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Abstract The prolate spheroidal wave equation (PSWE) is transformed, using suitable map-
pings, into three different canonical forms which resemble the Jacobi, Laguerre and the
Hermite differential equations. The eigenpairs of the PSWE are approximated with the cor-
responding classical orthogonal polynomial as a basis set. It is observed that for any zonal
wavenumber m the Jacobi type pseudospectral methods are well suited for small bandwidth
parameters c whereas the Hermite and Laguerre pseudospectral methods are appropriate for
very large c values. Moreover, Jacobi pseudospectral methods work well for any parameter
values such that m ≥ c. Our numerical results confirm that for any values of m, the Jacobi
[(α, β) = (±1/2,m)] and the Laguerre (γ = ±1/2) pseudospectral methods formulated in
this article for the numerical solution of the PSWE with small and very large bandwidth
parameters, respectively, are highly efficient both from the accuracy and fastness point of
view.
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1 Introduction
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)
(1)

arises inmany areas of physics such as the nuclear shell model, atomic andmolecular physics,
the study of light scattering in optics and theoretical cosmological models [3]. In (1), λ(c,m)

stands for the eigenvalue parameter,m the zonal wavenumber and c the bandwidth parameter.
More background on the PSWE can be found, for example, in [1,14,19,20]. Here, we are
looking for the square integrable solutions of the PSWE. Singularities of (1) as well as the
unboundedness of the term, containing the zonal wavenumber, at η = ±π/2 imply that the
eigenfunction y(η) must vanish at the boundaries. Clearly, such an eigenfunction will be in
the space L2(−1, 1) of the square integrable functions which suggests the use of the Dirichlet
conditions

y
(
±π

2

)
= 0 (2)

at the boundaries. Then, the transformation

η = sin θ, η ∈ (−1, 1) (3)

takes the equation into the following equivalent form

(1 − η2)y′′ − 2ηy′ −
(

m2

1 − η2
+ c2η2

)
y = −λ(c,m)y, y(±1) = 0, (4)

whose solutions are the prolate spheroidal wave functions (PSWFs), which are very useful
for approximating solutions of some ODEs and PDEs. In particular, it is observed in [25]
that for problems involving bandlimited functions, spectral methods based on the PSWFs
require fewer points per wavelength to achieve the same accuracywhen compared tomethods
based on orthogonal polynomials such as Chebyshev or Legendre polynomials. Based on this
observation, there are numerous studies on the use of PSWFs as a basis set in spectral schemes
as an alternative to the classical bases such as Chebyshev and Legendre polynomials. In [16],
the authors introduced a new class of numerical differentiation schemes constructed via the
PSWFs which requires fewer points per wavelength (compared to existing differentiation
schemes based on orthogonal polynomials) to achieve the same accuracy when it is used
to approximate derivatives of bandlimited functions. In [9], the authors have examined the
merits of usingPSWFsas basis functionswhen solvinghyperbolic PDEsusingpseudospectral
methods and concluded that one might gain from using the PSWFs over the traditional
Chebyshev or Legendre methods in terms of accuracy and efficiency for marginally resolved
broadband solutions. the authors of [23] have proposed a new well-conditioned prolate-
collocation scheme which significantly outperforms Jacobi polynomial-based methods in
approximating highly oscillatory bandlimited functions. In [5], author used PSWFs as an
alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral
algorithms. He showed that when compared to Chebyshev or Legendre polynomials, prolate
functions give more uniform spatial resolution and when used as the spatial discretization
for time-dependent PDEs in combination with explicit time-steping, PSWFs allow a longer
stable timestep than Legendre polynomials.

On the other hand, in solving the Helmholtz equations in spheroidal domains, one needs
to solve the eigenvalue problem (4) with a wide range of the zonal wavenumber m and the
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bandwidth parameter c = ka. Indeed, applying the separation of variables process in prolate
spheroidal coordinates,

x = a
√

(ξ2 − 1)(1 − η2) cos(φ), y = a
√

(ξ2 − 1)(1 − η2) sin(φ), z = aξη, (5)

one obtains the PSWE in (4) as the angular part of the Helmholtz equation. Therefore, it is
very important to be able to obtain accurate numerical solutions of (4) for a wide range of
wavenumber k, particularly very large k. In particular, one can adopt the Fourier-like spectral
method developed in [22] for which fast and accurate solution of the eigenvalue problem (4)
is essential.

Algorithms to compute the eigenpairs of the PSWE are still an active research area [3,
7,8,15,18,21]. Nevertheless, the computation of the eigensolutions is a challenging task
especially when the bandwidth parameter c is very large. More recently, Ogburn et al. [18]
and Huang et al. [15] have approximated the eigenvalues of the PSWE with very large
bandwidth parameter by a finite difference and pseudospectral type schemes, respectively. In
[18] a grid of 20000 points has been applied with high order finite differences to approximate
the eigenvalues when c = 107. However their method is very expensive since it has occupied
a gigabyte of memory and spent five hours on a laptop. On the other hand, in [15] the authors
used radial basis functions on a uniform grid taking into account the reflection symmetry of
the problem. That is, they used two different basis functions to treat the even and odd states
of the PSWE. The numerical results are quite satisfactory when compared to those of [18],
however, the method includes a scaling parameter whose optimum value must be determined
empirically. In order to overcome this issue they used the Hermite function basis scaled by√
c in a pseudospectral picture which also takes care of the symmetry. Furthermore, authors

applied periodized Hermite basis for small values of the bandwidth parameter c ∈ [0, 100]
since the Hermite functions are not suitable for this parameter range. But, in this case the
fixed scaling factor

√
c is too large and should be chosen by trial-and-error. The numerical

results obtained by applying the last two approaches are also quite satisfactory.
Numerical solution of the PSWE for small bandwidth parameters is also discussed in [2].

