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Local Coefficients as Mellin Transforms of Bessel

Functions: Towards a General Stability

Freydoon Shahidi

1 Introduction

Recent breakthrough [7] in transferring generic cuspidal representations of SO(2n + 1)

to automorphic forms on GL(2n) is attained by applying recent converse theorems of

Cogdell and Piatetski-Shapiro [8, 10, 11] to analytic properties of L-functions obtained

in [9, 12, 16, 23, 25, 26, 27, 33]. Strong transfer was later established in [13], as well

as in [17]. The main obstacle in extending these results to other classical groups is

the lack of stability of root numbers, which so far has only been established in the

case of SO(2n + 1) (cf. [9]). In fact, to apply converse theorems using functional equa-

tions, we need to show that root numbers, defined in [27] for the cases in [26] for

which the Levi subgroup M = GL1 ×M ′ in which M ′ is a classical group of the same

type as G, when twisted by highly ramified characters, depend only on the central

character of the inducing representation (main theorem of [9, page 437] in the case of

SO(2n+ 1)).

What seems to be the most promising approach to establishing stability is that

of [9] where the authors express their γ-function as a Mellin transform of an incomplete

(partial)Bessel function of the representation onM ′, fromwhich, after a careful analysis

of the asymptotics of corresponding Bessel functions, stability follows. (We refer to [15]

for a proof of stability in the case of GL(n).) On the other hand, to define γ-functions

from our method [27], we have to define a family of local coefficients [23, 27], which then

define γ-functions inductively [27, Theorem 3.5].
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In view of triviality of L-functions under highly ramified twists [30] and the

above discussion, the problem of stability of root numbers is that of local coefficients.

In this paper, we address the case of self-associate maximal parabolic subgroups in

general. These constitute the bulk of the cases in [21, 26] and particularly all the cases

which are of interest to us in functoriality. Then what we prove is that the reciprocal

of every local coefficient attached to a self-associate case is equal to the product of a

1-dimensional (abelian) γ-function and aMellin transform of an incomplete Bessel func-

tion of the inducing representation, at least whenω−1
π (w0ωπ) is ramified (Theorem 6.2).

Since abelian γ-functions are stable, the problem reduces to that of the Mellin trans-

form. This puts the general case in the same footing as that of SO(2n + 1) [9]. The next

step is to show, as in [9], that at least in many cases of interest every Bessel function

can be written as a sum of two functions, one depending on the central character, while

the other is a smooth function depending on representation. This should follow from

asymptotic behavior of Bessel functions [2, 3, 4, 9].

Instead of stating our general result, Theorem 6.2, which is a vast generalization

of a result of Soudry [32, Lemma 4.5], we explain several special cases of it which are

quite important, but easier to explain. LetG be one of the three classical groups SO2n+3,

SO2n+2, or Sp2n+2. We are interested in the parabolic subgroupsPwhose Levi subgroups

are GL1 ×SO2n+1, GL1 ×SO2n, and GL1 ×Sp2n, respectively. These are the cases which

give the γ-factors attached to standard L-functions of SO2n+1, SO2n, or Sp2n, twisted by

a character, through the theory of local coefficients [23, 27], respectively. Let σ denote a

χ-generic irreducible admissible representation of either SO2n+1(F), SO2n(F), or Sp2n(F).

Let η ∈ F̂∗ and for a fixed s ∈ C, let C(s, η ⊗ σ) be the corresponding local coefficient

[23, 27]. If ψF is the additive character defining χ (see Section 2), let γ(2s, η2, ψF) be the

(abelian) γ-function attached to η2 (see (6.3)). Next, define

w =


1

−I2n−1

1

 , (1.1)

if G = SO2n+3;

w =


1

−K2n−2

1

 , (1.2)
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where

K2n−2 =



1

. . . [
0 1

1 0

]
. . .

1


∈ GL2n−2 (1.3)

if G = SO2n+2; while

w =


−1

−I2n−2

1

 (1.4)

for G = Sp2n+2.

Finally, fix a vector ṽ in the space of σ for which Wṽ(e) = 1, where Wṽ is the

corresponding Whittaker function in a fixed Whittaker model of σ. Let N0 be an open

compact subgroup of N, the opposite of N, the F-points of unipotent radical of P. Let

jṽ,N0
(m) = jṽ,N0

(m, �−d−f) be the incomplete Bessel function attached to ṽ and N0 by

(6.21) and (6.24), where d and f are conductors of ψF and η2, respectively. It is very easy

to check that our incomplete Bessel functions are precisely those of [9]. Our Propositions

7.2 and 7.3 can be simply stated as follows.

Theorem 1.1. Assume that η2 is ramified. Let δ = 1/2, 1, 0 according as G = SO2n+3,

SO2n+2 or Sp2n+2, respectively. Then

C(s, η ⊗ σ)−1
= η(−1)γ

(
2s, η2, ψF

)−1

×
∫
F∗

jṽ,N0




h

I�

h−1

 w

 η(h)|h|s−n+δ d∗h,
(1.5)

where 	 = 2n − 1, 2n − 2, or 2n − 2, respectively. Here N0 can be replaced by any larger

open compact subgroup of N. We replace jṽ,N0
with j ′

ṽ,N0

defined by (7.24) and (7.25)

when G = Sp2n+2. �
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Corollary 1.2. Assume that η2 is ramified.

(a) Let γ(s, σ ⊗ η, ψF) be the γ-function attached to η ⊗ σ as in [27]. Then

γ
(
s, σ ⊗ η, ψF

)−1
= η(−1)

∫
F∗

jṽ,N0




h

I2n−1

h−1

 w

 η(h)|h|s−n+1/2 d∗h

(1.6)

if σ is a representation of SO2n+1(F).

(b) Suppose that σ is a representation of either SO2n(F) or Sp2n(F). Then

γ
(
s, σ ⊗ η, ψF

)−1

= η(−1)γ
(
2s, η2, ψF

)−1
∫
F∗

jṽ,N0




h

I2n−2

h−1

 w

 η(h)|h|s−n+δ d∗h,

(1.7)

where w and δ are as before. We again use j ′
ṽ,N0

for G = Sp2n+2. �

We should point out that our general results are obtained under certain nat-

ural assumptions (Assumptions 4.1 and 5.1), whose validity are naturally available

in these important cases. We expect Assumption 4.1 to be true in general (as well as

Assumption 3.1, an assumption which is not necessary for our Theorem 6.2 and its con-

sequences). Assumption 5.1 is inessential and can be removed by enlarging the defining

groups (Proposition 5.4).

Ourmain theorem (Theorem 6.2) is a generalization of a result of Soudry (see [32,

Lemma 4.5] for GL2 ×GL2) as well as Cogdell and Piatetski-Shapiro for SO(2n + 1) [9],

to a very general setting, namely, for local coefficients attached to every self-associate

pair (G,M) in the generality of the class of all quasisplit groups G (cf. [23, 26, 27]). Our

approach is completely different from either of them.

The final project of establishing functoriality from generic cusp forms of split

classical groups to GL(n), which has now been taken up by the authors of [7], is readily

in hand, since stability now seems to be an immediate consequence of our Propositions

7.2 and 7.3 along the lines of [9].

There are other cases of functoriality which can be established as soon as stabil-

ity is proved using analogues of our Propositions 7.2 and 7.3, whichwe hope to deduce as

special cases of Theorem 6.2, (6.39). Notable among them are transfers from GSpin2n(A)

and GSpin2n+1(A) to GL2n(A). The well-known case of generic transfer from GSp4(A) to
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GL4(A) which is still unavailable, as well as Kim’s exterior square transfer [18] from

GL4(A), a double cover of GSpin6(A), to GL6(A), are among special cases of these. Here

A is the ring of adeles of a number field. We plan to establish these transfers in future

papers.

2 Preliminaries

Let F be a non-archimedean local field of characteristic zero. Denote by O its ring of

integer and let P be its uniquemaximal ideal. Fix a uniformizing parameter� generating

P. Let q = [O : P] be the residue class degree. We fix a valuation | · | = | · |F normalized by
|�| = q−1.

Let G be a quasisplit connected reductive algebraic group over F. Fix a Borel

subgroup B = TU over F, with unipotent radical U and a maximal torus T . Let P =MN

be an F-parabolic subgroup standard with respect to B, that is,N ⊆ U. Choose the Levi

subgroupM, uniquely by requiringM ⊃ T . Let A0 be the maximal split subtorus of T .

The choice ofU determines a set of simple roots ∆ for A0. If A is the split component of

M, that is, the maximal split subtorus of the connected component of the center ofM,

then A ⊂ A0 ⊂ T . LetW andWM be the Weyl groups of A0 in G andM, respectively.

For each algebraic group H over F, let H = H(F) be the group of its F-rational

points. We then have G, B, T, U, P, M, N, . . . .

Let χ be a nondegenerate character of U = U(F) (cf. [20, 27, 31]). We still use χ

to denote χ|UM, where UM = U ∩ M.

To fix our Weyl group representatives, we need to review and reformulate the

notion of compatibility from [27, pages 282–283]. Let ψF be a nontrivial character of

F. Choice of χ points to an F-splitting [20], that is, a collection of root vectors {Xα ′ },

one for each (nonrestricted) simple root α ′ of T , which is preserved under the action of

Γ = Gal(F/F) (cf. [20, 27]). More precisely, {Xα ′ } determines a map from

U
φ−−→ ∏

Ga, (2.1)

where the product is over all the simple roots of T , leading to

χ(u) = ψF

(∑
α ′

xα ′

)
, (2.2)

where φ(u) = (xα ′)α ′ . The reverse process is now clear as well. The splitting also fixes

the natural homomorphisms from the usual simply connected rank one groups into G
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by means of which we will choose our Weyl group representatives wα, α ∈ ∆ (cf. [25,

page 989]). We will then choose a representative for each w̃ ∈ W by means of a reduced

decomposition and the choices of wα made before. It will not depend on the decompo-

sition. It is now clear that every element w̃ in the Weyl group is now compatible with χ

(cf. [27]), and we can now assume our χ = χ0 in the notation of [27] and set a = 1 in [27,

equation (3.11)]. From now on, whenever a representative is mentioned for a w̃ ∈ W, it

will be the representative w chosen as above.

Let π be χ-nondegenerate irreducible admissible representation ofM =M(F).

To proceed, let

a = Hom
(
X(M)F, R

)
(2.3)

be the real Lie algebra of A. Here X(M)F is the group of F-rational characters ofM. Let

HP : M → a be as usual defined by

q〈χ,HP(m)〉 =
∣∣χ(m)∣∣

F
, (2.4)

for all χ ∈ X(M)F. If a∗ = X(M)F ⊗Z R denotes the dual of a, we let a∗
C
= a∗ ⊗R C.

