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In this paper, we consider numerical approximations of a hydro-dynamically coupled phase 
field diblock copolymer model, in which the free energy contains a kinetic potential, 
a gradient entropy, a Ginzburg–Landau double well potential, and a long range nonlocal 
type potential. We develop a set of second order time marching schemes for this system 
using the “Invariant Energy Quadratization” approach for the double well potential, the 
projection method for the Navier–Stokes equation, and a subtle implicit-explicit treatment 
for the stress and convective term. The resulting schemes are linear and lead to symmetric 
positive definite systems at each time step, thus they can be efficiently solved. We further 
prove that these schemes are unconditionally energy stable. Various numerical experiments 
are performed to validate the accuracy and energy stability of the proposed schemes.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Block copolymer is a linear-chain molecule composed of two or more subchains linked together to create a polymer 
chain. When the subchain is made of two (or three) distinct monomer blocks, it is called diblock (or triblock) copolymer. 
Due to the incompatibility between the blocks, block copolymers undergo a micro-phase separation to form a periodic 
morphology in nanoscale, which provides an efficient technique to produce nano-structured materials and nano-devices (cf. 
[12,20,21,31,33,48]).

Modeling and numerical simulation are effective means to investigate the phase separation behaviors of block copoly-
mers. In this paper, we consider the phase field based model for diblock copolymer (PF-BCP) model (cf. [4,7,8,16,26,32,48,
50]) known as the dynamic mean field theory, where an order parameter is used to denote the difference between the local 
volume fractions of two monomers. The evolution of the PF-BCP system is derived from the energetic variation of the action 
function of the total free energy in the H−1 Sobolev space, i.e., the Cahn–Hilliard (CH) type equation. The total free energy 
for the system is the nonlocal Ohta–Kawasaki functional, that is the standard Cahn–Hilliard free energy supplemented with 
a nonlocal term, reflecting the first order effects of the connectivity of the monomer chains (cf. [7,32]). Due to its com-
plexity, particularly the inclusion of a nonlocal potential, it is challenging to develop accurate, stable and efficient numerical 
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schemes for this model. Previous works [34,45] used only first-order, non energy stable schemes which lack in accuracy and 
stability.

From a numerical point of view, for this type of models with stiffness, it is advantageous to develop schemes with 
unconditionally energy stability in both semi-discrete and fully discrete cases. The main difficulty in designing such schemes 
is how to discretize those nonlinear terms that involve the stiffness issue originated from the thin interface parameter. In 
fact, the simple fully-implicit or explicit type discretizations will induce very severe time step constraint depending on the 
interfacial width (cf. [3,13,39]), so they are not efficient in practice. There have been some efforts on developing energy 
stable schemes for the PF-BCP model recently (cf. [1,25,48]). These schemes are essentially based on either the nonlinear 
convex splitting approach (cf. [1,11]) or the linear stabilization approach (cf. [6,28,30,37–44,49,51,53,54,59,61,62,64,65]), and 
only first order accurate in time. Undoubtedly, higher order time marching schemes are preferable to lower order schemes 
if the adopted time step is expected to be as large as possible under certain accuracy requests. This fact motivates us to 
develop more accurate schemes, e.g., the second order time marching schemes while preserving the unconditional energy 
stability in this paper.

Instead of using traditional discretization approaches like simple implicit, stabilized explicit, convex splitting, or other 
various tricky Taylor expansions to discretize the nonlinear potentials, we adopt the so-called Invariant Energy Quadratization
(IEQ) method, which is a novel approach, inspired by the Lagrange multiplier method introduced in [19], developed recently 
and successfully applied for a number of gradient flow type models (cf. [22,24,52,55–58,63]). The essential idea of the IEQ 
method is to transform the free energy into a quadratic form (since the nonlinear potential is usually bounded from below) 
of a set of new variables via a change of variables. The new, equivalent system still retains the similar energy dissipation law 
in terms of the new variables. For the time-continuous case, the energy law of the new reformulated system is equivalent 
to the energy law of the original system. One great advantage of such reformulation is that all nonlinear terms can be 
treated semi-explicitly in a time marching scheme, leading to a linear system at each time step. Moreover, the resulted 
linear system is symmetric positive definite, thus it can be efficiently solved by a Krylov subspace method such as CG.