Therein, we have tabulated several eigenvalues of the PSWE when the zonal wavenumber
m = 0 and bandwidth parameter c = √

10. Besides, we have reported the smallest truncation
sizes necessary to obtain the ground state eigenvalue λ0(c,m) accurate within the machine
epsilon as functions of c and m in a separate table which confirms that the truncation size
N considerably increases as the bandwidth parameter c gets larger. Although, the method of
[2] yields highly accurate results for small bandwidth parameters, it becomes useless when
c > 1000.

Therefore, in this article, we construct several pseudospectral formulations of PSWE
based on the classical orthogonal polynomials so that the lowest twenty eigenvalues with
any bandwidth parameter c and zonal wavenumber m can be computed within the machine
accuracy of quadruple precision arithmetic with a truncation size not exceeding 15 in a split
second. Moreover, not only the lower eigenvalues but also the higher modes, as high as a
thousand, can be computed within the machine accuracy just in a minute.

In Sect. 2, we give a general pseudospectral formulation of a hypergeometric like equation
since in the forthcoming Sects. 3 and 4we transform the PSWE into the equations of this kind.
Then, in Sect. 3, we transform the PSWE into two separate equations resembling the Jacobi
differential equation and hence, we construct two different Jacobi pseudospectral methods
for small values of the bandwidth parameter. The first one approximates the full spectrum
at once while the second one takes care of the symmetry of the problem and thus computes
the even and odd eigenvalue sets separately. In Sect. 4, we transform the PSWE into another
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two equations which appear much similar to the Hermite and Laguerre differential equations.
Therefore, we construct the Hermite and Laguerre pseudospectral formulations of the PSWE
for very large bandwidth parameters. The latter of the methods can separate the even and
odd states which halves the truncation size and reduce the cost by a factor of four. Section
5, demonstrates and discusses the numerical results obtained by the methods constructed in
Sects. 3 and 4 where the comparison with each other as well as the literature results are done.
The last section concludes the paper with some remarks.

2 A General Pseudospectral Formulation for Hypergeometric Like
Equation

Consider the equation

σ(x)y′′ + τ(x)y′ + q(x)y = λr(x)y, x ∈ (a, b) ⊆ R (6)

where q(x) and r(x) > 0 continuous functions, λ is an eigenvalue parameter and σ and τ

are polynomials of degree at most two and one, respectively. The last equation reduces to the
equation of hypergeometric type (EHT)

σ(x)y′′ + τ(x)y′ + λy = 0 (7)

when q(x) = 0 and r(x) = −1. It is known that the n−th degree classical orthogonal
polynomials y(x) = pn(x) denoted by the names Jacobi, Laguerre and Hermite are the
solutions of the EHT for the specific values of the parameter

λ := λn = −n
[
τ ′ + 1

2 (n − 1)σ ′′] . (8)

They are orthogonal in the sense that

∫ b

a
pm(x)pn(x)ρ(x)dx = δmnh

2
n (9)

where δmn is the Kronecker’s delta, hn is the normalization constant and the weight function
ρ(x) > 0 is the solution of the Pearson equation [σ(x)ρ(x)]′ = τ(x)ρ(x). These polynomial
solutions have exactly n real and distinct roots in (a, b) which are interlaced, i.e. sorting all
the roots in ascending order, the roots of pn+1(x) alternate with those of pn(x). Now, for
equation (6) we propose an approximate solution of the form

y(x) =
N∑

n=0

�n(x)yn (10)

where

�n(x) = pN+1(x)

(x − xn)p′
N+1(xn)

, n = 0, 1, . . . , N (11)

are the set of N th degree Lagrange interpolating polynomials in which pN+1(x) is the
(N + 1)−st degree polynomial solution of (7) and yn = y(xn) are the exact values of
the function y(x) at the roots {xn}Nn=0 of pN+1(x). The zeros of the classical orthogonal
polynomials may be determined as the eigenvalues of the tridiagonal matrix
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Table 1 The coefficients of the recursion formula for the normalized classical orthogonal polynomials

Polyn. An Bn

Jacobi
2

2n + α + β

√
n(n + α)(n + β)(n + α + β)

(2n + α + β − 1)(2n + α + β + 1)

β2 − α2

(2n + α + β)(2n + α + β + 2)

Laguerre −√
n(n + γ) 2n + γ + 1

Hermite
√
n/2 0

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

B0 A1 0
A1 B1 A2

A2 B2
. . .

. . .
. . . AN

0 AN BN

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

where the An and Bn are the coefficients in the three term recurrance relation

An+1φn+1(ξ) + (Bn − ξ)φn(ξ) + Anφn−1(ξ) = 0, n = 0, 1, . . . (13)

of the normalized classical orthogonal polynomials φn(x) = pn(x)/hn . The procedure is
known as the Golub-Welsch algorithm [13]. In Table 1, we present the coefficients An and
Bn for the normalized Jacobi, Laguerre and the Hermite polynomials.