Given ν ∈ a∗
C
, let

I(ν, π) = Ind
MN↑G

π ⊗ q〈ν,HP( )〉 ⊗ 1 (2.5)

be the corresponding induced representation and denote by V(ν, π) its space.

Throughout this paper, we assume that P is maximal and let α be the unique

simple root of A0 in N (with abuse of terminology). If ρP is half the sum of roots in N,

we let α̃ = 〈ρP, α〉−1ρP as in [26]. Finally, let Σ = ∆\{α} denote the subset of simple roots

generatingM, that is,M =MΣ.

Given s ∈ C, s 	→ sα̃, identifies C with a subspace of a∗
C
. We use I(s, π) to denote

I(sα̃, π). If π is unitary, then I(π) = I(0, π) is a unitarily induced representation of G.

There exists a unique element w̃0 ∈ W =W(A0) such that w̃0(Σ) ⊂ ∆while w̃0(α)

is a negative root. LetM ′ ⊃ T be the Levi subgroup generated by w̃0(Σ) and denote by

N ′ the unipotent radical of the F-parabolic subgroup P ′ = M ′N ′ which is standard

with respect to B. The parabolic subgroup P is called self-associate or self-conjugate, if

w̃0(Σ) = Σ. Then w̃0(α) = −α,M ′ =M, and N ′ = N. We let w0 be the representative for

w̃0 as prescribed previously.
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We now define the corresponding intertwining operator as

A(s, π)f(g) =

∫
N ′

f
(
w−1

0 n ′g
)
dn ′

(g ∈ G), (2.6)

where f ∈ V(s, π) (cf. [26, 27]).

Let λχ(s, π) be the canonicalWhittaker functional attached to I(s, π) as in [23, 27].

More precisely, fix a Whittaker functional λ for π. Then for each v ∈ H(π), the space of

π,Wv(g) = 〈π(g)v, λ〉 will define a Whittaker function. The collection of allWv, v ∈ H(π),

will define a Whittaker model for π. It is unique up to scalar multiplication. We set

λχ(s, π)(f) =

∫
N ′

〈
f
(
w−1

0 n ′), λ〉
χ
(
n ′

)
dn ′. (2.7)

Observe that integration must be overN ′ and notN as f transforms according to π. Then

λχ(−s, w0(π)) = λχ(w̃0(sα̃), w0(π)) is one for I(w̃0(sα̃), w0(π)) and the corresponding local

coefficient C(s, π) = Cχ(sα̃, π, w0) attached to χ, sα̃, π, and w0 in [23, 27] is defined by

λχ(s, π) = C(s, π)λχ

(
− s, w0(π)

)
A(s, π). (2.8)

Next, let LN be the L-group of N defined as in [5]. Denote by Ln its (complex)

Lie algebra and let r be the adjoint action of LM on Ln. Decompose r =
⊕m

i=1 ri to its

irreducible subrepresentations, indexed by values 〈α̃, β〉 as β ranges among the positive

roots of T . More precisely, Xβ∨ ∈ Ln lies in the space of ri if and only if 〈α̃, β〉 = i.

Here Xβ∨ is a root vector attached to the coroot β∨, considered as a root of the L-group.

Moreover, 〈·, ·〉 denotes the Killing form, that is, for every pair of positive roots γ and

δ of T , 〈γ, δ〉 = 2(γ, δ)/(δ, δ) = (γ, δ∨), where δ∨ is the coroot 2δ/(δ, δ) attached to δ

(cf. [21, 26]).

Finally, let for each i, 1 ≤ i ≤ m, γ(s, π, ri, ψF) be the corresponding γ-function

defined inductively in [27, Theorem 3.5]. Then [27, Theorem 3.5, equation (3.11)] states

that

C(s, π) = λG

(
ψF, w0

)−1
m∏

i=1

γ
(
is, π, r̃i, ψF

)
. (2.9)

Observe that, in view of the earlier discussion on compatibility, we may assume that

a = 1 in [27, equation (3.11)]. Throughout the rest of the paper, we assume that P is

self-conjugate, that is, N = N ′, and therefore P = P ′ andM =M ′. This covers most of

the interesting cases. The purpose of this paper is to express C(s, π)−1 as a product of
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the Mellin transform of the Bessel function of πwith an abelian γ-function, the first step

in proving that each C(s, π)—and then consequently inductively [9, Propositions 4.1 and

5.1] each γ(s, π, ri, ψF)—is stable, that is, they depend only on the central character of π

if π is replaced by a highly ramified twist of π (in the sense of [15] and [19, Proposition

2.1], and as in [7]). This is necessary in establishing functoriality from classical groups

to appropriate GL(m) as in [7], where the case of SO(2n + 1), m = 2n, was established.

We refer to [18] for another important application.

3 Another look at Bessel functions

In this section, we revisit the theory of Bessel functions for generic representations of

a quasisplit group [2, 3, 4, 9]. Here, we approach this theory from a slightly different

angle, which we are naturally led to encounter in our method. We keep the notation

from Section 2, that is, our group is denoted byG and so on. But later we use this theory

only for representations of M = M(F). Let σ be an irreducible admissible χ-generic

representation ofG = G(F).We continue to assume that ourWeyl group elements, chosen

through the choice of splitting, are compatible with χ. Let θ be an F-automorphism of G

preserving the Γ-splitting (B, T , {X}) discussed earlier (cf. [20, 27, 31]). Then θ : U → U.

Let χθ = χ·θ. We assume that χθ = χ. LetWv be aWhittaker function in a fixedWhittaker

modelW(σ) defined by a χ-Whittaker functional λ, that is,Wv(g) = λ(σ(g)v), g ∈ G. Here

v is a vector in the space of σ. We are interested in the following integral, which may be

considered as a kind of twisted orbital integral (see Remark 3.2):

Jσ,v(g) =

∫
U ′

g\U

Wv

(
θ(u)−1gu

)
du̇

=

∫
U ′

g\U

Wv(gu)χ(u)du̇,

(3.1)

where

U ′
g =

{
u ∈ U | gug−1 ∈ U and χ

(
gug−1

)
= χ(u)

}
. (3.2)

Observe thatU ′
g ⊃ Ug, the centralizer ofg inU.Moreover,U ′

g is generatedby those simple

roots which under conjugation by g go to simple ones with no coordinate changes. We

assume for themoment that the integral converges for the givenWv, though the question

of convergence is a very interesting and delicate one [2, 3, 4, 9]. Now observe that, given

g, v 	→ Jσ,v(g) defines another χ-Whittaker functional for σ. Thus by the uniqueness of
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Whittaker functionals

Jσ,v(g) = Jσ(g)Wv(e) (3.3)

with a function Jσ(g) depending only on the class of σ. Observe that this requires that

Jσ,v(g) exist for all v, g ∈ G. Nowwediscuss the case of interest to us. Our reductive group

is the Levi factorMfixed in Section 2. The χ-generic representationσ isπ andwefix the Γ-

splitting ofG determined by χ as in Section 2.We recall that χ is a generic character ofU.

We then choose our Weyl group representatives for elements ofW again as before using

this splitting. Notice that (B ∩ M, T , {Xα ′ }α ′∈Σ ′) is a Γ-splitting forM. Here Σ ′ denotes

the set of nonrestricted simple roots of T , restricting to Σ. We set θ = Int(w0)|M. Since

w0 and χ are compatible, χθ = χ (see Section 2). Given Wv in a χ-Whittaker model of π

withWv(e) = 1, we recall the Bessel function

Jπ(m) =

∫
U ′

M,m
\UM

Wv(mu)χ(u)du (m ∈ M), (3.4)

where U ′
M,m means (UM)

′
m. The theory of Bessel functions is still incomplete. In the

case of simply laced split groups, thanks to the efforts of Baruch [4], we know the ex-

istence of a subspace W0(π) of W(π) for which (3.4) converges in a very simple sense

[4, Theorem 6.7]. More precisely, for each W ∈ W0(π) and every m ∈ M, there exists a

compact subset C ⊂ UM such that W(mu) �= 0 implies that u ∈ U ′
M,nC. Baruch’s theo-

rem [4, Theorem 6.7] is stronger than this. We assume the natural extension of this to

any quasisplitM. It will only be used to justify the definition of an incomplete Bessel

function and will not be needed for our main theorem.

Assumption 3.1. There exists a nonzero subspace W0(π) of W(π) such that for each

W ∈ W0(π) and m ∈ M, there exists a compact subset C ⊂ UM so that W(mu) �= 0

implies u ∈ U ′
M,mC. In particular, (3.4) converges for everyW ∈ W0(π). �

Remark 3.2. Observe that the functions in W0(π) play the role of smooth functions of

compact support, and Bessel functions play that of (twisted) orbital integrals, when

(twisted) conjugation by UM is replaced by (twisted) conjugation in the corresponding

disconnected subgroup.

Remark 3.3. In the case of SO(2n+ 1), Assumption 3.1 is the corollary of [9, Proposition

4.2, page 450]. Notice that SO(2n+ 1) is not simply laced.
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4 An assumption

For the purposes of this paper we are interested in all those n ∈ N such that w−1
0 n ∈ PN

(cf. [29]). For such n, write

w−1
0 n = mn ′n, (4.1)

where m ∈ M, n ′ ∈ N, and n ∈ N. The decomposition is clearly unique. Moreover, if

u ∈ UM centralizes n, that is, unu−1 = n, thenw0(u)mu−1 = m, wherew0(u) = w−1
0 uw0.

