P = MN. Let 77 be a
continuous representation of M on a Frechet space V. By restriction x can be
considered as a non-degenerate character of MOB. Let (/, W) be the
continuously induced representation IndPTC777. We have the following result
from [5] (see also section 5.2 in [9]).

THEOREM 1.1. Let (77, V) and (/, W) be as above; then:

W* < DimcK*
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COROLLARY. Let (/, W) be a principal series representation of G; then:

DimcW* < 1.

In fact we have:

PROPOSITION 1.1. Let /(*>, 17) be a principal series representation of G with
v E S(w^). Then l(y,r\) is non-degenerate and a Whittaker functional for / ( P , TJ) is
given by

\(f)=fuf(uw!)X(u)du / e Viv,^. (1.2)

Proof. In fact the integral in the right hand side of (1.2) converges absolutely
whenever Re(V(//a)) > 0 for all a E \p*, and defines a nonzero continuous linear
functional on V^yV)^ satisfying (1.1). More precisely, K(TJ, V)^ is generated by
the functions/^, <J> E C™(G), defined by

= ff ] ( o ) ( g o ) o (1.3)
MOXAXU

Since Bw^ is open in G, one may choose <f> with support in BWfU such that
KU) =£ 0- A l s o P u t T(<t>) = A(/</)). Then T is a distribution on G (cf. [12]), and it
satisfies the same invariance properties as those in the proof of theorem 1.3 (cf.
[13]). It follows from the uniqueness of such distributions that X is continuous.
This completes the proposition.

Now, let GD be the derived group of G. Denote by GD the simply connected
covering of GD. There exists a homomorphism a from GD onto GD which is an
isomorphism on U. For a function/in V(v, 17), we define a function / b y :

Then/belongs to a principal series representation of GD. Let X be the Whittaker
functional for this principal series representation of GD defined by (1.2) (we
assume that v E S(wl)). Clearly X(f) = A(/), / E V(y,r\)^, where A denotes the
Whittaker functional for G again defined by (1.2). Put XK = X \ V(y, -q)K.
Applying Jacquet's results [3] to GD, one may extend XK to an entire function for
all values of v Ea£. The purpose of the next several sections is to extend
Jacquet's result to X. More precisely, we shall prove that, as a function of v, the
functional X defined by (1.2) can be continued to a holomorphic function on a£.

2. Whittaker functional for the principal series. In this section we shall
assume that G is semi-simple and simply connected. We fix <J> in CC°°(G) and
define:

= f ) ( o y ^ { g o ) o (2.1)
MOXA x u
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Then/^ E V{v,r()^. Now put:

w+( £> v^)= J U( gww7, v, i?)x(w) du. (2.2)

The integral converges absolutely for v E S(w/). Furthermore:

HU)'^(e,p,r,). (2.3)

We shall prove

THEOREM 2.1. F/x <£> E CC°°(G); /few W^g,?,!}) extends to an entire function
of v on &Q.

Now put \{v,i]) for the Whittaker functional A defined by (1.2). As a
consequence of theorem 2.1 we shall also prove

THEOREM 2.2. Suppose G is split and reductive. Then the analytic continuation
of A(J>, 7]) defines a Whittaker functional for each I(v, 17), where v E a£ and
r jEMo.

The proof of theorem 2.1 follows the same line as that of theorem 3.4 of [3]
which proves the same result for the AT-finite functions. Consequently it is long
and we shall do it in several steps. This is done in the next several sections.

2.1. The case G = SL2(R). Suppose that G = SL2(R). Choose </> in
C c°°(G/t/)andput:

For pGS(wt) define W^g.v^) using (2.2). Let V=wf~lUwr Then for
v E S(wl) we have

\v97ji) = f
MOXAXV

where xXv)= x(wivwi *) ̂ s a non-degenerate character of V. As in [12],
changing a to a1, we have

/N L/

where we again assume v E 5f(w/).
Let us assume that TJ = 1, and consequently consider

M0 XAXV
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Now changing v to ava~l, we have

W+{wr\v, 1) = 2fe2p(loga) da (<^{ava)^{ava~x)dv

+ 2 f ^(loga) da[<^>{-ava)x'(ava~l)dv.
JA Jyy

Further, consider

^ ( w ; - 1 , ^ 1) = JV'<to**> daf<f>(ava)x'(ava-l)dv. (2.1.1)

Now, put

0 /

Then

where

Again we assume that v E S(wl) to justify our computation. It is a result of G.
Schiffmann [12] that W^(g,v, 1), and consequently W^g, J>, TJ) extend to entire
functions of v on a£.