Now, inserting the approximate solution in (10) into the equation (6) and requiring its
satisfaction at the grid points xm and using the fact that �n(xm) = δmn we obtain the set of
N + 1 equations

N∑
n=0

[
σ(xm)�′′

n(xm) + τ(xm)�′
n(xm) + q(xm)δmn

]
yn = λ(c,m)r(xm)

N∑
n=0

δmn yn (14)

leading to the discrete representation

B̂ y = λ(c,m) y (15)

of (6) where the general entry B̂mn of the resulting matrix B̂ = [B̂mn
]
may be written as

B̂mn = 1

r(xm)

[
σ(xm)�′′

n(xm) + τ(xm)�′
n(xm) + q(xm)δmn

]
, m, n = 0, 1, . . . , N . (16)

Actually the matrices with entries

d (1)
mn := �′

n(xm) = 1

2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

xm − xn

p′
N+1,m

p′
N+1,n

if m �= n

− τn

σn
if m = n

(17)
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and

d (2)
mn := �′′

n(xm) = 1

3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 3

xm − xn

[
τm

σm
+ 2

xm − xn

]
p′
N+1,m

p′
N+1,n

if m �= n

1

σn

{
τn

σn

[
σ ′
n + τn

] + N
[
τ ′ + 1

2 (N + 1)σ ′′]} if m = n

(18)

are known as the pseudospectral differentiation matrices of order one and two, respectively
which can be derived by keeping in mind that pN+1(x) satisfies the EHT in (7) when λ =
λN+1 and pN+1(xm) = 0 form = 0, 1, . . . , N [2]. In (17) and (18)we adopt the abbreviations
p′
N+1,k = p′

N+1(xk), σk = σ(xk) and τk = τ(xk).
Thus, inserting (17) and (18) into (16) we obtain an explicit representation for the entries

B̂mn = − 1

6rm

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

12σm
(xm − xn)2

p′
N+1,m

p′
N+1,n

if m �= n

τn

σn

[
τn − 2σ ′

n

] − 2N
[
τ ′ + 1

2 (N + 1)σ ′′] − 6qn if m = n

(19)

of the matrix B̂ where rk = r(xk) and qk = q(xk). By means of the similarity transformation
B = S−1B̂S where S is a diagonal matrix with entries

Smn =
√

σm

rm
p′
N+1,mδmn, m = 0, 1 . . . , N (20)

it is possible to avoid the computation of the terms p′
N+1(xm). Moreover, the new matrix B

is symmetric whose entries are given by

Bmn = −1

6

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

12

(xm − xn)2

√
σmσn

rmrn
if m �= n

1

rn

{
τn

σn

[
τn − 2σ ′

n

] − 2N
[
τ ′ + 1

2 (N + 1)σ ′′] − 6qn

}
if m = n.

(21)

Therefore, the eigenvalues of (15) and hence, the approximate eigenvalues of (6), may be
determined by the symmetric matrix-eigenvalue problem

Bv = λ(c,m)v (22)

since the similar matrices share the same spectrum. Clearly an eigenvector y of (15) is given
by

y = Sv (23)

in terms of an eigenvector v of the symmetric matrix B.

3 The Jacobi Pseudospectral Methods for the PSWE

In (4), to get rid of the singular term proportional to 1/(1− η2) we transform the dependent
variable by the mapping

y(η) = (1 − η2)m/2u(η) (24)
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leading to the equation

(1 − η2)u′′ − 2(m + 1)ηu′ + q(η)u = μu, μ = m(m + 1) − λ(c,m) (25)

with
q(η) = −(cη)2. (26)

Note that the solution u(η) does not have to satisfy any boundary conditions since the trans-
formation in (24) takes care of the boundary conditions in (2).

Notice that, the system (1) is reflection symmetric, i.e., it is invariant under the replacement
of the independent variable by its negative. Thus, the spectrum λn(c,m) of PSWE can be
decomposed into two subsets containingmerely the symmetric λ2n(c,m) and anti-symmetric
λ2n+1(c,m) states so that the corresponding eigenfunctions y2n(η) and y2n+1(η) are even
and odd functions of η, respectively. By separating the even and odd states, one deals with
two matrices of size N × N instead of a matrix of size 2N ×2N to get the eigenvalues which
reduces the cost by a factor of four. Now, starting with the even transformation

η = cos 2θ (27)

the system in (1) may be written as

(1 − η2)y′′ + 1

2
(1 − 3η) y′ −

[
m2

2(1 + η)
+ c2(1 − η)

8

]
y = −1

4
λ(c,m)y, y(−1) = 0.

