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We propose a method suitable for the computation of quasiperiodic interface, and apply it 
to simulate the interface between ordered phases in Lifschitz–Petrich model. The function 
space, initial and boundary conditions are carefully chosen so that it fixes the relative 
orientation and displacement, and we follow a gradient flow to let the interface find its 
optimal structure. The gradient flow is discretized by the scalar auxiliary variable (SAV) 
approach in time, and a spectral method in space using quasiperiodic Fourier series and 
generalized Jacobi polynomials. We use the method to study interface between striped, 
hexagonal and dodecagonal phases, especially when the interface is quasiperiodic. The 
numerical examples show that our method is efficient, accurate, and can successfully 
capture the interfacial structure.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

A modulated structure in space has long been viewed in history as a parallelepiped, typically cubic, unit cell occurring 
repeatedly in the space. A few obvious examples include lamellae, cylinder, and sphere structures. Some complex struc-
tures are also observed, such as gyroid structure. These structures have been found in various systems, including metals, 
colloids, block copolymer, liquid crystals, etc. [29,9,6]. Mathematically, they can be described by periodic functions in R3. 
Despite their fancy appearance, we can always cut a unit cell from these structures. It was not until the 1980s that the 
first discovery of a 5-fold symmetry structure in a rapidly cooled Al-Mn alloy is reported in [30], which is recognized as 
quasicrystals years later. Since then, quasicrystals are observed in several other physical systems [25,45,13]. In quasicrystals, 
local morphology can be found repeatedly, but one can not find a unit cell. To describe quasicrystals, periodic functions are 
no longer appropriate, and one has to use quasiperiodic functions, which can be generated by the limitation of a periodic 
function in Rn onto an R3 subspace. In this sense, a periodic structure can be regarded as special cases of quasicrystals. 
The most interesting fact about quasicrystals is that they can form symmetries, such as five-, eight-, ten- and twelve-fold 
rotations and icosahedral symmetries, which are not allowed by crystallographic space groups [24,7,1,2,16,18].

Studies of quasicrystals have been focused on the structures themselves. For the phase transitions involving quasicrys-
tals, we currently know very little. Phase transitions can typically occur in two different ways: one phase loses stability and 
transforms into another as a whole; or two phases coexist for some time and the change mainly happens in the transition 
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zone. In the latter, the transition zone is understood as an interface between two structures. The driving force of the phase 
transitions comes from the interface where excess energy is stored. When modulated phases are involved, the morphol-
ogy of interface becomes more complex, since the modulated phase possesses different intrinsic structures with different 
symmetries. For many materials consisting of modulated phases, the morphology of interface has a great effect on physical 
properties, such as elasticity and conductivity.

There are different viewpoints held on the interface. In many works, the interface is regarded as a transient state [8,27,
20]. One could choose a finite domain, let two phases occupy two disjoint parts of the domain, and focus on the dynamics 
showing the movement of the interface. Studies of this kind are common for the interface between disordered phases such 
as water-vapor interface. The interface between modulated phases, however, usually has a long lifetime and is dependent 
on relative position and orientation. It is desirable to view the interface as a steady state under some constraints, so as to 
figure out the mechanism of connecting two modulated structures with different symmetries. From the above setting, it is 
difficult to control the relative position and orientation, and typically multiple structures are obtained that could interplay 
each other, making it difficult for us to identify the mechanism. Therefore, we choose the framework proposed in [41]. In 
that framework, the whole space is divided into three regions by two parallel planes. The two phases, with each phase 
being displaced or rotated, occupy the two on the sides, and a transition zone occurs in between. After posing the two 
phases as above, one then chooses the appropriate function space and boundary conditions that are able to describe both 
phases and constrain the relative position and orientation. In this function space, one could then let the system evolve to a 
local minimizer, typically under a gradient flow, to obtain the process for the interface to reach the optimal structure. Under 
this framework, we would understand the mechanism more clearly.

When quasicrystals are put into consideration, its intrinsic high-dimensional structure inevitably leads to numerical dif-
ficulty. It is already realized for bulk phases, as the numerical method has been discussed in [17] and applied to various 
systems [16,18,15]. One either needs to use Fourier series in a higher dimensional space, or approximate by the Fourier se-
ries in three-dimensional space with a carefully chosen period and a truncation at an extremely large number to adequately 
resolve the structure. The work [17] reveals that if the dimension and the truncation is considered altogether, it turns out 
that using higher dimensional approach has lower computational cost. This approach will also be adopted in the interface 
system.

For the interface system, we are facing further difficulties. Although the framework in [41] is clear, the numerical meth-
ods are not carefully designed previously. Only the special cases are examined where two phases are matched with common 
periodicity, and the numerical schemes adopted are naive. The first difficulty is that high-order spatial derivatives are in-
volved, which is common in the models of quasicrystals. We use the Lifschitz–Petrich free energy [22], a model system that 
contains up to eighth-order spatial derivatives. The free energy requires conservation of mass, so the H−1 gradient flow 
will be studied. As a result, we need to solve a PDE with tenth-order spatial derivatives. To reach the accuracy that will 
not destruct the quasicrystalline structures, it is crucial to choose a robust spatial discretization. However, in the system 
for computing the interfacial structure, the Fourier series cannot be adopted directly, so that alternative methods need to 
be chosen. This will bring a second difficulty, that is, to specify suitable boundary conditions for numerical simulation. We 
need to displace and rotate its profile into a given position and orientation, then find the boundary conditions and set them 
for the interface system. These two steps are relatively easy for PDE, but become challenging for the discretized system. For 
the special cases where common periodicity exists, this problem could be evaded by using the same discretization for both 
the bulk profile and the interface system. However, this is no longer applicable for quasiperiodic interface. Since the spatial 
discretization will be different, when implementing the rotation and transformation between different discretization, we 
also need to guarantee reasonable accuracy that is able to keep the two phases on both sides. A third difficulty brought by 
the high-order spatial derivatives is for the time discretization of the gradient flow that requires energy stability. An ideal 
time discretization would combine energy stability, efficiency, accuracy and easy implementation.