Now, put v = a + ip and fix a real number m > 0. We shall prove the
following proposition which is an analogue of lemma 1.11 of [3].

PROPOSITION 2.1.1. The function W^{g, v, r\) vanishes uniformly as \ (i\ -> + oo
for \a\ < m.

As we observed we may study W^(w{~l,v9 1) defined by (2.1.1). We need the
following result from [12].

PROPOSITION 2.1.2. (G. Schiffmann). Let f be the function defined by (2.1.2).
Then f is a continuous function of compact support in [0, + oo). Furthermore, given
any positive integer n, there exists a constant Mn > 0 such that

1/(01 < K'2n-
Now, put:

fa(t)=t2j(t) \a\<m.
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Then lim,_^0 fa(t) = 0, and/ a G L\R). Changing / to ex
9 we have:

W'+{wr\v, 1) = f + ™fa{x)e2*xdx

A

where /a denotes formally the Fourier transform of fa.
We need
LEMMA 2.1.1. For \a\ < m, the family {fa}a is uniformly equicontinuous.

Proof. fa has support inside the support of / . First let t -> 0. We may assume
0 < |/| < 1. Fix n0 > m, an integer; then by proposition 2.1.2 we have

Now given € > 0, take 8 = (e/Mrto)1/2(Wo~m) > 0. Hence for |f| < 8, we have
l/«(0l < € which implies that/ a is equicontinuous at 0.

Now let t0 7̂  0 be arbitrary in the support of/. Fix y > 0 such that /0 E [y,^4],
where A > 0 is so that support of / is contained in [0,A]-

Given €r > 0, there exists a step function se,(t) such that

Now consider the continuous map g

g : [y,A] x[-m,m]->C

defined by g(t,a)=t2a. Put C = [y,A]x[-m,m], and set B = sup(l a)ec

|f(/,o)|.Then:

\t2J(t)-t2%(t)\<€'B tG[y,A],

and

From uniform continuity of g we conclude that there exists 8 > 0 such that

l '2\ '(0 - '2o\'{'o)\ < e'M<o)l

for |; - ro| < 5. Now, set M = sup,g [ v A] | / (0 | , and e = e'(25 + M). Then

for \t — to\ < 8. Consequently fa(t) is equicontinuous everywhere. The uniform
equicontinuity follows from the compactness of the support of / . The lemma is
now complete.
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Proof of proposition 2.1.1. It can be shown that

where (R-v/pfa){i) = fa(t - IT/(5) and || ||j denotes the L'-norm. By lemma
2.1.1., given e > 0, there exists 0 < 8{t) < A such that

e

for every s and t in the support of/with \s — t\ < 8(e). Then

77\\fa-R-,/fif«\U= f^
•' — oo

< ( 3 ^ ) ~ 1 - € - ( 2 ^ +

< €

for |w//} | < S(c) and the proposition follows.
Now, put:

where

T)(m) = sgn(m)€ € = 0, 1.

Also for a Schwartz function </>, put:

Then from [16] we have:

L^(f], 1 — v) = 7(17, ̂ )L^(T|, J'),

where

, , , L{% 1 - v)

with €(17, V) = /€.
We need the following lemma

LEMMA 2.1.2. Let a and b be two positive real numbers, 0 < a < b. Then T(s)
vanishes uniformly for Re(s) E [a, b] as |Im(s)| approaches + oo.

Proof. This follows from the formula
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COROLLARY 2.1.1. Fix g E G; then

vanishes uniformly for Re(*>) E [a, b], a > — 1, as |Im(^)| approaches + oo.

Proof |L(rj, 1 + v)\ = 77-1/2(€ + R e ( y ) ) | r ( l /2(€ + v + 1))|, and the corollary
follows from proposition 2.1.1 and lemma 2.1.2.

2.2. Intertwining operators. Suppose now that G is of arbitrary rank. Let
fv E V(y,r\)^. Fix w E W and suppose that v E S(w). As in [12], define:

f
where Vw = V D w lUw. The integral converges absolutely since v E S(w) and
defines an intertwining operator between /(TJ, p)^ and /(w(*>), H^TJ))^ (cf. [12]).