Consequently, if

UM,n =
{
u ∈ UM | unu−1

= n
}
, (4.2)

then

UM,n ⊂ U ′
M,m (4.3)

(see equation (3.1)) since χ and w0 are compatible and therefore χ(w0(u)) = χ(u). Let

dn be a right-invariant measure for N. The set of all n which do not satisfy (4.1) is of

measure zero with respect to dn. In fact, let N1 = N ∩ Pw0N. Then N1 is an open subset

of N and therefore dimN1 = dimN. Now suppose that n is in N, but not in N1. Then

n ∈ Pw ′N for which Ñ = w ′Nw′−1 ∩ P is a nontrivial subgroup, where w ′ ∈ W which is

theWeyl group of T aswell. LetN ′ = w′−1Ñw ′ ⊂ N. LetN ′
1 = N ′\N. Then Pw ′N = Pw ′N ′

1,

where the choice of representatives for N ′
1 is unimportant. Then dimN ′

1 < dimN, since

dimN ′ > 0. Set

N2 =
{
n ∈ N | n ∈ Pw ′N ′

1

}
. (4.4)

Then PN2 ⊂ Pw ′N ′
1 and therefore

dimP + dimN2 ≤ dimP + dimN ′
1. (4.5)

Then this immediately implies that dimN2 < dimN. Although U ′
M,m is defined in terms

of χ, it only depends on m and not the choice of χ. As explained before, it is generated

by those simple roots in UM which under Int(m) go to simple roots with no coordinate

changes. It can be interpreted as a twisted centralizer of m. The following assumption

is quite natural, necessary to our purposes, and must be true in general. Here we verify

it in many cases of interest to us. The general case will be addressed in a future paper.
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Assumption 4.1. Except for a set of measure zero with respect to dn,

UM,n = U ′
M,m, (4.6)

where w−1
0 n = mn ′n as in (4.1). �

Assume thatn ∈ N satisfies (4.1). LetMw0
m denote the Int(w0)-twisted centralizer

of m inM, that is,

Mw0
m =

{
m1 ∈ M | w0

(
m1

)
mm−1

1 = m
}
. (4.7)

Then it is easily seen that

Mn ⊂ Mw0
m , (4.8)

where

Mn =
{
m1 ∈ M | m1nm−1

1 = n
}
. (4.9)

Notice that for any x ∈ G,

w−1
0 xnx−1

= w0(x)mx−1 · xn ′x−1 · xnx−1, (4.10)

where w0(x) = w−1
0 xw0. Thus, if n satisfies (4.1), then so does every member of the

intersection of its conjugacy class under G with N. The corresponding m-, n ′-, and

n-components are then given by the above decomposition. Observe that for m, we need

to consider its Int(w0)-twisted conjugacy class. There are a good number of examples in

which, not onlyMn �=Mw0
m , but in fact [M

w0
m : Mn] =∞, even on a big open subset of N.

(See the first example below.) What our assumption states is that, if we instead look at

centralizers and twisted centralizers in UM, we in fact have the equality UM,n = U ′
M,m.

Our first example is of the above type in which [Mw0
m : Mn] = ∞. But we will show that

Assumption 4.1 still holds. We could choose an example from either [14] or [28]. For

simplicity we consider the case of split G = SO6r from [28] with the standard Levi sub-

groupM = GL2r ×SO2r. To make matters even easier, we will assume that r is even. The

subgroup N consists of

N =


n = n(X, Y) =


I2r X Y

0 I2r X ′

0 0 I2r

 ∣∣∣∣ Y + θ̃(Y) = XX ′, X+ θ̃
(
X ′)
= 0


 , (4.11)
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where w2r =

(
0 1

·
1

1 0

)
, θ̃(Y) = w−1

2r · tY · w2r, Y ∈ M2r(F). Moreover, w0 = diag(w2r, w2r,

w2r) ·w6r ∈ SO6r(F) since r is even, and n ∈ N satisfies (4.1), if Y ∈ GL2r(F). The element

w0 may not be the precise representative discussed in Section 2. But that is irrelevant.

Then [28, Lemma 3.1] implies that

m = diag
(
θ̃
(
Y−1

)
, I2r − X ′Y−1X, Y

)
. (4.12)

Moreover, by [28, Corollary 5.7]

n(X, Y) 	−→ I2r − X ′Y−1X (4.13)

is a surjection onto SO2r(F). It can be easily checked that if X ∈ GL2r(F), then for n =

n(X, Y)

Mn
∼=

{
g ∈ GL2r(F) | gYθ̃(g) = Y

}
. (4.14)

In fact, the element (g, g ′, θ(g−1)) is in the centralizer of n inM if and only if gYθ̃(g) = Y

and gXg ′−1 = X. But since X ∈ GL2r(F), g ′ is uniquely determined by g equal to g ′ =

X−1gX. Thus, the centralizerMn ofn inM is isomorphic to the subgroup of all g ∈ GL2r(F)

such that gYθ̃(g) = Y. Observe that in view of the relation satisfied by X and Y, the fact

that X−1gX ∈ SO2r(F) is automatic and therefore does not put any new restriction on the

set of all g ∈ GL2r(F) satisfying gYθ̃(g) = Y. On the other hand,

Mw0
m

∼=Mn × Mk, (4.15)

where Mk is the centralizer of k = I2r − X ′Y−1X in SO2r(F). Observe that for a regular

semisimple element k, Mk is a Cartan subgroup and therefore [Mw0
m : Mn] = ∞ for an

open dense subset of N. On the other hand, all thosem that belong to the open cell (B ∩
M)wMUM, will have a trivial UM-twisted centralizer. (Here wM is the longest element

ofWM.) In fact, supposem = u1twMu2, u1, u2 ∈ UM, t ∈ T , and assume that for u ∈ UM

mum−1
= u0 ∈ UM. (4.16)

Then

u−1
0 u1twMu2 = u1twMu2u−1, (4.17)

which implies u = u0 = 1. Consequently, for such an open dense subset of N

UM,n = U ′
M,m. (4.18)
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Now we attend to three other examples. They are quite important and in fact are our

main motivation for this paper.

Case 1. For a given positive integer n, let G be the split group SO2n+3. The parabolic

subgroup P =MN is the one withM = GL1 ×SO2n+1. The element w0 is simply


0 0 1

0 −I2n+1 0

1 0 0

 ∈ SO2n+1(F). (4.19)

We will provide more detail on how such representatives are chosen for the next two

more delicate cases.

To continue, we borrow the notation from [9]. If t ∈ F2n+1 is a row vector, we

use t∗ ∈ F2n+1 to denote the dual column to it. More precisely, if t = (t1, . . . , t2n+1), then
t(t∗) = (t2n+1, . . . , t1). Then 〈t, t〉 = tt∗ =

∑2n+1

i=1 tit2n+2−i is the defining quadratic form

for SO2n+1(F). An arbitrary element in N = N(F) is of the form

n = n(t) =


1 t −

1

2
〈t, t〉

0 I2n+1 −t∗

0 0 1

 (4.20)

for t as above. We use diag(a, k, a−1), a ∈ F∗, k ∈ SO2n+1(F), to denote an arbitrary

element ofM. The following lemma is a consequence of a straightforward calculation.

Lemma 4.2. Assume that w−1
0 n(t) ∈ PN, t ∈ F2n+1. Write w−1

0 n(t) = mn ′n as in (4.1).

Then 〈t, t〉 = tt∗ �= 0. Write m = diag(a, k, a−1). Then a = −2/〈t, t〉 and

k = −
(
I2n+1 − 2t∗t/〈t, t〉

)
. (4.21)

�

Proof. Consider the decomposition

w−1
0 n(t) =


a ax −

axx∗

2

0 k −kx∗

0 0 a−1




1 0 0

y I2n+1 0

−
1

2
y∗y −y∗ I

 , (4.22)
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where n(t) is as in (4.20). This then implies, among other things, that a = −2/〈t, t〉 and

k
(
I2n+1 − 2t∗t/〈t, t〉

)
= −I2n+1. (4.23)

We therefore only need to show that

(
I2n+1 − 2t∗t/〈t, t〉

)
(4.24)

is equal to its own inverse. Observe that if

w2n+1 =


0 1

·
1

1 0

 ∈ GL2n+1(F) (4.25)

is the permutation matrix defining O2n+1(F), then

w2n+1 · t
(
I2n+1 − 2t∗t/〈t, t〉

)
· w−1

2n+1 = I2n+1 − 2t∗t/〈t, t〉. (4.26)

But the first term, k being in O2n+1(F), equals to

(
I2n+1 − 2t∗t/〈t, t〉

)−1
. (4.27)

�

We now verify Assumption 4.1 in this case. We do this while also determining a

set of representative for the adjoint action of AUM on N, which will be needed in one

of the main propositions of this paper. Let t = (t1, . . . , t2n−1) ∈ F2n−1 and let x(t), as

in [9], denote the corresponding element in UM, the principal unipotent subgroup of

SO2n+1(F). In fact, for the sake of clarity, throughout this section and Section 7, while

we use n(t) and n(t, T) (in Case 3) to denote the elements of N, we employ x(t) and

x(t, t0) (in Case 3) to denote the corresponding unipotent elements in the corresponding

immediate lower rank groups. Every element inN can be represented by a columnmatrix

α = t(α1, . . . , α2n+1) ∈ F2n+1. Let B = t(b, 0, . . . , 0, c) ∈ F2n+1.

Lemma 4.3. Suppose that α2n+1 and 〈α, α〉 are both in F∗. Then there exist t ∈ F2n−1, and

b, c in F∗, such that

x(t)B = α. (4.28)

Consequently, except for a set of measure zero, each orbit of N under the action of UM

can be represented by a pair (b, c) ∈ (F∗)2. �
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Proof. It is easy to see that (4.28) is equivalent to the following set of equations

b− c〈t, t〉/2 = α1

− ct1 = α2

− ct2 = α3

...

− ct2n−1 = α2n

c = α2n+1.

(4.29)

Under the assumption that α2n+1 �= 0, this leads to

ti = −αi+1α−1
2n+1 (1 ≤ i ≤ 2n− 1),

c = α2n+1.
(4.30)

Finally,

b = α1 + α2n+1〈t, t〉/2. (4.31)

A straightforward calculation then shows that

b = 〈α, α〉
(
2α2n+1

)−1
(4.32)

which is in F∗ by our assumptions. This completes the proof of the lemma. �

Now suppose that n ∈ N is of the form n = n(tαw2n+1) with α as in Lemma 4.3.

Then we can choose u ∈ UM such that uB = α, where B is as in Lemma 4.3, that is,

B = t(b, 0, . . . , 0, c), with b and c in F∗. Using (4.21) we determine k satisfying (4.1) for

n as

−u
(
I− 2B · tBw2n+1/〈B, B〉

)
u−1, (4.33)

which using 〈B, B〉 = 2bc equals

u


bc−1

−I2n−1

cb−1

 u−1 (4.34)
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or

u


bc−1

I2n−1

cb−1




1

−I2n−1

1

 u−1. (4.35)

It is then immediate that Assumption 4.1 is valid for all such n whose complement is of

course of measure zero. In fact, we only need to consider this choice of representative

for the conjugacy class under conjugation by UM to see the equality UM,n and U ′
M,m.

Finally, we point out that as it can be easily observed, again for almost all n, given a

conjugacy class n of N under the action of AUM, the AUM-Int(w0)-twisted conjugacy

class of the corresponding m can be represented by an element,
h

I2n−1

h−1




1

−I2n−1

1

 , (4.36)

with h ∈ F∗. The choice of h is unique. This is precisely because under conjugation by

A, cb−1, and bc−1 remain unchanged. We collect this information as follows.

Proposition 4.4. Suppose thatn ∈ N satisfying (4.1) is represented by the column vector

α for which 〈α, α〉 and α2n+1 are nonzero. Then

(a) UM,n = U ′
M,m;

(b) the AUM-Int(w0)-twisted conjugacy class of m, w−1
0 n = mn ′n, can be repre-

sented by m = diag(a, k, a−1) with a = −h−1 and

k =


h

I2n−1

h−1




1

−I2n−1

1

 (4.37)

for a unique h ∈ F∗. �

Remark 4.5. In the notation of [9],
h

I2n−1

h−1

 = h,


1

−I2n−1

1

 = β.

