Automorphic L-Functions: A Survey

F. SHAHIDI

The purpose of this article is to report on the progress made on
analytic properties of automorphic L-functions after Corvallis. The
reader who is interested in the work done before that should consult
[2], [6], [15], [16], [21], and [26]. For more details and references
we refer the reader to the recent book of Gelbart and Shahidi [21].
We finally refer to [17] and [39] for two recent expository articles
on the subject. I would like to thank Jean-Pierre Serre for several
comments towards the precision of this article. We start with the
following conjecture of Langlands.

1. The conjecture. In this section our main reference is Borel’s
lectures in Corvallis [6].

1.1 Local Langlands L-Functions. Let F' be a non-archimedean
local field. Denote by O its ring of integers and let P be its maximal
ideal. We use ¢ to denote the number of elements in the residue field
O/P. If ¢ is a non-trivial (additive) character of F', we shall say ¢ is
unramified if O is the largest ideal of F' on which v is trivial.

Let G be a connected reductive algebraic group over F. In this
section we shall assume that G is unramified. This means that G is
quasi-split to split over an unramified extension L of F. Let LG be
the L-group of G (cf. [6] and [36]) and denote by LGP its connected
component. For our purposes we may assume ‘G = IG® x I';, /F>
where I' ;) is the Galois group of L over F. Let 7 be the Frobenius
conjugacy class of I'r/p. Since G is unramified we can talk of G(O)
and take it as a hyperspecial maximal compact subgroup K of G =
G(F). Let 7 be an irreducible admissible K-unramified representation
of G. This simply means that there exists a vector in the space of =
fixed by K. As it is explained in Sections 6 and 7 of [6], to every such
7, Satake isomorphism attaches a unique LGP-semisimple conjugacy
class Ax 7in LGO x 7.

By a representation r of G, we shall mean a continuous homo-
morphism from LG into some GL y(C) whose restriction to £GP is a
complex analytic map. Let 7 denote the contragredient of r.
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Fix a complex number s and set
(1.1) L(s,m,r) =det(I —r(AxT1)g~%)7},

where I = I,,. This is the local Langlands L-function attached to =
and r.

1.2. Langlands’ conjecture on automorphic L-functions. In
this section we let F be an A-field, i.e. either a number field or a
function field of one variable over a finite field. Denote by A its ring
of adeles. We shall always fix a non-trivial character 9 of F'\ Ap.
Let G be a connected reductive algebraic group over F. Let 7 =
®m, be an automorphic form on G = G(Af). We refer to [7] for its

precise definition.
Let LG and LG, denote L-groups of G and G >I~<“ F, (G as a group

over F,), respectively. Then there exists a natural homomorphism
Nv : LG, = LG. Let r be a representation of LG as defined in 1.1.
Then each r, = r - 7, is one of LG,,.

For almost all the places v of F, G >1§ F, is unramified and =, is

unramified with respect to G(O,,). We always use S to denote a finite
set of places of F', including all the archimedean ones, such that for
every v € S, G x F,, 7, and 9, ¥ = @, are all unramified.

F v

Given a set S as above and a representation r of LG, let

(1.2) Ls(s,m,r) = [ L(s,u,70),
vgS

where the factors on the right are defined as in 1.1. As explained in
Theorem 13.2 of [6], given 7 and r, the Euler product (1.2) converges
absolutely for Re(s) sufficiently large and therefore defines a non-
zero analytic function of s in that region. Langlands’ conjecture on
automorphic L-functions can then be stated as follows [36]:

CoNJECTURE (LANGLANDS). For every v € S, it is possible to define
a local L-function L(s,m,,r,), inverse of a polynomial in ¢;*, and a
local root number &(s,m,,Ty,%,), a monomial in q;*, in such a way
that

(1.3) L(s,m,r)= HL(s,wv,rv)
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extends to a meromorphic function of s on C with only a finite number
of poles if F' is number field, and a rational function of ¢%, if F is a
function field whose field of constants has q elements, satisfying

(1.4) L(s,m,r) =¢(s,m,r)L(1 — s,7,T),
where

(1.5) e(s,m,r) = Hs(s,wv,rv,d)v),

with €(s, Ty, Ty, ¥y) = 1 if v is unramified, in particular ifv & S.

In what follows we shall explain the progress made on the conjecture
since Corvallis.

2. Rankin-Selberg L-functions. These L-functions generalize
those of Rankin [55] and Selberg [57]. They have been studied by
Jacquet, Piatetski-Shapiro, and Shalika in a series of papers, but un-
fortunately their complete results have yet to appear.

2.1. The L-functions. Here G = GL(n) x GL(m), where m and
n are two positive integers. We may take LG = GL,(C) x GL,(C).
The representation r is equal to r = p, ® pm, where p, and p,, are
standard representations of GL,(C) and GL,(C), respectively. Let
™ = ®m, and 7' = @, be cusp forms on GL,(Ar) and GL,,(AF),
respe::]tively. The hgmomorphism Ny of 1.2 is the identity. If v is
unramified, we set

L(s, Ty X 7";) = L(S, (7!',,, 77:;), Pn ® pm),
where the L-function on the right is as in 1.1. Then
L(s,m, X 7)) = H (1- ai,va;,qu_")_l,

1<i<n
15i3<m

where A, = {diag(a1,4,...,0n)} and A;, = {diag(c] ,,..., 00, ,)}
are the semisimple conjugacy classes attached to 7, and wj(cf. 1.1),
respectively. With notation as in 1.2, we let

Ls(s,mx ') = HL(S,TK‘U X ).
vgS

This is the partial Rankin-Selberg L-function attached to 7, 7/, and S.
For m = n = 2, they were studied by Jacquet who generalized results
of Rankin [55] and Selberg [57]. On the other hand, if m = 1, they
are the principal L-functions of Godement and Jacquet (cf. [26]).