Taking these difficulties into consideration, the finite difference and finite element methods that are used previously 
[42,40] are not suitable, because solving tenth-order PDEs by finite difference and finite element methods would be ex-
tremely complicated and suffers from prohibitively bad ill conditioning. Spectral-collocation method is also not appropriate 
as the quadratures involving derivatives at the boundary points are difficult to derive [14] and the conditioning is even 
worse than finite difference and finite element methods. We propose to use the spectral methods for spatial discretization, 
which are accurate enough to describe the quasiperiodic structures and are convenient to implement rotation and specify 
boundary conditions. Spectral-Galerkin methods have proved to be efficient and accurate for solving PDEs involving high 
order derivatives in simple geometries, which have been applied to the third-order KdV equation [32] and fourth-order 
equations [31,4] and even higher-order equations in [12,33]. Spectral-Galerkin methods embrace the advantage that the re-
sulting linear system is sparse and well-conditioned, and in some cases fast direct solvers are available. Theoretical analysis 
and numerical results have shown the accuracy and efficiency for high-order PDEs [12,33]. For the interface system, we 
propose to use mixed Fourier series and generalized Jacobi polynomials (to enforce the non-periodic boundary conditions) 
as spatial discretization. As we have mentioned, quasicrystals need to be expressed by a function in a higher-dimensional 
space, in which the discretization is done. Thus, it is crucial to control the number of variables in each dimension. The 
spectral-Galerkin methods that we propose here are able to reach adequate accuracy with a relatively small number of 
variables in each dimension, greatly reducing the size of the discretized system, thereby improving significantly the effi-
ciency.
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For the time discretization, we use the SAV approach proposed recently for gradient flows [35,36]. The SAV approach 
leads to linearly implicit schemes with unconditional energy stability. Furthermore, the resulting linear system has constant 
coefficients that is easy to solve. This approach is extremely suitable when the free energy of the gradient flow has a 
dominant quadratic part, which is exactly the case for the Lifshitz–Petrich energy. Together with the spectral methods for 
spatial discretization, the linear system is block diagonal and can be solved efficiently. For the Lifshitz–Petrich energy, the 
convergence of the time discretization has actually been covered by the analysis in [34].

We apply the above numerical scheme for the quasicrystal interface, and examine some cases that are not dealt with 
previously. In particular, apart from the interface with a periodic structure, we focus on the quasiperiodic cases. These cases 
include the interface between periodic phases without common periodicity, or the interface involving quasicrystals. Some 
novel structures are presented. These examples clearly indicate the potential of our scheme to deal with a larger class of 
free energy functionals, such as free energy characterizing long-range pairwise interactions proposed for 3D icosahedral 
quasicrystals [2].

The rest of the paper is organized as follows. In Section 2, we describe the basic setting and discretization. We introduce 
the Lifshitz-Petrich free energy and the function space for quasicrystal solutions, followed by explaining the function space 
and boundary conditions for the interface system. In Section 3, we first discretize in time using the SAV scheme, followed by 
description of our spatial discretization, with Fourier series for two of the three directions, and generalized Jacobi polyno-
mials for the other direction. Numerical results of interfacial structures will be presented in Section 4. Concluding remarks 
are given in Section 5.

2. The model

2.1. Lifshitz–Petrich model and quasicrystal solutions

The free energy of modulated phases, known as the Landau–Brazovskii model, is perhaps originated from Brazovskii 
[3], and has been studied in different contexts [37,10,19]. By modifying the Landau–Brazovskii model, some free energy 
functionals are proposed for quasicrystals [24,22,7]. We will consider the Lifshitz–Petrich (LP) free energy, which is proposed 
in [22] and has received much attention, given by

E[φ(r);�] = 1

V (�)

∫
�

{ c

2
[(� + 1)(� + q2)φ]2 − ε

2
φ2 − α

3
φ3 + 1

4
φ4
}

dr, (1)

where � ⊆ R3, r = (x, y, z)t , V (�) is the volume of �, and q > 0, c > 0, ε , α are phenomenological parameters. This free 
energy is simple while is able to describe many modulated phases including quasicrystals.

The bulk profile of a phase is obtained by minimizing the functional (1) when letting � → R3. If the phase is periodic 
with the unit cell �0, we can verify that

lim
�→R3

E[φ(r);�] = E[φ(r);�0], (2)

which is the energy density in the unit cell. On the other hand, the limit on the left-hand side is also suitable for quasicrys-
tals. The free energy is characterized by the first term involving derivatives. We could comprehend its effect by choosing a 
single wave: let p be a constant vector, and set φ(r) = cos(p · r) or sin(p · r) in (1), then the first term yields

c

4
(1 − |p|2)2(q2 − |p|2)2,

indicating that this term favors |p| = 1 or |p| = q. This term acts as a role of wavelength selection that suppresses the 
wavevectors far from the above two spherical surfaces.

For both periodic or quasiperiodic phases, the profile can be written in the following form:

φ(r) =
∑

k1,...,kd0 ∈Z
φ̂k1,...,kd0

exp(i
d0∑
j=1

k jb j · r), (3)

where i is the imaginary unit, and b j ( j = 1, · · · , d0) are d0 vectors in R3 that are linearly independent about the field of 
rational numbers Q. In other words, if we have 

∑d0
j=1 k jb j = 0 for some integers k j , then we must have k j = 0 for all j.

We define the d0-dimensional integer vector k and the 3 × d0 matrix B as

k = (k1, . . . ,kd0)
t, B = (b1, . . . ,bd0). (4)

The profile φ(r) can then be written as

φ(r) =
∑

k∈Zd0

φ̂k exp(ikt Btr). (5)
3
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Fig. 1. Three patterns in the Lifschitz–Petrich model. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Taking this profile into the free energy (1), noticing the linear independence of b j and the equality

lim
�→R3

1

V (�)

∫
�

exp(i p · r)dr = 0, p �= 0, (6)

we obtain

lim
�→R3

E[φ(r);�] = 1

2

∑
k∈Zd0

(
c
(
1 − |Bk|2)2(

q2 − |Bk|2)2 − ε
)
φ̂kφ̂−k

− α

3

∑
k1+k2+k3=0

φ̂k1 φ̂k2 φ̂k3 + 1

4

∑
k1+k2+k3+k4=0

φ̂k1 φ̂k2 φ̂k3 φ̂k4 . (7)

From the above expressions, we can see that the structure of a phase weighs heavily on the 3 × d0 matrix B that is 
column full-rank on Q. The matrix B determines whether the phase is periodic: if the column rank of B on R is also d0
(that implies d0 ≤ 3), then φ is periodic in R3; if the column rank of B on R is strictly less than d0 (d0 ≥ 4 belongs to 
this case), then φ is no longer periodic but quasiperiodic. In what follows, we write down the matrix B , under specific 
orientation, for three phases we will discuss in this paper: striped, hexagonal, and dodecagonal, which are drawn in Fig. 1. 
They all show modulation in at most two directions and are homogeneous in the third, which we can see from the matrix 
B . The former two phases are periodic, while the third is quasiperiodic. Rigorously speaking, the matrix B shall be optimized 
by minimizing (7). However, we choose to write down directly under the condition |b j | = 1 or |b j | = q, which is a suitably 
good approximation.

• Striped phase. Because we have two favored wavelengths, there are two cases:

B =
⎛
⎝ 0

1
0

⎞
⎠ , B =

⎛
⎝ 0

q
0

⎞
⎠ . (8)

The striped pattern is shown in Fig. 1 (a), where the two matrices give different widths of the stripe. Since the first 
and the third rows of B are zero, the phase profile φ does not depend on x and z, and only shows modulation in the 
y-direction.