(4.38)
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This is quite important and is one of our main motivating factors in pursuing this

approach.

Case 2. Now we address the case of an even split special orthogonal group. We let G =

SO2n+2 and consider the parabolic subgroup P = MN for whichM = GL1 ×SO2n. We

first recall that G is the connected component of the subgroup of g ∈ GL2n+2 satisfying

w2n+2
tg−1w2n+2 = g, (4.39)

where w2n+2 ∈ GL2n+2 is

w2n+2 =


1

·
1

1

 . (4.40)

An arbitrary element n ∈ N will again be given by a row vector t ∈ F2n, as in the odd

case, by

n = n(t) =


1 t −

1

2
〈t, t〉

I2n −t∗

1

 , (4.41)

where 〈t, t〉 = tt∗. The Weyl group element w̃0 = w̃Gw̃M will send e1 	→ −e1, ei 	→ ei,

2 ≤ i ≤ n, en+1 	→ −en+1. With the usual Bourbaki notation,

w̃0 = w̃α1
w̃α2

· · · w̃αn−1
w̃αn+1

w̃αn−1
· · · w̃α1

(4.42)

is a reduced decomposition, where w̃αn+1
sends en 	→ −en and en+1 	→ −en+1. Taking

the image of
(

0 −1
1 0

)
inside each rank one group generated by each αi by means of the

homomorphisms from SL2 into SO2n+2 (cf. [25]), which are determined by the standard

splitting, as representatives wαi
for each w̃αi

, we get

w0 = wα1
wα2

· · ·wαn+1
· · ·wα1

=


1

−K2n

1

 ,
(4.43)
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where

K2n =



1

1

. . . [
0 1

1 0

]
1

. . .

1


∈ GL2n . (4.44)

The choice of the reduced decomposition is irrelevant. We should only note that as an

element in SO4, wαn+1
is the product of the commuting matrices


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0




0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 =


0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

 . (4.45)

They are the previously discussed images of
(

0 −1
1 0

)
in the rank one groups defined by

en − en+1 and en + en+1, respectively.

We again have the following lemma.

Lemma 4.6. Assume w−1
0 n(t) ∈ PN, t ∈ F2n. Write w−1

0 x(t) = mn ′n as in (4.1). Then

〈t, t〉 = tt∗ �= 0. Write m = diag(a, k, a−1), a ∈ F∗, k ∈ SO2n(F). Then a = −2/〈t, t〉 and

k = −K2n

(
I2n − 2t∗t/〈t, t〉

)
. (4.46)

�

Proof. Calculations of Lemma 4.2 are valid and again we only need to show that

(
I2n − 2t∗t/〈t, t〉

)
(4.47)

equals its inverse. But this follows from the fact that

(
I2n − 2t∗t/〈t, t〉

)
∈ O2n(F) (4.48)

as in Lemma 4.2. �
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The analogue of Lemma 4.3 is also valid. It can be verified exactly the same way

as Lemma 4.3 and consequently we only state the result for the sake of book-keeping

without any details.

Lemma 4.7. Let α = t(α1, . . . , α2n) and B = t(b, 0, . . . , 0, c) ∈ F2n. Suppose that α2n and

〈α, α〉 =
∑2n

i=1 αiα2n+1−i are both in F∗. Then there exist t ∈ F2n−2, and b, c in F∗ such

that

x(t)B = α. (4.49)

Consequently, except for a set of measure zero, each orbit of N under the action of

UM can be presented by a pair (b, c) ∈ (F∗)2. More precisely, we can take c = α2n and

b = 〈α, α〉(2αn)
−1. �

We conclude by stating the analogue of Proposition 4.4 in this case. The argu-

ments are precisely as in Proposition 4.4.

Proposition 4.8. Suppose thatn ∈ N satisfying (4.1) is represented by the column vector

α ∈ F2n for which 〈α, α〉 and α2n are nonzero. Then

(a) UM,n = U ′
M,m;

(b) the AUM-Int(w0)-twisted conjugacy class of m, w−1
0 n = mn ′n, can be repre-

sented by m = diag(a, k, a−1) with a = −h−1 and

k =


h

I2n−2

h−1




1

−K2n−2

1

 (4.50)

for a unique h ∈ F∗. Here K2n−2 is defined by (4.44) with 2n replaced by

2n− 2. �

Case 3. We now attend to our final case, that of a symplectic group. We let G = Sp2n+2

and consider the parabolic subgroup P =MN for whichM = GL1 ×Sp2n.

The group G is the set of all g ∈ GL2n+2 for which

Jn+1
tg−1J−1

n+1 = g, (4.51)

where

Jn+1 =

(
0 wn+1

−wn+1 0

)
∈ GL2n+2, (4.52)
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with wn+1 the second diagonal identity as before. Given a row vector t ∈ F2n and T ∈ F,

we can define the matrix

n(t, T) =


1 t T

0 I2n t∗

0 0 1

 ∈ N (4.53)

to represent a general member of N, where

t∗ = Jn · tt. (4.54)

Observe that tt∗ = 0 and that there is no relation between t and T . The Weyl group

element w̃0 = w̃Gw̃M will send e1 	→ −e1 but ei 	→ ei for all other i. It can be easily

shown that

w̃0 = w̃α1
w̃α2

· · · w̃αn
w̃αn+1

w̃αn
w̃αn−1

· · · w̃α1
(4.55)

is a reduced decomposition of w̃0. If we again, as in Case 2, take the images of
(

0 −1
1 0

)
in-

side each rank one group generated by each αi by means of the homomorphism from SL2

into Sp2n+2 (cf. [25]), which are determined by the standard splitting, as representative

wαi
for w̃αi

, we get

w0 = wα1
wα2

· · ·wαn
wαn+1

wαn
· · ·wα1

=


−1

−I2n

1

 ∈ Sp2n+2(F).
(4.56)

A little bit of tedious calculation again shows the following lemma.

Lemma 4.9. Assumew−1
0 n(t, T) ∈ PN, t ∈ F2n, T ∈ F. Writew−1

0 n(t, T) = mn ′n as in (4.1).

Then T �= 0. Write m = diag(a, k, a−1), a ∈ F∗, k ∈ Sp2n(F). Then a = −T−1 and

k = −
(
I+ t∗t/T

)
, (4.57)

where t∗ = Jn · tt. �

Proof. This time we need the factorization
1

−I2n

−1




1 t T

0 I2n t ′

0 0 1

 =


a ax aX

0 k kx ′

0 0 a−1




1 0 0

y I2n 0

Y y ′ 1

 . (4.58)
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Again we only need to show that

(
I− t∗t/T

)−1
= I+ t∗t/T. (4.59)

But this follows immediately using the fact that I− t∗t/T ∈ Sp2n(F) as before. As before,

we now proceed to verify Assumption 4.1 and determine a set of representatives for

the adjoint action of AUM on N. Every element in N is determined by a column matrix

α = t(α1, . . . , α2n) ∈ F2n and α0 ∈ F. Let B = t(b, 0, 0, . . . , c) ∈ F2n. �

Lemma 4.10. Suppose that α2n and α0 are both in F∗. Then there exist t = (t1, . . . ,

t2n−2) ∈ F2n−2, t0 ∈ F, and, b and c in F∗ such that

x
(
t, t0

)
B = α (4.60)

and bc = α0. Consequently, except for a set of measure zero, each orbit of N under the

action of UM can be presented by a pair (b, c) ∈ F∗. �

Proof. As in Lemma 4.3 we need to solve the system

b+ ct0 = α1

ct2n−2 = α2

...

ctn = αn

− ctn−1 = αn+1

...

− ct1 = α2n−1

c = α2n.

(4.61)

Since α2n �= 0, this implies that c = α2n and

ti = α2n−iα
−1
2n (n ≤ i ≤ 2n− 2),

ti = −α2n−iα
−1
2n (1 ≤ i ≤ n− 1).

(4.62)

Moreover, under the assumption bc = α0 �= 0, b = α0α−1
2n . Finally, we get

t0 =
(
α1 − α0α−1

2n

)
α−1

2n (4.63)

to complete the lemma. �
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Now suppose that n ∈ N is of the form n(tαJn, α0). Then we can choose u ∈ UM

such that uB = α as in Lemma 4.10. We observe that under adjoint action ofUM, α0 does

not change. Using (4.57) we determine k as

−u
(
I+ B · tBJn/α0

)
u−1, (4.64)

which, using bc = α0, equals

u


0 0 −bc−1

0 −I2n−2 0

cb−1 0 −2

 u−1 (4.65)

or

u


−bc−1

−I2n−2

cb−1




1 0 −2bc−1

0 I2n−2 0

0 0 1

 u−1. (4.66)

As before, we can now again observe that the AUM-Int(w0)-twisted conjugacy class of

m can be represented by an element


h

I2n−2

h−1




−1

−I2n−2

1




1 0 −2h

0 I2n−2 0

0 0 1

 (4.67)

with h ∈ F∗. The choice of h is unique for the same reason as in Case 1. In fact, conju-

gating n(tαJn, α0) with a = diag(t, 1, . . . , 1, t−1) ∈ A will change α to tα and α0 to t2α0.

This results in changing b and c to tb and tc, leaving bc−1 invariant. We collect this

information as follows.

Proposition 4.11. Suppose that n ∈ N satisfying (4.1) is represented by the vector α ∈
F2n and α0 ∈ F for which α2n and α0 are nonzero. Then

(a) UM,n = U ′
M,m;

(b) the AUM-Int(w0)-twisted conjugacy class of m, w−1
0 n = mn ′n, can be repre-

sented by an element m = diag(a, k, a−1) with a = −h−1 and

k =


h

I2n−2

h−1




−1

−I2n−2

1




1 0 −2h

0 I2n−2 0

0 0 1

 (4.68)
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for a unique h ∈ F∗. Observe that

χ




1 0 −2h

0 I2n−2 0

0 0 1


 = 1. (4.69)

�

Remark 4.12. Later on, we will need to evaluate an incomplete Bessel function of the

representation at elements of type (4.68). We will observe later that even though


1 0 −2h

0 I2n−2 0

0 0 1

 (4.70)

will drop out if we consider the full Bessel function, the situation is not the same with

an incomplete one. But it is still very close to it (Proposition 7.3).

5 A reduction step

We continue to assume thatG and P =MN are as in earlier sections, that is, P is a self-

associate maximal F-parabolic subgroup of G satisfying N ⊂ U and T ⊂ M for a fixed

Borel subgroup B = TU defined over F. Let α be the corresponding simple root. Finally,

let ZG and ZM be the centers of G andM, respectively. To carry out our calculations in

Section 6 we need the following assumption.