418 F. SHAHIDI

2.2. The results. The results can be stated as follows:
a) The partial L-function Lg(s,m x w') converges absolutely for
Re(s) > 1 ([29)).
b) Ls(s,m x n’) extends to a meromorphic function of s on C ([34]).
c¢) For m # n, Lg(s,m x n') is holomorphic on Re(s) > 1 ([29,30]).
d) Assume m = n. Let

X ={s€C|Re(s) =1,0* ' @r =7}

Then Ls(s,m x 7’) has a pole at so with Re(sg) = 1 if and only if
so € X. This pole is simple [30]. Here o = |det( )|

e) For Re(s) = 1, Ls(s, nx7") # 0 ([59], also Theorem 3.2.3 below).

f) If v < oo, the L-function L(s, 7, X n,) and the root number
(s, Ty X 7, 1),) are defined in [28].

g) If v =00, let ¢, : W, = GL,(C) X GL,(C) be the homomor-
phism attached to m, ® 7/, by local class field theory [6,37], where W,
is the Weil group W (F, /F,). Denote by L(s,r-¢,) and &(s,7-9y, ¥y),
the Artin L-function and root number attached to r - ¢, [69], where
T = pn & pm. We then set

L(s,m, x ) = L(s,7 - )

and
e(s, Ty X T, y) = (8,7 + Yo, Py).
h) Let
L(s,mx7') = HL(s, Ty X )
and

5(3,7!' X 7!") = HE(S, Ty X 71':), d)v),
where the factors are defined as in f) and g). Then
L(s,m x ') = e(s,m x ') L(1 — 5,7 x 7).

This is proved by combining the results in [59], [60], and [62].

i) The L-function L(s,n x 7') is expected to be entire unless m = n
and ™ ® a® & 7/ for some s in which case poles are simple. More
precisely L(s, 7 X m) is expected to have simple poles at s = 0,1.
A very recent preprint of Waldspurger [71] seems to have answered
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this question also positively and therefore the theory must now be
complete (cf. [41]).

All the results are proved completely for number fields. Parts a, c,
and d are also stated for function fields [29, 30]. Immediate extensions
of all other parts to function fields are expected, but have never been
stated anywhere.

2.3. Applications.

2.3.1. Classification of automorphic forms for GL(n). Let G =
GL.(AF). Fixacuspformo =01Q---®0y of M = GL,,(Af) x--- X
GL. (Af),r1 + -+ 1y =, where M is considered as the standard
Levi subgroup of the standard parabolic subgroup P = MN of G.
Let £ = ®€, be the representation

£ =Ind(G,P,0®1).

Similarly assume @ is another standard parabolic subgroup of G and
T a cusp form on its standard Levi subgroup. Set

n=Ihd(G,Q,7®1).

We choose a finite set .S of places of F' such that for v € S, o, and
Ty are both unramified. Then £, and 7, have the same unramified
components if and only if (o, P) and (7,Q) are conjugate , i.e. up
to a permutation they are equivalent. This is proved in [30] and is
a consequence of 2.2.a, 2.2.c, 2.2.d, and 2.2.e. When M = G this is
called the Strong Multiplicity one Theorem. A stronger version of this
case is proved in [42].

2.3.2. Converse theorem. As explained in paragraph 14.6 of [6],
it is expected that the analytic properties of these L-functions would
lead to existence of automorphic forms on GL,.(Af). But unfortu-
nately the only published version of this is still [27].

2.3.3. Applications in Base change for GL(n). Almost all the
results in 2.2 are used by Arthur and Clozel in [3] to establish base
change for forms on GL(n).

3. Langlands’ Euler products method. In a series of lectures
in 1967, Langlands expressed constant terms of Eisenstein series on
certain split algebraic groups as ratios of products of certain auto-
morphic L-functions. From this he deduced the meromorphy of these
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L-functions in a number of cases on the whole complex plane. This
also gave him the most substantial evidence for his conjecture of Sec-
tion 1.2. These lectures were later published as a book titled “Euler
Products” [34]. Langlands’ method was later pursued by Shahidi (cf.
[59, 60, 63, 65], for example) who generalized and established further
properties of these L-functions for the so called “generic” representa-
tions. The recent preprint of Waldspurger [71] must shed new lights
on the whole theory, since in the case of GL(IN) it combines the results
of this method with certain results of Jacquet, Piatetski-Shapiro, and
Shalika to prove the holomorphy of Rankin-Selberg L-functions (cf.
Section 2) for all s # 0,1 (cf. §2.2.1); thus avoiding deeper analysis of
the local integral representations of Jacquet, Piatetski-Shapiro, and
Shalika for these L-functions.

3.1. The set up. Let H be a quasi-split connected reductive alge-
braic group over a number field F. Fix a Borel subgroup B = TU
of H and let P = MN be a standard maximal parabolic (U D N)
subgroup of M. Let LM be the L-group of M and denote by n the
Lie algebra of the L-group N of N. If r denotes the adjoint action

m . .

of LM on Ln, we write r = @ r; for its decomposition to irreducible
=1

components.

It is the group M and the representations r; for which the conjecture
can be addressed. To be in accordance with our general notation from
now on we shall use G instead of M. Let Ar denote the ring of adeles
of F. For every group L over F' we use L to denote L(Af). Fix a
character x = ®x, of U(F) \ U. We shall assume Y is generic. This

simply means that the restriction of x to every simple root group is
non-trivial. Let U? = UN G. We again use x to denote x|U°.
Let 7 = ®m, be a cuspidal representation of G. We shall say 7 is

v
globally x-generic if there exists a cusp form ¢ in the space of m such
that

o(ug)x(u)du # 0
Uo(F)\U°

for some g € G.
Fix a non-trivial character ¥ = @1, of F \ Ar. Then there is a

natural generic character xo of U(F)\ U defined by . Changing the
splitting on G we may assume that = is yo-generic. Otherwise said,
we can find a cusp form in the L-packet of 7, generic with respect
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to xo. Observe that x = xo - Ad(a), where a € Ao(F) with Ad(a)
defined over F. Here A is the maximal split torus of .

3.2. The results. The theory of local coefficients as developed in
[59], [60], [63], and [65] leads to a number of general and deep results
both in the theory of automorphic forms and representations of p-adic
groups. We shall now state some of these results.

In what follows generic always means globally generic, and changing
the splitting we may always assume that our representation is Xo-
generic. The following theorem is Theorem 3.5 of [65].