• Hexagonal phase. Similar to the striped phase, we have two cases:

B =
⎛
⎝ 1 1

2

0
√

3
2

0 0

⎞
⎠ , B =

⎛
⎝ q q

2

0
√

3q
2

0 0

⎞
⎠ . (9)

The third row of B is zero, indicating that the profile φ is independent of z. The hexagonal pattern is drawn in Fig. 1
(b), where the two matrices give different distances between circles.

• Dodecagonal phase. We require q = 2 cos(π/12), and let

B = (b1,b2,b3,b4) =
⎛
⎜⎝ 1

√
3

2
1
2 0

0 1
2

√
3

2 1
0 0 0 0

⎞
⎟⎠ . (10)
4
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Fig. 2. Setting of the interface system.

Since the third row of B is zero, the dodecagonal phase has modulation in two directions. The value of q is chosen such 
that it equals to the length of the vector b1 +b2. We can verify that the four column vectors b j are linearly independent 
on Q, by noting that 1 and 

√
3 are linearly independent on Q. Thus, we can see from B that the phase is quasiperiodic. 

The pattern is drawn in Fig. 1 (c), showing 12-fold symmetries that cannot be allowed in periodic phases.

2.2. General setting of the interface system

We divide the whole space into three regions by two parallel planes x = −L and x = L for some L. We assume that 
initially the phase 1 occupies the region x ≤ −L, and the phase 2 occupies the region x ≥ L (see Fig. 2). Hence, the interface 
will form in the region −L < x < L. The final equilibrium state can be obtained by driving the gradient flow below to steady 
state,

∂φ

∂t
=�μ, (11)

μ = δE

δφ
= (� + 1)2(� + q2)2φ − εφ − αφ2 + φ3, (12)

which is a tenth-order PDE for φ. In order for the gradient flow to describe the interface for certain relative position and 
orientation, we need to specify some conditions as described below.

First, we need to set the two phases in certain position and orientation. Suppose that the bulk profiles are given by φ1

and φ2, where the B-matrices are B1 with d1 columns and B2 with d2 columns. We can express the two phase profiles after 
some rotation and displacement, denoted by φR

1 and φR
2 . For Ts ∈ S O (3) and ps ∈ R3, the profile of the phase s (s = 1, 2) 

becomes

φR
s (r) =φs(Tsr + ps) =

∑
ds

φ̂sk exp
(

ikt
s Bt

s(Tsr + ps)
)

ks∈Z

5



D. Cao, J. Shen and J. Xu Journal of Computational Physics 424 (2021) 109863
=
∑

ks∈Zds

(
φ̂sks exp(ikt

s Bt
s ps)

)
exp

(
ikt

s(T t
s Bs)

tr
)

=
∑

ks∈Zds

φ̂R
sks

exp
(

ikt
s(T t

s Bs)
t r
)
, (13)

where φ̂R
sks

= φ̂sks exp(ikt
s Bt

s ps) and the superscript t means transpose.
Second, the information for x ≤ −L and x ≥ L can be translated into boundary conditions. Imagine that we choose a 

spherical domain with its center lying on the plane x = −L. In such a domain, the free energy shall be well-defined, so that 
certain continuity is required at x = −L. As a result of this requirement, the function value and the normal derivatives of φ
on the boundary shall be identical to the bulk values, i.e.,

∂k

∂xk
φ(−L, r̃) = ∂k

∂xk
φR

1 (−L, r̃),
∂k

∂xk
φ(L, r̃) = ∂k

∂xk
φR

2 (L, r̃), k = 0,1,2,3, (14)

where r̃ = (y, z)t . Besides, the mass should be conserved in −L < x < L. So we impose the Neumann condition on μ,

∂μ

∂n
|x=±L = 0, (15)

which implies the mass conservation.
Third, since we are studying a PDE on the whole y-z plane, we need to specify the function space in the y-z plane in 

which we solve the PDE. To this end, let us look back into the phase profile φR
s . For s = 1, 2, let us decompose the rotation 

matrix Ts as (Tsx, T̃ s), where Tsx is the first column, and T̃ s is the second and third columns of Ts . Then, we write

φR
s (x, r̃) =

∑
ks∈Zns

φ̂R
sks

exp
(

ikt
s(T t

sx Bs)
t x
)

exp
(

ikt
s(T̃ t

s Bs)
t r̃
)
, (16)

and define B̃s = T̃ t
s Bs that is a 2 × ds matrix. For fixed x, φR

s (x, ̃r) is in the function space

As =
⎧⎨
⎩

∑
ks∈Zds

aks (x)exp
(

ikt
s B̃t

s r̃
)⎫⎬
⎭ . (17)

Now, let us consider the 2 × (d1 + d2) matrix (B̃1, B̃2). The column rank of this matrix on Q is d ≤ d1 + d2. Therefore, we 
can find a 2 × d matrix B such that there exists an d × (d1 + d2) integer matrix Z satisfying

B̃ Z = (B̃1, B̃2). (18)

Define the function space

A =
⎧⎨
⎩φ(r) =

∑
k∈Zd

φk(x)exp
(

ikt B̃t r̃
)⎫⎬
⎭ . (19)

It can be verified that A1, A2 ⊆ A, since we have

B̃1k1 = (B̃1, B̃2)

(
k1
0

)
= B̃ Z

(
k1
0

)
. (20)

In this sense, the function space A is suitable for both phases. It is easy to verify that A is closed for linear combination, 
function multiplication and derivatives. So, if the initial condition of the gradient flow (11)–(12) is in A, the solution will 
remain in A.

It should be noted that the definition of the space A depends on B̃1 and B̃2, which are determined by the bulk profile 
and the rotations T1 and T2. In particular, even if the bulk phases are the same, for different rotations, the resulting function 
space will be different.

For a region D in the y-z plane with the area S(D), we define the inner product in L2
(
(−L, L) ×D

)
by

(u, v) = lim
D→R2

1

2S(D)L

∫
(−L,L)×D

u(r)v(r)dr = 1

2L

∑
k∈Zd

L∫
−L

uk(x)v−k(x)dx. (21)

For the second equality above, we need to use the fact that B̃ is column full-rank on Q. The interfacial energy density is 
defined as
6
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Ei = lim
D→R2

E
[
φ(r);−(L, L) ×D

]
, (22)

for which we have the energy dissipation,

dEi(φ)

dt
=
(

δE

δφ
,
∂φ

∂t

)
= −(∇μ,∇μ). (23)

We can then express φR
s using the matrix B̃ and the form given in (19). Denote by φR

sk(x) the coefficients (that take the 
place of φk(x) in (19)), which are functions of x only. Taking φR

1 as example, the coefficients are given by

φR
1k(x) =

∑
k1

φ̂R
1k1

exp(ikt
1 Bt

1T1xx), the sum is taken over k = Z

(
kt

1
0

)
. (24)

We also write φ and μ in the form (19). The initial condition can be constructed by a simple mixing ansatz,

φk(x) = (1 − b(x))φR
1k(x) + b(x)φR

2k(x), (25)

where b(x) is a smooth monotone function satisfying b(−L) = 0 and b(L) = 1. A good approximation to b(x) is

b(x) = 1 − tanh(σ x)

2
, (26)

with σ large.
To summarize, we need to find φ ∈ A, which is the solution of the gradient flow (11)–(12) in � = (−L, L) × D with 

boundary conditions (14) and (15) and initial condition

φ(r,0) =
∑

k∈Zd

[(1 − b(x))φR
1k(x) + b(x)φR

2k(x)]exp
(

ikt B̃t r̃
)
. (27)

Remark. The boundary conditions and the function space A are consistent for a special case: if the two phases are identical, 
and the relative position and orientation is the same, there shall be no interface. In other words, this setting will not 
generate artificial interface.