(28)
Then proposing a solution of type

y(η) = (1 + η)m/2u(η) (29)

satisfying the boundary condition at η = −1, we get the equation

(1 − η2)u′′ +
[
m + 1

2
−

(
m + 3

2

)
η

]
u′ + q(η)u = μu, (30)

where μn = 1
4 [m(m + 1) − λ2n(c,m)] and

q(η) = c2

8
(η − 1) (31)

for the even states of the PSWE. On the other hand, for the treatment of the odd states first
letting

y(θ) = sin θφ(θ) (32)

where φ is necessarily an even function of θ , we transform the Eq. (1) into

− φ′′ + (tan θ − 2 cot θ)φ′ +
(

m2

cos2 θ
+ c2 sin2 θ

)
φ = [λ(c,m) − 2]φ (33)

with the transformed boundary conditions φ(±1) = 0. The evenness of the function φ

suggests the application of the same maps η = cos 2θ and φ(η) = (1 + η)m/2u(η) to reach
at the equation

(1 − η2)u′′ +
[
m − 1

2
−

(
m + 5

2

)
η

]
u′ + q(η)u = μu (34)

where μn = 1
4 [(m + 1)(m + 2) − λ2n+1(c,m)] and q(η) has already given in (31). Notice

that when c = 0, Eq. (25) resembles the Jacobi differential equation

(1 − η2)y′′ + [β − α − (α + β + 2)η]y′ + n(n + α + β + 1)y = 0 (35)
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with (α, β) = (m,m)whereas (30) and (34) are much akin to the Jacobi differential equation
with (α, β) = (− 1

2 ,m) and (α, β) = ( 12 ,m), respectively. Actually, the equations in (30)
and (34) can be put together to give the equation

(1 − η2)u′′ + [β − α − (α + β + 2)η]u′ + q(η)u = μu, (36)

where

μ = 1

4

[(
α + β + 1

2

) (
α + β + 3

2

) − λ(c,m)
]
. (37)

Here (α, β) = (− 1
2 ,m) and (α, β) = ( 12 ,m) yield the even and odd states, respectively,

which can be seen on returning back to the original variable θ by (27), (29) and (32). In fact,
the interrelations

P(m,m)
2n (η) = (−1)n

n!(2n + m)!
(2n)!(n + m)! P

(− 1
2 ,m)

n (1 − 2η2) (38)

and

P(m,m)
2n+1 (η) = (−1)n

n!(2n + m + 1)!
(2n + 1)!(n + m)! P

( 12 ,m)
n (1 − 2η2) (39)

between the Jacobi polynomials with integer parametersm and n, supports that separation of

the even and odd states halves the truncation size since one only needs to use P
(± 1

2 ,m)
n (1−2η2)

instead of P(m,m)
2n (η) or P(m,m)

2n+1 (η) in the construction of the Lagrange polynomials in (11).
Note that, equation (36) is of the form (6) with r(η) = 1, σ(η) = 1 − η2 and τ(η) =

β − α − (α + β + 2)η. Hence, in this case, the matrix in (21) reads as

Bmn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2
√

(1 − η2m)(1 − η2n)

(ηm − ηn)2
if m �= n

[β−α−(α+β+2)ηn ][β−α−(α+β−2)ηn ]
−6(1−η2n)

− 1
3 N (N+α+β+3)+q(ηn) if m = n.

(40)

The eigenvalues μn of the matrix in (40) leads to the approximate eigenvalues

λn(c,m) = m(m + 1) − μn (41)

of PSWEwhen q(ηn) = −(cηn)2 where ηn are the roots of the Jacobi polynomial P(m,m)
N+1 (η)

while it yields the even
λ2n(c,m) = m(m + 1) − 4μn (42)

and odd
λ2n+1(c,m) = (m + 1)(m + 2) − 4μn (43)

stateswhenq(ηn) = c2(ηn−1)/8whereηn are the roots of the Jacobi polynomial P
(− 1

2 ,m)

N+1 (η)

and P
( 12 ,m)

N+1 (η), respectively.

4 The Hermite and Laguerre Pseudospectral Methods for the PSWE

Eigenfunctions of the PSWE are confined to a small interval around the origin for very large
values of the bandwidth parameter c. On the other hand, the zeros of the Jacobi polynomials
are denser at the boundaries and coarser in the middle of the interval (−1, 1). Thus, if
the Jacobi pseudospectral methods described in the last section are used, most of the grid
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points are wasted in the interval where the eigenfunctions are too close to zero. Although the
Jacobi pseudospectral methods are very efficient for small bandwidth parameters c < 1000,
they are not feasible for very large c values. However, the prolate functions can accurately
be approximated by the Hermite or the Laguerre functions with γ = ±1/2 when c tends
to infinity [4,10,12,15,19]. Therefore, in this section, we construct the Hermite and the
Laguerre pseudospectral formulations of the PSWE for very large values of c > 1000 where
the former computes the full spectrum at once and the latter separates it as the even and odd
in order to halve the truncation size N .