THEOREM 3.2.1. ([59, 60, 63, 65]) Assume  is xo-generic. Then
each Ls(s,m,r;) converges absolutely for Re(s) > 2 and extends to
a meromorphic function of s on C (Theorem 5.1 of [63] and Remark
12.4 of [65]). Moreover for each i, 1 < i < m, and each v € S, there
exists a complex function 7;(s, Ty,,) (which is a rational function of
g, %,v < ), satisfying the following properties:

a) If v = oo or m, has a Iwahori fixed vector (in particular if T,
has a vector fixed by a special maximal compact subgroup) and ¢/, :
Wp — LG is the homomorphism of the Deligne-Weil group attached
to m,, then

71'(33 7rva¢v) = E(S, Tiv:* 90:;1 ¢v)L(1 =S, Fi,v ) (P;)/L(S’ Tiw: ‘p;)a
where L(s,r;,-¢,) and €(s, 7 - ¢, ¥,) are the Artin L-function and
root number attached to r; ,, - ¢!, (cf. [69]).

b) For eachi,1 < i< m,

Ls(s,m,r:) = [[7i(s, ®o, o) Ls(1 = 5,7, 73)
vES

c) The factors -y; are defined locally for every quasi-split local group,
a Levi factor of it, and an irreducible admissible xo-generic represen-
tation o of this Levi factor. They satisfy

7i('$v aa¢)7i(1 - S,G,E) = 17

where Xy is defined by means of .
d) Together with an inductive property, the conditions a) and b)
determine +;’s uniquely.

The functional equation in part b) is a consequence of Theorem 4.1
of [59] and the inductive results of [63] and [65]. The fact that the
local factors v;(s, 7y, %) at the archimedean places are Artin factors
is the main result (Theorem 3.1) of [60].
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THEOREM 3.2.2. ([63], [65]) Assume 7 is xo-generic. Then for every
v & S, every local L-function L(s, m,,r; ) is holomorphic if Re(s) > 1,
1<i<m.

THEOREM 3.2.3. (Theorem 5.1 of [59]) Assume 7 is xo-generic. Then

m
HLs(l, T, 7‘,') 7é 0.
i=1

Lists of all the possible (H, G, r;) are given in [34] and [63]. They
include all the cases known by other methods. Examples will be
given in the next several sections. We conclude this section with the
following:

THEOREM 3.2.4. (Theorem 6.1 of [63]) Assume m = 1 or 2 and
moreover if m = 2, assume ry is one dimensional. Suppose T is Xo-
generic. Then for each v € S, a local L-function L(s,m,,r1,,) can be
defined in such a way that

(s,m,71) HL Sy TyyT1,0)

extends to a meromorphic function of s € C with possibly only a finite
number of poles, satisfying a functional equation. The factors at the
archimedean places are Artin factors (cf. Theorem 3.2.1.a)

COROLLARY. With assumptions as in Theorem 3.2.4, let S be a finite
set of places of F, including all the ramified and archimedean ones,
such that if v € s is ramified, then S contains all other places which lie
over the same rational prime as v does. Then the partial L-function
Ls(s,m, 1) extends to a meromorphic function of s with possibly only
a finite number of poles on all of C.

3.3. Examples of Theorem 3.2.4. In all the following examples,
besides Theorems 3.2.1-3.2.3, Theorem 3.2.4 applies and consequently
the finiteness of poles on all of C also follows.

3.3.1. Rankin triple products. (Corollary 6.9 of [63]). Let H =
Spin(4,4) and take G = GL; x SLy x SLy. Fix a cusp form 7 =
7y X T3 X w3 on GLy(AF) X SLay(Ap) X SLy(AfF). Assume v & S,
A(Wl,v) = diag(al,v,a2,v)> and A(ﬂ'?.,v) = diag(ﬂl,mﬂ&v), A(”B,v) =
diag(v1,v,72,v), both modulo the center of GL2(C). Then

(3.3.1.1) L(s,my,r1) = J] (1 - 0cinBinrewas®)™"
1,5,k=1,2
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This is the first and only example of a triple Rankin product L-
function of automorphic forms available at present. An integral repre-
sentation for this L-function has been obtained by Garrett [13]. Using
group representations this has also been treated by Piatetski-Shapiro
and Rallis in [49]. We shall discuss these in Section 6 below.

3.3.2. Twisted triple products. (Cases Dy — 1 and 6Dy — 1 of
[63]). Here H is the quasi-split orthogonal group of type D4 de-
fined by a separable extension E of degree 3 over F'. We can take
G such that there exists a surjection G —2» Resg/p PGLy — 0.
The representation r; - £p is an irreducible 8-dimensional represen-
tation of SLy(C) x SL2(C) x SLy(C) ¥ gy and L(s, 7y, 71,,) gen-
eralizes the Asai’s L-function (cf. [4,23]). If v € S is inert, and
A(my,) = (diag(ay, a3t), Iz, I5), then

(3.3.2.1) L(s,my,71,0)

= (1= apgy®) T (1 = 05 g7*) M1 — gy ) THL — a5 g ) T

According as E/F is normal or not, this is the case 3Dy —1 or 6Dy —1
of [63]. Again we refer to [13] and [49] for an integral representation.

3.3.3. Second symmetric or exterior power L-functions for
GL,.

Using the cases (viii) and (iv) of [34], one can show that the results
of the previous section all hold for Lg(s, m,r), where 7 is a cusp form
on GL,(AF) and r is either the symmetric or exterior square of the
standard representation of GL,(C). They are also subject of a work in
progress of Jacquet and Shalika, and Bump and Friedberg [9]. Finally
when n = 3, we refer to [46] (cf. Section 7.1 for an application).

3.3.4. Exterior cube L-function for GLg. Let H be the simply
connected split group of type Eg. There is a parabolic subgroup whose
Levi factor G is isomorphic to (GL; x SLg)/{£1}. Let my be a cusp
form on GL¢(AF) with central character w. Then we use 7 to denote
any irreducible component of w® ® (7|SL¢(AF)). It is a cusp form on
G. If A3pg denotes the exterior cube of the standard representation
of GLg(C) (this is a 20-dimensional irreducible representation), then
forvgs$S ‘

L(s,my,r1) = L(s, 70,0, /\3p6).
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In fact if A(m,,) = diag(a1,v,...,6,), then

6
L(s7 T0,vs /\3/’6) = H (1 - ai,vaj,vak,vQJs)_l'

i#j.k

i#k

i,j,k=1
Now all the results of the previous section apply to Ls(s,mo, A3ps).
This is example (x) of [34] (cf. Corollary 6.8 of [63] for PG Lg).

We should remark that in all these cases there is no restriction

on the form since all the cusp forms on the group GL, are globally
generic [66] (with respect to any character).