The choice of L is case-dependent. It shall let the transition region between two phases not touch the boundary so that 
the Dirichlet boundary has little effect on the interfacial structure. Meanwhile, for efficiency L shall be as small as possible. 
A suitable choice shall balance these two requirements.

The Dirichlet boundary condition on x = ±L does not affect the well-posedness when d ≤ 2 so that A consists of peri-
odic functions (cf., for example, [38]). However, since the space of quasiperiodic function is related to a higher dimension, 
the well-posedness would depend on the decent understanding of such a function space, which, to the knowledge of the 
authors, is still unavailable.

3. The numerical method

To discretize the gradient flow (11)–(12), we first present the semi-discretized scheme in time using the SAV approach, 
followed by spatial discretization by generalized Jacobi polynomials.

3.1. Time discretization by the SAV approach

Let

E1[φ] = (
F (φ),1

)
, F (φ) = C0 − ε + β

2
φ2 − α

3
φ3 + 1

4
φ4, (28)

where β > 0 is a constant, C0 is chosen such that E1(φ) > 0 for any φ. The polynomial F (s) satisfies lims→±∞ = +∞ and 
has at most three stationary points: zero, and α

2 ± 1
2

√
α2 + 4(ε + β) if they are real numbers. One could easily evaluate 

the minimum value of F (s) and choose a C0 such that the minimum value of F (s) is not close to zero. In our simulations, 
it works well when C0 is chosen such that min F (s) ≈ 102. An auxiliary variable r(t) = √

E1[φ] is introduced, so that the 
gradient flow is rewritten as

∂φ

∂t
= �μ

μ = (
c(� + 1)2(� + q2)2 + β

)
φ + r(t)√

E1[φ] F ′(φ)

rt = lim
D→R2

1

2S(D)L

∫
[−L,L]×D

F ′(φ)

2
√

E1[φ]φt dr.

(29)
7
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Taking the inner product with μ, ∂φ/∂t on the first two equations, respectively, multiplying the third with 2r and adding 
three together, we arrive at the following energy dissipation law:

dEi[φ(t)]
dt

= d

dt
[ c

2

(
(� + 1)(� + q2)φ, (� + 1)(� + q2)

)+ β

2
(φ,φ) + r2] = −(∇μ,∇μ). (30)

For the interface system, we are more interested in the steady state, so we use the first-order scheme. Let �t be a time 
step, and φn denote the numerical approximation to φ(r) at t = tn . Then a first-order scheme in time for the above system 
can be constructed as follows:

φn+1 − φn

�t
= �μn+1,

μn+1 = (
c(� + 1)2(� + q2)2 + β

)
φn+1 + rn+1

√
E1[φn] F ′(φn),

rn+1 − rn

�t
= lim

D→R2

1

2L S(D)

∫
[−L,L]×D

F ′(φn)

2
√

E1[φn]
φn+1 − φn

�t
dr.

(31)

The above scheme is linear but coupled. We will show below that it can be efficiently solved.

Theorem 1. The scheme (31) is unconditionally energy stable in the sense that

1

�t

(
Ẽ i[φn+1, rn+1] − Ẽ i[φn, rn]

)
+ 1

�t

( c

2

(
(� + 1)(� + q2)(φn+1 − φn), (� + 1)(� + q2)(φn+1 − φn)

)
+ β

2
(φn+1 − φn, φn+1 − φn) + (rn+1 − rn)2

)
= −(∇μn+1,∇μn+1), (32)

where the modified energy is defined as

Ẽi[φn, rn] = c

2

(
(� + 1)(� + q2)φn, (� + 1)(� + q2)φn)+ β

2
(φn, φn) + (rn)2. (33)

Proof. Taking the inner product of the first two equations with μn+1, φn+1 − φn , respectively, multiplying the third with 
2rn+1, noticing the equality (b − a, 2b) = b2 − a2 + (b − a)2, we obtain (32). �
Adaptive time stepping. In our interface system, the energy curve about the time descends drastically at the early stage 
but becomes flat afterwards as it approaches the steady state. Therefore, we adopt an adaptive time stepping method, using 
small time steps initially and large time steps when the energy is decreasing slowly. We choose the empirical time step 
updating strategy suggested in [28] and successfully applied in various systems [46,43,44,5],

�tn+1 = max
(
�tmin,

�tmax√
1 + η|En+1(t) − En(t)|2/�t2

n

)
, (34)

where �tmin, �tmax are predetermined minimum and maximum time steps and η is a suitable parameter, taken as η = 1000
in our simulation. Interested readers could refer to [28,21] for more details. With the adaptive time strategy, larger time 
steps could be used in the SAV scheme without concerns on stability.

3.2. Full discretization scheme

At each time step, the scheme (31) leads to a linear coupled PDEs for (φn+1, μn+1) which is essentially a tenth-order 
PDE for φn+1. This PDE can be easily solved in the case of periodic boundary conditions in all directions. However, we have 
to deal with one non-periodic direction here, which leads to, for each Fourier mode, a tenth-order PDE in the x-direction 
with non-periodic direction. This can be efficiently and accurately by using a spectral-Galerkin method with generalized 
Jacobi polynomials [12,33]. We now describe below our spatial discretization.