Assumption 5.1. There exists an injection α∨ from F∗ into ZG\ZM such that α ′(α∨(t)) =

t, t ∈ F∗, for any root α ′ of T which restricts to α. Set Z0
M = α∨(F∗). �

The assumption is clearly false even for SL2, but not for GL2. On the other hand,

it is valid in each of the three crucial cases (n ≥ 2 for G = Sp2n) considered in Section 4

since ZG\ZM is precisely

A =
{
diag

(
t, 1, . . . , 1, t−1

)
| t ∈ F∗

}
. (5.1)

We can rectify this difficulty by proving the validity of Assumption 5.1 when ZG is a

cohomologically trivial torus (Lemma 5.2). On the other hand, since local coefficients

depend only on the derived group of G, we can replace G by a larger group, sharing the

same derived group as G, for which the lemma and therefore Assumption 5.1 are valid

(Proposition 5.4).
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Lemma 5.2. Suppose that ZG is a torus for which H1(F, ZG) = 1. Then there exists an

injection α∨ from F∗ into ZG\ZM such that α ′(α∨(t)) = t, t ∈ F∗, for any root α ′ of T

which restricts to α. �

Proof. Consider the exact sequence

0 −→ ZG −→ T −→ Tad −→ 0. (5.2)

As a group over F, we identify G with its defining split group. Similarly for T and ZG.

Since ZG\G is an adjoint Chevalley group over F having Tad as a maximal torus, X∗(Tad),

the lattice of cocharacters of Tad, equals to the lattice of its coweights. Thus there exists

α∨
0 ∈ X∗(Tad) such that

α ′(α∨
0 (t)

)
= t, (5.3)

but

β ′(α∨
0 (t)

)
= 1, (5.4)

where β ′ is any simple root of T , different from α ′. Here t ∈ Gm = GL1. This then implies

α∨
0 (t) ∈ ZM.

Since ZG is a torus, (5.2) splits and therefore

X∗(T )  X∗
(
Tad

)
⊕ X∗

(
ZG

)
. (5.5)

Let α∨ = (α∨
0 , 1). Then α ′(α∨(t)) = t, while β ′(α∨(t)) = 1 for α ′ and β ′ as before. The

roots which restrict to α are in the same Γ-orbit of a fixed one, say, α ′. Thus for each

σ ∈ Γ = Gal(F/F),

(
σα ′)(α∨

(t)
)
= σ

(
α ′(σ−1

(
α∨
(t)

)))
= t. (5.6)

Changing t to σ(t), we get

α ′(σ−1
(
α∨

(
σ(t)

))(
α∨
(t)

)−1)
= 1. (5.7)

Changing α ′ in its Γ-orbit, it is clear that (5.7) is valid for any α ′ which restricts to α.
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Similarly, (5.7) is valid for any β ′, that is, any simple root of T which does not restrict

to α. Consequently, there exists zσ(t) ∈ ZG such that

σ
(
α∨

(
σ−1
(t)

))
= α∨

(t)zσ(t) (5.8)

for each σ ∈ Γ . It is easily checked that the class of

σ 	−→ zσ(t) (5.9)

is in H1(F, ZG) = 1. Choose a = a(t) ∈ ZG such that zσ = aσ(a)−1. Thus

σ
(
α∨

(
σ−1
(t)

)
a(t)

)
= α∨

(t)a(t). (5.10)

Taking t ∈ F∗, α∨(t)a(t) ∈ ZM = ZM(F). Observe that α∨ sets up an injection from Gm

into ZG\ZM. Moreover, (ZG\ZM)(F)  ZG\ZM. Thus α∨ gives an injection from F∗ into

ZG\ZM satisfying α ′(α∨(t)) = t, t ∈ F∗, as desired. �

Now,we consider arbitraryZG. We first imbedG in another quasisplit connected

reductive group G ′ with the same derived group as G, but with a connected center. We

do exactly as in [22, Lemma 2.1]. We take a free Γ-module Q satisfying

Q −→ X
(
ZG

)
−→ 0 (5.11)

and choose a torus Z ′ whose character module (over F) X(Z ′) = Q. Then ZG ⊂ Z ′. We

then define

G ′
=

(
Z ′ × GD

)
/ZG ∩ GD, (5.12)

where GD is the derived group of G. We can therefore assume that G has a connected

center, that is, a torus ZG. We are done unless ZG has a nonzero first Galois cohomology.

For thatweuse the followingwell-known lemma forwhichwe like to thankWentangKuo.

Lemma 5.3. Let T be a torus over F. Then there exists an F-torus T̃ with T ⊂ T̃ and

H1(F, T̃ ) = 1. �

Proof. Let L/F be a Galois extension over which T splits. Let T̃ = ResL/F T . Clearly T ⊂ T̃ .

By Shapiro’s lemma,

H1
(
F, T̃

)
= H1

(L, T ) (5.13)

which is trivial since T splits over L. �
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Arguing as above, we have the following proposition.

Proposition 5.4. Let G be a connected reductive group over F. Then there exists a con-

nected reductive group G̃ over F, whose center is a torus Z
G̃
, satisfying

(1) GD = G̃D and ZG ⊂ Z
G̃
,

(2) H1(F, Z
G̃
) = 1,

(3) G ⊂ G̃. Moreover if G is quasisplit, then so is G̃. �

6 Local coefficients as Mellin transforms of Bessel functions

Weprove themain result of this paper. More precisely, we show that under Assumptions

4.1 and 5.1, and up to an abelian γ-function, the reciprocal C(s, π)−1 of the local coeffi-

cientC(s, π), defined by (2.8), can bewritten as aMellin transform, over orbits ofN under

conjugation by Z0
MUM, of an incomplete Bessel function of the representation. Since γ-

functions from our method are inductively defined by local coefficients [27], and in view

of the important paper of Cogdell and Piatetski-Shapiro [9], this may be considered as

the first step towards the proof of stability of γ-functions under twisting by highly ram-

ified characters in generality of our method. This will have important applications to

transfer of automorphic forms by means of Langlands functoriality [7]. Assumption 5.1

can be dropped as soon asG is enlarged to satisfy Proposition 5.4, whichwill not change

the value of C(s, π) as discussed in Section 5. Of course,M and consequently πwill need

to be changed accordingly, but nothing else. The extension of π will not be unique. But

C(s, π) will remain the same. (See, e.g., [1].) We continue to assume that P = MN is

self-associate. The representation π of M will be any irreducible admissible χ-generic

representation. As explained in Section 2, χ will determine an F-splitting {Xα ′ } which in

turn determines a choice of representatives for w0. It will be compatible with χ. The

Bessel function Jπ is defined by (3.4), whenever it converges. We use ωπ and ωπs
to

denote central characters of π and πs = π⊗q〈sα̃,HM(·)〉 , respectively, that is, ωπ = π|ZM.

Similarly for ωπs
. Then

ωπs
(z) = ωπ(z)q

〈sα̃,HM(z)〉
(
z ∈ ZM

)
. (6.1)

The character w0(ωπ) is then defined by

w0

(
ωπ

)
(z) = ωπ

(
w−1

0 zw0

)
. (6.2)

Similarly forw0(ωπs
). A quick check of the Levi subgroup GLn ×GLn inside GL2n shows

that w0(ωπ) need not equal ω−1
π . Let ψF be the nontrivial additive character of F which
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was fixed to define χ as in Section 2. Given a (unitary) character θ of F∗ and a complex

number ν ∈ C, we recall the formal definition of the corresponding abelian γ-function

γ
(
ν, θ, ψF

)
=

∫
F∗

θ−1
(t)|t|1−νψF(t)d

∗t, (6.3)

where the integration is a principal value integral which stabilizes for |t| large. In other

words, the integral needs to be taken only over a compact set |t| ≤ κ for some κ > 0. In

what followswewill bemore precise and explain in detail the definition and conventions

involved in the definition of γ(ν, θ, ψF). The γ-function γ(ν, θ, ψF) then defines the root

number ε(ν, θ, ψF) through

γ
(
ν, θ, ψF

)
= ε

(
ν, θ, ψF

)
L
(
θ−1, 1− ν

)
/L(θ, ν), (6.4)

where the L-functions are those of Hecke-Tate, satisfying

Lϕ̂

(
θ−1, 1− ν

)
= γ

(
ν, θ, ψF

)
Lϕ(θ, ν) (6.5)

for every ϕ ∈ C∞
c (F). The Fourier transform ϕ̂ is defined by

ϕ̂(t) =

∫
F

ϕ(tx)ψF(x)dx, (6.6)

where dx is a self-dual measure, that is, that ̂̂ϕ(x) = ϕ(−x). It is then easily seen that

γ
(
ν, θ, ψF

)
γ
(
1− ν, θ−1, ψF

)
= 1. (6.7)

Therefore,

γ
(
ν, θ, ψF

)−1
=

∫
F∗

θ(t)|t|νψF(t)d
∗t (6.8)

which converges for Re(ν) > 0.

Remark 6.1. We canget these L-functions andγ-factors using ourmethodby considering

the standard parabolic subgroup of SL2(F) with the character, which sends diag(t, t−1)

to θ(t)|t|s and

(
1 x

0 1

)
	−→ ψF(x). (6.9)
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The corresponding local coefficient is then precisely γ(s, θ, ψF). In the notation of

Langlands L-functions and in terms of representations of L-groups

γ
(
s, θ, ψF

)
= γ

(
(θ, s), r̃1, ψF

)
, (6.10)

where (θ, s) denotes the 1-dimensional representation θ(t)|t|s of the diagonal subgroup

of SL2(F) and r̃1 is the contragredient of the adjoint action r1 of LT on Ln, the L-group of T

on that of the complex Lie algebra of 2×2 unipotent matrices. This equality agrees with

calculations and conventions in [21] and [23, 26, 27], and must be used whenever (2.9)

involves a 1-dimensional γ-function. Next, assume that n ∈ N satisfies (4.1), that is,

w−1
0 n = mn ′n, (6.11)

wherem ∈ M, n ′ ∈ N, and n ∈ N. Our Mellin transformwill eventually be an integration

over orbits of N under conjugation by Z0
MUM. If n satisfies (4.1), then so does every

element in its orbit. In particular, given the orbit attached to n, m will belong to a

Z0
MUM-Int(w0)-twisted conjugacy class since

w−1
0 xnx−1

= w0(x)mx−1 · xn ′x−1 · xnx−1, (6.12)

wherew0(x) = w−1
0 xw0, x ∈ G. Next, note that an arbitrary element n1 ofN is of the form

w0n1w−1
0 for some n1 ∈ N. We define a character χ ′ of N by

χ ′(n1

)
= χ

(
w−1

0 n1w0

)
. (6.13)

Then

χ ′(zun1u−1z−1
)
= χ

(
Int

(
w0(z)

)
n1

)
, (6.14)

where Int(x)y = xyx−1 for any x and y in G, z ∈ Z0
M, and u ∈ UM. Here we are identifying

theWeyl group of T = T (F)with that ofA0. Ifn1 =
∏

α ′ exp(xα ′Xα ′)n ′
1, where the product

is over all the nonrestricted roots of T restricting to α and n ′
1 is in the derived group

of U, then by (6.14)

χ ′(zun1u−1z−1
)
= ψF

(
α ′(w0(z)

)
xα

)
. (6.15)

Here

xα =
∑
α ′

xα ′ ∈ F. (6.16)



Local Coefficients as Mellin Transforms 2103

Since α ′’s make one Γ-orbit, the value of α ′(w0(z)) does not depend on the choice of α ′.