3.4. Applications. The results of Section 3.2 can be used to com-
pute Plancherel measures for quasi-split group [59, 65]. In particular,
it leads to a proof of a conjecture of Langlands [35] on Plancherel
measures [62], [64], [65]. Such results can be used to obtain deep
results on non-supercuspidal tempered spectrum of many quasi-split
groups (cf. [64] and [65], for example).

4. Symmetric power L-functions for GL,. Let 7 = ®m, be a

v
cusp form on GLy(Afr). Then for v ¢ S, A(m,) = diag(oy,By) €
GL,(C). Given a positive integer m, let r,, denote the m-th sym-
metric power of the standard representation of GLy(C). This is an
(m + 1)-dimensional irreducible representation. Then, for v ¢ S

L(S,"rv,rm) = H (1 - aijyﬁ::n_jq;s)_l'

0<j<m

The L-functions Lg(s,,r,,) are quite important. They, basically,
comprise all the automorphic L-functions for GL,. Besides:

a) Assume that for every m € Zt, Lg(s,m,ry) is absolutely con-
vergent for Re(s) > 1. Then in [36], Langlands showed that for every
v & S, |ay] = |By] = 1. This is the Ramanujan-Petersson’s con-
jecture for 7. One of the deepest and most difficult conjectures in
number theory, whose proof in the case of holomorphic forms is due
to Deligne [10]. For non-holomorphic forms the problem is still open
(cf. 4.1.3 below), except for those forms which correspond to Galois
representations (cf. the remark after Theorem 10.1 of [72]).

b) Assume a) and in addition that for every m € Z*, the L-function
Ls(s,m, ) is non-zero and holomorphic for Re(s) = 1. Then Sato-
Tate’s conjecture is valid [58]. It is a result of K. Murty [44] that if one
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knows the holomorphy for all m, then one has the non-vanishing for
all m, and therefore the conjecture follows only from the holomorphy
of all of these L-functions for Re(s) > 1.

4.1. Results. Except for Murty’s result mentioned above, there
are no general results known about these L-functions. All that we
know is for m < 5 which we shall now explain. We shall leave out
the classical case m = 1 for which the conjecture is known following
Hecke, Jacquet-Langlands, and Weil.

4.1.1. The case m = 2. This is the only non-classical case which we
know the conjecture for L(s,7,r,,) (cf. (1.3)). In fact it was proved
by Shimura [68] that if 7 comes from a classical modular form, then
L(s, m,ry) is entire unless there exists a non-trivial quadratic character
n of Q* \Ab such that # ® n = 7, i.e. w is monomial. This was later
extended to cusp forms on any GL,(AF) by Gelbart and Jacquet [18],
where F' is a A-field.

4.1.2. Gelbart-Jacquet lift. Using the results of [18], it is now
a simple application of the converse theorem for GL3 (cf. [27]) that
given a cusp form 7 on GLy(AF), there exists an automorphic repre-
sentation IT on GL3(AF) such that

L(s,lIQ w) = L(s,m,r3),

where the L-function on the left is the standard L-function of II @ w
(cf. [26]) and w is the central character of m. The representation II
is cuspidal unless T @ n & 7 with 7 as in 4.1.1. The representation
IT is what we call the Gelbart-Jacquet lift of m. We refer to [11] for a
different approach using the trace formula.

4.1.3. Best estimates for Fourier coefficients. Now assume 7 =
®7, is a non-monomial (cf. 4.1.1) cusp form on GLy(Af). (For

t1i1e monomial cusp forms the Ramanujan-Petersson’s conjecture is
automatically valid.) For v ¢ S, let A(7,) = diag(a,,3,) € GL,(C).
Then using Gelbart-Jacquet lift II of 7, it can be shown that

g1 < |ay| < ¢35

and
Qv—l/s < I:Bvl < q11;/5,

(cf. 4.a above). When F = Q and in the form p~1/5 < |o,| < p!/5,
this was first proved by Serre in a letter to Deshouillers, but was
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never published. Published versions of the proof can be found in [43]
and [45]. Unfortunately their proofs make use of certain unpublished
results of Jacquet, Piatetski-Shapiro, and Shalika on Rankin-Selberg
L-functions (cf. Section 2, here). It was precisely for this reason that
Serre never published his proof.

In general (i.e. for GLy(Af) with F any number field) and with
strict inequality, this is basically Corollary 5.5 of [63]. Its proof is
complete and requires no unpublished results.

At the archimedean places, the best results are due to Gelbart-
Jacquet [18] and Iwaniec [25]. We refer to [63] and [40] for estimates
for other groups. 7

4.1.4. The case m = 3. This is one of the cases of Theorem 3.2.4
(observed by Langlands in [34]) which when mixed with the results
of 4.1.2 and 2.2 leads to a functional equation with Artin L-functions
at every place of F. Moreover, it can be shown that under a non-
vanishing hypothesis for Jacquet-Langlands L-function L(s,7) on an
interval parallel to [1/2,1) (parallel to (1/2,1) if w is on PGL2(AF)),
L(s,w,r3) is entire [64]. The fact that L(s,n,r3) # 0 for Re(s) > 1 s
basically proved in [59] (cf. Theorem 3.2.3).

4.1.5. The cases m = 4 and 5. Both L-functions extend to mero-
morphic functions of s on C, each satisfying a functional equation
(Theorem 3.2.1). Moreover, it is proved in [59], that for Re(s) = 1,
the L-function Lg(s,m,r4) is non-zero. When m = 5, it is proved
in [64], that Lg(s,m,75) # 0 for Re(s) = 1, except possibly for a
simple zero at s = 1. As it is explained in [64], even this leads to
non-trivial results in the direction of Sato-Tate’s conjecture for holo-
morphic forms (cf. 4.b). This is due to Serre.

