JOURNAL OF COMPUTATIONAL PHYSICS139,308-326 (1998)
ARTICLE NO. CP975872

An Efficient Spectral-Projection Method
for the Navier-Stokes Equations
in Cylindrical Geometries

I. Axisymmetric Cases

J. M. LopeZ1 and Jie Sheh

*Department of Mathematics arjéarth System Science Center, Pennsylvania State University,
University Park, Pennsylvania 16802
E-mail: shenj@math.psu.edu

Received June 6, 1996; revised August 7, 1997

An efficient and accurate numerical scheme is presented for the axisymmetric
Navier—Stokes equations in primitive variables in a cylinder. The scheme is based
on a new spectral-Galerkin approximation for the space variables and a second-
order projection scheme for the time variable. The new spectral-projection scheme
is implemented to simulate the unsteady incompressible axisymmetric flow with a
singular boundary condition which is approximated to within a desired accuracy by
using a smooth boundary condition. A sensible comparison is made with a standard
second-order (in time and space) finite difference scheme based on a stream function-
vorticity formulation and with available experimental data. The numerical results
indicate that both schemes produce very reliable results and that despite the singular
boundary condition, the spectral-projection scheme is still more accurate (in terms of
a fixed number of unknowns) and more efficient (in terms of CPU time required for
resolving the flow at a fixed Reynolds number to within a prescribed accuracy) than
the finite difference scheme. More importantly, the spectral-projection scheme can
be readily extended to three-dimensional nonaxisymmetric cagai99s Academic Press

1. INTRODUCTION

The main purpose of this paper and its sequel is to develop and validate an efficient and
curate numerical scheme for the Navier—Stokes equations (NSE) in cylindrical geometri
We shall restrict ourselves in this paper to the axisymmetric case. The scheme presel
here will provide essential ingredients for the three dimensional nonaxisymmetric sche
to be considered in a subsequent study.
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The equations governing the flow are the axisymmetric NSE, together with initial an
boundary conditions. It is convenient to use a cylindrical coordinate syst&mz). Due
to the azimuthal symmetry, the flow depends spatially on only two cylindrical coordinate
(r, 2). We denote the corresponding velocity and vorticity vectors, in cylindrical coordinates
respectively by

u=Uvw', w=(Eno".

For axisymmetric flows, itis usually convenient to introduce a Stokes stream furictiod

to write the Navier—Stokes equations in termgof;, andl’ = r v. In this way, the pressure

is eliminated via cross-differentiation, and the continuity equation is automatically satisfie

However, such a formulation does not generalize readily to the nonaxisymmetric situatic

In order to develop a scheme which can be easily extended to nonaxisymmetric flows, 1

velocity pressure formulation is adopted. Note, however, that the standard finite differen

code that we compare with in Section 4 is in the stream function-vorticity formulation.
The equations governing the axisymmetric flows in the velocity-pressure formulation al

1, 1 /-5 1
Ut + uu u,— -v"=-PR+—(Vu-——=u|, 1.1
i + F + wuz I’U r+Re< I’2> ( )
1 1/~ 1
vy + Uuy + wog + FUU = @(VZU — r—zv), (1.2)
1.,
wy + Uwy + ww, = —P, + R—eV w, (1.3)
1
F(ru)r +w, =0, (1.9
where
&2 2 1 2
Ve =0 +F8r+82 (1.5

is the Laplace operator in axisymmetric cylindrical coordinates. The equations (1.1)—(1.
have been nondimensionalized with the radius of the cyliitlas the length scale and
1/ as the time scale, whef rad s is a characteristic rotation rate of the system. The
Reynolds number is Re QR?/v, wherev is the kinematic viscosity. The flow is governed
by another nondimensional parameter, the aspect ratio of the cylideH /R, where

H is the height of the cylinder. Therefore, the domain for the space variablBsg the
rectangle(0, 1) x (0, A). The equations are to be completed with admissible initial and
boundary conditions.

Although a finite difference or finite element approximation can be used for the spac
variables, it appears that a spectral approximation [3, 10] is more appealing in this ca
because of its ability to resolve thin boundary layers of viscous flows with relatively fev
collocation points and because of the simplicity of the computational domain. Hence, v
shall use a spectral approximation for the space variables.