Next, observe that under Assumption 5.1, we can consider ωπs
|Z0

M (as well as ωπ|Z0
M)

as a character of F∗ by means of

ωπs
(t) = ωπs

(
α∨
(t)

)
. (6.17)

As usual, we extend ωπs
to F by ωπs

(0) = 0. We define

w0

(
ωπs

)
(t) = ωπs

(
w−1

0 zw0

)
, (6.18)

where z = α∨(t), since w−1
0 α∨(t)w0 ≡ α∨(t−1)modZG (see (6.28) below). Given n satis-

fying (4.1), we use ṅ, ṁ, and ṅ to denote a set of representatives for each of their orbits

when Z0
MUM acts by conjugation on n. Let ẋα denote the element of F attached to ṅ in

(6.16). We will now fix a measure dṅ on Z0
MUM\N by

dn = q〈2ρ,HM(z)〉 dz du dṅ, (6.19)

where du is a right invariant measure on UM. In fact, the modulus character for the

measure dṅ is simply

d
(
zunu−1z−1

)
/dn = d

(
znz−1

)
/dn (6.20)

which simply equals q〈2ρ,HM(z)〉 . To formulate our main theorem, we need to introduce

an incomplete (partial) Bessel function (cf. [9]). Let N0 be an open compact subgroup

of N. We assume N0 is chosen so that α∨(t)N0α∨(t)−1 depends only on |t| for all t ∈ F∗.

ClearlyN has an exhaustive sequence of such subgroups. Letϕ denote the characteristic

function of N0 and denote by ϕ|t| the one for α∨(t)N0α∨(t)−1. Fix Wv ∈ W(πs). Choose

n ∈ N such that w−1
0 n satisfies (4.1). Write w−1

0 n = mn ′n. Given z ∈ Z0
M, define

jv,N0
(m, z) =

∫
UM,n\UM

Wv

(
mu−1

)
ϕ

(
zunu−1z−1

)
χ(u)du. (6.21)

Although n 	→ m in (4.1) is not an injection in general, Assumption 4.1 implies that there

is a bijection between the UM-conjugacy class of n and the UM-twisted conjugacy class

of m. Consequently, the class of m determines that of n and therefore n uniquely. This

justifies the dependence only onm (rather than n) in the definition of jv,N0
(m, z). Assume

thatWv satisfies Assumption 3.1, and further that Assumption 4.1 is valid. We can then

assume that u−1 belongs to a compact subset of UM modulo UM,n = UM,n = U ′
M,m. The
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first equality follows from the bijection n 	→ n in (4.1). EnlargingN0, depending both on

z and n (and therefore m), we see that

lim
N0

jv,N0
(m, z) = Jπs

(m)Wv(e), (6.22)

where Jπs
is the Bessel function of πs. In particular, (6.21) converges. The limit will be

achieved for N0 sufficiently large. Given z ∈ Z0
M, we consequently call jv,N0

(m, z) an

incomplete or partial Bessel function (cf. [9]). Observe that

jv,N0
(m, z) = jv,z−1N0z(m, 1). (6.23)

Finally, assume z = α∨(t), where t = y−1 · ẋα, y ∈ F∗, and with the above notation, define

jv,N0
(ṁ, y) = jv,N0

(
ṁ, α∨

(
y−1 · ẋα

))
, (6.24)

where as before ṅ, ṁ, and ṅ (w−1
0 ṅ = ṁṅ ′ṅ) denote a set of representatives for each of

their orbits when Z0
MUM acts by conjugation on n (twisted conjugation for m), and ẋα

is the element of F attached to ṅ in (6.16). We now claim that, given y ∈ F∗,

jv,N0
(ṁ, y)ω−1

πs

(
ẋα

)
w0

(
ωπs

)(
ẋα

)
q〈ρ,HM(ṁ)〉 dṅ (6.25)

is a well-defined measure on Z0
MUM \ N, through w−1

0 ṅ = ṁṅ ′ṅ. We first rewrite

jv,N0
(ṁ, y) as

jv,N0
(ṁ, y)

=

∫
UM,ṅ\UM

Wv

(
ṁu−1

)
ϕ

(
uα∨

(y)−1α∨
(
ẋα

)
ṅα∨

(
ẋα

)−1
α∨
(y)u−1

)
χ(u)du.

(6.26)

Consequently, changing ṅ to z1u1ṅu−1
1 z−1

1 , z1 = α∨(t1), t1 ∈ F∗,

jv,N0

(
w0

(
z1u1

)
ṁu−1

1 z−1
1 , y

)
= ωπs

(
w0

(
z1

))
ω−1

πs

(
z1

) ∫
UM,ṅ\UM

Wv

(
ṁu−1

)
ϕ

(
uα∨

(y)−1α∨
(
t−1
1 · ẋα

)
z1ṅz−1

1

× α∨
(
t−1
1 · ẋα

)−1
α∨
(y)u−1

)
χ(u)du

(6.27)
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since in (6.26) ẋα will change to t−1
1 · ẋα as ṅ changes to z1u1ṅu−1

1 z−1
1 . In fact, since

α ′(w0(z)
)
= α ′(z−1

)
= α ′(α∨

(
t−1

))
= t−1,

(6.28)

(6.15) can be written as

χ ′(zun1u−1z−1
)
= ψF

(
t−1xα

)
. (6.29)

Thus changing ṅ to z1u1ṅu−1
1 z−1

1 will change ẋα to t−1
1 · ẋα, where z1 = α∨(t1). Moreover,

ω−1
πs
(ẋα)w0(ωπs

)(ẋα)will be multiplied byωπs
(t1)w0(ωπs

)(t−1
1 ). Now, since z1 = α∨(t1),

(6.27) immediately implies that

jv,N0

(
w0

(
z1u1

)
ṁu−1

1 z−1
1 , y

)
= ωπs

(
w0

(
z1

))
ω−1

πs

(
z1

)
jv,N0

(ṁ, y). (6.30)

Note that

ωπs

(
α∨

(
t1

)−1)
w0

(
ωπs

)(
α∨

(
t1

))
= ωπs

(
t−1
1

)
w0

(
ωπs

)(
t1

)
. (6.31)

Finally, by (6.19),

q〈ρ,HM(w0(z1)ṁz−1
1
)〉 d

(
z1ṅz−1

1

)
(6.32)

equals q〈ρ,HM(ṁ)〉 dṅ. Thus (6.25) remains unchanged under changing ṅ to z1u1ṅu−1
1 z−1

1

and our claim follows. Finally, we use ṽ to denote the vector in the space of π, which goes

to v = ṽ ⊗ q〈sα̃,HM( )〉 . We use jṽ,N0
to denote the corresponding partial Bessel function

defined by (6.21) and (6.24). Next, observe that α̃ = 〈ρP, α〉−1ρP may be considered as a

character ofM and in fact one of Z0
M. Consequently, we can compute

q〈sα̃,HM(z)〉 =
∣∣α̃(

α∨
(t)

)∣∣s (6.33)

for z = α∨(t). Since

t 	−→ ∣∣α̃(
α∨
(t)

)∣∣ (6.34)

is an unramified character of F∗, we can define 〈α̃, α∨〉 ∈ C such that

∣∣α̃(
α∨
(t)

)∣∣ = |t|〈α̃,α∨〉, (6.35)
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and therefore,

q〈sα̃,HM(z)〉 = |t|〈α̃,α∨〉s. (6.36)

Recall that if Hα(t) is the standard coroot at α, then α̃(Hα(t)) = t, while α̃(Hβ(t)) = 1 for

every other simple root β and therefore α̃ is a fundamental weight. Now consider a few

examples: if G = GL2n andM = GLn ×GLn, then it is easily seen that for

α∨
(t) = diag(

n times︷ ︸︸ ︷
t, t, . . . , t, 1, . . . , 1), (6.37)

〈α̃, α∨〉 = n/2 (check [24]). On the other hand, for each of the three cases considered in

Section 4, α̃ = e1 and 〈α̃, α∨〉 = 1, for α∨(t) = diag(t, 1, . . . , 1, t−1). We can now state the

main result of our paper as follows.

Theorem 6.2. Suppose that Assumptions 4.1 and 5.1 are both valid. Then

C(s, π)−1
=

∫
|y|≤κ0

|y|2〈α̃,α∨〉sωπ(y)(w0ω−1
π )(y)ψF(y)

×
∫
Z0

M
UM\N

jṽ,N0
(ṁ, y)ω−1

πs

(
ẋα

)(
w0ωπs

)(
ẋα

)
q〈sα̃+ρ,HM(ṁ)〉 dṅ d∗y,

(6.38)

where κ0 is a positive constant depending only on conductors of ωπ and ψF, N0 is a

sufficiently large open compact subgroup of N for which α∨(t)N0α∨(t)−1 depends only

on |t| for all t ∈ F∗, and Wṽ(e) = 1. The constant κ0 and the open compact subgroup

N0 can be replaced by any larger value and open compact subgroup of the same type,

respectively. The incomplete Bessel function jṽ,N0
(ṁ, y) is defined by (6.21) and (6.24).

Moreover, assume that ωπ(w0ω−1
π ) is ramified. Then

C(s, π)−1
= γ

(
2〈α̃, α∨〉s, ωπ

(
w0ω−1

π

)
, ψF

)−1

×
∫
Z0

M
UM\N

jṽ,N0
(ṁ)ω−1

πs

(
ẋα

)(
w0ωπs

)(
ẋα

)
q〈sα̃+ρ,HM(ṁ)〉 dṅ,

(6.39)

where jṽ,N0
(m) = jṽ,N0

(m, y0)with ordF(y0) = −d−f, where d and f are conductors ofψF

andω−1
π ·(w0ωπ), respectively. The choice of y0 is irrelevant. Particularly, the integral in

(6.39) is independent of the choice of ṽ andN0 so long asWṽ(e) = 1 andN0 is sufficiently

large. �

Remark 6.3. In the case of GL2 ×GL2 inside GL4, (6.38) is basically the content of an

important lemma of Soudry [32, Lemma 4.5].
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Remark 6.4. Assumption 3.1, although being necessary to motivate the definition of an

incomplete Bessel function by means of equation (6.21), is not necessary for the proof of

Theorem 6.2. The convergence of (6.21) for arbitraryWv follows from Fubini’s theorem

as a biproduct of our proof.

