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F. SHAHIDI 

The purpose of this article is to report on the progress made on 
analytic properties of automorphic L-functions after Corvallis. The 
reader who is interested in the work done before that should consult 

PI, [61, M, [lfq, [211, and [26]. For more details and references 
we refer the reader to the recent book of Gelbart and Shah3 [Zl]. 
We finally refer to [17] and [N] for two recent expository articles 
on the subject. I would like to thank Jean-Pierre Serre for several 
comments towards the precision of this article. We start with the 
following conjecture of Langlands. 

1. The conjecture. In this section our main reference is Borel’s 
lectures in Corvallis [6]. 

1 .l Local Langlands L-Functions. Let F be a non-archimedean 
local field. Denote by 0 its ring of integers and let P be its maximal 
ideal. We use Q to denote the number of elements in the residue field 
O/P. If $J is a non-trivial (additive) character of F, we shall say $J is 
unramified if 0 is the largest ideal of F on which $J is trivial. 

Let G be a connected reductive algebraic group over F. In this 
section we shall assume that G is unramified. This means that G is 
quasi-split to split over an unramified extension L of F. Let LG be 
the L-group of G (cf. [6] and [36]) and denote by LG” its connected 
component. For our purposes we may assume LG = LG” >Q IY’L/F, 
where l?L/F is the Galois group of L over F. Let T be the fiobenius 
conjugacy class of I’L/F. Since G is unramified we can talk of G(0) 
and take it as a hyperspecial maximal compact subgroup K of G = 
G(F). Let x be an irreducible admissible K-unramified representation 
of G. This simply means that there exists a vector in the space of n 
fixed by K. As it is explained in Sections 6 and 7 of [6], to every such 
X, Satake isomorphism attaches a unique LG”-semisimple conjugacy 
class A M T in LG” >Q r 

By a representation ‘r of LG, we shall mean a continuous homo- 
morphism from LG into some GL&Z) whose restriction to LG” is a 
complex analytic map. Let 7 denote the contragredient of r. 
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Fix a complex number s and set 

(1 1) . L(s, ;TT, r) = det(l- r(A >Q ~)q-“)-~, 

where I = In. This is the local Langlands L-function attached to 7r 
and r. 

1.2. Langlands’ conjecture on automorphic L-functions. In 
this section we let F be an A-field, i.e. either a number field or a 
function field of one variable over a finite field. Denote by AF its ring 
of adeles. We shall always fix a non-trivial character q!~ of F \ Ap 

Let G be a connected reductive algebraic group over F. Let x = 
@n, be an automorphic form on G = G(AF). We refer to [7] for its 

irecise definition. 
8 Let ‘G and LG, denote L-groups of G and G x Fv (G as a group 

F 
over F,), respectively. Then there exists a natural homomorphism 

qv = L G -+ LG 
Then ealh r, 

. Let r‘ be a representation of LG as defined in 1.1. 
= r l  Q, is one of LGv. 

For almost all the places v of F, G x Fv is unramified and K, is 
F 

unramified with respect to G(O,). We always use S to denote a finite 
set of places of F, including all the archimedean ones, such that for 
every v 55 S, G x Fv, r,, and $+,, q!~ = @q!~,, are all unramifkd. 

F 

Given a set S as above and a represekation T of LG, let 

(12) . Ls(s, r, r) = rI ( L s, &.J, fv), 
vdcs 

where the factors on the right are defined as in 1.1. As explained in 
Theorem 13.2 of [6], g iven r and Y, the Euler product (1.2) converges 
absolutely for Re(s) sufficiently large and therefore defines a non- 
zero analytic function of s in that region. Langlands’ conjecture on 
automorphic L-functions can then be stated as follows [36]: 

CONJECTURE (LANGLANDS). For every v E S, it is possible to define 
a local L-function L( s, T,, r,), inverse of a polynomial in q,“, and a 
local root number E(S, ~,,r,,,&,), a monomial in qls, in such a way 
that 

(13) . L(s, 7T, r) = rI( L v-v,T,) 
V 
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extends to a meromorphic function of s on C with only a finite number 
of poles if F is number field, and a rational function of q-‘, if F is a 
function field whose field of constants has q elements, satisfying 

(14) . L(s, x,7-) = E(SJr,T-)L(l - s, qq, 

where 

with E(S, xv, r,, &,) = 1 if v is unramified, in particular if v $ S. 

In what follows we shall explain the progress made on the conjecture 
since Corvallis. 

2 Rankin-Selberg L-functions. These L-functions generalize 
those of Rankin [55] and Selberg [57]. They have been studied by 
Jacquet, Piatetski-Shapiro, and Shalika in a series of papers, but un- 
fortunately their complete results have yet to appear. 