Based on this new approach, we develop in this paper a set of efficient schemes which are accurate (second order 
in time), easy-to-implement (linear), and unconditionally energy stable (with a discrete energy dissipation law) to solve the 
PF-BCP model and the PF-BCP model coupled with Navier–Stokes equations (PF-BCP-NS). We use the projection method 
to solve Navier–Stokes equations, and a subtle implicit-explicit treatment to treat the convective and stress terms. We 
rigorously prove that the unconditionally energy stabilities hold for all proposed schemes. We demonstrate the stability 
and the accuracy of the proposed schemes through various classical benchmark simulations. To the best of the authors’ 
knowledge, the proposed schemes are the first second order accurate schemes for the PF-BCP model with unconditional 
energy stabilities.

The rest of the paper is organized as follows. In Section 2, we describe the BCP model with and without hydrodynamics 
field. In Section 3, we develop the numerical schemes and prove the well-posedness of the linear system, as well as the 
unconditional energy stabilities. In Section 4, we present various numerical simulations to validate our numerical schemes. 
Finally, some concluding remarks are presented in Section 4.3.

2. Model equations

Let us first introduce some notations. We denote by ( f , g) = (
∫
�

f (x)g(x)dx)
1
2 the L2 inner product between functions 

f (x) and g(x), by ‖ f ‖ = ( f , f ) the L2 norm of function f (x). For any φ ∈ L2(�), we denote φ = 1
|�|

∫
�

φ(x)dx. Let us define

L2
0(�) = {φ ∈ L2(�) :

∫
�

φdx = 0}, (2.1)

and the inverse Laplace operator (−�)−1: u ∈ L2
0(�) �→ v := (−�)−1u by⎧⎪⎨

⎪⎩
− �v = u,

∫
�

vdx = 0,

with the boundary conditions either (i) v is periodic,or (ii) ∂n v|∂� = 0.

(2.2)

We now give a brief introduction to the PF-BCP model. The state of the system is described by the local volume fraction 
of two monomers, φ(x, t), at all points x ∈ �d, d = 2, 3 and at time t . The total phenomenological free energy is as follows 
[1,4,7,8,16,25,26,32,48,50]:

E(φ) =
∫
�

(ε2

2
|∇φ|2 + F (φ)

)
dx + α

2

∫
�

∫
�

G(x − y)(φ(x) − φ)(φ(y) − φ)d ydx, (2.3)

where the F (φ) = 1
4 (φ2 − 1)2 is the Ginzburg–Landau double well potential, ε is the gradient energy coefficient, α is 

a positive phenomenological parameter, G denotes the Green’s function such that �G(x − y) = −δ(x − y) with periodic 
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boundary condition, and δ is a Dirac delta function. It is clear that the energy functional E(φ) is the commonly used 
Cahn–Hilliard free energy when α = 0. With the nonlocal term when α �= 0, E(φ) is referred to as the Ohta–Kawasaki 
functional, that was first proposed in [32].

The phenomenological mesoscopic dynamic equation is the Cahn–Hilliard type, i.e., the gradient flow system in H−1(�):

φt = M(�μ − α(φ − φ)), (2.4)

μ = −ε2�φ + f (φ), (2.5)

where M is the mobility constant, f (φ) = F ′(φ) = φ(φ2 − 1). The boundary conditions can be either one of the following 
two types:

(i) φ,μ are periodic; or (ii) ∂nφ|∂� = ∇μ · n|∂� = 0, (2.6)

where n is the unit outward normal on the boundary ∂�.
In order to derive an energy law, we shall first reformulate the system (2.4)–(2.5) into an equivalent system for which 

an energy law can be easily derived.
Since 

∫
�
(φ − φ)dx = 0, thus we can set

ψ = (−�)−1(φ − φ). (2.7)

Let w = μ + αψ , then the system (2.4)–(2.5) can be rewritten as

φt = M�w, (2.8)

w = −ε2�φ + f (φ) + αψ, (2.9)

with either boundary condition form

(i) φ, w are periodic; or (ii) ∂nφ|∂� = ∇w · n|∂� = 0. (2.10)

Lemma 2.1. The system (2.8)–(2.9) with (2.10) admits the following energy law:

d

dt
E(φ) = −M‖∇w‖2, (2.11)

where

E(φ) =
∫
�

(ε2

2
|∇φ|2 + F (φ) + α

2
|∇ψ |2

)
dx, (2.12)

and ψ is given by (2.7).