Let us first recall certain results from [12]. Put:

1
= Tjv) fv

where

with va = v(Ha) and

as before.
Now put w = wa, a E A. Then in the proof of lemma 2.1 of [12], Schiffmann

has shown that:

with

• + 00

and

Here </>„ is a function satisfying

LEMMA 2.2.1. (G. Schiffmann). The function <j>v has the following properties:

(a) 4>,wC°°.
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(b) For every integer n > 0, the function (dn/dtn)<f>v(g, t) is a continuous
function of (*>, g, /) which is analytic with respect to v.

(c) Given £2 a compact subset of G, and fi' a compact subset of a£, there exists a
continuous semi-norm n on V(v, 17)̂  which depends only on Q, and fl' such that:

for \t\ > 1, g G a, and v G S2r.
(d) Given fi and QI as above and a non-negative integer n, there exists a

continuous semi-norm \in on V(y, 17)̂  which depends only on fi, fi' such that:

/or |;| < 1, g G Q, awrf ^ E a \

Let 7]a = r] I Ma . Write f]a(ma) = sgn(ma)
c«. We now prove

P R O P O S I T I O N 2.2.1. (a) Suppose c a = l ; then for every even non-negative
integer r:

( ) ( g , 0 ) = 0. (2.2.2)

(b) Suppose €a = 0; then (2.2.2) holds for every odd positive integer r.

Proof The possible poles of

r(O<Ws)
are provided by •/„"(#) which has the following Taylor expansion (cf. [12])

Ti

Now, let T(6D,7)a,pa) be the operator defined by Jacquet in corollary 1.10 of
[3], where ^ is a representation of K. Let °v and °v be two vectors in the space of
^ and its contragredient, respectively, and define the following function in

% ^ (2.2.4)

where g = kgmgagug and °v satisfies:

m<EM0
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We need the following lemma from [13]:

LEMMA 2.2.2. Suppose fv is defined by (2.2.4). Then for Re(>a) > 0:

( ^ 0 ^ T ( ^ ' ^ ' O V t 5 > . (2.2.5)

where Va = Vw .

Let us substitute the value of y(rja, Pa) and use (2.2.1). Then the left hand side
of (2.2.5) is equal to

Now suppose that in the expansion (2.2.3) n is so chosen that Re(*>a) > — n; then
the poles will appear only at va = 0, — 1, . . . , — (n — 1) (cf. [12]). Suppose
Re(*>a) < 0. Then L(T]a, 1 — va) has no pole and no zero. It has been proved by
H. Jacquet [3] that the right hand side of (2.2.5) is analytic for Re(j>a) < 1.
Consequently the poles of «/„"(#) must be among those of L(rja,va), or equally
those of r(l/2(j>a + ea)). Hence when ea = 0, there should be no pole for odd
negative va and consequently (2.2.2) holds for odd positive integers. The case of
ea = 1 follows in the same way. This proves the proposition for the AT-finite
function. Now, suppose that/,, is any function in V(p,r])O0. Choose a sequence
{fv)n °f ^-finite functions in V{v,if])K approaching to fv in the semi-norms
topology. By part (d) of lemma 2.2.1, there exists a semi-norm \xr such that:

for g and v in the compact subsets of G and a£, respectively, and |/| < 1. Now, if
/„"->/„ then (dr/dtr)(f>v

n(g, t)->(dr/dtr)<t>v(g,t) for \t\ < 1, and the proposition
follows for every/, in V(y,r\)^.

COROLLARY. Let G be a split, semi-simple, and simply connected real algebraic
group. Fix w E W and write w = wa , . . . , wa , at E A in the reduced form. De-
fine A(v,i),w) as before, and put vx = v, v^x = wav

j\ 771 = 17, -qj\ 771 = 17, -qJ+l

aj = 1, . , . , m. Write ^ (m a . ) = sgn(w^)^, ma, E M^€a. = 0, 1, j = 1, . . . , m;
then

(a) Suppose ea = 1, j = 1, . . . , m, and vj{Ha), j = 1, . . . , m, are non-positive
even integers', then A(v, 17, w) has no pole.

(b) Suppose €a = 0,j = 1, . . . , m, and vJ(Ha),j = 1, . . . , m\ are odd negative
integers; then A (v, TJ, W) has no pole.