2.1. The L-functions. Here G = GL(n) x GL(m), where m and 
rz are two positive integers. We may take LG = GL,(C) x GL,(43). 
The representation r is equal to T = pn @ pm, where pn and pm are 
standard representations of GL, (c> and GL, (C), respectively. Let 
7r = @n, and 7r’ = 8~: be cusp forms on GL,(Ap-) and GL,(A& 

respe:tively. The homomorphism qv of 1.2 is the identity. If v is 
unramified, we set 

qs, G x r:> = qs, (TV, r:>, pn (23 Pm), 

where the L-function on the right is as in 1.1. Then 

l<i<n 
‘1 cj srn 

where A, = { diag( cyr vY . . . 9 ~ln,~)} and AL = {diag(a’, vY . l  l  ) a’& v)} 
are the semisimple conjugacy classes attached to r, and rL(cf. i.l), 
respectively. With notation as in 1.2, we let 

L+, K x TV) = rlL(s,n, x K:). 

VP 

This is the partial Rankin-Selberg L-function attached to K, K’, and S. 
For m = n = 2, they were studied by Jacquet who generalized results 
of Rankin [55] and Selberg [57]. On the other hand, if m = 1, they 
are the principal L-functions of Godement and Jacquet (cf. [26]). 
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2.2. The results. The results can be stated as follows: 
a) The partial L-function Ls(s, K x r’) converges absolutely for 

Re(s) > 1 ([29]). 
b) Ls(s, 7r x n’) extends to a meromorphic function of s on C ([34]). 
c) For m # n, &(sq x nl) is holomorphic on Re(s) 2 1 ([29,30])- 

d) A ssume 772 = 72. Let 

X = {s E Cl Re(s) = l,d-’ @ x z G}a 

Then &(s, 7r x r’) has a pole at so with Re(so) = 1 if and only if 
SO E X. This pole is simple [3O]. Here CY = /det( )]. 

e) For Re(s) = 1, Ls(s, rxd) # 0 ([ES], also Theorem 3.2.3 below). 
f) If v < 00, the L-function L(s, K, x 7rk) and the root number 

E(S, r, x &$+,) are defined in [28]. 

d If V = 00, let ‘pV : JVV + G%,(C) x GL,(43) be the homomor- 
phism attached to q, 8 7rL by local class field theory [6,37], where T/T/, 
is the Weil group W(JQF,). D enote by L(s, P(P,) and E(S, rmcp,, q&J, 
the Artin C-function and root number attached to r l  ‘pV [69], where 
r = pn 8 pm. We then set 

L(S& x  7r:> = qs,  r l  cpv)  

and 

h) Let 

and 

L(~, r x d) = rpcs, Tv x T:) 
V 

E(S, 7r x r’) = HE(S, xv x ~.:,,~v), 
V 

where the factors are defined as in f) and g). Then 

L(s,n x 7r’) = E(SJr x 7r’)L(l- s,z x 2). 

This is proved by combining the results in [59], [60], and [62]. 
i) The L-function L(s, 7r x K’) is expected to be entire unless m = 72 

and 7r 8 CP E ? for some s in which case poles are simple. More 
precisely L(s, 7r x r) is expected to have simple poles at s = 0,l. 
A very recent preprint of Waldspurger [71] seems to have answered 
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this question also positively and therefore the theory must now be 
complete (cf. [41]). 

All the results are proved completely for number fields. Parts a, c, 
and d are also stated for function fields [29,30]. Immediate extensions 
of all other parts to function fields are expected, but have never been 
stated anywhere. 

2.3. Applications. 

2.3.1. Classification of automorphic forms for GIL(n). Let G = 
GL,(AF). Fixacuspforma=ar@-•@~,ofM=GL,,(AF)x-x 
GL,#F), ~1 + l  . l  + r, = r, where M is considered as the standard 
Levi subgroup of the standard parabolic subgroup P = MN of G. 
Let c = @, be the representation 

V 

[ = Ind(G, P,a @ 1). 

Similarly assume Q is another standard parabolic subgroup of G and 
T a cusp form on its standard Levi subgroup. Set 

1;1= Ind(G, Q, T 8 1). 

We choose a finite set S of places of F such that for v 4 S, CT, and 
rv are both unramified. Then cv and qv have the same unramified 
components if and only if (a, P) and (7, Q) are conjugate , i.e. up 
to a permutation they are equivalent. This is proved in [SO] and is 
a consequence of 2.2.a, 2.2.c, 2.2.d, and 2.2.e. When M = G this is 
called the Strong Multiplicity one Theorem. A stronger version of this 
case is proved in [42]. 

2.3.2. Converse theorem. As explained in paragraph 14.6 of [6], 
it is expected that the analytic properties of these L-functions would 
lead to existence of automorphic forms on GL,(AF). But unfortu- 
nately the only published version of this is still [27]. 

2.3.3. Applications in Base change for GL(n). Almost all the 
results in 2.2 are used by Arthur and Clozel in [3] to establish base 
change for forms on GL(n). 

3. Langlands’ Euler products method. In a series of lectures 
in 1967, Langlands expressed constant terms of Eisenstein series on 
certain split algebraic groups as ratios of products of certain auto- 
morphic L-functions. From this he deduced the meromorphy of these 
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L-functions in a number of cases on the whole complex plane. This 
also gave him the most substantial evidence for his conjecture of Sec- 
tion 1.2. These lectures were later published as a book titled “Euler 
Products” [M]. Langlands’ method was later pursued by Shahidi (cf. 
[59, 60, 63, 651, f or example) who generalized and established further 
properties of these L;-functions for the so called “generic” representa- 
tions. The recent preprint of Waldspurger [71] must shed new lights 
on the whole theory, since in the case of GL(N) it combines the results 
of this method with certain results of Jacquet, Piatetski-Shapiro, and 
Shalika to prove the holomorphy of Rankin-Selberg L-functions (cf. 
Section 2) for all s # 0,l (cf. 52.2.1); thus avoiding deeper analysis of 
the local integral representations of Jacquet, Piatetski-Shapiro, and 
Shalika for these L-functions. 