Proof. By taking the L2 inner product of (2.8) with −w , and of (2.9) with φt and performing integration by parts, we obtain

−(φt, w) = M‖∇w‖2, (2.13)

(w, φt) = d

dt

∫
�

(ε2

2
|∇φ|2 + F (φ)

)
dx + α(ψ,φt). (2.14)

We derive from the definition of ψ in (2.7) that

−�ψt = φt − 1

|�|
∫
�

φtdx. (2.15)

By taking the L2 inner product of (2.15) with αψ and notice (ψ, 1) = ∫
�

ψdx = 0, we obtain

d

dt

∫
�

α

2
|∇ψ |2dx = α(φt,ψ). (2.16)

By combining (2.13), (2.14) and (2.16), we obtain (2.11). �
It is clear that the energy functional (2.12) is equivalent to the energy functional defined in (2.3), and that the potential 

w is the variational derivative of E(φ), i.e., w = δE(φ)
δφ

. By taking the L2 inner product with 1 for (2.8), we obtain the mass 
conservation property as
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d

dt

∫
�

φdx = 0. (2.17)

When coupling with the flow field, the total free energy becomes

E(φ, u) =
∫
�

(1

2
|u|2 + λ

(ε2

2
|∇φ|2 + F (φ) + α

2
|∇ψ |2))dx, (2.18)

where u is the fluid velocity, λ is the magnitude of the free energy. Assuming the fluid is incompressible, and following 
a generalized Fick’s law that the mass flux be proportional to the gradient of the chemical potential [5,14,27,29], we can 
derive the following PF-BCP-NS model:

φt + ∇ · (uφ) = M�w, (2.19)

w = λ(−ε2�φ + f (φ) + αψ), (2.20)

ut + (u · ∇)u + ∇p − ν�u + φ∇w = 0, (2.21)

∇ · u = 0, (2.22)

where p is the pressure, ν is the viscosity and ψ = (−�)−1(φ − φ).
The boundary conditions can be either one of the following two types:

(i) u, φ, w are periodic; or (ii) u|∂� = ∂nφ|∂� = ∇w · n|∂� = 0. (2.23)

Lemma 2.2. The system (2.19)–(2.22) with (2.23) admits the following energy law:

d

dt
E(φ, u) = −M‖∇w‖2 − ν‖∇u‖2 ≤ 0. (2.24)

Proof. By taking the L2 inner product of (2.19) with w , of (2.20) with −φt , of (2.21) with u, and adding the results together, 
we can obtain (2.24). �
3. Numerical schemes

We now develop a set of second order semi-discrete numerical schemes to solve the system (2.8)–(2.9) without flow, 
and the system (2.19)–(2.22) with flow. While we consider only time discretizations here, the results can carry over to any 
consistent finite-dimensional Galerkin approximations (finite elements or spectral) since the proof is based on variational 
formulations with all test functions in the same space as the trial function.

3.1. PF-BCP model

The main difficult issue here is how to discretize the nonlinear term f (φ). We shall handle this term using the IEQ 
approach [22,52,55,56]. The main idea of the IEQ method is to transform the free energy and the PDE system into equivalent 
forms in terms of new variables via the change of variables. Thus the nonlinear terms can be treated semi-explicitly.

We define a new variable

U = φ2 − 1, (3.1)

so the total energy (2.12) becomes

E(φ, U ) =
∫
�

(ε2

2
|∇φ|2 + 1

4
U 2 + α

2
|∇ψ |2

)
dx, (3.2)

and the system (2.8)–(2.9) becomes

φt = M�w, (3.3)

w = −ε2�φ + φU + αψ, (3.4)

Ut = 2φφt, (3.5)

with initial conditions

φ|t=0 = φ0, U |t=0 = (φ0)2 − 1. (3.6)

The boundary conditions are still (2.10) since the equation (3.5) for the new variable U does not involve spatial derivative.
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The transformed PDE system (3.3)–(3.5) also admits an energy dissipative law. Indeed, by taking the L2 inner product of 
(3.3) with −w , of (3.4) with φt , of (3.5) with − 1

2 U , performing integration by parts and summing up all equalities, we can 
obtain (3.3)–(3.5) as

d

dt
E(φ, U ) = −M‖∇w‖2 ≤ 0. (3.7)

Remark 3.1. The new transformed system (3.3)–(3.5) is equivalent to the original system (2.8)–(2.9) since (3.1) can be easily 
obtained by integrating (3.5) with respect to the time. Therefore, the energy law (3.7) for the transformed system is exactly 
the same as the energy law (2.11) for the original system.

We first construct a second order Crank–Nicolson scheme for (3.3)–(3.5).
Let δt > 0 be a time step size and set tn = nδt for 0 ≤ n ≤ N = [T /δt], let Sn denotes the numerical approximation to 

S(·, t)|t=tn , and Sn+ 1
2 = Sn+1+Sn

2 for any function S .