We are actually approximating the function space A given in (19). In the y-z direction, the function has already been 
expressed in Fourier series, so we just truncate according to the indices k. Let us define |k| = max{k j}. The truncation is 
made by |k| ≤ N1. Thus, we only need to consider the approximation in the x-direction for φn

k(x) and μn
k(x). A finite dimen-

sional function space, which is dependent on the boundary conditions is needed. Because we impose Dirichlet boundary 
conditions on φn

k(x) and Neumann boundary conditions on μn
k(x), we need two different function spaces. In particular, we 

use polynomials to form the approximation function spaces.
8
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Let P N be the space of polynomials of degree less than or equal to N . We define two finite dimensional polynomial 
spaces by

W N = span{ϕ ∈ P N : ∂ j

∂x j
ϕ(−L) = ∂ j

∂x j
ϕ(L) = 0, j = 0,1,2,3}, (35)

and

V N = span{h ∈ P N : ∂

∂x
h(−L) = ∂

∂x
h(L) = 0}. (36)

We now describe how to deal with the boundary condition (14). Using the form (19), we deduce that

d j

dx j
φR

s (±L, r̃) =
∑

k∈Zd

d j

dx j
φR

sk(±L)exp
(

ikt B̃t r̃
)
, j = 0,1,2,3, (37)

where we recall that φR
sk(x) is calculated by (24). Hence, for each k, we can construct a polynomial φ0k(x) ∈ P7 such that

d j

dx j
φ0k(−L) = d j

dx j
φR

1k1
(−L),

d j

dx j
φ0k(L) = d j

dx j
φR

2k2
(L), j = 0,1,2,3. (38)

Then, for each k, we look for approximation of φk(x) ∈ W Nk with

W Nk = { f (x) = h(x) + φ0k(x) : h(x) ∈ W N}. (39)

Hence, at the (n + 1)-th time step, we look for φn+1
N (x, ̃r) and μn+1

N (x, ̃r), the approximation of φ and μ at tn+1, in the 
following form:

φn+1
N (x, r̃) =

∑
|k|≤N1

φn+1
Nk (x)exp

(
ikt B̃t r̃

)
with φn+1

Nk ∈ W Nk, (40)

and

μn+1
N (x, r̃) =

∑
|k|≤N1

μn+1
Nk (x)exp

(
ikt B̃t r̃

)
with μn+1

Nk ∈ V N , (41)

which satisfy the following boundary conditions:

∂ j

∂x j
φn+1

N (−L, r̃) = �N1

∂ j

∂x j
φR

1 (−L, r̃),
∂ j

∂x j
φn+1

N (L, r̃) = �N1

∂ j

∂x j
φR

2 (L, r̃), j = 0,1,2,3, (42)

where �N1 is the Fourier projection operator in the r̃ = (y, z) directions, and

∂

∂x
μn+1

N (±L, r̃) = 0. (43)

The fully discretized scheme of (31) is stated as follows: Given φn
N and μn

N , find φn+1
N in the form (40) and μn+1

N in the 
form (41), such that for any v N (x) ∈ V N , w N(x) ∈ W N , and |k| ≤ N1, they satisfy

(φn+1
N − φn

N

�t
, v N(x)exp

(− ikt B̃t r̃
))= −

(
∇μn+1

N ,∇v N(x)exp
(− ikt B̃t r̃

))
,(

μn+1
N , w N(x)exp

(− ikt B̃t r̃
))=

c
(
(� + 1)(� + q2)φn+1

N , (� + 1)(� + q2)w N(x)exp
(− ikt B̃t r̃

))
+ β

(
φn+1

N , w N(x)exp
(− ikt B̃t r̃

))+ rn+1√
E1[φn

N ]
〈
F ′(φn

N), w N(x)exp
(− ikt B̃t r̃

)〉
rn+1 − rn

�t
=
〈

F ′(φn
N)

2
√

E1[φn
N ] ,

φn+1
N − φn

N

�t

〉
.

(44)

In the above, the notation 〈·, ·〉 is a numerical integration to approximate the inner product (·, ·) and is bilinear, i.e.

〈λ1a1(r) + λ2a2(r),b(r)〉 = λ1〈a1(r),b(r)〉 + λ2〈a2(r),b(r)〉,
〈a(r), λ1b1(r) + λ2b2(r)〉 = λ1〈a(r),b1(r)〉 + λ2〈a(r),b2(r)〉. (45)

The approximate inner product 〈·, ·〉 will be specified later in Sec. 3.5.
9
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Theorem 2. The fully discrete scheme (44) admits a unique solution, and is unconditionally energy stable in the sense that

Ẽ[φn+1
N , rn+1] − Ẽ[φn

N , rn] ≤ −(∇μn+1
N ,∇μn+1

N ) ≤ 0, ∀n ≥ 0, (46)

where

Ẽ[φn
N , rn] = c

2

(
(� + 1)(� + q2)φn

N , (� + 1)(� + q2)φn
N

)+ β

2
(φn

N , φn
N) + |rn|2. (47)

Proof. By choosing v N = μn+1
N,−k , w N = φn+1

N,−k − φn
N,−k in (44) and summing up over k, followed by multiplying the last 

equation of by 2rn+1, one obtains immediately (46).
Since the scheme (44) is linear, and Ẽ[φn

N , rn] implies φn
N = 0 and rn = 0, we conclude that the scheme (44) admits a 

unique solution. �
Next, we discuss some implementation details for the scheme (44).

3.3. Solving the linear system

Define an operator

σ(B̃k) = (∂2
x − |B̃k|2 + 1)(∂2

x − |B̃k|2 + q2). (48)

After some calculations, the scheme (44) can be simplified into

(φn+1
Nk − φn

Nk

�t
, v N

)
= −(∂xμ

n+1
Nk , ∂x v N) − |B̃k|2(μn+1

Nk , v N),

(μn+1
Nk , w N) = c

(
σ(B̃k)φn+1

Nk ,σ (B̃k)w N

)
+ β(φn+1

Nk , w N)

+ rn+1√
E1[φn

N ]
〈
F ′(φn

N), w N(x)exp
(− ikt B̃t r̃

)〉
,

rn+1 − rn

�t
=
〈

F ′(φn
N)

2
√

E1[φn
N ] ,

φn+1
N − φn

N

�t

〉
,

(49)

where φn
Nk ∈ W N + φ0k , μn

Nk ∈ V N .
Looking at (49), we notice that for different k, the equation is only coupled by the scalar rn+1. We could decouple the 

equations for different k as described below. Let ϕ j(x) and h j(x) be a basis of W N and V N , respectively. We expand φn
Nk(x)

and μn
Nk(x) by the basis,

φn
Nk(x) =

∑
j

φ̄n
jkϕ j(x), (50)

μn
Nk(x) =

∑
j

μ̄n
jkh j(x). (51)

Define the vectors yn
k = (φ̄n

jk, μ̄n
jk), yn = (yn

k), and the matrices

(S1k) j1 j2 =c
(
σ(B̃k)ϕ j1 ,σ (B̃k)ϕ j2

)
+ β(ϕ j1 ,ϕ j2), (52)

(S2k) j1 j2 =(∂xh j1 , ∂xh j2) + |B̃k|2(h j1 ,h j2), (53)

(S3k) j1 j2 =(h j1 ,ϕ j2). (54)

Then, (49) can be written in the form(
S ∗
∗ a

)(
yn+1

rn+1

)
= bn, (55)

where a is a constant, the stars occupy one column or one row, and the matrix S is block diagonal,

S = diag(Sk), Sk =
(

S1k −St
3k

1
�t S3k S2k

)
. (56)

Therefore, to solve (55), we could apply the block Gauss elimination by solving the equation of the form S y = b twice. We 
mention here that for the simple semi-implicit scheme, it needs to solve S y = b once for each time step, but stability is 
10
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not guaranteed. The SAV scheme pays the price of doubling the computation at each time step for the unconditional energy 
stability.