3.1. The set up. Let H be a quasi-split connected reductive alge- 
braic group over a number field F. Fix a Bore1 subgroup B = TU 
of H and let P = MN be a standard maximal parabolic (U 1 N) 
subgroup of M. Let ‘M be the L-group of M and denote by Ln the 
Lie algebra of the L-group LN of N. If r denotes the adjoint action 

of LA4 on Ln, we write T = g r; for its decomposition to irreducible 
i-1 

components. 
It is the group M and the representations r; for which the conjecture 

can be addressed. To be in accordance with our general notation from 
now on we shall use G instead of M. Let AF denote the ring of adeles 
of F. For every group L over F we use L to denote L(A& Fix a 
character x = 8x, of U(F) \ U. We shall assume x is generic. This 

simply means that the restriction of x to every simple root group is 
non-trivial. Let U” = U n G. We again use x to denote xlU”. 

Let 7r = @rV be a cuspidal representation of G. We shall say 7r is 

globally x-gine& if there exists a cusp form ‘p in the space of K such 
that 

J 
cp(Fmb # 0 

. 
UO( F)\UO 

for some g E G. 
Fix a non-trivial character $J = @&, of F \ AF. Then there is a 

natural generic character ~0 of U(Fy \ U defined by $. Changing the 
splitting on G we may assume that 7r is x0-generic. Otherwise said, 
we can find a cusp form in the L-packet of r, generic with respect 
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to ~0. Observe that x = ~0 l  Ad(a), where a E A@) with Ad(a) 
defined over F. Here A0 is the maximal split torus of x. 

3.2. The results. The theory of local coefficients as developed in 

WI ‘) WI, P31, and [65] leads to a number of general and deep results 
both in the theory of automorphic forms and representations of p-adic 
groups. We shall now state some of these results. 

In what follows generic always means globally generic, and changing 
the splitting we may always assume that our representation is x0- 
generic. The following theorem is Theorem 3.5 of [65]. 

THEOREM 3.2.1. (59, 60, 63, 651) Assume x is x0-generic. Then 
each L&,7& converges absolutely for Re(s) > 2 and extends to 
a meromorphic function of s on C (Theorem 5.1 of [63] and Remark 
12.4 of [65]). M oreover for each i, 1 < i < m, and each v E S, there 
exists a complex function yi(s, rV, &)(which is a rational function of 

Q -‘, v < oo), satisfying the following properties: 
V 

ajIfv= 00 or r, has a Iwahori fixed vector (in particular if r,, 
has a vector fixed by a special maximal compact subgroup) and cp’, : 
W hv + LG is the homom or p hism of the Deligne-Weil group attached 
to K,, then 

Yi(% G, +v) = & r;,, . cp:,  !hp(l - s ,  r;,v l  cp:)/L(s, G,v l  cp’ ,>,  

where L(s, r;,, l  cp:> and E(S, r;,, 9 cp’,, &) are the Artin L-function and 
root number attached to r; v 9 ‘p: (cf. 1691). 

b) For each i, 1 < i < m,’ - - 

c) The factors 7; are defined locally for every quasi-split local group, 
a Levi factor of it, and an irreducible admissible x0-generic represen- 
tation o of this Levi factor. They satisfy 

where ~0 is defined by means of G. 
d) Together with an inductive property, the conditions a) and b) 

determine 7; 'S uniquely 

The functional equation in part b) is a consequence of Theorem 4.1 
of [59] and the inductive results of [63] and [65]. The fact that the 
local factors yi(s, rv, $+,) at the archimedean places are Artin factors 
is the main result (Theorem 3.1) of [60]. 
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THEOREM 3.2.2. ([63], [65l) A ssume 7r is x0-generic. Then for every 
v $ S, every local L-function L(s, rV, 7-i J is holomorphic ifRe(s) > 1, 9 - 
IKi<m. - - 

THEOREM 3.2.3. (Theorem 5.1 of [&I) Assume 7r is x0-generic. Then 

m 

rI ( Ls 1, r, 7-i) # 0. 

i-l 

Lists of all the possible (H, G,ri) axe given in [34] and [63]. They 
include all the cases known by other methods. Examples will be 
given in the next several sections. We conclude this section with the 
following: 

THEOREM 3.2.4. (Theorem 6.1 of [631) Assume m = 1 or 2 and 
moreover if m = 2, assume ~2 is one dimensional. Suppose K is x0- 
generic. Then for each v E S, a local L-function L(s, r,, rl,J can be 
defined in such a way that 

L(s, r, 7-l) = rI( L s, Ku, qv) 

V 

extends to a meromorphic function of s E 43 with possibly only a finite 
number of poles, satisfying a functional equation. The factors at the 
archimedean places are Artin factors (cf. Theorem 3.2.1 .a) 

COROLLARY. With assumptions as in Theorem 3.2.4, let S be a finite 
set of places of F, including all the ramified and archimedean ones, 
such that if v E s is ramified, then S contains all other places which lie 
over the same rational prime as v does. Then the partial L-function 
Ls(s, K, rl) extends to a meromorphic function of s with possibly only 
a finite number of poles on all of C. 