Scheme 1. Assuming that φn−1, φn and Un−1, Un are known, we solve φn+1, Un+1 as follows:

φn+1 − φn

δt
= M�wn+ 1

2 , (3.8)

wn+ 1
2 = −ε2�φn+ 1

2 + φ�,n+ 1
2 Un+ 1

2 − αψn+ 1
2 , (3.9)

Un+1 − Un = 2φ�,n+ 1
2 (φn+1 − φn), (3.10)

where φ�,n+ 1
2 = 3

2 φn − 1
2 φn−1, and

ψn+ 1
2 = (−�)−1(φn+ 1

2 − φ
n+ 1

2 ). (3.11)

The boundary conditions are either

(i) φn+1, wn+ 1
2 are periodic; or (ii) ∂nφn+1|∂� = ∇wn+ 1

2 · n|∂� = 0. (3.12)

To start off, we can compute φ1 and U 1 by using a first-order version of the above scheme.

Remark 3.2. By taking the L2 inner product of (3.8) with 1, we obtain∫
�

φn+1dx =
∫
�

φndx = · · · =
∫
�

φ0dx. (3.13)

Remark 3.3. We can eliminate Un+1 and wn+1 from (3.8)–(3.10) to obtain

φn+1 − φn

δt
= M

(
−ε2�2φn+ 1

2 + �((φ�,n+ 1
2 )2φn+ 1

2 ) − α(φn+ 1
2 − φ

n+ 1
2 )

)
+ gn, (3.14)

where gn contains some explicit terms. We now describe how to solve (3.14) in practice.
Applying (−�)−1 to the above, we obtain

(
2

Mδt
+ α)(−�)−1φn+1 − ε2�φn+1 + (φ�,n+ 1

2 )2φn+1 = hn, (3.15)

where hn includes all explicit terms. Since (−�)−1 is an self-adjoint positive definite operator, we derive immediately that 
the equation (3.15) admits a unique solution.

Since (−�)−1 is a non-local operator, it is not efficient to implement the scheme in physical space. However, in the phase 
space formed by the eigenfunctions of Laplace operator, (−�)−1 is a local operator, and can be implemented efficiently. 
More precisely, let XN be a suitable approximation space, we consider the following Galerkin approximation for (3.15):

Find φn+1
N ∈ XN such that, ∀v N ∈ XN , we have

(
2

Mδt
+ α)((−�)−1φn+1

N , v N) − ε2(�φn+1, v N) + ((φ�,n+ 1
2 )2φn+1, v N) = (hn, v N). (3.16)

It is clear that the above linear system is symmetric positive definite. Note that (−�)−1 is a no-local operator in pace which 
may present significant challenges in practice. However, in some cases, (−�)−1 is a local operator in frequency space and 
can be treated efficiently. In particular:
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• For periodic boundary conditions, we choose XN to be the trigonometric functions, of degree less than or equal to N , 
which are eigenfunctions of Laplace operator are Fourier series so that (−�)−1φN and �φN can be evaluated easily for 
φN ∈ XN .

• For non-periodic problems, we can use the Fourier-like basis functions [36], which are eigenfunctions of discrete Lapla-
cian operator, so that (−�)−1φN and �φN can be evaluated similarly as in the period case.

However, the term ((φ�,n+ 1
2 )2φn+1, v N) will lead to a full matrix so a direct solver is not practical. We shall solve (3.16)

by using a preconditioned conjugate gradient (PCG) method with an optimal preconditioner constructed by an approximate 
problem of (3.16) where φ∗ is replaced by a constant φ∗ ≈ ∫

�
φ∗ . Since we use the Fourier basis (in the period case) or the 

Fourier-like basis in the non-periodic case, the linear system for the preconditioner is diagonal. Therefore, the system (3.16)
can be solved very efficiently.

As for the energy stability, we have the following theorem.

Theorem 3.1. The scheme (3.8)–(3.10) admits a unique solution, and is unconditionally energy stable, i.e., satisfies the following 
discrete energy dissipation law:

1

δt
(Ecn2(φ

n+1, Un+1) − Ecn2(φ
n, Un)) = −M‖∇wn+ 1

2 ‖2, (3.17)

where Ecn2(φ, U ) = ε2

2 ‖∇φ‖2 + 1
4 ‖U‖2 + α

2 ‖∇ψ‖2 , and ψ is determined by φ from (3.11).