Since the Hermite polynomials are defined over the real line, we apply the transformation

x = α arctanh η, x ∈ (−∞,∞) (44)

to the equation in (4), where α is an optimization parameter. It is important to note that the
optimum value αopt of the scaling parameter α will not be chosen empirically which will be
explained later. This leads to the equation

− y′′ + 1

α2 V (x/α) y = 1

α2 λ(c,m)W (x/α) y, y(±∞) = 0 (45)

over the real line with

V (t) = c2 sech2 t tanh2 t + m2 and W (t) = sech2 t. (46)

Finally, letting

y(x) = e−x2/2u(x) (47)

satisfying the boundary conditions at infinity, we get an equation of type (6)

u′′ − 2xu′ + q(x)u = μr(x)u, μ = 1

α2 λ(c,m) (48)

with σ(x) = 1, τ(x) = −2x , λ = μ,

q(x) = x2 − 1 − 1

α2 V (x/α) (49)

and
r(x) = W (x/α) . (50)

Notice that (48) resembles the Hermite differential equation u′′ − 2xu′ + 2nu = 0 and in
this case (21) reads as

Bmn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2 cosh (xm/α) cosh (xn/α)

(xm − xn)2
if m �= n

cosh2 (xn/α)

[
−2

3

(
x2n + N

) + q(xn)

]
if m = n

(51)

where q(xn) are the values of (49) at the roots of HN+1(x). Then the eigenvalues μn of (51)
leads to the approximate eigenvalues

λn(c,m) = α2μn (52)

of the PSWE for very large values of the bandwidth parameter c. On the other hand, reflection
symmetric character of (4) suggests the use of even transformation

x = (α arctanh η)2, x ∈ (0,∞) (53)
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in order to separate the symmetric and anti-symmetric states. This leads to the equation

xy′′ + 1

2
y′ − 1

4α2 V
(√

x/α
)
y = − 1

4α2 λ(c,m)W
(√

x/α
)
y, y(∞) = 0 (54)

where V and W are defined in (46). Lastly, proposing a solution of type

y(x) = xae−x/2Φ(x) (55)

satisfying the boundary condition at infinity where the polynomial term has been introduced
to cope with the artificial singularity at x = 0, we obtain the equation

xΦ ′′ +
(
2a + 1

2
− x

)
Φ ′ + 1

4

[
2a(2a − 1)

x
− (4a + 1) + x − 1

c
V

(√
x/α

)]
Φ

= − 1

4α2 λ(c,m)W
(√

x/α
)
Φ. (56)

Then for simplicity letting 2a + 1
2 = γ + 1 and choosing γ = ± 1

2 (or a = 0, a = 1
2 ) we

eliminate the term proportional to 1/x in order to end up with the equation

xΦ ′′ + (γ + 1 − x)Φ ′ + q(x)Φ = μr(x)Φ, μ = − 1

4α2 λ(c,m) (57)

which is also an equation of type (6) with

q(x) = 1

4

[
x − 2(γ + 1) − 1

c
V

(√
x/α

)]
and r(x) = W

(√
x/α

)
. (58)

Clearly the solutions in (55) with γ = − 1
2 and γ = 1

2 yield even and odd states of the
PSWE, respectively, which can be seen on returning back to the original variable η via (53).
To approximate the even

λ2n(c,m) = −4α2μn (59)

and odd
λ2n+1(c,m) = −4α2μn (60)

state eigenvalues of the PSWE we only need to diagonalize the matrix

Bmn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2
√
xmxn cosh

(√
xm/α

)
cosh

(√
xn/α

)
(xm − xn)2

if m �= n

cosh2
(√

xn/α
) {

1

6xn

[
1 − (γ − xn)

2] − 1

3
N + q(xn)

}
if m = n.

(61)

when γ = − 1
2 and γ = 1

2 , respectively where q(xn) are the values of the function q(x) in

(58) at the zeros of L(γ)
N+1(x).

In [15] the authors used the even and odd indexed Hermite functions to approximate the
symmetric and anti-symmetric state eigenvalues of the PSWE, respectively. On the other
hand, our Hermite pseudospectral formulation yields the full spectrum at once. Nevertheless,
the Laguerre pseudospectral formulation of the present study can separate the even (γ = − 1

2 )

and odd (γ = 1
2 ) states. Actually, the approach of [15], i.e. the use of even and odd indexed

Hermite functions in a pseudospectral picture and the present Laguerre pseudospectral meth-
ods with γ = ± 1

2 can be regarded as equivalent methods if we remember the interrelations

H2n(x) = (−1)n22nn!L(−1/2)
n (x2) (62)
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and
H2n+1(x) = (−1)n22n+1n!xL(1/2)

n (x2) (63)

between the Hermite and Laguerre polynomials. Notice that in [15] the Hermite pseudospec-
tral method with even and odd indexed Hermite functions is directly applied to the PSWE
whereas the present Laguerre pseudospectral method with γ = ± 1

2 is applied to the
transformed equation. For this reason, there may be some differences between these two
approaches from the numerical point of view which will be clear in the numerical tables of
the next section.

5 Numerical Results and Discussion

In this section, we present extended numerical results obtained by applying the methods
described in Sects. 3 and 4 and compare them with each other as well as the results from
literature. In all tables, n stands for the eigenvalue index, λn(c,m) the n−th eigenvalue of the
PSWE with the specified c and m and N the truncation order for which the desired accuracy
for the corresponding eigenvalue is obtained. The accuracy of the results reported in this
study has been checked by inspecting the number of stable digits between two consecutive
truncation orders.

Computer programs are executed in quadruple precision arithmetic in gfortran-4.8 on a
laptop having 4GB of memory and intel i5 processor. In all cases we are able to obtain the
results within the machine accuracy at most in a minute when approximating λ1000(c,m)

even in the case where c = 1011 and the lower eigenvalues are obtained in a split second. The
figures are plotted in Matlab in which the computer programs have also been implemented.