3.3. Examples of Theorem 3.2.4. In all the following examples, 
besides Theorems 3.2.1-3.2.3, Theorem 3.2.4 applies and consequently 
the finiteness of poles on all of 43 also follows. 

3.3.1. Rankin triple products. (Corollary 6.9 of [63]). Let H = 
Spin(4,4) and take G = GL2 x SL2 x SL2. Fix a cusp form 7r = 
~1 x 7r2 x 7r3 on GL~(AF) x SL:!(&) 

A(Q) = diq+l,IJ, ~2,v), aId A(r2,J 

diag(yltv, y2,v), both modulo the center 

x SLY. Assume v 4 S, 

= diag(P1,w P2,v), 4~3,v) = 

of GL@). Then . 

(3.3.1.1) L(% *v, u> = rI ( 
1 

i,j,k=l,2 
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This is the first and only example of a triple Rankin product L- 
function of automorphic forms available at present. An integral repre- 
sentation for this L-function has been obtained by Garrett [Ml. Using 
group representations this has also been treated by Piatetski-Shapiro 
and Rallis in [49]. We shall discuss these in Section 6 below. 

3.3.X Twisted triple products. (Cases 3D4 - 1 and Qd - 1 of 
[63]). Here H is the quasi-split orthogonal group of type 04 de- 
fined by a separable extension E of degree 3 over F. We can take 

G such that there exists a surjection G & ResE,F PGLZ _I$ 0. 
The representation ~1 . ‘p is an irreducible 8dimensional represen- 
tation of SL&Z) x SL&I) x SL@) M I& and L(s,~,,r~,J gen- 
eralizes the Asai’s L-function (cf. [4,23]). If v 6 S is inert, and 
A@,) = (diag(a,, a;‘), 12,12), then 

(3.3.2.1) qs, G, n,v) 
= (1 - a,q,5)-‘(l - a!;lq;~)ol(l - avQ;3s)-1(1 - cy;1Qv3y. 

According as E/F is normal or not, this is the case 3D4 - 1 or 6D4 - 1 
of [63]. Again we refer to [13] and [49] for an integral representation. 

3.3.3. Second symmetric or exterior power L-functions for 
GL 
Usi:, the cases (viii) and (iv) of [Ml, one can show that the results 
of the previous section all hold for Ls( s, r, T>, where x is a cusp form 
on GL,(AF) and r is either the symmetric or exterior square of the 
standard representation of GL, (C). They are also subject of a work in 
progress of Jacquet and Shalika, and Bump and Friedberg [9]. Finally 
when n = 3, we refer to [46] (cf. Section 7.1 for an application). 

3.3.4. Exterior cube L-function for GLG. Let H be the simply 
connected split group of type Es. There is a parabolic subgroup whose 
Levi factor G is isomorphic to (GLI x SL6)/{1k1}. Let ~0 be a cusp 
form on GL6 (A ) F with central character w. Then we use x to denote 
any irreducible component of w3 @ (7rlSLc(A~)). It is a cusp form on 
G. If A3@ denotes the exterior cube of the standard representation 
of GL6(C) (th is is a 20.dimensional irreducible representation), then 
for v # S ’ 

qs, %I, n) = L(s, TO+, A3/96). 
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In fact if A( 7~~) = diag(cui ,V, . . . ,0!6 v>, then 9 

i#j,k 
j#k 

i,j,k=l 

Now all the results of the previous section apply to &(s, ~0~ A3ps). 
This is example (x) of [34] (cf. Corollary 6.8 of [63] for PGL6). 

We should remark that in all these cases there is no restriction 
on the form since all the cusp forms on the group GL, are globally 
generic [66] (with respect to any character). 

3.4. Applications. The results of Section 3.2 can be used to com- 
pute Plancherel measures for quasi-split group [59, 651. In particular, 
it leads to a proof of a conjecture of Langlands [35] on Plancherel 
measures [62], [64], [SS]. S UC results can be used to obtain deep h 
results on non-supercuspidal tempered spectrum of many quasi-split 
groups (cf. [64] and 1651, for example). 