5. The work of Piatetski-Shapiro and Rallis. In around 1980,
Waldspuger [70], using an ingenious method, described the Shimura
correspondence [67] between automorphic forms on SL2(AF), the two
fold metaplectic covering of SL2(AF), and PGLy(AF) (a dual reduc-
tive pair; cf. [24]), by means of integration against the restriction of
a theta function on a bigger group to SLy x PGL,. This idea was
later generalized by Rallis [54], who, using a result of Kudla [33] and
the Siegel-Weil formula expressed the norm of the corresponding lift
Fy as an integral of an Eisenstein series on a bigger group against the
product of f by itself (cf. [21], Section III.1.1 for more detail). These
are the type of integrals which appear in the work of Piatetski-Shapiro
and Rallis which we shall now explain.
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5.1. The set up. Let G be a connected reductive algebraic group
over F' whose center C is anisotropic, i.e. C(F') \ C(AFr) is compact.
Assume there exists another reductive group H over F' in which Gx G
can be embedded. Let G? be the image of G under the diagonal
embedding of G in H. Fix a parabolic subgroup P of H. Then
G x G actson P\ H = X. An orbit X’ C X of G x G is called
negligible if the stabilizer R* C G x G of a point 2’ € X’ contains
the unipotent radical of a proper parabolic subgroup of G x G. Let
zo € X correspond to the coset P-e and denote by X its G x G-orbit.
This is called the main orbit. Then the stabilizer Ry of ¢ in G X G is
PN (G x G). We shall now assume that the following two conditions
are satisfied:

a) Ro=GY and

b) every X' # X, is negligible.

If s is a complex number, there is a natural character w, of P(F')\
P(AFr) which is trivial on G¢(Af). Fix a function f in the space of

Ind ws. We then let:
P(AF)TH(AF)

Ews, fih)= > f(yh),

7EP(F)\H(F)

where h € H(AF).

Let m be an irreducible cuspidal representation of G = G(AF).
Choose a pair of cusp forms ¢; and ¢, in the spaces of 7 and its
contragredient, respectively. Consider

(511) Z(ws,$01’9027f)

_ / 01(91)92(92) Ews, , (91, 92))dg1dga.
G(F)xG(F)\GxG

It is easy to see that under assumptions a) and b) above,

(5.1.2) Z(ws, 1,92, f) = /f(g,l) < m(g)p1, P2 > dg,
G

where (g,1) is considered as an element of H by the embedding of
G x G into H. Choosing ¢; and ¢, appropriately, we may assume
(5.1.2) is Eulerian. Replacing E by the normalized E*( cf. [47])
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which has only a finite number of poles (this is accomplished if one
multiplies E by a product of abelian L-functions which eliminates
the infinitely many unwanted poles of E), we shall see that (5.1.1)
provides us with an integral representation for certain automorphic
L-functions. This would then lead to a proof of the finiteness of poles
for these L-functions (since E* has only a finite number of poles). We
should remark that this may be considered as a generalization of the
work of Godement and Jacquet on principal L-functions [26].

5.2. The results. [47, 48, 50] Choosing H appropriately, (5.1.1)
will provide us with an integral representation for L(s,m,r), where 7
is a cusp form on Ap-points of either of the groups G = Spa,, Oy,
or U,, and r is the standard representation of the corresponding L-
group “G. We should remark that the cusp forms no longer have to
be generic. As mentioned above, this proves the finiteness of poles for
each Ls(s,m,r) on C. The local factors at the ramified primes have
not yet been all defined and therefore the conjecture of 1.2 has not
yet been completely verified in these cases. We should remark that,
using classical methods for holomorphic forms, some of these results
have also been obtained by Andrianov [1], Gritsenko [22], as well as
Bécherer and Schulze-Pillot (cf. [5]). We finally refer the reader to [8]
for an integral representation for the L-function L(s,w,r) where 7 is
a globally generic cusp form on GSps(AF), trivial on the center, and
r is the irreducible eight dimensional representation of LG Spg (which
is isogenous to Spin(7,C)). This L-function can also be found by the
method of Chapter 3.

6. Rankin triple products. One of the striking developments in
the theory of automorphic L-functions in the past few years has been
the work of Paul Garrett [13] who has obtained an integral repre-
sentation for the Rankin triple product L-functions (cf. §3.3.1 here).
Even though many properties of these L-functions could already be
concluded from the results of Chapter 3, this was the first time that
an integral representation for these L-functions could be found, forty
eight years after Rankin’s work [55] on double L-functions. This was
later on generalized in [14] to include the twisted cases as well. After
his results were explained, it became clear that this is one of the cases
that can be obtained from the Piatetski-Shapiro-Rallis’ theory. This
was done in [49], generalizing the work of Garrett to non-holomorphic
forms. We shall now explain both works.

6.1. The work of Garrett [13]. Let @1, @2, and ¢3 be three
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holomorphic cusp forms on the upper half plane H. Denote by Hj3
the Siegel upper half space of degree 3. Then H x H x H can be
embedded in H3. Let E(z,s) be the abelian Eisenstein series on Hj.
Consider ‘

(6.1.1) / o1(21)p2(22)p3(23)E((21, 22, 23), $)dz1dz2d23.
HxHxH

Then in [13], Garrett shows that (6.1.1) is in fact Eulerian and if
E(z, s) is normalized (cf. Section 5.1) properly, the factors (for v ¢ S)
are equal to the Rankin triple product L(s,m; , X 72,4 X T3,5), Where
w1, m and w3(m; = <§)7r,-,v) are automorphic representations attached

to ¢1, 2, and 3, respectively. The L-function L(s, T, X T2,4 X T3 4)
is the L-function defined by the right hand side of (3.3.1.1). Even
though not proved in [13], this must at least lead to the finiteness of
poles on C for Ls(s,m X my X 73) (cf. Section 5.1).

6.2. The work of Piatetski-Shapiro and Rallis [49]. Let K be
a semi-simple abelian algebra of degree 3 over F'. Then either

(6.2.1) K=F@F®F,
(6.2.2) K=E®F, [E:F]=2, or
(6.2.3) K=K [K:F]=3.