In order to solve the time dependent problem (1.1)—(1.4) efficiently, it is general practic
especially for spectral approximations, to treat the nonlinear terms explicitly. With thi
in mind, we still face the difficulty associated with the incompressibility constraint (1.4)
which couples the two velocity componentsw and the pressurp. This difficulty can be



310 LOPEZ AND SHEN

overcome by using the so-called influenced matrix method [39]. However, this approa
may become prohibitively expensive for long time computations and for three-dimensior
simulations. A more efficient way to deal with this coupling is to use a projection (fraction:
step) method which was originally proposed by Chorin [4] and Temam [37]. In the ne;
section, we will introduce a second-order semi-implicit projection scheme for the ax
symmetric NSE. In addition to its remarkable efficiency and accuracy, the scheme has
distinct advantage that it can be easily extended to nonaxisymmetric three-dimensic
cases. Note that the apparent coordinate singularity £a0) is not of an essential nature
and can be handled naturally by using an appropriate variational formulation [30]. In shc
we shall develop a spectral-projection scheme which consists of a time discretization b
second-order projection scheme and a space discretization by a spectral-Galerkin metl

We shall use the scheme to simulate the axisymmetric unsteady incompressible f
which is driven by a rotating bottom with constant angular speed. This problem has be
extensively studied both numerically (e.g., [2, 5, 16, 18, 20, 21, 24, 26, 34, 38]) and exp
imentally (e.g., [8, 27, 35, 41]). Problems of this type continue to be of great interest in
wide range of areas, such as the study of wind-forced ocean gyres [12], flow instabiliti
and the transition to turbulence in rotating systems [11], and the study of boundary layer:
rotating systems [14, 17, 19]. Because of its simplicity in formulation and its complexity i
dynamics, the present problem is an excellent benchmark problem for axisymmetric flov
just as the driven cavity problem is for two-dimensional flows in Cartesian coordinate
To evaluate the relative merit of our scheme, we shall make a detailed comparison wit
standard second-order (in time and space) finite difference scheme (see Appendix A) be
on a stream function-vorticity formulation and with available experimental data.

2. A SECOND-ORDER PROJECTION SCHEME FOR TIME DISCRETIZATION

We consider the axisymmetric unsteady incompressible flow which is driven by a rotati
bottom with constant angular speed. The boundary conditions for this problem are that
top endwall and the sidewall are stationary, so all components of velocity there are ze
and the bottom endwall is rotating at constant angular sgeesou = w = 0andv =r
atz = 0. The axis condition is straightforward in the axisymmetric case and is given b
U=v=w =0atr =0.

To simplify the presentation, we introduce the notations

62 — 1/I’2, 0, 0 ar
A= 0, vZ_1r2 0|, v=|(o0 ],
0, 0, V2 3z,

D={(r,2:r €(0,1) andz € (0, A)},
F]_ = {(r, Z) r e (O, 1) andz = O}, Fz = {(I’, Z) ‘r =0andz e (O’ A)}7

and rewrite the Egs. (1.1)—(1.4) in vector form,

- 1 -~
U + N(u) = =V — AU,
L + N(u) p+Re

1

T T
Ulgp\ryurp) =0, Ulp, = (O, 1,0, (U, v, w) |r, =0,



EFFICIENT SPECTRAL-PROJECTION METHOD 311

whereu = (u, v, w)" andN(u) is the vector containing the nonlinear terms in (1.1)—
(1.3).

To overcome the difficulties associated with the nonlinearity and the coupling of ve
locity components and the pressure, we propose the following semi-implicit second-ord
projection scheme for the system of Egs. (2.1),

1 1. .
— (B0 — 4uk 4 U — AT = —Vpk — @N@UF) = NUKY)),
26t Re (2.2)

kel k1 T GiHt, glerd ket
T opyrury =0, T, = O, r, 07, (@ 3 T, =0

1 . ~
o5t (uk+l uk+l) V( pk+l pk) 07
% X uk+1 =0 (23)

K+l kel
Ut =T nlyp =0,

wherest is the time stepn is the outward normal at the boundary, dfd® = (fik+2, pk+1,
kYT anduktt = (Uit vk k)T are respectively the intermediate and final approx-
imations of u at timet = két.

The schemeisinthe same class as the second-order pressure-correction projection sct
of [40] (see also [1]). The linear parabolic operator here is approximated by a second-orc
backward scheme which appears to be more stable than the Crank—Nicholson scheme, w
the nonlinear terms are approximated by a second-order extrapolation to avoid solving
nonlinear system at each time step. It is easy to seeiitffdtcan be determined from
(2.2) by solving three Helmholtz-type equations. Instead of solvingurl( p<t1) from
the coupled first-order differential equations (2.3), we apply the operatér (see the
definition in (2.1)) to the first equation in (2.3) to obtain an equivalent system

24t (2.4)

(P — pYlap =0,
and
Uk+1 ~k+l Z(StV(le pk) (25)

Thus, (uk+1, p*+1) can be obtained by solving an additional Poisson equation (2.4). Not
that the equivalence between (2.4)—(2.5) and (2.3) will be no longer valid once the spa
variables are discretized. However, numerous numerical experiments and the theoret
justification in [33] indicate that this approach does not affect the second-order accuracy
time for the velocity. In the next section, we present an efficient spectral-Galerkin methc
for solving these equations.