Proof. Applying (−�)−1 to (3.14), by taking the L2 inner product of (3.8) with −δt wn+ 1
2 , we obtain

−(φn+1 − φn, wn+ 1
2 ) = δtM‖∇wn+ 1

2 ‖2. (3.18)

By taking the L2 inner product of (3.9) with φn+1 − φn and applying the following inequality,

2(a − b,a) = ‖a‖2 − ‖b‖2 + ‖a + b‖2, (3.19)

we obtain

(wn+ 1
2 , φn+1 − φn) = ε2

2
(‖∇φn+1‖2 − ‖∇φn‖2) + (φ�,n+ 1

2 Un+ 1
2 , φn+1 − φn)

+ α(ψn+ 1
2 , φn+1 − φn).

(3.20)

By taking the L2 inner product of (3.10) with − 1
2 Un+ 1

2 , we obtain

−1

4
(‖Un+1‖2 − 1

4
‖Un‖2) = −(φ�,n+ 1

2 (φn+1 − φn), Un+ 1
2 ). (3.21)

By combining (3.18), (3.20) and (3.21), we obtain

ε2

2
(‖∇φn+1‖2 − ‖∇φn‖2) + 1

4
(‖Un+1‖2 − ‖Un‖2)

+ α(ψn+ 1
2 , φn+1 − φn) = −δtM‖∇wn+ 1

2 ‖2.

(3.22)

We derive from (3.11) that

−�(ψn+1 − ψn) = φn+1 − φn − (φ
n+1 − φ

n
). (3.23)

By taking the L2 inner product of (3.23) with αψn+ 1
2 and notice 

∫
�

ψn+ 1
2 dx = 0, we obtain

α

2
(‖∇ψn+1‖2 − ‖∇ψn‖2) = α(ψn+ 1

2 , φn+1 − φn) − α(φ
n+1 − φ

n
)(1,ψn+ 1

2 )

= α(ψn+ 1
2 , φn+1 − φn).

(3.24)

By combining (3.22) and (3.24), we obtain

ε2

2
(‖∇φn+1‖2 − ‖∇φn‖2) + 1

4
(‖Un+1‖2 − ‖Un‖2)

+ α

2
(‖∇ψn+1‖2 − ‖∇ψn‖2) = −δtM‖∇wn+ 1

2 ‖2.

(3.25)

Then proof is complete. �
We can easily construct another second order scheme based on the backward differentiation formula.
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Scheme 2. Assuming that φn−1, φn and Un−1, Un are known, we solve φn+1, Un+1 as follows:

3φn+1 − 4φn + φn−1

2δt
= M�wn+1, (3.26)

wn+1 = −ε2�φn+1 + φ†,n+1Un+1 + αψn+1, (3.27)

3Un+1 − 4Un + Un−1 = 2φ†,n+1(3φn+1 − 4φn + φn−1), (3.28)

where φ†,n+1 = 2φn − φn−1, and⎧⎪⎪⎨
⎪⎪⎩

−�ψn+1 = φn+1 − φ
n+1

,∫
�

ψn+1dx = 0,
(3.29)

where φn+1 = 1
|�|

∫
�

φn+1dx.

This scheme possesses the same nice properties as the Scheme 1.

3.2. PF-BCP-NS model

We now consider the hydrodynamically coupled phase field diblock copolymer model (2.19)–(2.22). As in the above, we 
introduce an auxiliary function U = φ2 − 1 so that the total energy (2.18) becomes

E(u, φ, U ) =
∫
�

(1

2
|u|2 + ε2

2
|∇φ|2 + 1

4
U 2 + α

2
|∇ψ |2

)
dx, (3.30)

and the model (2.19)–(2.22) becomes

φt = M�w, (3.31)

w = λ(−ε2�φ + φU + αψ), (3.32)

Ut = 2φφt, (3.33)

ut + (u · ∇)u + ∇p − ν�u + φ∇w = 0, (3.34)

∇ · u = 0, (3.35)

with the boundary conditions

(i) u, p, φ, w are periodic; or (3.36)

(ii) u|∂� = ∂nφ|∂� = ∇w · n|∂� = 0. (3.37)

It is easy to see that the transformed PDE system (3.31)–(3.35) is formally equivalent to the original PF-BCP-NS model 
(2.19)–(2.22). By taking the L2 inner product of (3.31) with w , of (3.32) with −φt , of (3.33) with 1

2 U , of (3.34) with u, 
performing integration by parts and summing all equalities up, we obtain the energy dissipation law of the new system 
(3.31)–(3.35):

d

dt
E(u, φ, U ) = −M‖∇w‖2 − ν‖∇u‖2 ≤ 0. (3.38)

We now develop the second order semi-discrete numerical schemes based on the Crank–Nicolson scheme to solve the 
flow field coupled system (3.31)–(3.35).