4. Symmetric power L-functions for GLZ. Let x = @r, be a 

cusp form on GL~(AF). Then for v @ S, A@,) = diag(&,,P,) E 
GLz(C). Given a positive integer m, let rm denote the m-th sym- 
metric power of the standard representation of GL:!(43). This is an 
(m + l)-dimensional irreducible representation Then, for v 4 S 

The L-functions Ls(s, X, Tm> are quite important. They, basically, 
comprise all the automorphic L-functions for GLZ. Besides: 

a) Assume that for every m E Z+, Ls(s, x,T,) is absolutely con- 
vergent for Re( s) > 1. Then in [36], Langlands showed that for every 
v 4 S, 1~~1 = l/$,1 = 1. Th is is the Ramanujan-Petersson’s con- 
jecture for X. One of the deepest and most difficult conjectures in 
number theory, whose proof in the case of holomorphic forms is due 
to Deligne [lo]. F or non-holomorphic forms the problem is still open 
(cf. 4.1.3 below), except for those forms which correspond to Galois 
representations (cf. the remark after Theorem 10.1 of [72]). 

b) Assume a) and in addition that for every m E Z+, the L-function 
Ls(s, X, rm) is non-zero and holomorphic for Re(s) = 1. Then Sato- 
Tate’s conjecture is valid [58]. It is a result of K. Murty [44] that if one 



AUTOMORPHIC L-FUNCTIONS 425 

knows the holomorphy for all m, then one has the non-vanishing for 
all m, and therefore the conjecture follows only from the holomorphy 
of all of these L-functions for Re(s) > 1. - 

41 l .  Results. Except for Murty’s result mentioned above, there 
are no general results known about these L-functions. All that we 
know is for m < 5 which we shall now explain. We shall leave out 
the classical caSe m = 1 for which the conjecture is known following 
Hecke, Jacquet-Langlands, and Weil. 

4.1.1. The case m = 2. This is the only non-classical case which we 
know the conjecture for L(s, x,T,) (cf. (1.3)). In fact it was proved 
by Shimura [68] that if K comes from a classical modular form, then 
L(s, K, ~2) is entire unless there exists a non-trivial quadratic character 
7;1 of Q* \ A; such that 7r 8 77 N x, i.e. x is monomial. This was later 
extended to cusp forms on any GL~(AF) by Gelbart and Jacquet [18], 
where F is a A-field. 

4.1.2. Gelbart-Jacquet lift. Using the results of [18], it is now 
a simple application of the converse theorem for GL/3 (cf. [27]) that 
given a cusp form x on GL~(AF), there exists an automorphic repre- 
sentation II on GL~(AF) such that 

where the L-function on the left is the standard L-function of II @ w 
(cf. [26]) and w is the central character of X. The representation II 
is cuspidal unless OTT 8 q g 7r with q as in 4.1.1. The representation 
II is what we call the Gelbart-Jacquet I;ft of X. We refer to [11] for a 
different approach using the trace formula. 

4.1.3. Best estimates for Fourier coefficients. Now assume x = 
@n, is a non-monomial (cf. 4.1 .l) cusp form on G& (AF). (For 

tVhe monomial cusp forms the Ramanujan-Petersson’s conjecture is 
automatically valid.) For v $ S, let A(Q = diag(cr,,P,) E G&(C). 
Then using Gelbart-Jacquet lift II of n, it can be shown that 

Q -1’5 V < l&l < qy5 

(cf. 4.a above). When F = Q and in the form p-1/5 5 lcrpl < $15, - 
this was first proved by Serre in a letter to Deshouillers, but was 
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never published. Published versions of the proof can be found in [43] 
and [45]. Unfortunately their proofs make use of certain unpublished 
results of Jacquet, Piatetski-Shapiro, and Shalika on Rankin-Selberg 
L-functions (cf. Section 2, here). It was precisely for this reason that 
Serre never published his proof. 

In general (i.e. for G&(AF) with F any number field) and with 
strict inequality, this is basically Corollary 5.5 of [63]. Its proof is 
complete and requires no unpublished results. 

At the archimedean places, the best results are due to Gelbart- 
Jacquet [18] and Iwaniec [25]. We refer to [63] and [40] for estimates 
for other groups. 

4.1.4. The case m = 3. This is one of the cases of Theorem 3.2.4 
(observed by Langlands in [N]) which when mixed with the results 
of 4.1.2 and 2.2 leads to a functional equation with Artin L-functions 
at every place of F. Moreover, it can be shown that under a non- 
vanishing hypothesis for Jacquet-Langlands L-function L(s, r) on an 
interval parallel to [l/2,1> (parallel to (l/2,1) if x is on PG&(&)), 
L(s, r, ~3) is entire [64]. The fact that L(s, x,T~) # 0 for Re(s) > 1 is - 
basically proved in [59] (cf. Theorem 3.2.3). 

4.1.5. The cases m = 4 and 5. Both L-functions extend to mero- 
morphic functions of s on 43, each satisfying a functional equation 
(Theorem 3.2.1). Moreover, it is proved in [59], that for Re(s) = 1, 
the L-function &(s, r, ~4) is non-zero. When m = 5, it is proved 
in [64], that Ls(s, T,Q) # 0 for Re(s) = 1, except possibly for a 
simple zero at s = 1. As it is explained in [64], even this leads to 
non-trivial results in the direction of Sato-Tate’s conjecture for holo- 
morphic forms (cf. 4.b). This is due to Serre. 