Let V = K @ K and define an alternating form A on V by
Al(z,y), (@', )] = =y’ — 2'y,

where (z,y) and (2/,y’) are in V. Set A’ = trg pA. Then A’ is a
F-valued skew symmetric form on V and GS,(A’) = GSpe(F). The
group GLy(K) acts on V. Let GL2(K)° be the points of GLy(K)
which under this action belong to GS,(A’). Then, for example

GLy(K)" = {(91,92,95)l9: € GL2(F),det g1 = det g, = det gs}
if we are in case (6.2.1), while
GLy(K)° = {g € GLy(K)|det g € F*}

in case (6.2.3). Next, let P = MN be the parabolic subgroup of GSps
with M = GL3 x GL;. With notation as in Section 5.1, we choose f in
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the space of Ind ws and let E(ws, f,z),z € GSps(AF), be
P(AF)1GSps(AF)
the corresponding Eisenstein series. Finally let II be a cusp form on

the adelized version of GLy(K)® which we denote by GLy(K)°(AF).
Then IT = 7y X 7y x w3 with each =; a cusp form on GLy(AF) if we
are in case (6.2.1), while II is a cusp form on GLy(Ak) in the other
extreme. If Z' is the center of GSpg and ¢ is in the space of II, we
set

Z(s, 0, f) = / o(2)E(ws, p, z)dz.
Z'(AF)GL3(K)°\GL2(K)°(AF)

We are now in the situation of Section 5.1 and we must study the
right orbits of GLy(K)° in P(F) \ GSpe(F). Conditions a) and b)
of 5.1 are satisfied and Z(s,¢, f) becomes Eulerian. Normalizing
E(ws, f,z) appropriately then shows that for v € S the local fac-
tors are equal to L(s, 7,y X T2,y X T3,) in case (6.2.1) (cf. §3.3.1) and
are defined by

(1 - augy®)™ (1 = Bogy*) 1 (1 — @B2¢5°%) 1 (1 — @2B,g; %) 71,

if we are in case (6.2.3) and v is inert; as in §3.3.2. We refer the reader
to case (ii) in page 96 of [21] for the case (6.2.2) (cf. Corollary 6.9.b
of [63]). We finally remark that case (6.2.3) extends Asai’s result [4]
from quadratic to cubic extensions. The results are formulated as the
following theorem in [49]. Here we use Ls(s,II) to denote the product
of the local factors discussed above.

THEOREM 6.2. [49]. Under the assumption that F' is totally real
(and an assumption on the central character of I1), the partial L-
function Ls(s,II) can be extended to all the finite ramified primes in
such a way that the resulting L-function satisfies a functional equa-

tion. Moreover its possible poles are at s = 0, 41, %, and 1.
We remark that in view of Theorems 3.2.1 and 3.2.4 of Section 3
what is new and does not seem to follow from the method of Section

3 is the possible location of poles.

7. Rankin-Selberg type L-functions. Let G and G’ be two con-
nected reductive algebraic groups over a number field F. Then LG
and LG’ are naturally embedded in groups of type GLy(C) % 'z /F-
Let 7 and r’ be these embeddings. These are what we call the stan-
dard representations of ‘G and LG’. Fix two automorphic forms =
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and 7’ on G and G’. Let (m, 7’) be the form on G xG’. The L-function
Ls(s,(w,7"),r®7’) is usually called the Rankin-Selberg L-function for
the pair (7,7’). As in Section 2, we shall denote it by Ls(s,7 x 7).
When G = GL, and G’ = GL,,, these L-functions were discussed
in Section 2. This is the only case where the theory is now complete
(cf. the recent work of Waldspurger [71]). In every case known at
present, the second group is always a GL,.

7.1. The work of Gelbart and Piatetski-Shapiro [20]. We start
with the case G x GL,, where G = SO2,41. Then G has a subgroup
H isomorphic to SO3, and SO;, has a Levi subgroup isomorphic to
GL,. Let ' be a cusp form on GL,(AFr) and choose f in the space
of n’. There is an Eisenstein series defined by f which we denote by
E(s,f,h), h € H. Now let ¢ be a cusp form in the space of 7 and
consider

(7.1.1) Z(s,0,f) = / o(R)E(s, f, h)dh.
H(F)\H

The normalizing factor for E(s, f, h), (cf. 5.1), is now more delicate
and is the L-function Lg(2s,7’,A%p,), where A%p, is the exterior
square of the standard representation p, of GL,(C) (cf. §3.3.3).

Now, if 7 is also globally generic (7’ always is [66]), it can be
shown that Z(s, ¢, f) is Eulerian. Moreover if E is replaced by its
normalization, the local factors at v € S, are L(s,m, X ).

Using the finiteness of poles for Lg(2s,7’,A%p,) (cf. §3.3.3), it is
expected that (7.1.1) leads to a proof of the finiteness of poles for
Lg(s,m x 7).

Similar results are expected when G = SO, or Sps,. In the case
G = GSps and G’ = GL, these results are also obtained by Piatetski-
Shapiro and Soudry [52, 53]. Finally, we refer to [19], where G =
U(2,1) defined by a quadratic extension E of F, and G’ = Resg/r
GL, (cf. Sectin 8.1 below).

7.2. Examples from Euler products method. We refer to [34]
and [63] for many examples of Rankin products including every case
mentioned so far but:

7.3. The Case G2 xGL, [51]. Thisis a very new result just obtained
by Piatetski-Shapiro, Rallis, and Schiffman. In fact, using their theory
explained in Chapter 5, they have now been able to obtain an integral
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representation for Lg(s,m x 7’), where 7 is a globally generic cusp
form on adelic points of a split exceptional group of type G2, and
7' is an automorphic form on PGLy(Af). Taking 7' equal to the
trivial representation, this also gives the L-function attached to the
standard representation of Go. This is very striking since neither of
these L-functions can be obtained by any other method (also see 8.1
and 8.2 below).

8. Functoriality principle and L-functions. Going back to the
general conjecture, let G be as in Section 1. A representation r :
LG — GLN(C) is in fact a homomorphism from LG into LGLy and
therefore by Langlands’ Functoriality Principle [36, 39], there must
exist a map r, from the space of automorphic forms on G into those

on GLN(AF) such that
L(s,m,7) = L(s,r«(7), pn)

and

e(s,m,r) = €(s,r4(m), pn),
where the factors on the right are the standard L-function and root
number for r,(7) which is an automorphic form on GLy(AF) [26].
Since Conjecture 1.2 is in fact proved for the standard L-functions for

GLy, the conjecture for L(s,n,r) now follows. For briefness, we shall
restrict ourselves to only two cases of functoriality (also see 4.1.2).

8.1. The unitary group in 3-variables. In [56], Rogawski has
proved the existence of 8,, where

8:LU(2,1) = GL3(C) x Tg/r — (GL3(C) x GL3(C)) ¥ gy
= L(ReSE/FGL3),

sends g X 7 to (g,g) X 7. Now let r be a representation of (GL3(C) x
GL3(C)) % FE/F, then

(8.1.1) Ls(s,m,r-0) = Lg(s,0.(m),r).