2.3 Analytic continuation of Whittaker functions. Let <J> be in CC°°(G) and fix
v E ct£ and TJ E MO. Define/^ by (2.1) and fix g E G. The restriction of L -if^ to
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Ga (the subgroup whose Lie algebra is generated by ga , g_a , and a) is a member
Of H>«,'na)oo- L e t V E S(Wa) a n d PU t

W^(e,va9na) = f U(gv)X'(v)dv. (2.3.1)

Fix a real number 0 < b < 1 and let fi' be a compact subset of a£ such that
|Re(Ol < * f°r all i> E ft'.

We need the following lemma which is the analogue of part (iii) of lemma 3.2
of [3].

LEMMA 2.3.1. Fix 0 < b < 1 and ft' as before; then there exists a constant
B^W) > 0 such that

^ (2.3.2)

for all v E &', where c(va) is a continuous function of va for |Re(pa)| < b and

fVb(kmQau) = e" ( p

Proof. The function

is analytic on the strip |Re(^a)| < b < 1, and furthermore by corollary 2.1.1
vanishes uniformly as |Im(j>a)|-> 4- oo. Therefore we may apply the maximal
principle to conclude that for |Re(pa)| < b

+ O r - sup |^(e,^,T,a)-L(ifa,l + O| (2.3.3)
|Re(Ol = ̂

Here v is a fixed element of 0,' and the sup is being taken over the set:

{ * / E a £ | ^ = ^ for jSEA, j 8 * a , | R e ( O | = ft}.

Now we shall compute the right hand side of (2.3.3).
Suppose first that Re(j>a) = b. Then from (2.3.1), it follows that:

(2-3-4)
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where

(2.3.5)

and

fVb(kmoau)= e -

Let us now introduce some notation from [12]. Given a compact subset £2 of
G, a compact subset fi' of a£, and a distribution X on G with support at the
origin, we define

Here we have identified the universal enveloping algebra with the algebra of
distribution with support at the origin so that the topology of these semi-norms
is the same as the Schwartz topology of K(J>, TJ)^ explained in section 1. This
justifies the indices in (2.3.5) where we have eliminated {v}.

Now, set

A '("> I* wa) =

and suppose Re(^a) < 0. T a k e / E K ^ T J ) ^ ; then:

J
is absolutely convergent and defines a holomorphic function of v. More
precisely, this follows from proposition 2.2.1 which states that A'iy^^^j is
holomorphic whenever Re(*>a) < 0. We need the following lemma.

LEMMA 2.3.2. Suppose that Re(fa) < 0. Then'.

Wu{e9va^a) = [ A'(v,ri9wa)Mgv)x!(v)dv. (2.3.6)

Proof. Put

f
Then the map /»—>Wf is continuous. Choose a sequence {/„}„ with
/„ G F(^, vi)K so t h a t / = limn /n . Consequently limrt Wf = Wj. Using Jacquet's
functional equation (cf. [3]) together with lemma 2.2.2, we conclude that:
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Hence the map/i—>W, is also continuous fo r / E V(y, v\)K. Consequently:

Wf = lim Wf = lim Wf = Wf
J n in n in i

for a l l / E V(y,r\)^. This completes the lemma.

Remark (1). The left hand side of (2.3.6) is defined by analytic continuation.

Remark (2). We have used Wfg{e, va, -qa) to denote W^g(e, va, TJJ.
Now suppose Re(j>a) = — b. Using (2.3.6) we have:

I W^{e, va, u,)| < \L(Va, 1 - , o ) | • ^ \%{gv)\ do, (2.3.7)

where $^ is defined by

which itself is holomorphic for Re(^a) < 0 by proposition 2.2.1 and its corollary.
From (2.3.7) we conclude:

(2.3.8)

Now, set:

«•(*,". i?) = %(g) • M v ! + "«)• M v i -"«); (2-3-9)

then we have

LEMMA 2.3.3. Suppose Re(pa) = — b and let <j> and fi' be as before. Then there
exists a continuous semi-norm \i depending only upon £2' and b such that:

sup \B^g, v,7))\ < IT
g€EK

for all v E £2', where

/Ae corresponding normalizing factor for A (v, TJ, wa).