Scheme 3. Assuming that un−1, un , φn−1, φn , Un−1, Un , pn are known, we compute the un+1, φn+1, wn+ 1
2 , Un+1, pn+1 as 

follows:
Step 1:

φn+1 − φn

δt
+ ∇ · (̃un+ 1

2 φ�,n+ 1
2 ) = M�wn+ 1

2 , (3.39)

wn+ 1
2 = λ(−�φn+ 1

2 + φ�,n+ 1
2 Un+ 1

2 + αψn+ 1
2 ), (3.40)

Un+1 − Un = 2φ�,n+ 1
2 (φn+1 − φn), (3.41)

ũn+1 − un

+ B(u�,n+ 1
2 , ũn+ 1

2 ) − ν�ũn+ 1
2 + ∇pn + φ�,n+ 1

2 ∇wn+ 1
2 = 0, (3.42)
δt
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where B(u, v) = (u · ∇)v + 1
2 (∇ · u)v, u�,n+ 1

2 = 3
2 un − 1

2 un−1, φ�,n+ 1
2 = 3

2 φn − 1
2 φn−1 and ũn+ 1

2 = ũn+1+un

2 . ψn+ 1
2 is defined 

by ⎧⎪⎪⎨
⎪⎪⎩

− �ψn+ 1
2 = φn+ 1

2 − φ
n+ 1

2 ,∫
�

ψn+ 1
2 dx = 0,

(3.43)

with φn+ 1
2 = 1

|�|
∫
�

φn+ 1
2 dx.

Step 2:

un+1 − ũn+1

δt
+ ∇(

pn+1 − pn

2
) = 0, (3.44)

∇ · un+1 = 0. (3.45)

The boundary conditions can be either

(i) ũn+1, un+1, pn+1, φn+1, wn+ 1
2 are periodic; or (3.46)

(ii) ũn+1|∂� = un+1 · n|∂� = ∂nφn+1|∂� = ∇wn+ 1
2 · n|∂� = 0. (3.47)

Several remarks are in order:

Remark 3.4.

• B(u, v) is the skew-symmetric from [46] of the nonlinear advection term (u · ∇)u in the Navier–Stokes equations. If the 
velocity is divergence free, then B(u, u) = (u · ∇)u. Moreover, we have

(B(u,v),v) = 0, ∀u, v ∈ H1, and u · n|∂� = 0 or u is periodic. (3.48)

• A second order pressure correction scheme [47] is used to decouple the computations of pressure from that of the veloc-
ity. This projection methods are analyzed in [35] where it is shown (discrete time, continuous space) that the schemes 
are second order accurate for velocity in 
2(0, T ; L2(�)) but only first order accurate for pressure in 
∞(0, T ; L2(�)). 
The loss of accuracy for pressure is due to the artificial boundary condition (3.44) imposed on pressure [10]. We also 
remark that the Crank–Nicolson scheme with linear extrapolation is a popular time discretization for the Navier–Stokes 
equation. We refer to [17,18,23] and references therein for analysis on this type of discretization.

• Step 1 consists of a coupled system for un+1, φn+1, wn+ 1
2 and Un+1, where we treat the nonlinear stress and convective

term by a subtle composition of implicit and explicit method. As in the last section, we can eliminate wn+ 1
2 and Un+1

from (3.39)–(3.41) to obtain:

φn+1 − φn

δt
+ ∇ · (̃un+ 1

2 φ�,n+ 1
2 )

= M

(
−ε2�2φn+ 1

2 + �((φ�,n+ 1
2 )2φn+ 1

2 ) − α(φn+ 1
2 − φ

n+ 1
2 )

)
+ gn.

(3.49)

In order to solve the coupled system (3.49) and (3.42), we first apply (−�)−1 to (3.49) to obtain

(
2

Mδt
+ α)(−�)−1φn+1 − ε2�φn+1 + (φ�,n+ 1

2 )2φn+1 + 1

M
(−�)−1∇ · (̃un+ 1

2 φ�,n+ 1
2 ) = hn. (3.50)

The coupled system (3.50) and (3.42) can then be solved by using a preconditioned conjugate gradient method with a 
block diagonal preconditioner associated with the following system:

(
2

Mδt
+ α)(−�)−1φn+1 − ε2�φn+1 = f n

1 , (3.51)

1

2δt
ũn+1 − ν�ũn+1 = f n

2 . (3.52)

It is shown in [40] that this kind of preconditioner is very effective for a simple phase-field model of two-phase 
incompressible flow. Our numerical experiments also show that it is effective for this PF-BCP-NS model.