Choosing r from the examples in [63] and using the theory of Section
3 must then lead to new L-functions for the unitary group U(2,1)
which can not be found by any other method.
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8.2. Base change for GL,. It is proved in [3] that if

9 :LtGL,
= GL,,(C) X FE/F — (GLn(C) X e X GLn(C)) b FE/F
= L(ReSE/FGLn)

sends (g,7) to (g,...,9) X 7, then 6, exists (cf. [12] and [38] for
n = 3 and 2, respectively). Here E/F is a cyclic extension. If r
is a representation of L(Resg /F GLy), then again (8.1.1) holds. It is
intriging to see what new L-functions can be obtained, if one combines
this with possibilities in [63].

9. Concluding remarks. It is clear that each of the methods dis-
cussed above has its advantages and limitations. While the method of
Section 3 is powerful in establishing the functional equation with Artin
factors at every place where the representation can be parametrized
(Theorem 3.2.1), and even a proof of the finiteness of poles in many
cases, it is the use of integral representations which has proved more
useful in locating the poles. On the other hand when it comes to
local analysis at the archimedean places, the method of integral rep-
resentations has often been very cumbersome and unsuccessful. It
may well turn out that, at least for those L-functions which appear
in the constant terms of Eisenstein series (cf. Chapter 3), the most
efficient way of obtaining complete results is in mixing the two meth-
ods. It is for this reason that the recent work of Waldspuger [71] on
GL(n) x GL(m) (cf. §2.2.2) must be considered a breakthrough.

As experience has shown [3, 56], the use of analytic properties of
those L-functions which appear in the constant terms of Eisenstein
series, if not absolutely necessary, has greatly simplified any use of the
trace formula in establishing the principle of functoriality. Whether
this is the extent of which the analytic properties of automorphic L-
functions can be used in establishing the principle of functoriality (cf.
Section 8) in general remains to be seen.

REFERENCES

1. A. Andrianov, Zeta-functions and the Siegel Modular forms, in “Lie Groups
and their Representations,” John Wiley and Sons, 1975.

2. J. Arthur, Automorphic Representations and Number Theory, in “Canadian
Mathematical Society Conference Proceedings,” Providence, RI, 1981, pp.
3-51.



434

3.

4.

5.

8.
9.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

F. SHAHIDI

J. Arthur and L. Clozel. Simnle Aloebhras, Base ('ha.n.ae and the Advanced

SALNAINLD QG Aie a0l WDRTTPRC ARGloTls, 5T

Theory of Trace Formula, in “Annals of Math. Studies, Vol. 120,” Princeton
University Press, Princeton, 1989.
T. Asai, On certain Dirichlet series associated with the Hilbert modular

forms and Rankin’s method, Math. Ann. 221 (1977), 81-94.

S. Bacherer, Uber die Funktionalgleichung automorpher L-funktionen zur
Siegelschen Modulgruppe, Journ fir die reine und angewandte Mathematik
362 (1985), 146-168.

. A. Borel, Automorphic L-functions, in “Proceedings of Symposia in Pure

Mathematics,” Vol. 33, Part 2, Amer. Math. Soc., Providence, RI, 1979,
27-61.

. A. Borel and H. Jacquet, Automorphic forms and automorphic representa-

tions, in “Proceedings of Symposia in Pure Math,” Vol. 33, Part 1, Amer.
Math. Soc., Providence, RI, 1979, 189-202.

D. Bump, Generic “Spin” L-functions on GSp(6), preprint, 1988..

D. Bump and S. Friedberg, The Exterior Square Automorphic L-functions

for GL(n), Preprint, 1987.

P. Deligne, “La Conjecture de Weil 1,” IHES, 1974, pp. 273-307.

Y. Flicker, The adjoint lifting from SL(2) to PGL(3); also Symmetric

uquulc, I quuuuuo and Ll:nbﬂ‘m, I n{l"‘"“"""“’" of a trace ,’"'m"l’l

“The Trace Formula and Base Change for GL(3),” Springer Lec-
ture Notes in Mathematics, Vol 927, Springer-Verlag, NY, 1982.

P. Garrett, Decomposition of Fisenstein series: Rankin triple products, An-

nals of Math.; 125 (1987), pp. 209-237.

Integral Representations of Certain L-funtions attached to 1, 2

and 8 Modular Forms, preprint, 1985, Univ. of Minnesota.

S. Gelbart, An elementary introduction to the Langlands program, Bulletin
(New Series) of the A.M.S. 10. No. 2, April 1984, 177-219.

—_, Automorphic Forms on Adele Groups, Annals of Mathematics
Studies, No. 83, Princeton University Press, 1975.

— ., Recent Results on Automorphic L-functions, in “Proceedings of
Symposia in honor of A. Selberg,” Oslo, 1987.

S. Gelbart and H. Jacquet, A relation between automorphic representations

of GL(2) and GL(3), Ann. Sci. Ecole Normale Sup., 4° série 11 (1978),
471-552.

S. Gelbart and I. Piatetski-Shapiro, Automorphic forms and L-functions for
the Unitary Group, in “Lie Group Representations II, Lecture Notes in Math-
ematics, Vol. 1041, Springer-Verlag, New York, 1984, pp. 141-184.

, L-functions for G x GL(n), in “Explicit Constructions
of Automorphic L-functions;” Lecture Notes in Mathematics, Vol 1254,
Springer-Verlag, New York, 1987.

S. Gelbart and F. Shahidi, Analytic properties of automorphic L-functions,

in “Perspectives in Mathematics,” Academic Press, 1988.

V. A. Gritsenko, Dirichlet series with Euler products in the theory of mod-

ular forms with respect to the orthogonal groups, in “Steklov Mathematical
Institute,” Leningrad, 1987.




23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

317.

38.

39.

40.

41.

42.

43.

44.

AUTOMORPHIC L-FUNCTIONS 435

G. Harder, R. P. Langlands and M. Rapoport, “Algebraische Zyklen auf
Hilbert-Blumenthal-Flaschen,” J. Reine Angew. Math. 366 (1986), pp.
53-120.

R. Howe, §-series and invariant theory, Proc. of Symp. in Pure Math., Vol
33, Part 1, A.M.S., Providence, 1979, 275-286.

H. Iwaniec, Small eigenvalues for congruence groups, preprint.

H. Jacquet, Principal L-functions of the linear group, in “Proceedings of
Symposia in Pure math,” Vol. 33, Part 2, Amer. Math. Soc., Providence,
RI, 1979, pp. 63-86.