5. The work of Piatetski-Shapiro and Rallis. In around 1980, 
Waldspuger [TO], using an ingenious method, described the Shimura 
correspondence [67] between automorphic forms on %:!(A& the two 
fold metaplectic covering of SLz(A& and PGL~(AF) (a dual reduc- 
tive pair; cf. [24]), by means of integration against the restriction of 
a theta function on a bigger group to SL2 x PGLZ. This idea was 
later generalized by Rallis [54], who, using a result of Kudla [33] and 
the Siegel-Weil formula expressed the norm of the corresponding lift 
Ff as an integral of an Eisenstein series on a bigger group against the 
product of f by itself (cf. [21], Section 111.1.1 for more detail). These 
are the type of integrals which appear in the work of Piatetski-Shapiro 
and Rallis which we shall now explain. 
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5.1. The set up. Let G be a connected reductive algebraic group 
over F whose center C is anisotropic, i.e. C(F) \ C(AF) is compact. 
Assume there exists another reductive group H over F in which G x G 
can be embedded. Let Gd be the image of G under the diagonal 
embedding of G in H. Fix a parabolic subgroup \P of H. Then 
G x G acts on P \ H = X. An orbit X’ c X of G x G is called 
negligible if the stabilizer R’ c G x G of a point x’ f X’ contains 
the unipotent radical of a proper parabolic subgroup of G x G. Let 
x0 E X correspond to the coset Pee and denote by X0 its G x G-orbit. 
This is called the main orbit. Then the stabilizer & of x0 in G x G is 
P n (G x G). We shall now assume that the following two conditions 
are satisfied: 

a> R. = Gd, and 

b) every X’ # X0 is negligible. 

If s is a complex number, there is a natural character wS of P(F) \ 
P(AF) which is trivial on Gd(AF>. Fix a function f in the space of 

Ind w,. We then let: 
wwrH(AF) 

where h E H(AF). 
Let 7~ be an irreducible cuspidal representation of G = G(AF). 

Choose a pair of cusp forms ‘p1 and 972 in the spaces of x and its 
contragredient, respectively. Consider 

(5.1.1) qws, (PI, $927 f> 

J pl(gl)(P2(92)+s, f, (91~92))dgld9~~ 

G(F)xG(F)\GxG 

It is easy to see that under assumptions a) and b) above, 

(5.1.2) q%%vzJ) = 
J 

f(9,1> < ‘“(9h (P2 > d9, 

G 

where (g,l) is considered as an element of H by the embedding of 
G x G into H. Choosing ‘p1 and (~2 appropriately, we may assume 
(5.1.2) is Eulerian. Replacing E by the normalized E* ( cf. [47]) 
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which has only a finite number of poles (this is accomplished if one 
multiplies E by a product of abelian L-functions which eliminates 
the infinitely many unwanted poles of E), we shall see that (5.1.1) 
provides us with an integral representation for certain automorphic 
L-functions. This would then lead to a proof of the finiteness of poles 
for these L-functions (since E * has only a finite number of poles). We 
should remark that this may be considered as a generalization of the 
work of Godement and Jacquet on principal L-functions [26]. 

5.2. The results. [4?, 48, 501 Choosing H appropriately, (5.1.1) 
will provide us with an integral representation for L(s, x, T>, where x 
is a cusp form on AF-points of either of the groups G = Spzn, 0,, 
or Un, and T is the standard representation of the corresponding L- 
group ‘G. We should remark that the cusp forms no longer have to 
be generic. As mentioned above, this proves the finiteness of poles for 
each Ls(s, ~F,T) on 43. The local factors at the ramified primes have 
not yet been all defined and therefore the conjecture of 1.2 has not 
yet been completely verified in these cases. We should remark that, 
using classical methods for holomorphic forms, some of these results 
have also been obtained by Andrianov [l], Gritsenko [22], as well as 
Biicherer and Schulze-Pillot (cf. [5]). We finally refer the reader to [8] 
for an integral representation for the L-function L(s, r, r) where 7r is 
a globally generic cusp form on GSpG(A& trivial on the center, and 
T is the irreducible eight dimensional representation of LGSpG (which 
is isogenous to Spin(‘i’, c>). This L-function can also be found by the 
method of Chapter 3. 

6. Rankin triple products. One of the striking developments in 
the theory of automorphic L-functions in the past few years has been 
the work of Paul Garrett [Is] who has obtained an integral repre- 
sentation for the Rankin triple product L-functions (cf. 53.3.1 here). 
Even though many properties of these L-functions could already be 
concluded from the results of Chapter 3, this was the first time that 
an integral representation for these L-functions could be found, forty 
eight years after Rankin’s work [55] on double L-functions. This was 
later on generalized in [Id] to include the twisted cases as well. After 
his results were explained, it became clear that this is one of the cases 
that can be obtained from the Piatetski-Shapiro-Rallis’ theory. This 
was done in [&I], generalizing the work of Garrett to non-holomorphic 
forms. We shall now explain both works. 

6.1. The work of Garrett [Is]. Let ‘pl, <p2, and (~3 be three 
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holomorphic cusp forms on the upper half plane H. Denote by H3 
the Siegel upper half space of degree 3. Then H x H x H can be 
embedded in H3. Let E(z, s) be the abelian Eisenstein series on Ha. 
Consider 

(6.1.1) 
J 

‘Pl(~l)(P2(Z2)(P3(Z3)E((Zl, z2, t3), +hd~2dtg. 