Proof. We need to compute the expression

λχ

(
− s, w0(π)

)
A(s, π), (6.40)

which is equal to

C(s, π)−1λχ(s, π) (6.41)

by (2.8), for an appropriate function f ∈ V(s, π). If we replace f by Rw−1
0

f, this means to

evaluate∫
N

〈
A(s, π)f

(
n1

)
, λ

〉
χ
(
w−1

0 n1w0

)
dn1 =

∫
N

〈
A(s, π)f

(
n1

)
, λ

〉
χ ′

(
n1

)
dn1, (6.42)

where A(s, π) is defined by (2.6). From the general theory of Whittaker functionals (cf.

[6, 23]), the integral overN stabilizes and thereforewemay replaceNby an open compact

subgroup of it, say, N0, which can be enlarged arbitrarily. The choice of N0 does not

depend on s. (See Step (2) of the proof of [6, Lemma 2.2, page 214] in the unramified case.

The general case follows precisely the same steps.) The choice of f will not effect the

result and the matters become a lot simpler if we assume that f has a compact support

in PN modulo P which from now on we will assume to be the case. Moreover, we will

assume N0 to contain the support of f modulo P. If we assume Re(s) > 0, in which

case we can use the absolute convergence of intertwining operators, then (6.42) can be

written as∫
N0

〈 ∫
N

f
(
w−1

0 nn1

)
dn, λ

〉
χ ′

(
n1

)
dn1 (6.43)

or ∫
N0

〈 ∫
N

πs(m)f
(
nn1

)
q〈ρP,HM(m)〉 dn, λ

〉
χ ′

(
n1

)
dn1, (6.44)

where the integral over N is over those n for which w−1
0 n satisfy (4.1). Under the as-

sumption that N0 contains the support of f modulo P, we can change n1 to (n)−1n1,

to get

∫
N0

〈 ∫
N

πs(m)f
(
n1

)
, λ

〉
q〈ρP,HM(m)〉 χ ′(n)

χ ′
(
n1

)
dn dn1. (6.45)
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Since Re(s) > 0, we can apply Fubini’s theorem to write this as

∫
N

〈
πs(m)

∫
N0

f
(
n1

)
χ ′

(
n1

)
dn1, λ

〉
q〈ρ,HM(m)〉 χ ′(n)

dn. (6.46)

Let

v =

∫
N0

f
(
n1

)
χ ′

(
n1

)
dn1. (6.47)

It is independent of N0, since the support of f modulo P is contained in N0. Formula

(6.46) is now equal to

∫
N

〈
πs(m)v, λ

〉
ϕ

(
n
)
q〈ρ,HM(m)〉 χ ′(n)

dn, (6.48)

where ϕ is the characteristic function of N0. Observe that (2.7), that is, the left-hand

side of (2.8), when evaluated at Rw0
−1f, equals

∫
N0

〈
f
(
n1

)
, λ

〉
χ ′

(
n1

)
dn1 (6.49)

or 〈 ∫
N0

f
(
n1

)
χ ′

(
n1

)
dn1, λ

〉
=Wv(e). (6.50)

From now on we assumeWv(e) = 1. Consequently, (2.8) and (6.48) imply that

C(s, π)−1
=

∫
N

〈
πs(m)v, λ

〉
ϕ

(
n
)
q〈ρ,HM(m)〉 χ ′(n)

dn. (6.51)

Finally, we write (6.51) as

C(s, π)−1
=

∫
N

Wv(m)ϕ
(
n
)
q〈ρ,HM(m)〉 χ ′(n)

dn, (6.52)

where

Wv(m) =
〈
πs(m)v, λ

〉
(6.53)

gives the value of the corresponding elementWv ∈ W(πs) atm. We now start by expand-

ing the right-hand side of (6.52) by integrating over orbits of N under conjugation by

UM. Since sending n to unu−1 will send m to w0(u)mu−1, while n goes to unu−1, the
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right-hand side of (6.52) now becomes

C(s, π)−1
=

∫
UM\N

( ∫
UM,n\UM

Wv

(
mu−1

)
ϕ

(
unu−1

)
χ(u)

× χ ′(unu−1
)
du

)
q〈ρ,HM(m)〉 dn,

(6.54)

using the compatibility of χ andw0, that is, χ(w0(u)) = χ(u). Here we need to useUM,n =

U ′
M,m which is valid by Assumption 4.1. Finally, since χ ′(unu−1) = χ ′(n), (6.54) can be

written as

C(s, π)−1
=

∫
UM\N

( ∫
UM,n\UM

Wv

(
mu−1

)
ϕ

(
unu−1

)
χ(u)du

)
× χ ′(n)

q〈ρ,HM(m)〉 dn.

(6.55)

Now we incorporate conjugation over Z0
M as well and using (6.19) and (6.55) conclude

that

C(s, π)−1

=

∫
Z0

M
UM\N

∫
Z0

M

( ∫
UM,ṅ\UM

Wv

(
w0(z)ṁz−1u−1

)
ϕ

(
zuṅu−1z−1

)
χ(u)du

)
× χ ′(zṅz−1

)
q〈ρ,HM(w0(z)ṁz−1

)〉 q〈2ρ,HM(z)〉 dz dṅ.

(6.56)

Here, ṅ, ṁ, and ṅ are the sets of representatives under Z0
MUM-conjugation (twisted

conjugation for m), satisfying w−1
0 ṅ = ṁṅ ′ṅ, for each n ∈ N satisfying (2.8). Since

q〈ρ,HM(w0(z)ṁz−1
)〉
= q−〈2ρ,HM(z)〉 q〈ρ,HM(ṁ)〉, (6.57)

using (6.15), (6.56) can be written as

∫
Z0

M
UM\N

∫
Z0

M

( ∫
UM,ṅ\UM

Wv

(
ṁu−1

)
ϕ

(
zuṅu−1z−1

)
χ(u)du

)
× ωπs

(
w0(z)z

−1
)
ψF

(
α ′(w0(z)

)
ẋα

)
q〈ρ,HM(ṁ)〉 dz dṅ.

(6.58)

Invoking Assumption 5.1, (6.28) implies that

ωπs

(
w0(z)z

−1
)
ψF

(
α ′(w0(z)

)
ẋα

)
= ωπs

(
t−1

)(
w0ω−1

πs

)(
t−1

)
ψF

(
t−1ẋα

)
, (6.59)
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where z = α∨(t). Using this equality and (6.21), and assuming Re(s) � 0, we can now

apply Fubini’s theorem to (6.58) so as to write it as

∫
Z0

M

ωπs

(
t−1ẋα

)(
w0ω−1

πs

)(
t−1ẋα

)
ψF

(
t−1ẋα

)
×

∫
Z0

M
UM\N

jv,N0
(ṁ, z)ω−1

πs

(
ẋα

)(
w0ωπs

)
(ẋα)q

〈ρ,HM(ṁ)〉 dṅ d∗(t−1ẋα

)
.

(6.60)

Setting y = t−1ẋα and using (6.24), (6.60) equals

∫
F∗

ωπs
(y)

(
w0ω−1

πs

)
(y)ψF(y)

×
∫
Z0

M
UM\N

jv,N0
(ṁ, y)ω−1

πs

(
ẋα

)(
w0ωπs

)(
ẋα

)
q〈ρ,HM(ṁ)〉 dṅ d∗y.

(6.61)

Finally, we claim that under our assumption onN0, jv,N0
(ṁ, y) depends only on |y|. This

follows from

jv,N0
(ṁ, y) =

∫
UM,n\UM

Wv(ṁu−1
)ϕ|y|

(
uα∨

(
ẋα

)
ṅα∨

(
ẋα

)−1
u−1

)
χ(u)du, (6.62)

in which, we recall that ϕ|y| is the characteristic function of α∨(y)N0α∨(y)−1, which

depends only on |y| by our assumption on N0. Let

θ
(
|y|

)
=

∫
Z0

M
UM\N

jv,N0
(ṁ, y)ω−1

πs

(
ẋα

)(
w0ωπs

)(
ẋα

)
q〈ρ,HM(ṁ)〉 dṅ. (6.63)

Equation (6.61) is now clearly

∫
F∗

ωπs
(y)

(
w0ω−1

πs

)
(y)ψF(y)θ

(
|y|

)
d∗y. (6.64)

It is well known that the integral over F∗ can be achieved by integrating over P−f−d−1,

where f and d are conductors of ωπ · (w0ω−1
π ) and ψF, respectively. The first assertion

of Theorem 6.2 is now proved. For (6.39), we only need to use the well-known fact that

if η ∈ F̂∗ is ramified

∫
O∗

η(x)ψF(xy)d∗x �= 0 (6.65)

if and only if ordF(y) = −d− f. �
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Corollary 6.5. LetW be aWhittaker function in theWhittakermodelW(π) of π and fix an

open compact subgroup N0 ⊂ N as in Theorem 6.2. Let ϕ be its characteristic function.

Then the integral∫
UM,n\UM

W
(
mu−1

)
ϕ

(
unu−1

)
χ(u)du (6.66)

is absolutely convergent for every triple (n, m,n) satisfying w−1
0 n = mn ′n. �

Proof. This follows from applying Fubini’s theorem to the convergence of (6.54) for

Re(s) � 0 and the fact that (6.66) is equal to q〈sα̃,HM(m)〉 times jṽ,N0
(m, 1), if W = Wṽ.