Table 2 demonstrates the eigenvalues of the PSWE when (c,m) = (1, 0) and (c,m) =
(104, 105) by using the Jacobi pseudospectral methods with (α, β) = (m,m) leading to
the full spectrum λn(c,m) at once and (α, β) = (− 1

2 ,m) which yields only even states
λ2n(c,m). Clearly, we observed doubling in the truncation size of the former which can be

Table 2 First ten even indexed eigenvalues of the PSWE by using the Jacobi pseudospectral methods when
c = 1, m = 0 and c = 104, m = 105

λn(1, 0) λn(104, 105)
N = 30, (α, β) = (m,m) = (0, 0) N = 36, (α, β) = (m,m) = (105, 105)

n N = 15, (α, β) = (− 1
2 ,m) = (− 1

2 , 0) N = 18, (α, β) = (− 1
2 ,m) = (− 1

2 , 105)

0 0.31900005514689273978398198587 10003718790.89441837932164694879414

2 6.53347180052379648149253793608 10003316726.90881862885526988403506

4 20.50827436257093855722413803743 10002914670.80448417197006796181199

6 42.50381812695760418937576753119 10002512622.58140565743349373881942

8 72.50220271616845965220476590024 10002110582.23957373310332149558751

10 110.50143426911587261839976720230 10001708549.77897904592754281189537

12 156.50100843283168454389569748128 10001306525.19961224194426212851822

14 210.50074780399421213520590446291 10000904508.50146396628159229530631

16 272.50057668263170278361763094472 10000502499.68452486315755010559373

18 342.50045828232841844781777619114 10000100498.74878557587995181693492
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Table 3 Smallest eigenvalue λ0(104,m) of the PSWE while m varies by using the Jacobi pseudospectral
method with (α, β) = (− 1

2 ,m) and the Laguerre pseudospectral method with γ = − 1
2

m NJ NL (αopt = √
c) NL (αopt = √

m) λ0(104,m)

0 380 7 9999.24998124765580750912

1 380 7 10000.250003125515727660609

10 380 7 10099.25498199656447497212

102 330 7 19999.75004375671960453056

103 130 7 1010049.13302966955376799298

104 17 17 100014141.76064030461520225821

105 10 150 6 10000100498.74878557587995181693

106 3 1500 5 1000001000049.998675070107813935151

Table 4 Several high indexed eigenvalues of the PSWE by using the Jacobi pseudospectral method with the
specified (α, β) when c = 1 and m = 0

n N (α, β) = (0, 0) N (α, β) = (− 1
2 , 0) λn(1, 0)

100 110 55 10100.500015471905647093185536399

200 210 105 40200.500003886917446770035728532

500 510 255 250500.50000062375510956230988949

1000 1010 505 1001000.5000001560940698291003783

avoided either by the use of symmetric Jacobi basis {P(m,m)
2n (η)}Nn=0 or the present Jacobi

basis {P(−1/2,m)
n (η)}Nn=0 [see Eqs. (38) and (39)].

It is clear that for small values of c Jacobi pseudospectral methods are suitable. However,
it can be seen from Table 3 that they are not appropriate for very large values of bandwidth
parameter such that m ≤ c since in this case the eigenfunctions are localized around a small
interval about the orijin where the zeros of the Jacobi polynomials are coarser when compared
to the end points of the interval (−1, 1) (see Fig. 1). This can also be observed from Table 3.
In fact, when c = 104 andm ≤ 103, truncation orders for the Jacobi pseudospectral methods
are considerably high which dramatically increase as c gets larger.

Surprisingly, for very large c values with m ≥ c, Jacobi pseudospectral methods yield
highly accurate results at small truncation orders N , too. To be specific, N = 18 is enough
to produce the first ten states to the accuracy quoted in Table 2 when c = 104 and m = 105

and N = 10 is enough to obtain the ground state eigenvalue (see the seventh row of Table
3).

It is known that as c → ∞ for fixed eigenvalue index n, the prolate functions are more
accurately approximated by the n−th Hermite (or Laguerre function with γ = 1/2) function
whose argument is scaled by the square root of the bandwidth parameter c [4,12,15]. There-
fore, for c ≥ m, α = √

c is optimum in the sense that the desired accuracy is obtained with
the smallest possible truncation order N . However, for m ≥ c, the optimization parameter
should be rechosen as α = √

m in order not to take truncation orders as high as 1500 to get
the tabulated accuracy. Thus, the optimum value of the scaling parameter α might be taken
as
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Table 5 Accuracy improvement for λ0(1, 0) and λ1000(1, 0) when the Jacobi pseudospectral method with
(α, β) = (− 1

2 ,m) is used

N λ0(1, 0) N λ1000(1, 0)

4 0.3190000551469 501 1001000.50001

5 0.3190000551468927398 502 1001000.5000001560941

6 0.319000055146892739783982 503 1001000.50000015609406982910038

7 0.31900005514689273978398198587 504 1001000.5000001560940698291003783

8 0.31900005514689273978398198587 505 1001000.5000001560940698291003783

αopt = √
max(c,m) (64)

for anym and very large values of c. However, by looking at the truncation orders inTable 3we
may say that for very large values of the bandwidth parameter c ≥ m, theHermite or Laguerre
pseudospectral methods scaled by (64) are more suitable than their Jacobi counterparts.