3. SPECTRAL-GALERKIN APPROXIMATIONS FOR AXISYMMETRIC
ELLIPTIC EQUATIONS

We first transform the domaiP to the unit squar®* = (—1, 1) x (—1, 1) by using the
transformations = (y + 1)/2 andz = A(X + 1)/2. Then, at each time step, the systems
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(2.2) and (2.4) lead to the following four Helmholtz-type equations:

1 y .
U— Buyx — ——(y+Duy)y + ———u=f inD*
U= Py (O DUy + (e (3.1)
ulyp- = 0.
B L (y+Du)y+—L—v=g inD"
BRI R e R S ’ (3.2)
1 .
vlgpar; =0, vy = §(y+ 1.
1 .
wlppr; =0,  wrlr; =0.
1
— - +1 = in D*,
BPxx Y 1(()’ )Py)y =Qq (3.4)

nPlop- = 0.

Intheabovel's = {(x,y) : x = —1landy € (-1, 1)},T5 = {(X,y) : x € (=1, 1)andy =
-1}, a = gRe/(St, B=A"2y =1 andf, g, h, qare known functions, depending on the
solutions at the two previous time steps.

In [30], an efficient and accurate spectral-Galerkin method was proposed for solvil
elliptic equations in polar and cylindrical geometries. It was found that the spectral-Galerk
method in [30] is as good, if not more efficient and accurate, as other spectral methods (
for instance, [7, 23]) which take into account the parity factor (abestO) satisfied by the
solutions. It should also be noted that the clustering of the collocation points nedr
in this case will not introduce unreasonable time step restrictions as long as the princi
linear operator is treated implicitly (cf. [25]).

The spectral-Galerkin method is based on a variational formulation which natural
incorporates the pole conditions and takes care of the coordinate singularity @t For
axisymmetric problems, there are no pole conditions but the coordinate singularity @t
is still present. The spectral-Galerkin method of [30] can be directly applied to (3.1)—(3.
We shall discuss the method for solving (3.1) in some detail. The three other equations |
be treated similarly.

Let Px be the space of all polynomials of degree less than or equ& tand
Pum = Py x Py. We set

Xnm = {w € Pym  wlyp = 0.
Then the spectral-Galerkin method for (3.1) is to fingdy € Xnwm such that

a((y + Dunm, v)g — B((Y + DdZunm. v), — (((Y + Ddyunm)y. v)
(3.5)

1
+y (y+1UNM,U>&) =W(y+Df,vs YveXywm,

where(u, v); = [}, o (X)(y) dx dywith w(s) to be respectively 1 ofl — s?)~%/2,
depending on whether Legendre or Chebyshev polynomials are used. The Eq. (3.5
derived by first multiplying (3.1) byy + D)o (X)w(y) and then integrating oveP*. The
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multiplication by  + 1) is natural since the Jacobian of the transformation from the
Cartesian coordinates to cylindrical coordinates is ((y + 1)/2) in the axisymmetric
case. Sincelyy = 0 aty = —1, we see that all terms in (3.5) are well defined and that no
singularity is present.

The efficiency of the method depends on the choice of basis functioXar. The
general strategy for choosing basis functions was discussed in [30, 32]. For this problem
is easy to verify that

Xy = sparie (X)pj(y) i =0,1,....N=2j=01,....,M—2},

with ¢ (S) =p(S) = pi(S) — pPi2(S), where pi(s) is either thelth degree Legendre or
Chebyshev polynomial. Setting

N-2M-2
Unm = Z Z Uij @i (X) 0 (),

i=0 j=0

and

1
aij /1¢j (X)pi () (x) dX,

1
bij = —/lqb}’(X)qbi ()@ (x) dx,

1
y / (v + Dp; (Vo (Yoy) dy.
-1 (3.6)

1
_/1 ((y+ Dpjy) o (Pe(y) dy.

1
1
6 = 11y+1p;(y>pi<y)w(y>dy,

fij = /(Y+1)f P (Vi X (X)w(y)dx dy,
D

andlettingA, B, C, D, E, F, andU be the corresponding matrices with entries given above.
Then, (3.5) is equivalent to the following matrix system:

«AUC + BBUC+ AUD + yAUE = F. (3.7)

Note thate; is well defined despite the termf@y + 1) sincep; (—1) = 0. In the Legendre
case, the matricea, B, C, D, andE are all symmetric and sparsely banded, while in the
Chebyshev case, onlx, C, and E are symmetric and sparsely banded, Buand D are
respectively full triangular and Hessenburg matrices with special structures (see [30] f
more details). Hence, (3.7) can be efficiently solved by using the matrix diagonalizatic
method [22, 30] at a cost oM min(N, M) + O(N M) operations. Note, however, that
in the Legendre case this operation count can be redud@diidM log(N + M)) (see [32]

for further details).
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4. NUMERICAL RESULTS AND COMPARISON WITH A STANDARD
FINITE DIFFERENCE METHOD

4.1. Treatment of the Singular Boundary Condition

The boundary condition far is discontinuous at the lower right corner£ 1, z = 0).
This is a physical singularity and it represents the fact that in this enclosed system, all
vortex lines emanate from the rotating endwall, and, since they cannot terminate on
stationary walls nor in the interior of the fluid, they all terminate at the corner singularit
The form of this singularity is kinematic, it does not change with Re.