Prao/. Using (2.2.1) and (2.2.3), (2.3.9) can be written as

- ( 2 3 J 2 )
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Now by lemma 2.2.1, we have the following inequalities.

with g e K, v G Q', and |/| > 1, where C is a constant depending only upon
Re(j>a) = — b and J2' (cf. the proof of lemma 2.2.1). Also there are constants
at > 0, depending only upon Re(fa), and distributions Xt with support at the
origin such that

(2-3-14)

for g E K, v E £2', and |;| < 1.
Let us now compute \B^(g9v,yf)\ by means of (2.3,12), (2.3.13), and (2.3.14);

then

a , 1 - va) • c

where we are assuming that Re(pa) = — b > — 1, g E AT, and *> G S2'. Observe
that we are considering the case €a = 1 which implies <$>v(g, 0) = 0 by proposition
2.2.1. The other case can be treated the same way.

Now for each distribution X with support at the origin, choose a function
<t>x G CC°°(G) such that

Then clearly:

\x%(g)\<\U(g)\>

where/^ G K(Re(», 1)^ is defined by

4 (g) = f * * ( £ » V « / y Re<">+p>(loga) dm0 da du.

Consequently

f *

sup vK#j (f+) < VK&,\U*K )
(va)= -b

(2.3.16)

Now as |Im(*>a)| -> + oo, Re(^a) = — b and v is fixed in B', the coefficients:
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and

- va)

will approach to zero, while the terms cttvKQI x{f^) and C • vKn, x(f^) remain
bounded by (2.3.16). Consequently there are constants bj>0 and another
compact set fl" of a£, depending upon £2' and b, such that

sup

Now put:

M = 2

to complete lemma 2.3.3.

Proof of lemma 2.3.1. For Re(fa) = 6, it follows from (2.3.4) and (2.3.16) that
for v E fir

ea)) • Pw

where </>, G CC°°(G) and satisfies |<J>| < </>,.
Suppose now that Re(^a) = -b; then using (2.3.8) and lemma 2.3.3, we

conclude that for v G 0'

sup

sup

Now set

and

- f fPb(gv)dv

to conclude lemma 2.3.1.
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Now choose <}> G CC°°(G) and define/^ G K(p, *))<»' Suppose v G S(w,). Then
the integral:

f
is absolutely convergent and defines a function Wf£g,v,i\\ analytic in
v G S(w{), Here K is wl~

lUwl and xX^) = xCw/tW/" *)•
As before put:

for a G A. We have:

PROPOSITION 2.3.1. Fix <j> G CC°°(G) awrf rfe/im? /^ G ^(^,7])^ a.s Z?e/bre; then
Wj(g,v,r]) extends to a holomorphic function of v on the convex hull of
S(Wj) U ^aS(wl). Furthermore it satisfies

LEMMA 2.3.4. Suppose v G waS(w^. Then

Proof This may be proved the same way as lemma 3.2, but this time we have
to use proposition 3.3 of [3].

Proof of proposition 23 A. Suppose first that v G waS(wD. Then A'{y, TJ, wa) is
holomorphic, and therefore by lemma 2.3.4 WAg,v,vi) is also analytic. Now
suppose v G ̂ (w/). Then

wd g>"' V) = //(gv)x'(v) ^ (2.3.18)

Let Ve be the subgroup of B generated by# = i//~ - { - a } . Then (2.3.18) can
be written as

wdg'"'-n)~f f

- f "W*' ̂ ' ̂ )x'(^) *•• (2-3-19)
AW the compulations are justified since v G S(w7). Now fix a real number b,
0 < b < 1. Let v° be in the convex hull of S ^ ) U wa5'(w/) with Re(*£) = 0.
Choose a compact neighborhood Q' of *>° in the convex hull of 5(w/) U waS(wl)
with |Re(ya)| < Z? for all v G fi'. Then by lemma 2.3.1 there exists B^f) > 0 such
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that:

f (2.3.20)

for all v G Q'.
Using (2.3.20), (2.3.19) implies that for v G £2'

As v varies over a', ^ ranges over a compact subset of S(wl) and the last
integral converges uniformly. Consequently (2.3.19) converges uniformly for
v G a and defines Wr(g,v, rj) as a holomorphic function of v in a neighborhood
of v°. This completes the proposition.

Remark. This is the substitute of proposition 3.3 of [3].