On the other hand, Table 4 shows that themethods described here not only give satisfactory
results for lower eigenvalues but also higher states.

Another remarkable issue for Tables 4 and 5 is the fast accuracy improvement of the
methods. For example, when the even and odd states are separated, the smallest truncation
size necessary to print the eigenvalue λ1000(c,m) on the screen is N = 501 regardless of
its accuracy. However, when 32 digits of accuracy is required, we only need to increase the
truncation size by three. That is, when N = 504 the error is less than or equal to 10−32

which is the machine zero of quadruple precision arithmetic. Actually, we expect an error
much less than this since increasing N by one results in an accuracy gain of 8 − 10 digits
(See Table 5). This is typical for all parameter ranges considered in this study. It is known
that the numerical eigenvalue problems suffer from the problem of computing the full set of
eigenvalues with a uniform accuracy. Only the portion of the eigenvalues can be obtained
with a desired accuracy and rarely more than 2N/π are accurate enough, moreover often
the fraction is N/2 or considerably smaller for a fixed truncation order N [6,24]. However,
with the present formulation, all but the last few eigenvalues (three or four) of the PSWE,
are obtained to the machine accuracy for a fixed truncation order N .

Table 6 demonstrates the effect of increasingm for fixed c and vice versa on the truncation
order that is necessary to obtain the eigenvalues to the machine accuracy. Interestingly, the
increase in m results in a decrease in the truncation size N while c remains unchanged.
However, the increase in cwhilem is fixed has an opposite effect on N as expected. Actually,
in (1) the term containing the zonal wavenumber m is singular at the end points ±1 which
may be problematic from the numerical point of view. Fortunately, transformations get rid
of this singularity so that the nonzero m values are not a disadvantage but an advantage for
our formulation.

In Table 7we present the first eleven even indexed eigenvalues of the PSWEwhen c = 107

and m = 0. Since the Laguerre pseudospectral methods with γ = ± 1
2 separates the even

and odd states, the truncation size is halved when compared to the Hermite pseudospectral
method. Clearly, our methods yield more accurate results with a smaller truncation sizes than
the radial basis functions (RBF) or the Hermite functions methods [15] and eight order finite
differences [18]. It is worth noting that although our Hermite pseudospectral formulation is
not able to separate the even and odd states, the better results are obtained with relatively
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Table 6 Smallest truncation
sizes to obtain λ11(c,m) to the
quoted accuracy by using the
Jacobi pseudospectral method
with (α, β) = ( 12 ,m) when c and
m vary

c = 10
m N λ11(c,m)

0 26 184.54761858852457640833705901739

10−1 20 186.80600167867847699593805333280

1 19 207.70676111785875039455851329530

10 17 501.10179565732031970129421278971

102 12 12441.764971364585860241721862947

103 9 1023133.1303999773054788754589760

m = 10

c N λ11(c,m)

0 6 462.00000000000000000000000000002

10−1 9 462.00391869871637233605123379790

1 12 462.39186517444384925685069161521

10 17 501.10179565732031970129421278971

102 51 2345.010135577631447774866243889

103 162 23034.2246949267005286970936261

Table 7 First eleven even indexed eigenvalues of the PSWEby using theHermite andLaguerre pseudospectral
methods when c = 107 and m = 0.

λn(107, 0)

Hermite (N = 30) Ref [15] (N = 80) Ref [18]
n Laguerre, γ = − 1

2 (N = 15) RBF/Hermite func. High order fd.

0 9999999.24999998124999765625 9999999.249999993 /980 9999990.96371903

2 49999996.24999971874993671874 49999996.24999970 /970 49999514.6707898

4 89999989.24999870624957578106 89999989.24999884 /869

6 129999978.24999634374838984279 129999978.2499964 /970

8 169999963.24999203124555390291 169999963.2499923 /922

10 209999944.24998516873994295962 209999944.2499855 /853

12 249999921.24997515623013201006 249999921.2499755 /752

14 289999894.24996139371439605005 289999894.2499620 /613

16 329999863.24994328119071007391 329999863.2499434 /439

18 369999828.24992021865674907413 369999828.2499201 /199

20 409999789.24989160610988804118 409999789.2498933 /919

small truncation orders when compared to the Hermite function pseudospectral method of
[15] which treats the even and odd states separately.

Table 8 demonstrates highly accurate results for high indexed even and odd eigenvalues
such as λ1000(108, 0) and λ1001(108, 0) with notably small truncation sizes N = 509 with
separation (Laguerre pseudospectralmethodwithγ = − 1

2 ) and N = 1018without separation
(Hermite pseudospectral method), respectively. To the best of our knowledge since there is
no numerical results in literature for c > 107, we compare our results with 5-term asymptotic
formula [1]
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Table 8 Several high indexed eigenvalues of the PSWE when c = 108 and m = 0 by using the Laguerre
with γ = ± 1

2 and Hermite pseudospectral methods

n NLaguerre NHermite λn(108, 0)
Laguerre pseudospectral method/
5-term asymptotic eigenvalues in (65)