We should emphasize that this singular boundary condition is a mathematical idealizat
of the physical situation, where there is a thin gap (usually on the orded2R0as in [35])
over whichv adjusts from 1.0 on the edge of the rotating endwall to 0.0 on the sidewal
Therefore, itis appropriate to use a regularized boundary condition (seiebntinuous)
which is representative of the actual gap between the rotating endwall and the station
sidewall in experiments.

In finite difference or finite element schemes, the singularity is usually regularized ov
a few grid spacings in the neighborhood of the corner. However, this simple treatme
leads to a mesh-dependent boundary condition which in turn results in mesh-depenc
solutions which prevents a sensible comparison between solutions with different mesk
Essentially, the grid spacing represents the physical gap size. Alternative schemes t
successfully treated singularities by, for example, using crack tip singular finite elemer
in the neighborhood of the singularity (see, for example, [9]), or by adding a Navier sl
coefficient (see, for example, [28]).

The singular boundary conditioniat= 1 is

v(2=1 atz=0, v(2=0 forO<z<A,

which is similar to that of the driven cavity problem. Unless this singularity is treated af
propriately, spectral methods may have severe difficulty dealing with it. In the past, mc
computations with spectral methods avoided this difficulty by using regularized boun
ary conditions which, unfortunately, do not approximate the physical boundary conditic
(e.g., [6, 31]). The authors of [15], used ad hocprocedure which corresponds to ap-
proximatingv by a polynomialy, (of degreeM) such thatvy (zo) =1, vy (z1) =0.3, and
vm(z)=0fori =2, ..., M, where{z} are the Gauss—Lobatto collocation points in4Q.
Although reasonably accurate results were obtained by using this procedure, it will prodt
mesh-dependent solutions and, furthermore, itintroduces nonsmoothness into the comp
solutions (see Fig. 4.2). Note that alternatively it is also possible to treat the singularity |
subtracting the leading singular part as in [29].

We propose using the boundary layer function,

2z
UE(Z) = eXp<_A—8> s

which has the ability to approximate the singular boundary condition to within any pre
scribed accuracy. Outside a boundary layer of width), v, (z), converges to(z) exponen-
tially ase — 0. However, for a givem, approximately: /2 collocation points are needed
to represent the boundary layer functignin other words, for a fixed number of models
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FIG. 1. Variation of Iyv, (with A =2.5) in the vicinity of the singularity at = 0 for (a)¢ = 0.006 and
(b) e = 0.003, and variou$/ as indicated.

we can only use > ¢(M), wheree(M) can be approximately determined by comparing
Imve andu,, wherely v, is the polynomial interpolation af, at the Gauss—Lobatto points.
Although it is virtually impossible to match the exact physical condition in the experi-
mental gap region, the functian with ¢ = 0.006 does provide a reasonable representation
of the experimental gap. The functiep can be resolved spectrally with > M, modes,
whereM, is such that y v, for a givene is nonoscillatory. Due to the nonlinear teurfyr
in (1.1), we also require thaiy v, > be nonoscillatory (since)()? = v, ,). Figure 1a shows
I v vo.006 fOr variousM. Itis clear thatl 4gv0.006 iS NONOScillatory. However, from Fig. 1b we
see that 4gvg, 003 is 0scillatory neae = 0, while lg4vg,003 iS NOt. ThusM ~ 64 is required
for ¢ = 0.006.
Figure 2 shows plots of the solution for Stokes flow (Re0) for this problem. The
governing equations (1.1)—(1.4) in the case=R@ reduce to

V20 — (1/r?)v = VT =0,

with ' = 0 on the axis, top endwall, and sidewall, afid= r? on the rotating bottom
endwall. The singular boundary condition on the sidewall has been regularized in Fig. :
with vggps and in Fig. 2b with thead hocmethod. For the solution of the Stokes problem
with ¢ = 0.006, we judge that the error is acceptably smaNMat 64 and is very small at

M = 80. The measure of error used here is the largest value of nefatifhe computed
solution at the grid points of a uniform 204 501 mesh; the true solution h&s > 0.
These values are listed in Table 1. In contrast, withatidhocmethod the error does not
decrease aBl increases and the computed solutions exhibit large errors for all valids of
considered.