Proof of theorem 2.1. The proof follows exactly the same method as that of
theorem 3.4 of [3]. Clearly:

For q > 0, let B be the union of all wS(wl), w G W, with l(w) < q9 and the
common walls between them of the type

For every a G A, J^ has an analytic continuation to S(wl), waS(wl), and Stt by
proposition 2.3.1. Put

Then (~}aAa = S^w^ which is connected. Consequently Wj extends to a
holomorphic function oi v on Bx. The proof is now an induction on q. As we
just observed it is true for q = 1. Now suppose W, has an analytic extension to
B . Following [3], we shall show that it extends to an analytic function on
Bq U waBq for every a G A.

Suppose v<EwaBr but v £ Bq. By (3.4.8) of [3], and proposition 2.2.1,
A\v,TJ,W) is holomorphic. Define:

Now by induction hypothesis \p(v) is holomorphic for v G waB , but v & B .
Furthermore by proposition 2.3.1.,
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v&Aa. Consequently \p(v) defines an analytic continuation of ^ to a
holomorphic function of v on B U waB .

From (3.4.7.1) of [3], it follows that Bq U waBq and Bq U wfiB , a j 6 A , have
a connected intersection. Thus Wj extends to an analytic function on the union
of all BqU waBq, a G A.

Now, an application of Hartog's theorem shows that Wf extends to an
analytic function on the convex hull of this union which contains B +l by (3.4.6)
of [3]. This completes the induction.

Let m be the maximum length of the elements of W, i.e. m = l(w{). Then Bm

contains {JwG\vw^(wi)' Again an application of Hartog's theorem extends Wj
to the convex hull of Uw£wM;^(H7) which is a j . This completes the theorem.

Proof of theorem 2.2. We only have to show that the extension of A(p, TJ) by
means of theorem 2.1. is continuous for all v &a£. For v GS^vv,), the closure of
S(w/), this follows from proposition 1.1 and the fact that the pointwise limit of
distributions is again a distribution. For other values of v, the theorem is a
consequence of the functional equation (2.3.17) which now holds for all v G a£,
lemma 2.2.1, lemma 3.4.2 of [3], and the same statement for v ES(wl).

COROLLARY. Let (/, W) be a principal series representation of G; then:

Remark. This has also been proved by a completely different approach by B.
Kostant [7].

3. Whittaker functionate for non-degenerate representations. In this section,
we shall make certain observations concerning the Whittaker functional of
certain non-degenerate representations, and prove a result on non-degeneracy of
the representations induced from such representations (cf. [11] for /?-adic
groups). Throughout this section, we shall make the following assumption on G
(except at the end of this section).

Let gc be the complexification of g. Denote by Gc a complex connected group
containing G whose Lie algebra is g c . Let Ad(Gc) be the corresponding adjoint
group, and set Q = ad(g). Put

Then as a Lie group, GQ = exp(g0) is the identity component of GMax, and
GMax = FGQ, where F is the set of all a G exp(ad a c) such that a2 = Id (cf. [7]).

Now let Z(G) be the center of G. We shall assume G a Z(G) X GMax. This
includes GLn(R) and ?GLn(R), but, for example, not SL2(R).

Let u denote the Lie algebra of U. We fix a non-singular homomorphism ju, of
Lie algebras from u into C (cf. [7]). As before, we put U(g) - U(GC).
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Definition. A M{a)-module V is said to be {algebraically) non-degenerate, if
there exists a linear function A E F ' {algebraic dual of V) such that

X ' \ = IL{X)\ V l G u .

Now, from the results of B. Kostant [7] and D. Vogan [17], it follows that for
every J> E ct£ and every 77 E Mo, V{v, 7))K has a unique non-degenerate
subquotient which is a subrepresentation if v ES{Wf) (the closure of the positive
Weyl Chamber). We denote this subrepresentation by F£. NOW, let \{p,r)) be
the Whittaker functional defined by theorem 2.2. Define a Lie algebra
homomorphism jit from u to C by exp(/x(Ar)) = x(exP(^))> X E u.