Note that the entries of the matrix S are invariant for each time step n, so that they can be precomputed. Next, we shall 
describe in detail the discretization in the x-direction, and how to form and invert Sk efficiently.

3.4. Discretization in the x-direction

We describe how to construct the function spaces V N and W N , for which we make use of the Jacobi polynomials and 
generalized Jacobi polynomials { Jα,β

k (x)} whose essential properties are summarized in the Appendix.
For the sake of simplicity, we shall assume L = 1 in the discussion below.

3.4.1. Basis functions for V N and W N

The polynomials in V N satisfy the boundary conditions (36). As in [31], we construct the basis of V N , hk(x), as the linear 
combination of Legendre polynomials Lk(x) = J 0,0

k (x),

hk(x) := Lk(x) − k(k + 1)

(k + 2)(k + 3)
Lk+2(x), (57)

for k = 0, . . . , N − 2.
By (77), the generalized Jacobi polynomial (GJP) J−4,−4

k (x) satisfies the homogeneous boundary conditions (35). Hence, 
we can set the basis functions of W N to be

ϕl(x) := J−4,−4
l+8 (x), l = 0, . . . , N − 8. (58)

3.4.2. Computation of the matrix elements in Sk

We have specified the basis {ϕ j(x)} and {h j(x)} above. Now φn
Nk(x) and μn

Nk(x) in (51) can be written as

φn
Nk(x) =

N−8∑
j=0

φ̄n
jkϕ j(x) =

N−8∑
j=0

φ̄n
jk J−4,−4

j+7 (x), (59)

μn
Nk(x) =

N−2∑
j=0

μ̄n
jkh j(x). (60)

We need to assemble the matrix Sk in (56), defined in (52)–(54). It can be done by using the properties given in the 
Appendix. We describe (S1k) j1 j2 as an example. The matrix elements contain the terms (∂m

x J−4,−4
j1+7 (x), ∂m

x J−4,−4
j2+7 (x)) where 

m = 0, 1, 2, 3, 4.

• When m = 4, the property can be used directly,

(∂4
x J−4,−4

j1+7 (x), ∂4
x J−4,−4

j2+7 (x))
(78)= c1

(
J 0,0

j1+3(x), J 0,0
j2+3(x)

) (65)= c1δ j1 j2 ,

where c1 is some constant. Only when j1 = j2 can the term be nonzero.
• When m = 3,

(
∂3

x J−4,−4
j1+7 (x),∂3

x J−4,−4
j2+7 (x)

) (78)= c2
(

J−1,−1
j1+4 (x), J−1,−1

j2+4 (x)
)

(73)= c2
(
(1 + x)(1 − x) J 1,1

j1+4(x), (1 + x)(1 − x) J 1,1
j2+4(x)

)
(72)= (c(0)

2 J 0,0
j1+4 + c(1)

2 J 0,0
j1+5 + c(2)

2 J 0,0
j1+6, c(0)

2 J 0,0
j2+4 + c(1)

2 J 0,0
j2+5 + c(2)

2 J 0,0
j2+6),

(61)

for some constants c2, c
(0)
2 , c(1)

2 , c(2)
2 . The term is nonzero only when | j1 − j2| ≤ 2.

• Similarly, we can calculate (∂m
x J−4,−4

j1+7 (x), ∂m
x J−4,−4

j2+7 (x)) for m = 2, 1, 0. The term is nonzero only when | j1 − j2| ≤ 8 −2m.

We could draw the conclusion that S1k is a sparse matrix with at most 17 sub-diagonals. Similarly, S2k and S3k are 
sparse matrices with at most 5 and 11 sub-diagonals respectively. Moreover, these matrices can be pre-computed with 
exact analytical expressions.
11
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When solving the linear equation with the coefficient matrix Sk , we can precompute and store its LU factorization, 
because the size of Sk is 2N × 2N that is moderate and Sk are invariant for each time step.

3.5. Numerical integration

We notice that in the scheme (49), we need to compute a numerical integration of the form 〈F ′(u), v〉. Here, the two 
functions u(r) and v(r) are given in the form

u(r) =
∑

|k|≤N1

uk(x)exp(ikt B̃t r̃).

Furthermore, we notice that F ′ is a third-order polynomial. Thus, we focus on computing the highest-order term 〈u3, v〉, 
and the two lower-order terms can be dealt with in the same way. Since u and v are polynomials of degree less than or 
equal to N , we find that u3 v is a polynomial of degree less than or equal to 4N , which can be exactly integrated if we 
use Legendre Gauss quadrature of degree 2N which is exact for all polynomials of degree less than or equal to 2(2N + 1), 
i.e.,

(u3, v) = 1

2L

∑
k1+k2+k3+k4=0

∫
[−L,L]

uk1(x)uk2(x)uk3(x)vk4(x)dx

= 1

2L

2N∑
j=1

ω j

∑
k1+k2+k3+k4=0

uk1(x j)uk2(x j)uk3(x j)vk4(x j),

(62)

where (x j, ω j) are the Legendre Gauss points and weights. Note that the summation about k can be computed by using FFT 
in O

(
(N1 log N1)

d
)

operations.

3.6. Outline of the numerical method

For the computation of quasiperiodic interfacial structure, we list the outline of implementation:

• Find the bulk phase profile in the form (3) by minimizing the free energy density (2). Impose the desired rotation and 
displacement by (13), from which the boundary conditions and the initial state come from.

• Find the 2 × d matrix B̃ , column full-rank on Q, for the function space A in (19) consisting of Fourier series. Set the 
boundary conditions (up to third-order derivatives) and initial state using (24)–(26).

• Discretize the gradient flow (11)–(12) in time using the SAV approach. We apply an unconditional energy stable first-
order scheme in order to reach the steady state quickly.

• Discretize in space using spectral method. In the y-z plane, noting that the space A is given by Fourier series, we 
could simply do the truncation. In the x-direction, we use generalized Jacobi polynomials in accordance with the 
boundary conditions, which are convenient when dealing with high order derivatives and generate sparse coefficient 
matrix.

• Different Fourier modes in y-z can be decoupled under SAV. Moreover, the only term that involves different modes 
is the polynomial term. For quasiperiodic functions, this term can be calculated efficiently by higher dimensional FFT. 
Although the computational cost is twice as many as the simple semi-implicit scheme at each time step, the SAV enjoys 
unconditional stability that the semi-implicit scheme does not have.