�

7 Classical groups

We now apply Theorem 6.2 to the three cases of classical groups we discussed in Section

4. It is remarkable that in the case of SO2n+1(F) (Proposition 7.2.a), this leads to the

basically same formulas as those of Cogdell and Piatetski-Shaprio [9]. On the other

hand, our Propositions 7.2.b and 7.3 establish new formulas for γ-functions for GL1(F)×
SO2n(F) and GL1(F) × Sp2n(F), respectively, which are strikingly similar to the case of

SO2n+1(F). In each case ZG\ZM  A. Moreover, while Assumptions 4.1 and 5.1 are valid

in all three cases, Assumption 3.1, though not necessary for these results, needs to be

verified, at least for representatives given by Propositions 4.4, 4.8, and 4.11, but only

for M = GL1 ×Sp2n inside G = Sp2n+2, thanks to [4, 9]. It is quite easy to see that,

using the representatives given in above propositions, our incomplete Bessel functions

are precise analogues of those in [9]. In view of Propositions 4.4, 4.8, and 4.11, we have

a set of representatives for each AUM-Int(w0)-twisted conjugacy class of m by means

of a well-defined element k in SO2n+1(F), SO2n(F), or Sp2n(F). To apply Theorem 6.2, we

need to determine ẋα as well as the measure q〈ρ,HM(ṁ)〉 dṅ in each case. We first address

the two cases of special orthogonal groups, that is, G = SO2n+3 and SO2n+2. Recall

thatM = GL1(F)× SO2n+1(F) orM = GL1(F)× SO2n(F), respectively. The representation

π = η ⊗ σ, where η is a character of F∗ and σ is an irreducible admissible χ-generic

representation of SO2n+1(F) or SO2n(F), respectively. As in Section 4, we need to consider

the decomposition

w−1
0 n(t) = mn ′n

=


a ax −

axx∗

2

0 k −kx∗

0 0 a−1




1 0 0

y I2n+1 0

−
1

2
y∗y −y∗ 1

 (7.1)
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for G = SO2n+3, where w0 is defined as in Section 4 in each case. For G = SO2n+2,

the only change is I2n+1 to I2n in the second matrix. Recall from Lemmas 4.2 and 4.6,

or simply upon using (7.1), that a = −2/〈t, t〉, 〈t, t〉 = tt∗. Moreover, (7.1) implies that

y∗ = −at = 2t/〈t, t〉 in both cases.We need to compute ẋα fromw−1
0 nw0. It is easily found

to equal the first coordinate of the vector y∗. Our representatives from Propositions 4.4

and 4.8 correspond to t = (c, 0, . . . , 0, b), (b, c) ∈ (F∗)2, which lead to

ẋα = b−1, (7.2)

using 〈t, t〉 = 2bc. Moreover,

a = −2/〈t, t〉 = −b−1c−1. (7.3)

As suggested by Propositions 4.4, 4.8, and 4.11, in all three cases we need to consider

the subgroup H of the corresponding classical groups SO2n+1(F), SO2n(F), and Sp2n(F)

defined as

H =
{
h = diag

(
h, 1, . . . , 1, h−1

)
| h ∈ F∗

}
, (7.4)

following the lead from Cogdell and Piatetski-Shapiro’s notation in [9]. The measure

dh = d∗h is simply themultiplicativemeasure of F.We need to relate this to our invariant

measure q〈ρ,HM(ṁ)〉 dṅ, if we want to get expressions similar to those of [9, Proposition

4.1]. We have the following lemma.

Lemma 7.1. Assume G = SO2n+3 or SO2n+2. Parametrize the cosets of AUM\N by ele-

ments h of H according to Propositions 4.4 and 4.8, respectively. Let ρ = ρP and let the

simple root α be as before, that is, α = e1 − e2 in both cases. Then

q〈ρ,HM(ṁ)〉 dṅ = |h|−〈ρ,α〉+1dh. (7.5)

Consequently, q〈ρ,HM(ṁ)〉 dṅ equals |h|−n+1/2dh or |h|−n+1dh, according as G = SO2n+3

or SO2n+2, respectively. �

Proof. As discussed before, every coset of N under AUM, satisfying (4.1), can be rep-

resented by an element x((1, 0, . . . , 0, h)), h ∈ F∗, (1, 0, . . . , 0, h) ∈ F2n+1 or F2n according

as G = SO2n+3 or G = SO2n+2. In fact, with the (b, 0, . . . , 0, c)-representative discussed
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earlier, b = h and c = 1. Then, by (7.3), a = −b−1c−1 = −h−1 and therefore,

q〈ρ,HM(ṁ)〉 =
∣∣ρ(ṁ)∣∣

=
∣∣ρ(

Hα

(
h−1

))∣∣
= |h|−〈ρ,α〉.

(7.6)

The measure is now being invariant and is just the additive measure dh = |h| d∗h. The

lemma follows. �

To use Theorem 6.2 we need to compute

jṽ,N0
(ṁ)ω−1

πs

(
ẋα

)(
w0ωπs

)(
ẋα

)
q〈sα̃,HM(ṁ)〉, (7.7)

where jṽ,N0
(ṁ) is as in Theorem (6.39). Since π = σ ⊗ η, by Propositions 4.4 and 4.8

jṽ,N0
(ṁ) = η(a)jṽ,N0




h

I2n−1

h−1




1

−I2n−1

1




= η
(
− b−1c−1

)
jṽ,N0




h

I2n−1

h−1




1

−I2n−1

1


 ,

(7.8)

if G = SO2n+3, and

jṽ,N0
(ṁ) = η

(
− b−1c−1

)
jṽ,N0




h

I2n−2

h−1




1

−K2n−2

1


 , (7.9)

if G = SO2n+2. Next, observe that the rest of the product in (7.7) is now equal to

ω−1
πs

(
b−1

)(
w0ωπs

)(
b−1

)
q〈sα̃,HM(ṁ)〉 = η

(
b2

)∣∣b2
∣∣s∣∣b−1c−1

∣∣s, (7.10)

using

q〈−sα̃,Hα(b
−1
)〉
=

∣∣ρ(
Hα(b)

)∣∣s/〈ρ,α〉
= |b|s,

q〈sα̃,HM(ṁ)〉 =
∣∣ρ(

Hα

(
− b−1c−1

))∣∣s/〈ρ,α〉
=

∣∣b−1c−1
∣∣s. (7.11)
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Observe that h = bc−1. Putting these together with Lemma 7.1, we have the following

proposition.

Proposition 7.2. (a) Suppose that G = SO2n+3 and M = GL1 ×SO2n+1. Let η ∈ F̂∗ and

fix an irreducible admissible χ-generic representation σ of SO2n+1(F). Assume that η2 is

ramified. Then with ṽ and N0 as in (6.39)

C(s, η ⊗ σ)−1

= η(−1)γ
(
2s, η2, ψF

)−1

×
∫
F∗

jṽ,N0




h

I2n−1

h−1




1

−I2n−1

1


 η(h)|h|s−n+1/2 d∗h.

(7.12)

(b) Suppose that G = SO2n+2 and M = GL1 ×SO2n. Let η ∈ F̂∗ and fix an irre-

ducible admissible χ-generic representation σ of SO2n(F). Assume that η2 is ramified.

Then with ṽ and N0 as in (6.39)

C(s, η ⊗ σ)−1

= η(−1)γ
(
2s, η2, ψF

)−1

×
∫
F∗

jṽ,N0




h

I2n−2

h−1




1

−K2n−2

1


 η(h)|h|s−n+1 d∗h,

(7.13)

where

K2n−2 =



1

. . . [
0 1

1 0

]
1

. . .

1


. (7.14)

�

We now turn to the case of symplectic groups. Let G = Sp2n+2 and M =

GL1 ×Sp2n. Again π = η ⊗ σ, where η ∈ F̂∗, while σ is an irreducible admissible χ-

generic representation of Sp2n(F). To determine ẋα, we need, as in Section 4, to consider
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the decomposition w−1
0 n(t, T) = mn ′n, that is,


1

−I2n

−1




1 t T

0 I2n t ′

0 0 1

 =


a ax aX

0 k kx ′

0 0 a−1




1 0 0

y I2n 0

Y y ′ 1

 . (7.15)

This gives a = −T−1, Y = T−1, and y ′ = −at = t/T . To proceed for the value of ẋα, we

calculate

w−1
0 nw0 =


1 −y ′ −Y

0 I2n y

0 0 1

 . (7.16)

Then ẋα is equal to the first coordinate of −y ′. We will choose our standard representa-

tive of Lemma 4.10 and Proposition 4.11, that is, we take t = tBJn, B = t(b, 0, . . . , 0, c) ∈
F2n and T = bc. We then get

ẋα = b−1. (7.17)

Moreover,

a = −T−1
= −b−1c−1 (7.18)

upon using Lemma 4.10 and Proposition 4.11. Thus everything is in complete agreement

with previous cases. The argument with measures in Lemma 7.1 goes through just the

same and we get

q〈ρ,HM(ṁ)〉 dṅ = |h|−ndh, (7.19)

since 〈ρ, α〉 = n + 1. To have a formula which looks like the two other cases (7.12) and

(7.13), we need to be more careful since now

k =


h

I2n−2

h−1




−1

−I2n−2

1




1 0 −2h

0 I2n−2 0

0 0 1

 (7.20)

gives, up to an element in F∗, a representative ṁ for each Z0
MUM-twisted conjugacy class
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of m (Proposition 4.11). Let

H =


1 0 −2h

0 I2n−2 0

0 0 1

 (7.21)

and observe that Hwould have been dropped out if we were dealing with the full Bessel

function Jπ. But, this not being the case, we need to take H into account, though its

effect is practically only a change of sign as we explain below. A quick calculation using

(7.15) shows that with t = tBJn, B = t(h, 0, . . . , 0, 1), and T = h, y = t(−1, 0, . . . , 0,−h−1),

y ′ = (−h−1, 0, . . . , 0, 1), and Y = h−1. This then gives ṅ as

ṅ =


1 0 0

y I2n 0

Y y ′ 1

 . (7.22)

Moreover, if

HṅH−1
=


1 0 0

y1 I2n 0

Y1 y ′
1 1

 , (7.23)

then y1 =
t(1, 0, . . . , 0,−h−1), y ′

1 = (−h−1, 0, . . . , 0,−1), and Y1 = Y = h−1, which is

obtained from ṅ by only changing the coordinates ±1 to ∓1. It is then easily checked,

using a change of variables in (6.21), that

jv,N0
(ṁ, z) =

∫
UM,ṅ\UM

Wv

(
ṁH−1u−1

)
ϕ

(
zuHṅH−1u−1z−1

)
χ(u)du. (7.24)

Set

j ′
ṽ,N0

(
ṁH−1, z

)
= jṽ,N0

(ṁ, z). (7.25)

Finally, define j ′
ṽ,N0
(ṁH−1) by means of (6.24) and a y0 satisfying ordF(y0) = −d − f as

in Theorem 6.2. Our final result is the following proposition.

Proposition 7.3. Suppose G = Sp2n+2 andM = GL1 ×Sp2n. Let η ∈ F̂∗ and fix an irre-

ducible admissible χ-generic representation σ of Sp2n(F). Suppose that η2 is ramified.
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Then with ṽ and N0 as in (6.39) and j ′
ṽ,N0

as above

C(s, η ⊗ σ)−1

= η(−1)γ
(
2s, η2, ψF

)−1

×
∫
F∗

j ′
ṽ,N0




h

I2n−2

h−1




−1

−I2n−2

1


 η(h)|h|s−n d∗h.

(7.26)
�
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