HxHxH 

Then in [l3], G arrett shows that (6.1.1) is in fact Eulerian and if 
E(z, s) is normalized (cf. Section 5.1) properly, the factors (for v $ S) 
are equal to the Rankin triple product L(s, 7~ x ‘IT~,~ x 7r3J, where 
~1, 7r2 and 7r3(7ri = 8~; J are automorphic representations attached 9 

to (~1, (~2, and 993, reipectively. The L-function L(s, ~1,~ x 7~~ x 7r3,,) 
is the L-function defined by the right hand side of (3.3.1.1). Even 
though not proved in [l3], this must at least lead to the finiteness of 
poles on 43 for Ls(s,7rl X 7r2 X x3) (cf. Section 5.1). 

6.2. The work of Piatetski-Shapiro and Rallis [49]. Let I< be 
a semi-simple abelian algebra of degree 3 over F. Then either 

(6.2.1) K=F$F$F, 

(6.2.2) K = E $ F, [E:F]=2, or 

(6.2.3) K = IC [I( : F] = 3. 

Let V = K $ Ii’ and define an alternating form A on V by 

where (ZJ) and (d, y’) are in V. Set A’ = tr,l,A. Then A’ is a 
F-valued skew symmetric form on V and GS,(A’) = GSpG( F). The 

group GL2 (K) acts on V. Let G&(K)* be the points of G&(K) 
which under this action belong to GS,(A’). Then, for example 

G&(K)* = {(gl,gz,ga)lgi E GL,(F),detgl = detgz = deba} 

if we are in case (6.2.1), while 

GL:!(I()O = (9 E G&(K)1 det g E F*} 

in case (6.2.3). Next, let P = MN be the parabolic subgroup of GSps 
with M = G& x GLr. With notation as in Section 5.1, we choose f in 
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the space of Ind 
P(AF)tGSps(AF) 

w, and let E(w&z),z E Gspc(A~), be 

the corresponding Eisenstein series. Finally let II be a cusp form on 
the adelized version of G&(K)O which we denote by GL~(I~)“(A~). 
Then II = ~1 x ~2 x 7~ with each n; a cusp form on GLz(&) if we 
are in case (6.2.1), while II is a cusp form on GLZ(AK) in the other 
extreme. If 2’ is the center of GSpG and (p is in the space of II, we 

Z(% ‘p, f) = J cp(z)E(w,, P, +x* 
~‘(AF)GL~(K)‘\GL~(K)‘(AF) 

We are now in the situation of Section 5.1 and we must study the 
right orbits of GL2(IC)o in P(F) \ GSJQ(F). Conditions a) and b) 
of 5.1 are satisfied and Z( s, ‘p, f> becomes Eulerian. Normalizing 
E(w,, f, z> appropriately then shows that for v 4 S the local fac- 
tors are equal to L(s, x r,V x ~2,~ x ~3,~) in case (6.2.1) (cf. 53.3.1) and 
are defined by 

(1 - cy,q,d)-l (1 - &q,“)-‘( 1 - cy,p~q,3s)-1 (1 - cy;p,q,3s)-1 $ 

if we are in case (6.2.3) and v is inert; as in 53.3.2. We refer the reader 
to case (ii) in page 96 of [2l] for the case (6.2.2) (cf. Corollary 6.9.b 
of [63]). We finally remark that case (6.2.3) extends Asai’s result [4] 
from quadratic to cubic extensions. The results are formulated as the 
following theorem in [Ml. Here we use Ls(s, II) to denote the product 
of the local factors discussed above. 

THEOREM 6.2. [49]. Under the assumption that F is toMy real 
(and an assumption on the central character of II), the partial L- 
function Ls(s, II) can be extended to all the finite ramified primes in 
such a way that the resulting L-function satisfies a functional equa- 
tion. Moreover its possible poles are at s = 0, a, $, and 1. 

We remark that in view of Theorems 3.2.1 and 3.2.4 of Section 3 
what is new and does not seem to follow from the method of Section 
3 is the possible location of poles. 

7. Rankin-Selberg type L-functions. Let G and G’ be two con- 
nected reductive algebraic groups over a number field F. Then LG 
and LG’ are naturally embedded in groups of type GL&) >o I’TIF. 

Let r and r’ be these embeddings. These are what we call the stan- 
dard representations of LG and LG’. Fix two automorphic forms 7r 
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and X’ on G and G’. Let (r, a’) be the form on G x G’. The L-function 
Ls(s, (x, Y?), r@r’) is usually called the Rankin-Selberg L-function for 
the pair (‘lr, r’). As in Section 2, we shall denote it by L&,x x d). 
When G = GL, and G’ = GL,, these L-functions were discussed 
in Section 2. This is the only case where the theory is now complete 
(cf. the recent work of Waldspurger [71]). In every case known at 
present, the second group is always a GL,. 