We must emphasize here that all our derivation depends on that B̃ is column full-rank on Q. Moreover, the integer d, the 
number of columns of B̃ , gives the actual dimension of the system, which is d + 1 and could be larger than the physical 
dimension. Thus, the size of discretized system turns out to be O (Nd

1 N). Since B̃ depends on the rotations of the two phases, 
it implies that under different phases or relative orientations, the computational cost will be different. We will illustrate by 
concrete examples how to choose the matrix B̃ in the next section.

4. Numerical examples

We will consider the three phases introduced above: striped, hexagonal, dodecagonal phases. Their B-matrices are given 
in (8)–(10). Note that the third row of B is zero for all the three phases. So, the three phases can all be placed in the x-y
plane and homogeneous in z-direction. When doing the rotation, we also constrain in the x-y plane, i.e. the rotation matrix 
T is given by

T (θ) =
⎛
⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠ . (63)
12
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Fig. 3. Profiles of symmetric tilted grain boundaries of striped phase. (a) θ = 0.2; (b) θ = 0.5, (c) θ = 1.5.

As a result, in the interface system, only the first row of the two-row matrix B̃ is nonzero. When determining the column 
rank of B̃ on Q, we are actually determining the number of linearly independent real numbers on Q.

For the parameters in the free energy, we fix the wavelength selecting parameter as q = 2 cos(π/12) and let others vary 
in order to obtain different phases. In the numerical scheme, the size of spatial discretization in the x-direction is fixed at 
N = 256, and 2N = 512 Gauss points are used in the numerical integration. The length of the computational domain, L, and 
the truncation of Fourier series, N1, will be suitably chosen for each specific cases. The parameters in the SAV scheme are 
fixed with β = 4 and C0 = 100.

4.1. Grain boundaries of striped phase

The phrase ‘grain boundary’ means the interface between two identical phases with different orientations. The grain 
boundary of striped phases have been studied extensively. Thus, we start from some grain boundaries as a verification of 
our numerical method.

We examine the tilted grain boundaries of the striped phases. That is, the phase 1 and phase 2 are both the striped 
phases of the same type with the first B in (8). The phase 1 is rotated by T1 = T (θ), while the phase 2 is rotated by 
T2 = T (−θ). Recall that we define B̃1 = T̃ t

1 B where T̃1 is the second and third columns of T1. In this case, we calculate that

B̃1 = T̃ t
1 B =

(
cos θ

0

)
, B̃2 = T̃ t

2 B =
(

cos θ

0

)
.

13
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Fig. 4. (a) Profile of symmetric tilted grain boundaries of hexagonal phase with θ = arctan
√

3
4 . (b) Energy evolution until t = 10. (c) Ratio of r to

√
E1.

Therefore, the B̃ matrix can just be chosen as

B̃ =
(

cos θ

0

)
.

It implies that we are actually considering a periodic boundary condition in the y-direction, which is the special case 
discussed in [41].

We choose c = 1, α = 0, ε = 1, L = 40π and N1 = 16. Three different θ ’s are considered, for which the steady state can 
all be reached at t = 5000. They are shown in Fig. 3. When θ is small, a smooth transition layer will form; for a larger 
θ we observe the Omega-shaped patterns in the interface; when θ is near π/2, a dislocation emerges. These patterns are 
identical to the previous studies using different free energy [26,23,39].
14
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Fig. 5. Profiles for symmetric tilted grain boundaries of hexagonal phase. (a) θ = 0.17; (b) θ = 0.3; (c) θ = 0.4.

4.2. Grain boundaries of the hexagonal phase

We turn to the grain boundaries of the hexagonal phase. We still consider the tilted grain boundaries, letting T1 = T (θ)

and T2 = T (−θ). The case is different from the striped phase, because we may have B̃ of different columns. Let us explain 
it below.

The B matrix for the hexagonal phase is given as the first one in (9). So, we can calculate that

B̃1 = T̃ t
1 B =

(
− sin θ − sin θ+√

3 cos θ
2

0 0

)
, B̃2 = T̃ t

2 B =
(

sin θ sin θ+√
3 cos θ

2
0 0

)
.

If tan θ/
√

3 = m1/m2 is a rational number, B̃ would have the column rank 1 and can be chosen as

B̃ =
( 1

2m1
sin θ

0

)
.

If tan θ/
√

3 is not a rational number, then B̃ has the column rank 2 with

B̃ =
(

1
2 sin θ

√
3

2 cos θ

0 0

)
.

We present results for both cases, with the parameters c = 1, α = 1, ε = 0.15, L = 40π and N1 = 16. In Fig. 4, we present 
the grain boundary for θ = arctan

√
3 , the energy dissipation curve, and the ratio r/

√
E1, where we find that the original 
4
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Fig. 6. The evolution of interface between hexagonal phases of different sizes. (a) t = 0, (b) t = 10000, (c) t = 30000.

and modified energy are very close. Then three examples are given in Fig. 5 where tan θ/
√

3 is not a rational number. It 
can be observed that when θ = arctan

√
3

4 , the hexagonal structures are maintained if more than three circles away from the 
middle. In contrast, for the three other angles, more connections between the circles are found, and distortion of circles is 
noticed even far away from the middle.

4.3. Interface between different types of hexagonal phases

Our next simulation is to study the interface between hexagonal phases of different sizes, corresponding to the two B
matrices with |b j | = 1 and |b j| = q, respectively, given in (9). In this case, we do not impose rotation, so that B̃1 and B̃2 are 
just the second and third rows, written as

B̃1 =
(

0
√

3
2

0 0

)
, B̃2 =

(
0

√
3

2 q
0 0

)
.

Because q = 2 cos(π/12) is irrational, B̃ can be chosen as

B̃ =
( √

3
2

√
3

2 q
0 0

)
.
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Fig. 7. Profile of the symmetric tilted grain boundary of dodecagonal phase with θ = arctan
√

3
4 .

The parameters are chosen as c = 1, α = 1, ε = 0.015, L = 40π and N1 = 16. The simulation result is presented in Fig. 6, 
where we show three snapshots. In the initial state, the connection between two hexagonal structures only occurs in the 
middle. As the time increases, the transition region becomes wider. Many large circles become triangular-shaped, and they 
gradually rupture into three small ones. Finally, the whole transition region grows to a width of up to ten large circles.

4.4. Grain boundaries of the dodecagonal phase

We simulate the tilted grain boundaries of the dodecagonal phase, letting T1 = T (θ) and T2 = T (−θ). The matrix B is 
given in (10) and we have

B̃1 =
(

− sin θ −
√

3
2 sin θ + 1

2 cos θ − 1
2 sin θ +

√
3

2 cos θ cos θ

0 0 0 0

)
,

and

B̃2 =
(

sin θ
√

3
2 sin θ + 1

2 cos θ 1
2 sin θ +

√
3

2 cos θ cos θ

0 0 0 0

)
.