H. Jacquet, I. Piatetski-Shapiro and J. Shalika, Automorphic Forms on
GL(3) II, Annals of Math. 109 (1979), pp. 213-258.

, Rankin-Selberg Convolutions, Amer. J. Math. 105

(1983), 367-464.

H. Jacquet and J. Shalika, On Euler Products and the Classification of
Automorphic Representations I, Amer. J. Math. 103, No. 8 (1981), pp.
499-558.

, On Euler Products and the Classification of Automor-

phic Representations II, Amer. J. Math. 103, No. 3 (1981), 777-815.

, A non-vanishing theorem for zeta-functions of GL,
Inventiones Math. 38 (1976), 1-16.

D. Keys and F. Shahidi, Artin L-functions and Normalization of Intertwin-

ing Opertors, Ann. Sci. Ecole Normale Sup., 4¢ Serie 21 (1988), 67-89.

S. Kudla, On certain Euler products for SU(2,1), Comp. Math. 42 (1981),
321-344.

R. P. Langlands, “Euler Products,” Yale University Press, James K. Whit-
more Lectures, 1967.

, On the functional equations satisfied by Eisenstein series,
Springer Lecture Notes in Mathematics, Vol. 544, 1976.

, Problems in the Theory of Automorphic Forms, in “Lec-
ture Notes in Mathematics, Vol. 170,” Springer-Verlag, New York, 1970, pp.
18-86.

, On the classification of irreducible representations of real
reductive groups, mimeographed notes, Institute for Advanced Study, 1973.
, Base Change for GL(2), Annals of Math. Studies, No. 96,
Princeton Univ. Press, 1980.

, Eisenstein Series, the Trace Formula, and the Modern
Theory of Automorphic Forms, in “Proceedings of the Symposia in honor of
A. Selberg,” Oslo, 1987 (to appear).

J.-S. Li, Kloosterman-Selberg zeta-functions on Complez hyperbolic spaces.
preprint.

C. Moeglin and J.-L. Waldspurger, Le spectre residuel de GL(n), preprint,
1988.

C. Moreno, An analytic proof of the Strong Multiplicity One Theorem, Amer.

J. Math. 107 (1985), 163-206.

C. J. Moreno and F. Shahidi, The L-functions L(s, Sym™(r),x), Canadian
Math. Bull. 28 (1985), 405-410.

K. Murty, On the Sato-Tate Conjecture, in “Number Theory related to Fer-
mat’s last theorem,” Birkhauser-Verlag, Boston, 1982, pp. 195-205.




436

45

46

47.

48.

49.

50.
51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66

F. SHAHIDI

. R. Murty, On the estimation of eigenvalues of Hecke operators, Rocky Mt.

J. Math., Straus-Smith Vol. 15 (1985), 521-533.
. S. J. Patterson and I. Piatetski-Shapiro, Symmetric square L-functions for
GL(3), preprint, 1987.
I. Piatetski-Shapiro and S. Rallis, L-functions for the Classical Groups,
notes prepared by J. Cogdell, in “Explicit Constructions of Automorphic
L-functions,” Lecture Notes in Mathematics, Vol. 1254, Springer-Verlag,
1987.
, €-factors of Representations of Classical Groups, Pro-
ceedings of the National Academy of Sciences, U.S.A. 83 (1986), 4589-4593.

, Rankin Thiple L-functions, Comp. Math. 64 (1987),
31-115.

, A new way to get Euler Products, preprint, Fall 1986.
I. Piatetski-Shapiro, S. Rallis, and G. Schiffman, L-functions for Gq,

preprint, 1988.

I. Piatetski-Shapiro and D. Soudry, L and e-functions for GSp(4) x GL(2),
Proc. Nat. Acad. Sci., U.S.A. 82 (1984), 3924-3927.

, Automorphic Forms on the Symplectic Groups of Order

four, preprint, Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette.
July 1983.

S. Rallis, “L-functions and the Oscillator Representations,” Lecture Notes
in Mathematics, Vol. 1245, Springer-Verlag, 1987.

R. Rankin, Contributions to the theory of Ramanujan’s function 7(n) and
similar arithmetical functions, I and II, Proc. Camb. Phil. Soc. 35 (1939),
351-356 and 357-372.

J. Rogawski, Automorphic Representations of Unitary Groups in three vars-

ables, Annals of Mathematics Studies, to appear.

A. Selberg, Bemerkungen tber eine Dirichletsche Reshe, die mit der Theo-

ric der Modulformen nahe verbunden ist, Arch. Math. Naturvid 43 (1940),
47-50.

J.-P. Serre, “Abelian f-adic Representations,” W. A. Benjamin, Inc., New
York, Amsterdam, 1968.

F. Shahidi, On Certain L-functions, Amer. J. Math. 103, No. 2 (1981),
297-355.

Local coefficients as Artin factors for real groups, Duke Math.
J. 52 (1985), 973-1007.
Local coefficients and normalization of intertuining operators
for GL(n), Comp. Math. 48 (1983), 271-295.
——, Fourier transforms of intertwining operators and Plancherel
measures for GL(n), Amer. J. Math. 106 (1984), 67-111.
—, On the Ramanujan Conjecture and Finiteness of Poles for Cer-
tain L-functions, Annals of Math. 127 (1988), 547-584.

, Third symmetric power L-functions for GL(2), Comp. Math., to

appear.

A proof of Langlands’ conjecture on Plancherel measures; Com-
plementary series for p-adic groups, Annals of Math., to appear.

. J. Shalika, The Multiplicity One theorem for GL(n), Annals of Math. 100
(1974), 171-193.




AUTOMORPHIC L-FUNCTIONS 437

67. G. Shimura, On modular forms of half-integral weight, Annals of Math. 97
(1973), 440-481.

68. ________, On the holomorphy of certain Dirichlet series, Proc. London
Math. Soc. 3 (1975), 79-98.

69. J. Tate, Number Theoretic Background, in “Proc. Symp. in Pure Math.,”
Vol 33, Part 2, Amer. Math. Soc., Providence, RI, 1979, pp. 3-26.

70. J.-L. Waldspurger, Correspondance de Shimura, J. Math. Pures Appl. 69
(1980), 1-133.

71. , Poles des fonctions L de paires pour GL(N), preprint,
1988.

72. D. Blasius and D. Ramakrishnan, Maass forms and Galois representations,
preprint, 1988.

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907.