• By taking the divergence of (3.44), we find that Step 2 is equivalent to a Poisson equation for pn+1 which can be effi-
ciently solved by one’s favorite method, in particular by spectral-Galerkin method in both periodic case or non-periodic 
case.
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Theorem 3.2. The scheme (3.39)–(3.45) admits a unique solution. Furthermore, it is unconditionally energy stable in the sense that it 
satisfies the following discrete energy dissipation law:

1

δt
(Ens−cn2(un+1, φn+1, Un+1, pn+1) − Ens−cn2(un, φn, Un, pn)) = −M‖∇wn+ 1

2 ‖2 − ν‖∇ ũn+ 1
2 ‖2,

where Ens−cn2(u, φ, U , p) = 1
2 ‖u‖2 + λ( ε2

2 ‖∇φ‖2 + 1
4 ‖U‖2 + α

2 ‖∇ψ‖2) + δt2

8 ‖∇p‖2 , where ψ is determined by φ from (3.43).

Proof. Taking the L2 inner product of (3.39) with δt wn+ 1
2 , we obtain

(φn+1 − φn, wn+ 1
2 ) − δt (̃un+ 1

2 φ�,n+ 1
2 ,∇wn+ 1

2 ) = −δtM‖∇wn+ 1
2 ‖2. (3.53)

For (3.40) and (3.41), we perform the same argument as in the proof of Theorem 3.1, and combining with (3.53), we obtain

λ
ε2

2
(‖∇φn+1‖2 − ‖∇φn‖2) + λ

1

4
(‖Un+1‖2 − ‖Un‖2) − δt (̃un+ 1

2 φ�,n+ 1
2 ,∇wn+ 1

2 )

+ λ
α

2
(‖∇ψn+1‖2 − ‖∇ψn‖2) = −δtM‖∇wn+ 1

2 ‖2.

(3.54)

Taking the L2 inner product of (3.42) with δtũn+ 1
2 , we obtain

1

2
‖ũn+1‖2 − 1

2
‖un‖2 + νδt‖∇ ũn+ 1

2 ‖2 + δt(∇pn, ũn+ 1
2 ) + δt(φ�,n+ 1

2 ∇wn+ 1
2 , ũn+ 1

2 ) = 0. (3.55)

Taking the L2 inner product of (3.44) with δtun+1, we obtain

1

2
‖un+1‖2 + 1

2
‖un+1 − ũn+1‖2 = 1

2
‖ũn+1‖2, (3.56)

where we used explicitly the divergence free condition for un+1.
Next, we rewrite the projection step (3.44) as

un+1 + un − 2ũn+ 1
2 + δt

2
∇(pn+1 − pn) = 0. (3.57)

Taking the L2 inner product of (3.57) with δt 1
2 ∇pn , we arrive at

δt2

8
(‖∇pn+1‖2 − ‖∇pn‖2 − ‖∇(pn+1 − pn)‖2 = δt(∇pn, ũn+ 1

2 ). (3.58)

Furthermore, it follows directly from (3.44) that

δt2

8
‖∇(pn+1 − pn)‖2 = 1

2
‖un+1 − ũn+1‖2. (3.59)

Combining (3.54), (3.55), (3.56), (3.58) and (3.59), we have

1

2
(‖un+1‖2 − ‖un‖2) + δt2

8
(‖∇pn+1‖2 − ‖∇pn‖2)

+ λ
(ε2

2
(‖∇φn+1‖2 − ‖∇φn‖2) + 1

4
(‖Un+1‖2 − ‖Un‖2) + α

2
(‖∇ψn+1‖2 − ‖∇ψn‖2)

)
= −δtM‖∇wn+ 1

2 ‖2 − νδt‖∇ ũn+ 1
2 ‖2.

From the above, we immediately derive that, if (un, ̃un, φn, wn, Un, pn) = 0, then we have (un+1, ̃un+1, φn+1, wn+1, Un+1,

pn+1) = 0. Hence, the uniqueness is proved. The existence can be established by using the above stability result coupled 
with a generalized Lax–Milgram theorem. �
4. Numerical simulations and summary

We present in this section various numerical experiments to verify the stability and accuracy of the proposed numerical 
schemes. We set � = [0, 2π ]2 and use the Fourier-spectral method to discretize the space variables. In all computations, we 
use 129 × 129 Fourier modes, and set

ε = 0.06, λ = 1, ν = 1. (4.1)
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Table 1
Accuracy test with given exact solution test for the PF-BCP model 
(2.4)–(2.5). The L2 errors at t = 0.1 for the phase variable φ , computed 
by the Scheme 1 and Scheme 2 using various time steps.