100 56 112 20099994949.24873080982749384641/621

101 56 112 20299994848.24869255229528585981/953

250 132 264 50099968624.23035043610929771799/784

251 132 264 50299968373.23011417811510489187/170

500 257 514 100099874749.09327857037294827490/443

501 257 514 100299874248.09233730894313876727/735

1000 509 1018 200099499497.99811279487282947333/344

1001 509 1018 200299498496.99435525602855264486/499

Table 9 Several eigenvalues of the PSWEwhen c = 1011 andm = 0, 103 by using the Laguerre pseudospec-
tral methods with γ = − 1

2

n m N λn(1011,m)

Laguerre pseudospectral method Asymptotic eigenvalues in (65)

0 0 4 99999999999.2499999999971 99999999999.249999999998125

10 8 2099999999944.24999999851648 2099999999944.249999998516875

100 55 20099999994949.24999873081032 20099999994949.249998730810624

1000 505 200099999499499.24874812061533 200099999499499.248748120615297

0 103 4 100000999999.250004999997 100000999999.250004999998125

10 8 2100000999944.2501049985165 2100000999944.250104998516892

100 55 20100000994949.2510037308123 20100000994949.251003730812139

1000 505 200100000499499.25875312076566 200100000499499.258753120765447

λn(c,m) = ck + m2 − 1

8
(k2 + 5) − k

64c
(k2 + 11 − 32m2)

− 1

1024c2
[
5(k4 + 26k2 + 21) − 384m2(k2 + 1)

]
(65)

− 1

c3

[
1

1282
(33k5 + 1594k3 + 5621) − m2

128
(37k3 + 167k) + m4

8
k

]

+ O(c−4), k = 2n + 1

valid for large bandwidth parameters. For c ≥ 108, 5-term asymptotic formula is sufficient
to produce results at least accurate to thirty two decimal places.

Finally, Table 9 present highly accurate results for an extreme case c = 1011 and m = 0
or m = 103 with quite reasonable truncation orders. Our results agree with those obtained
by 5−term asymptotic formula to the accuracy quoted.

It is clear from Fig. 1 that when the bandwidth parameter c is large, most of the nodes are
wasted in the interval where the eigenfunction is to close to zero if the Jacobi pseudospectral
methods are used. On the other hand, by the use of Hermite/Laguerre polynomials scaled by
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Fig. 1 Normalized (in L2 sense) ground state eigenfunction y0(η) of the PSWE in (4) when c = 1000

and m = 0 by using the Hermite polynomial H29(αx) (left) and the Jacobi polynomial P(−1/2,0)
143 (η) in a

pseudospectral formulation
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Fig. 2 Normalized (in L2 sense) ground state eigenfunction y0(η) of the PSWE in (4) when m = 1 and
c varies by using the Jacobi pseudospectral method with (α, β) = (− 1

2 , 0) (left). First three normalized

eigenfunctions of the PSWE when c = 1010 and m = 0 by using the Laguerre pseudospectral method with
γ = ± 1

2

the square root of the bandwidth parameter c, all the nodes are collected to the interval where
the wavefunction is nonzero. Therefore, N = 30/15 nodes are enough to resolve the ground
state eigenfunction with the Hermite/Laguerre pseudospectral methods whereas we need
N = 144 points when the Jacobi pseudospectral methods are used for the parameter values
c = 1000 and m = 0. Moreover, as c gets larger the Jacobi methods becomes useless. The
confinement of the eigenfunctions to a small interval as the bandwidth parameter increases
may also be observed from the first part of Fig. 2. The second part of the same figure
demonstrates the first three normalized eigenfunctions when c = 1010 and m = 0.
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6 Conclusion

In this article, we developed very accurate and efficient pseudospectral methods based on the
Jacobi, Laguerre andHermite polynomials to approximate the eigenvalues and eigenfunctions
of the PSWE. To this end the PSWE is transformed into several equations resembling the
hypergeometric type equation since the classical orthogonal polynomials are solutions to this
equation. These particular transformations led us to use themost suitable classical orthogonal
polynomial with specific parameter(s) as basis sets for the approximation of the eigenpairs.

Numerical results show that the Jacobi type pseudospectral methods are well suited for
small c values as well as the large ones with c ≤ m. On the other hand, the eigenfunctions
with large bandwidth parameter c are confined to a small interval around the origin where the
roots of Jacobi polynomials are coarser. Thus, most of the nodes are wasted in the interval
where the eigenfunctions are to close to zero making the Jacobi pseudospectral methods
unsuitable for large c values with c ≥ m. However, for large bandwidth parameters and any
zonal wavenumber the Hermite and Laguerre pseudospectral methods scaled by

√
max(c,m)

is more appropriate. Clearly, with this idea, we don’t need to search for a suitable scaling
parameter optimizing the accuracy of the Hermite or Laguerre pseudospectral method since
it is a priori set to be the square root of the maximum of the bandwidth parameter and the
zonal wavenumber. In contrast to the periodized Hermite basis of [15], we also do not have
an optimization parameter in the Jacobi pseudospectral methods when approximating the
eigenvalues for small values of the bandwidth parameter c < 1000.

Themethods developed herewill be useful in a variety of applicationswhere accurate solu-
tions of (1) are needed, in particular, in solving Helmholtz equations in spheroidal domains
or more generally domains which can be considered as a perturbation of a spheroidal domain
through the transformed field approach [11,17].
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