4.2. Numerical Results and Discussion

In order to make sensible comparisons between the spectral code and the finite differe
code (see Appendix A) and between cases with different finite difference grids3,is
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(6)

FIG.2. Contours of" for Stokes flow (Re= 0), using (a0 2and (b) thead hocregularization of the corner
singularity. The leftmost plot in each set hids= 56, M = 80, the middle plots havhl = 48, M = 64, and the
right plots haveN = 40, M = 48. All have been projected on to 201 uniform radial locations and 501 uniform
axial locations.

used here as the boundary conditiomoatr = 1 in both codes, and the single value of
¢ = 0.006 is used throughout. Note thatan be regarded as another dynamic paramete
representative of the physical gap at the corner.

We use the spectral-projection scheme and the finite difference code to solve our prob
at two different Reynolds numbers with = 2.5. The first corresponds to a steady solution
at Re= 2494. This Re is large enough that boundary layers are thin (thickhg®s /?)),
but small enough that the flow becomes steady. The primary interest here is to determine
level of spatial resolution required for an asymptotically grid/mode independent solutic
for each scheme. We shall, however, also consider the transients during the evolution to
steady state, as the time-accuracy of the schemesis also of interest. The second test case
periodic flow at Re= 2765. We compare both the transients and the limit cycle solutions fror
the two schemes. Both test cases are well documented, both experimentally [8] and nurr
cally [16, 18]. Recent experiments [35] indicate that the flow is unstable to nonaxisymmet
perturbations for Re: 3500, so we leave the consideration of higher Reynolds number cas
to the subsequent paper dealing with nonaxisymmetric three-dimensional flows.

For all cases, we use rest as the initial condition and impulsively start the bottom endw
rotating at = 0. Although the temporal singularityat= 0 does affect the initial transients,
Heywood and Rannacher [13] have proven that it has no effect on the characteristics of
final asymptotic solutions.

TABLE 1
Largest Negative Values of" on the Grid Points of a 201x 501 Uniform
Mesh, Corresponding to the Solutions for Stokes Flow Shown in Fig. 2

N, M min(I") with ¢ = 0.006 min(") with ad hocb.c.
56, 80 —2.472x10°° —4.786x 1073
48, 64 —9.002x 10°¢ —6.510x 1073

40, 48 —1.633x 10 —6.444x 1073
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80

, M =56

=40

d N

=40, M = 64

() N

2.5 att =3000. Solutions are from spectral compu-

2494 andA
0.006 andN andM as indicated. All have been projected on to 201 uniform radial

n, andI" for Re=

FIG. 3. Contours ofy,

tations withst

0.04 ands

locations and 501 uniform axial locations.

We begin by determining the level of resolution needed for a spectral computation

the case with Re= 2494 A

have seen that far

0.006. From the Stokes flow problem, we

2.5, ande
the proper treatment of the singularity at the corner require:

0.006

M = 64. Figure 3 shows the solutiongat 3000, which are essentially at steady state (i.e.,
changes in any quantity being less than 1 part ihid@ween successive time steps),

from

spectral computations using a variety of resolutions. The plots are produced by projecti

the spectral solutions onto 201 radial and 501 axial uniformly distributed physical locatior
(bothyr andn are determined spectrally froo). A comparison of these contours shows

very little difference,

except for some oscillationssnthe azimuthal component of the

~ 0. These oscillations are considerably reduced with an

vorticity, near the axis where

increase in the number of spectral modes used. Figure 4a is a detail of the time history

the azimuthal velocity at

1/2,z = A /2, a point which is not particularly sensitive. It

illustrates the convergence of the solutiond\aandM are increased. It also demonstrates

that the temporal characteristics of the flow transients are not sensitive to the level of spa

resolution.

We have also computed cases with the same spatial resolution, but with two differe

temporal resolutions. Computations with = 0.04 andst

0.01 agree to four or five
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FIG. 4. (a) Detail of the time history of(r =1/2, z= A /2) for Re =2494,A = 2.5, from spectral computa-
tions withe = 0.006, andN andM as indicated. (b) lodfy) versusk, whereE, is the energy contribution, from
v, from different levels of modek(= 0, ..., M), corresponding to the solutions in (a).

digits, which is of the same order as the time discretization error, and corresponding pl
of the form shown in Fig. 4a are indistinguishable for these cases.

In Fig. 4b, we show how the energy contributié®, from different levels of modes
(k =0, ..., N)decreases dsincreasesky is defined as the sum of the energy contribution
fromthe modes; fori =0, ..., M—N +kanduy j for j =0, ..., k(v are the coefficients
of the Legendre expansion oj. The exponential decrease Bf exhibited in Fig. 4b is a
good indication that the solutions are well resolved. Note also that except for a few of t
highest modes, the energy distributions of differently resolved solutions overlap each ott
providing another indication of their convergence.