Let B{v,T)) be the intertwining map v->wv between V{p,'q)0O and its
Whittaker model (cf. Introduction). Then using /A, B{v,ri) and consequently
\{v, 7]) do not vanish on ¥%. Let V^ be the closure of V% in V(p, TJ)^. Then
K^V) I V*L i s a Whittaker functional for K^. If we denote by 5° the map

then by a result of W. Casselman and N. Wallach, 5° is continuous with respect
to the Schwartz topologies on V{pyt\)^ and V{wlp9wti\)OQ, and consequently

Fix J ' G Q J , I) E Mo, and w G W. Write w = wa . . . wrt , a, E A, as in the
corollary of proposition 2.1.1. Define

where ^ = vJ{Ha). Now set

When w = w/? it follows from lemma 2.2.1 of this paper and lemma 3.4.2 of [3]
that A\wtv, Wj-q, w7) is holomorphic whenever v GS{wj). Now write

= WX®W2

with Wx indecomposable and

where we still use S° for its restriction to Wx. Let A' denote the restriction of
'̂(w/JSWfTj,H>/) to Wx. Then, by Jacquet's functional equation A'^0. The

following proposition is a simple consequence of the uniqueness of the
non-degenerate quotient.
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PROPOSITION 3.1. Let v GS(wl). Then the image ofA' in V(v,if))K is V%, and
furthermore every intertwining operator whose image is Fj£, is in fact only a
multiple of A'. In particular we may assume 8° = Ar.

COROLLARY 3.1. The image of the operator Af in V{y,rx\)K, v GS(Wl), is
irreducible.

Now, let 77 be a non-degenerate irreducible admissible representation of G on
a Frechet space V. Then VK is algebraically non-degenerate. By Casselman's
subrepresentation theorem (cf. [1,9, 18]) and [8], choose v Ea£ and ?j G Mo such
that

and

V{wv, WT])K—> VK

for some w e W. Observe that we may actually assume v E5r(w/).
Let us call m a fine representation if every infinitesimal imbedding 8' of IT into

a principal series extends to a bicontinuous isomorphism 8': V^ s V^.

Remark. When the group G = GLrt(R) or GLW(C), then it is a result of W.
Casselman and N. Wallach that every irreducible unitary representation of G is
fine.

Suppose now that TT is fine. Then, the imbedding 8' of VK inside V(y, r\)K

induces an isomorphism 8': V^ s V^, and consequently Dimc V* = 1.
Furthermore, we may normalize a Whittaker functional A on TT such that

\K - 8 = A(WJ>, W7))K; or by Jacquet's functional equation and proposition 3.1

\K = \(p,v)K-8'. (3.1)

Finally, suppose G is any split reductive group. Let P be a parabolic subgroup
of G containing B. We fix a Levi factor M with M D T. Write P = MN. We
assume M ss Z(M) X MMax. Let TT be a non-degenerate irreducible admissible
fine representation of Af on a Frechet space. Then

PROPOSITION 3.2. The continuously induced representation \rvdP^G7T is
non-degenerate.

Proof. Let IM{V,T]) be a principal series representation of M such that

where w^denotes the longest element of the Weyl group of (M, 71), p e5'(w /
0),

and i] G Mo. By theorem 1.1, we may assume VM(w?v9 w®7))K is indecomposable.
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Then, the map EM is in fact AM(w®v, wfa, w,0). Now, by inducing in stages,

PtG

and

where

We need

LEMMA 3.1. a' • (8M) • a ~' = A'(w>, wfo, w,0).

Proof. Let « : / - > / ; then / ( g ) = /(g)(e). Put 0 = a "». Then Ind(8M)(/)( g)
= «*(/($)) for/ £ Indn c IM{wX wfv)x- Now, take/= p{f); then

) ) = SM ( ^ ( / )(g)). (3.2)

But for J- £ S(w?) and w G M

«" ( )8 ( / ) (g) ) (^ ) = YM? (^fj , w » f / ( gmuwf) du.

Set y = Ind(SM) • /?; then by (3.2) we have

and the lemma follows by analytic continuation.

Proof of proposition 3.2. Let 8'M be the original imbedding of VK in
VM{v,ri)K, and put 9 = Ind(S^). Suppose Indp^Qir^ is degenerate. Then
\ ( ^ ,T ) ) • 0 vanishes on Ind/,tG7700. Finally, using Jacquet's functional equation

\{wy wfo) = \(v9 T))A'(w?r, w,V w7
0) = X(y, r?) • 0 = 0.

which is a contradiction.

COROLLARY 3.2. A Whittaker functional Xfor Ind^^Tr^ is given by
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Appendix. Quasi-split groups. In what follows, we shall explain how to
extend the results of section 2, to certain quasi-split reductive real algebraic
groups. Since the other results explained in section 3 are already true for such
groups, this will extend the results of this paper to these groups. Observe that the
results of section 3 only hold for certain quasi-split groups, namely when
G = Z(G) X GMax. Therefore let us still resume this assumption.