Therefore, the eight scalars in the first row of B̃1 and B̃2 can be expressed linearly with rational coefficients by the following 
four scalars.

1

2
sin θ,

√
3

2
sin θ,

1

2
cos θ,

√
3

2
cos θ.

Thus, for most cases, the column rank of B̃ could be 4. In special cases where either tan θ/
√

3 or tan θ is rational, the 
column rank of B̃ is reduced to 2. We here present numerical result of the case with θ = arctan

√
3

4 . The parameters are 
chosen as c = 150, α = 1, ε = 0.015, L = 24π and N1 = 32. The equilibrium profile is shown in Fig. 7, where we observe a 
seemingly 24-fold like structure to connect two dodecagonal structures in different orientations.

4.5. Interface between the dodecagonal phase and the hexagonal phase

Our last example is constructed by combining a dodecagonal phase with a hexagonal phase.

B̃1 =
(

0
√

3
2

0 0

)
, B̃2 =

(
0 1

2

√
3

2 1
0 0 0 0

)
, (64)

and B̃ can be chosen as

B̃ =
( √

3
2

1
2

0 0

)
.

We choose c = 1, ε = 0.00833, α = 0.5, L = 24π , and N1 = 20. The equilibrium state and energy dissipation (including 
original and modified energy, and the ratio r/

√
E1) are shown in Fig. 8. From the hexagonal region to the dodecagonal 

region, we find that the circles gradually split and are fitted into the positions of dodecagonal.
17
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Fig. 8. (a) Profile of the dodecagonal–hexagonal interface. (b) Energy evolution until t = 10. (c) Ratio of r to
√

E1.

5. Conclusion

We proposed a method for computing the interface between two ordered phases that involves quasiperiodicity. With 
properly chosen function space and boundary conditions to fix the relative orientation and displacement, we solve the H−1

gradient flow of the Lifschitz–Petrich free energy, to let the interface evolve to its optimal structure. The gradient flow is 
18
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discretized in time by the SAV approach, and in space by a spectral method with a combination of quasiperiodic Fourier 
series and spectral-Galerkin method using generalized Jacobi polynomials.

We presented numerical simulations using the proposed method for some typical cases, including the interface of the 
striped, hexagonal and dodecagonal phases. In particular, we show that our numerical method can successfully capture the 
interfacial structure in the cases where the interface is quasiperiodic.

Thanks to its efficiency and accuracy, the method proposed in this work will allow us to perform systematic simulations 
of the interface between ordered structures. In a future work, we aim to utilize the method to investigate interface involving 
other phases, especially the three-dimensional phases, including the bcc/fcc spherical and gyroid that are periodic, and 
icosahedral quasicrystals.
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Appendix A. Jacobi polynomials and generalized Jacobi polynomials

We first recall the classical Jacobi polynomials and their properties (cf. [33]). For α, β > −1, let Jα,β
n be the classical 

Jacobi polynomials that are orthogonal with respect to the weight function ωα,β (x) = (1 − x)α(1 + x)β over (−1, 1), i.e.

1∫
−1

Jα,β
n (x) Jα,β

m (x)ωα,β(x)dx = γ
α,β

n δmn, (65)

where

γ
α,β

n = || Jα,β
n ||2

ωα,β (x) = 2α+β+1�(n + α + 1)�(n + β + 1)

(2n + α + β + 1)n!�(n + α + β + 1)
, (66)

and δmn is the Dirac delta symbol. Jacobi polynomials have the following properties.

Property 1. Three-term recurrence relationship:

Jα,β
n+1(x) = (aα,β

n x − bα,β
n ) Jα,β

n (x) − cα,β
n Jα,β

n−1(x), n ≥ 1,

Jα,β

0 (x) = 1, Jα,β
1 (x) = 1

2
(α + β + 2)x + 1

2
(α − β),

(67)

where

aα,β
n = (2n + α + β + 1)(2n + α + β + 2)

2(n + 1)(n + α + β + 1)
,

bα,β
n = (β2 − α2)(2n + α + β + 1)

2(n + 1)(n + α + β + 1)(2n + α + β)
,

cα,β
n = (n + α)(n + β)(2n + α + β + 2)

(n + 1)(n + α + β + 1)(2n + α + β)
.

(68)

The relationship effectively defines the Jacobi polynomials, and enables us to compute their values at any given point 
x ∈ [−1, 1].

Property 2. Derivative relationship:

∂k
x Jα,β

n (x) = dα,β

n,k Jα+k,β+k
n−k (x), n ≥ k, (69)

where

dα,β

n,k = �(n + k + α + β + 1)

k
. (70)
2 �(n + α + β + 1)
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The next property is useful in the computation of the elements in matrix Sk .

Property 3. The Jacobi polynomials satisfy

Jα+1,β
n = 2

2n + α + β + 2

(n + α + 1) Jα,β
n − (n + 1) Jα,β

n+1

1 − x
, (71)

Jα,β+1
n = 2

2n + α + β + 2

(n + β + 1) Jα,β
n + (n + 1) Jα,β

n+1

1 + x
. (72)

We then recall the generalized Jacobi polynomials (GJP) introduced in [11]:

J k,l
n (x) =

⎧⎪⎨
⎪⎩

(1 − x)−k(1 + x)−l J−k,−l
n−n0

(x) if k, l ≤ −1

(1 − x)−k J−k,l
n−n0

(x) if k ≤ −1, l > −1

(1 + x)−l J k,−l
n−n0

(x) if k > −1, l ≤ −1

(73)

where n ≥ n0, n0 = −(k + l), −k, −l for the above 3 cases respectively and J k,l
n−n0

is classical Jacobi polynomial with k, l ≥ −1. 
We now present some basic properties of GJP:

Property 4. The GJPs are mutually orthogonal with respect to the generalized Jacobi weight ωk,l(x) = (1 − x)k(1 + x)l , i.e.,

1∫
−1

J k,l
n (x) J k,l

m (x)ωk,l(x)dx = γ k̄,l̄
n−n0

δmn, (74)

where γ k̄,l̄
n−n0

is defined in (66) and

k̄ =
{

−k, k ≤ −1

k, k > −1
(75)

Some GJPs satisfy the homogeneous Dirichlet boundary conditions, making them useful for discretizing PDE.

Property 5. If k, l ∈Z and k, l ≥ 1

∂ i
x J−k,−l

n (1) = 0, i = 0,1, ...,k − 1; (76)

∂
j

x J−k,−l
n (−1) = 0, j = 0,1, ..., l − 1. (77)

The GJPs satisfy derivative relations similar to Property (70).

Property 6. Let k, l, m ∈N , and if m ≤ k, l then

∂m
x J−k,−l

n (x) = (−2)m (n − k − l + m)!
(n − k − l)! J−k+m,−l+m

n−m (x), n ≥ max(k + l,m). (78)

Using above properties, GJP and their derivatives can be computed recursively.
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