From these convergence tests, we conclude thaifes 40, M = 56, 5t = 0.04, we
already have very good results for the primitive variables( w) but the approximation
for the azimuthal vorticity, at this resolution is not acceptable. We recall thistcomputed
by taking derivatives ofi andw, so it is not unexpected thatrequires more resolution
than the velocity. AN = 56, M = 80, §t = 0.04, then contours are very smooth and
this solution can be taken as being independent of discretization. We use this solutior
compare with the finite difference solutions.

The finite difference code has been used with both uniform and stretched grids. Solutic
on stretched grids wittN =60, M =150 6t =0.02 and N =120 M =300, §t =0.005
are shown in Fig. 5. Comparing the two solutions visually, there are only very minc
differences detected, and a visual comparison with the spectral solutions in Fig. 3 a
shows very small differences. The overall structure of the solutions, the shape of the
circulation zone, and the vorticity distributions all agree. The finite difference solution:
even on the coarsel =60, M =150 uniform grid (not shown), are all very smooth;
however, a detailed comparison shows that the smoothness of a solution is not a
ficient indicator of convergence to a grid independent solution. In Fig. 6, we show tt
time histories ofv(r =1/2,z= A/2) of several computed solutions. We observe that
the transients following the impulsive start from rest agree well at the beginning. Tt
difference between solutions shows up at later times, as illustrated in Fig. 6b. As t
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(b) N = 120, M = 300, 6t = 0.005

FIG.5. Contours ofyr, n, andl’ for Re= 2494 andA = 2.5 att = 3000. Solutions are from finite difference
computations witle = 0.006 on the stretched grid amd, M, andst as indicated.

spatial resolution of the finite difference solutions increases, they converge to the spect
solution.

As a further illustration of the convergence of the solutions, we list in Tables 2 and 3 th
values and locations (on a 21501 uniform physical grid for the spectral solutions, and
on their own grids for the finite difference solutions) of three local maxima and minime
of ¥ andn. It can be concluded that the spectral-projection scheme witk 87 modes
provides significantly more accurate results than the (stretched) finite difference schel
with 121 x 301 grid points.

We now turn to the unsteady case with-R@765. The structure and dynamics of this
case have been discussed in detail in [8, 18]. Here, we compare the results of computati

0.0700
0.07
0.06
0.05 1 00695 }
0.04
0.03

0.0690

0.02
0.01
. - v 0.0685
0.00 1000 2000 3000

FIG. 6. Time histories ofu(r = 1/2, z= A/2) for Re = 2494 from computations with (i) the spectral code
usingN = 56, M = 80, andst = 0.04, and the finite difference code using the stretched grids with(#) 120,
M = 300,8t = 0.005, (iii) N = 60,M = 150,6t = 0.02, and (iv) using a uniform grid withl = 120,M = 300,
§t = 0.01; all computations hag = 0.006. (b) is a close-up view of (a).
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TABLE 2

Local Maxima and Minima of 1) and Their Locations for Re = 2494,A = 2.5,
and e = 0.006 att = 3000

N, M spectral Y1 (11, 1) V2 (12, Z2) V3 (13, Z3)
64, 96 76604 x 10°° —7.1496x 1072 1.8562x 10°°
(0.180, 1.96) (0.760, 0.815) (0.115, 1.36)
56, 80 76589x 10°° —7.1495x 1073 1.8578x 10°°
(0.180, 1.96) (0.760, 0.815) (0.115, 1.36)
40, 64 76585x 10°° —7.1497x 1073 1.8581x 10°°
(0.180, 1.96) (0.760, 0.815) (0.115, 1.36)
40, 56 76592x 10°° —7.1498x 1073 1.8582x 10°°
(0.180, 1.96) (0.760, 0.815) (0.115, 1.36)
N, M finite difference Y1 (1, 24) Yo (r2, 22) ¥3 (r3, Z3)
120, 300 75852x 10°° —7.1360x 107 1.8145x 10°°
Stretched (0.186, 1.96) (0.764, 0.791) (0.112, 1.36)
120, 300 73988x 10°° —7.1075x 107 1.7648x 10°°
Uniform (0.183, 1.95) (0.758, 0.825) (0.117, 1.35)
60, 150 74192x 1075 —7.1002x 1072 1.6948x 10°°
Stretched (0.186, 1.95) (0.753, 0.853) (0.119, 1.33)
60, 150 71706x 10°° —7.0783x 1073 1.6588x 10°°
Uniform (0.183, 1.95) (0.767, 0.800) (0.117,1.35)
TABLE 3

Local Maxima and Minima of n and Their Locations for Re = 2494 A = 2.5,
and e = 0.006 att = 3000