7.1. The work of Gelbart and Piatetski-Shapiro [ZO]. We start 
with the case G x GL,, where G = SOzn+f. Then G has a subgroup 
H isomorphic to SO zn and SOzn has a Levi subgroup isomorphic to 
GL,. Let X’ be a cusp form on GL,(AF) and choose f in the space 
of K’. There is an Eisenstein series defined by f which we denote by 
E(s,f, h), h E H. Now let ‘p be a cusp form in the space of 7r and 
consider 

(7.1.1) 

The normalizing factor for E(s, f, h), (cf. 5.1), is now more delicate 
and is the L-function Ls(~s,~T’, A2p,), where asp, is the exterior 
square of the standard representation pn of GL,(C) (cf. 93.3.3). 

Now, if x is also globally generic (x’ always is [66]), it can be 
shown that Z(s, (p, f) is Eulerian. Moreover if E is replaced by its 
normalization, the local factors at v 41 S, are L(s, T, x XL). 

Using the finiteness of poles for Ls(~s, d, A2p,) (cf. §3.3.3), it is 
expected that (7.1.1) leads to a proof of the finiteness of poles for 
Ls(s,x x T’). 

Similar results are expected when G = SOzn or Spzn. In the case 
G = GSp4 and G’ = GL2 these results are also obtained by Piatetski- 
Shapiro and Soudry [52, 531. Finally, we refer to [19], where G = 
U(2,l) defined by a quadratic extension E of F, and G’ = ResEiF 
GL1 (cf. Sectin 8.1 below). 

7.2. Examples from Euler products method. We refer to [34] 
and [63] for many examples of Rankin products including every case 
mentioned so far but: 

7.3. The Case G2xGL2 [51]. Th is is a very new result just obtained 
by Piatetski-Shapiro, Rallis, and Schiffman. In fact, using their theory 
explained in Chapter 5, they have now been able to obtain an integral 



432 F. SHAHIDI 

representation for L& x x Y?), where 7r is a globally generic cusp 
form on adelic points of a split exceptional group of type G2, and 
X’ is an automorphic form on PGL&). Taking ?r’ equal to the 
trivial representation, this also gives the L-function attached to the 
standard representation of Gz. This is very striking since neither of 
these L-functions can be obtained by any other method (also see 8.1 
and 8.2 below). 

8. Functoriality principle and L-functions. Going back to the 
general conjecture, let G be as in Section 1. A representation T : 
LG + GLN(C) is in fact a homomorphism from LG into LGL~ and 
therefore by Langlands’ Functoriality Principle [36, 391, there must 
exist a map T, from the space of automorphic forms on G into those 
on GLN(AF) such that 

L(s, 7r, r) = L(% r*(r), Pn) 

and 

where the factors on the right are the standard L-function and root 
number for T*(X) which is an automorphic form on GLN(AF) [26]. 
Since Conjecture 1.2 is in fact proved for the standard L-functions for 
GLN, the conjecture for L(s, X, r> now follows. For briefness, we shall 
restrict ourselves to only two cases of functoriality (also see 4.1.2). 

8.1. The unitary group in S-variables. In [56], Rogawski has 
proved the existence of 8,, where 

0 : LU(2,1) = GL3(C) >o I’E/F -+ (GL@) x GL3(C)) M I& 

= L(Rem,F GL3), 

sends g x r to (g,g) x 7. Now let r be a representation of (GL&) x 

GL3(43)) )Q FE/F, then 

(8.1.1) 
Ls(s,  r, 7- l  0) = Ls(s,  e,(r), r). 

Choosing T from the examples in [63] and using the theory of Section 
3 must then lead to new L-functions for the unitary group U(2,l) 
which can not be found by any other method. 
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8.2. Base change for GL,. It is proved in [3] that if 

9 l  =GL . n 

= CL,(C) X I’E/F + (GLn(C) X l  l  * X GL,(C)) >Q I’E/F 

= ‘(ResE,F GLn) 

sends (g,T) to (g,. . . ,g) >o T, then 8, exists (cf. [12] and [38] for 
n = 3 and 2, respectively). Here E/F is a cyclic extension. If r 
is a representation of ‘(ResE,FGL,), then again (8.1.1) holds. It is 
intriging to see what new L-functions can be obtained, if one combines 
this with possibilities in [63]. 

9. Concluding remarks. It is clear that each of the methods dis- 
cussed above has its advantages and limitations. While the method of 
Section 3 is powerful in establishing the functional equation with Artin 
factors at every place where the representation can be parametrized 
(Theorem 3.2.1), and even a proof of the finiteness of poles in many 
cases, it is the use of integral representations which has proved more 
useful in locating the poles. On the other hand when it comes to 
local analysis at the archimedean places, the method of integral rep- 
resentations has often been very cumbersome and unsuccessful. It 
may well turn out that, at least for those L-functions which appear 
in the constant terms of Eisenstein series (cf. Chapter 3), the most 
efficient way of obtaining complete results is in mixing the two meth- 
ods. It is for this reason that the recent work of Waldspuger [71] on 
GL(n) x GL(m) (cf. 52.2.2) must be considered a breakthrough. 

As experience has shown [3, 561, the use of analytic properties of 
those L-functions which appear in the constant terms of Eisenstein 
series, if not absolutely necessary, has greatly simplified any use of the 
trace formula in establishing the principle of functoriality. Whether 
this is the extent of which the analytic properties of automorphic L- 
functions can be used in establishing the principle of functoriality (cf. 
Section 8) in general remains to be seen. 
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