This extension follows the same lines as in section 2, but we have to limit
ourselves only to the results of [12]. In fact, we shall prove all the results that we
need from [3] for this larger class of groups. This is done by means of the results
of [12].

We make the assumption that for any root a, 2a is not a root. Using the
previous notation, the torus M0A is no longer necessarily split. For the sake of
simplicity we also assume TJ = 1, -q E Mo. First observe that all the results proved
in 2.1 hold for any group of rank one.

Now, let v E a£ and fix an irreducible unitary representation a of AT on the
Hilbert space Ha. Denote by P(o), the projection operator on the subspace of
the vectors v E Ha satisfying

o(m)v = v mE. Mo.

Consider the function fva on G defined by

For w E W and v E S(w), put

where v = kvavuv. Then proposition 3.2 of [12] implies that for v E S(w)

where $VtOfW is the measure defined in paragraph 1.8 of [12]. Now, we define a
Whittaker function of type o by

Suppose first that G has real rank 1. Then for v not a nonpositive integer,
theorem 3.3 of [12] implies

Wo(g, wv, 1)7>, a, w) = Wa(g, r, l)x'(*,,o. *)• (A.I)

Here w denotes the non-trivial element of W and x'O^.ow) ' s ^ e Fourier
transform of $Vy(J>w with respect to x'« Let t) denote the Lie algebra of K= Kw.
Put D = exp(y) with Y E t). Observe that we are assuming that V is abelian.
Suppose that

X'(exp(r)) = e - 2 ^ ( r )
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with 9 Et)*, the real dual of t). Now, let

where p = p = dim F. Observe that when the dimension of V is one,
Y1(l,^) = y{\,v) defined in 2.1. Let || || denote the Euclidean norm in b*; we
prove

LEMMA A.I. Assume \\9\\ = 1; then x '(*w w) = VP0> ̂ ) - 1

. By (3.4.2) of [12]

where || || also denotes the Euclidean norm in t). Then

But

<)2 J

where i = e-41oga. Thus

1 f

p-,))J0r(i/2(p-,))J0

where all the computations are justified for Re(p) >0. By assumption \\9\\ = 1,
and consequently

"olv) r(l/2(p - v))p - v)) Jo

and the lemma follows.
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Remark. In the case of split groups this is just lemma 2.2.2.
Let e and e' be two vectors in Ha. Define a function in V(y, X)K by

e | o(k)P{v)e'),

where ( | ) denotes the inner product in H. Then

A (j% TJ, W)Jee'v = JeyT(v,o,w)e',wvi

which is an element of V(wv, \)K. Consequently (A.I) implies

x'(Ka,wWf(g, v, 1) = WA(pXw)f(g, w, 1) (A.2)

for every/ E V(y> X)K. Now set

same notation as in the split case. Then lemma A. 1 and relation (A.2) imply

Wf(g,v,l)-WA.lrthw)f(g,wp,l) (A3)

first for/ E V(v, \)K and then by continuity for all / E V(v, 1)^.

LEMMA A.2. Suppose Re(j>) < 0; then A'{v, 1, w) is holomorphic.

iVw/. Suppose Re(j>) < 0. By a new form of proposition 3.1, the image of
A'(v,\,w) is non-degenerate and furthermore the Whittaker integrals on
I(wv, 1)^ do not vanish on this image. Now the lemma follows from the
holomorphicity of WAg, v, 1) for all v ECIQ and the relation (A.3).

Now suppose G is of arbitrary rank. Lemma 2.3.2 and consequently lemma
2.3.1 are now immediate, using the same methods as in section 2. We also
observe that the corollary to proposition 2.2.1 holds for such groups.

The proof of lemma 2.3.4 is not of any more difficulty. In fact, for v E waS(w)

\v,r,, wa)Ugv)X'(v)dv (</> G Cr(G)) (A.4)

is holomorphic (after lemma A.2). Also when v is close to the wall between S(w{)
and waS(wl)9 the proof of the second part of proposition 2.3.1, shows that
Wj{g,v,y\) is holomorphic in a small neighborhood of v. The equality of
^/(g'*' '1?) a n d (A.4) in this neighborhood follows from lemma 2.3.2. It clearly
extends to the whole >va5(w/) by analyticity of (A.4). Now proposition 2.3.1, and
consequently theorems 2.1 and 2.2 follow immediately.
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