N, M spectral Ny (1, 1) n2 (2, 22) N3 (r3, Z3)
64, 96 0.54488 —0.52342 —8.9785x 1073
(0.235, 2.04) (0.335, 2.28) (0.0500, 1.91)
56, 80 0.54488 —0.52343 —8.9797x 1073
(0.235, 2.04) (0.335, 2.28) (0.0500, 1.92)
40, 64 0.54494 —0.52341 —8.9683x 1073
(0.235, 2.04) (0.335, 2.28) (0.0500, 1.91)
40, 56 0.54502 —0.52341 —8.8570x 1073
(0.235, 2.04) (0.335, 2.28) (0.0500, 1.92)
N, M finite difference n (r1, 21) n2 (2, Z2) 3 (s, Zs)
120, 300 0.54146 —0.52045 —8.4318x 1073
Stretched (0.236, 2.04) (0.329, 2.28) (0.0498, 1.92)
120, 300 0.53590 —0.51547 —7.7323x 10°3
Uniform (0.233, 2.03) (0.333, 2.28) (0.0500, 1.91)
60, 150 0.53166 —0.51282 —7.2154x 103
Stretched (0.225, 2.05) (0.341, 2.28) (0.0498, 1.90)
60, 150 0.52433 —0.50879 —6.5468x 102
Uniform (0.233, 2.033) (0.333, 2.28) (0.0500, 1.90)
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FIG. 7. Time histories ofu(r = 1/2,z = A/2) for Re = 2765 from computations with the spectral code
usingN = 56, M = 80, andst = 0.04 (solid line), and the finite difference code using the stretched grids with
N = 120,M = 300,5t = 0.005 (broken line), Re= 2765. (b) and (c) are details of (a).

using the spectral code witth = 56, M = 80, §t = 0.04 and the finite difference code with

N = 120 M = 300 ét = 0.005. Figure 7 gives the time history ofr = 1/2,z = A/2).
Overall, the two codes agree to about the same extent as they did for the steady case
particular, the early transients following the impulsive start from rest match very well, a
shown in Fig. 7b. Figure 7c gives details of the oscillatory behavior once the limit cycl
solution has been established. There is a slight phase shift between the two solutions,
their periods agree quite well. The nondimensional periods are approximately 36.2, a
this value is well within the experimental error bounds measured by [35]. The differenc
in amplitudes of the limit cycles is also of the same order as the difference between t
corresponding steady solutions at lower, Re, as noted above.

Finally, a comparison of efficiency is in order. It can be shown and is confirmed by ou
computations that for a fixed Re the fully discrete semi-implicit second-order projectio
scheme is unconditionally stable &trsufficiently small, while the explicit finite difference
scheme is only conditionally stable with a stability condition

h2.
8t ,f, mln (%9 hmin) ’
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TABLE 4
CPU Seconds Used for 100 Time Steps

CPU seconds for

N, M, st Code 100 time steps
64, 96, 0.04 Spectral 20.2
56, 80, 0.04 Spectral 13.6
40, 64, 0.04 Spectral 7.1
40, 56, 0.04 Spectral 6.0
60, 150, 0.05 Finite diff. 12.6
120, 300, 0.025 Finite diff. 58.6

wherehp, is the minimum distance between two adjacent grid points. For large Reynol
numbers, as are considered here, the allowable time step for the finite difference code sc
like hmin. Note that the finite difference codes take the same amount of CPU time per tir
step for the sameN, M), regardless of the amount of coordinate stretching. The restrictio
on the time step is more stringent, for the sarie (1), as the coordinate stretching is
increased. The time steps used in the computations are all close to the critical time stej

For a fixed mesh size\, M), at each time step, the spectral-projection scheme require
the solution of four elliptic equations, whereas the finite difference code only requires tv
elliptic equations to be solved. We list in Table 4 the CPU seconds used, on one processc
an SGI Power-Challenge R8000, in computing 100 time steps of the two codes at differ
resolutions. We observe that the CPU time for the spectral-projection code withg837
modes is less than one quarter of that used by the finite difference code with3aIA1grid
points, while the allowable time step is eight times larger. Thus, for this specific probler
the spectral-projection scheme with:581 modes produces a more accurate result at abot
3% of the cost of the (stretched) finite difference scheme withx1301 grid points.

5. CONCLUDING REMARKS

We have presented an efficient, accurate, and stable numerical scheme for the axis
metric Navier—Stokes equations in primitive variables in a cylinder. The scheme is based
a new spectral-Galerkin approximation [30] for the space variables and a second-order |
jection scheme for the time variable. In addition to its accuracy and efficiency, the spectr
projection scheme can be readily extended to nonaxisymmetric three-dimensional case

We have implemented the scheme to simulate the unsteady incompressible axisymm:
flow driven by a rotating bottom with constant angular speed. We have developed a n
procedure which produces mesh independent approximations to the singular bounc
condition to within any prescribed accuracy. In problems where physical singularities pl:
an important dynamic role (as a source or sink of vorticity), such as in the present probls
and the driven cavity in two-dimensional flows, their treatment is important and the mes
independent parametemay be thought of as a further dynamic parameter describing th
flow.

To evaluate the relative merit of the spectral-projection scheme, we have made a sens
comparison with a standard second-order (in time and space) finite difference scheme b
on a stream function-vorticity formulation. The two schemes, although totally different i
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every aspect, produced very reliable results. Despite the singular boundary condition whi
is unfavorable to spectral approximations, the spectral-projection scheme is still more ¢
curate (Tables 2 and 3) and more efficient (Table 4) than the finite difference scheme.

APPENDIX A: A STANDARD FINITE DIFFERENCE SCHEME IN STREAM
FUNCTION-VORTICITY FORMULATION

The finite difference scheme with which we compare the spectral-projection scheme h
been used extensively with success in solving our problem (e.g., [2, 16, 18]) and relat
problems (e.g., [17, 19]). It solves the governing equations inythe, I' formulation,
thereby guaranteeing divergence-free flow. The main disadvantage of this formulation is tf
it does not generalize easily to three dimensions. We now give a brief outline of this schen

A Stokes stream functiott is introduced, along with the angular momentiinso that
the velocity and vorticity vectors are now

U 11/f 1F 11//
P
and
1F 1v2¢ 1F
w = - s T s )
r 2o 2
where
1
szarz—Far+a§.

In terms ofy, n, andl", the axisymmetric Navier—Stokes equations (1.1)—(1.3) become

_ Lty
DI" = V7T, (A1)
1 2 2 2/.4
D(n/r) = Re Van/r) + F('?/r)r + (/1% (A.2)
_Vfw =1rn, (A3)

where
1 1
D=0 — Fl/fzar + Fl/fraz

The boundary and axis conditions are titat 0 on all walls and the axis, and the normal
and tangential derivatives @f on all walls are zerof® = 0 on all stationary walls and the
axis,I" = r2 on the rotating endwall; angl= 0 on the axis.

The main difficulty associated with the stream function-vorticity formulation is the lack
of the vorticity boundary condition, as opposed to the lack of pressure boundary conditic
for the primitive variable formulation. However, this difficulty can be overcome by using
an explicit time discretization for (A.1)—(A.2) described below.
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We first discretize Egs. (A.1)—(A.3) in space by using second-order centered differenc
at grid points(;, zj)fori =1,...,N—-landj=1,...,M—-1(=00orNorj=0o0r
M represent the points on the boundary), resulting in a system

oIy = G, mij» ¥ij) (A.4)

and
anij = Ga(Tij, mij» ¥ij), (A.5)
—V2ij = rin, (A.6)

whereG; andG, represent the finite difference approximations for all the terms except th
one with time derivative in (A.4) and (A.5), respectively.

For the problem we are considering, the dynamics are dominated by the structure
the boundary layers, and an efficient resolution of these using finite differences require
nonuniform grid stretched near the boundary. In the comparison with the spectral schel
we consider both uniform and stretched grids, where the radial stretching function is giv

by
r =X —asin(2rx),
and the axial stretching function is given by
z= A(y — bsin(2ry)),

wherex, y € [0, 1] anda andb are constants, taken here to be 0.1.

We now use a second-order predictor—corrector scheme to discretize in time so t
the boundary condition foty on the walls gives that = (1/r)ynn on all walls (here
the subscriph denotes differentiation normal to the wall). More precisely, the scheme i
implemented in the following fashion:

1. Evaluate
Iy =% + 058Gy (%, 0, ),
and
= nik]. +O.58th(F:§,nﬁ,‘/fil§)’

fori=1,...,N—21andj=1,...,M -1
2. SolveVzys: = —ryf.
3. Implement boundary conditions @rf andn™*.
4. Evaluate

k k okt
F”-Jrl = Fij + 5tG1(Fij > Mij» I/Iij)’
and
k k okt
77ij+l = ]7” + (StGZ(F” 9 r’” ’ wi]—)’

fori=1,...,N—21landj=1,...,M — 1.
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5. SolveV2yftt = —rpftt
6. Implement boundary conditions &rf** andn*+1.

7. Goto the next time step.

To solve the Poisson equations in steps (2) and (5) we only require knowleggedhe
interior grid points,i.ei =1,...,N—1andj =1, ..., M —1. The Poisson equations can
be efficiently solved by the generalized cyclic reduction rougirkerr1 from theFISHPACK
package [36], whose computational complexity is of ofdéd log, N or by using the matrix
diagonalization method [22] whose computational complexity is of oktigkrmin(N, M).
However, the relative performance of the two approaches will depend on the grid siz
the machine architecture, and the availability of machine ceded (basic linear algebra
subroutines).
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