δt Scheme 1 Order Scheme 2 Order

2 × 10−2 1.43E(−4) – 1.21E(−4) –
1 × 10−2 3.60E(−5) 1.98 3.05E(−5) 1.98
5 × 10−3 9.00E(−6) 2.00 7.68E(−6) 1.98
2.5 × 10−3 2.25E(−6) 2.00 1.90E(−6) 2.01
1.25 × 10−3 5.63E(−7) 1.99 4.78E(−7) 1.99
6.25 × 10−4 1.40E(−7) 2.00 1.20E(−7) 1.99
3.125 × 10−4 3.52E(−8) 1.99 3.04E(−8) 1.98
1.5625 × 10−4 8.81E(−9) 1.99 7.63E(−9) 1.99

Table 2
Accuracy test with given exact solution for PF-BCP-NS model (2.19)–(2.22). The L2 errors at t = 0.1 for the phase 
variable u = (u, v), p and φ , computed by Scheme 3 using various time steps.

δt u Order v Order p Order φ Order

8 × 10−3 2.30E(−7) – 2.31E(−7) – 1.58E(−5) – 1.96E(−5) –
4 × 10−3 5.20E(−8) 2.14 5.20E(−8) 2.15 4.09E(−6) 1.94 4.97E(−6) 1.97
2 × 10−3 1.21E(−8) 2.10 1.21E(−8) 2.10 1.00E(−6) 2.03 1.24E(−6) 2.00
1 × 10−3 2.98E(−9) 2.02 2.98E(−9) 2.02 2.52E(−7) 1.98 3.12E(−7) 1.99
5 × 10−4 7.22E(−10) 2.04 7.23E(−10) 2.04 6.34E(−8) 1.99 7.79E(−8) 2.00

4.1. Accuracy test

We first perform numerical simulations to test the convergence rates of the three proposed schemes, i.e., Scheme 1
((3.8)–(3.10)) and Scheme 2 ((3.26)–(3.28)) for the PF-BCP model, and Scheme 3 ((3.39)–(3.45)) for the PF-BCP-NS model.

4.1.1. With a manufactured exact solution
In the first example, we use the exact solution

φ(x, y, t) = (
sin(2x) sin(2y)

4
+ 0.48)(1 − sin2(t)

2
) (4.2)

for the PF-BCP system (2.8)–(2.9). In Table 1, we list the L2 errors of the phase variable φ between the numerical solution 
and the exact solution at t = 0.1 with different time step sizes. We observe that both of the schemes Scheme 1 and 
Scheme 2 achieve second order accuracy in time.

For the PF-BCP-NS model (2.19)–(2.22), we take the exact solutions to be⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ(x, y, t) = (
sin(2x) sin(2y)

4
+ 0.48)(1 − sin2(t)

2
),

u(x, y, t) = sin(2y) sin(x)2 sin(t),

v(x, y, t) = − sin(2x) sin(y)2 sin(t),

p(x, y, t) = cos(x) sin(y) sin(t).

(4.3)

In Table 2, we list the L2 errors of the phase variable φ, the velocity field u = (u, v) and pressure p between the numerical 
solution and the exact solution at t = 0.1 with different time step sizes. We observe that Scheme 3 also achieves second 
order accuracy in time.

4.1.2. With a given initial condition
Next, we further examine the temporal accuracy using an example with a given initial condition but with no explicit 

exact solution. The initial condition of φ is set to be

φ(x, y,0) = (
sin(2x) sin(2y)

4
+ 0.48). (4.4)

Since the exact solutions are not known, we choose the solution obtained by Scheme 1 with the time step size δt = 1 ×10−5

as the benchmark solution for computing errors. We present the L2 errors of the phase variable between the numerical 
solution and the benchmark solution at t = 1 with different time step sizes in Table 3. We observe that both Scheme 1 and 
Scheme 2 are second order accurate in time for this example.



54 Q. Cheng et al. / Journal of Computational Physics 341 (2017) 44–60
Table 3
Accuracy test of Scheme 1 and Scheme 2 with given initial condition for 
the PF-BCP model (2.4)–(2.5). The L2 errors at t = 1 for the phase vari-
able φ.

δt Scheme 1 Order Scheme 2 Order

2 × 10−2 3.33E(−4) – 3.35E(−4) –
1 × 10−2 1.01E(−4) 1.72 1.01E(−4) 1.73
5 × 10−3 2.83E(−5) 1.83 2.83E(−5) 1.83
2.5 × 10−3 7.52E(−6) 1.91 7.53E(−6) 1.91
1.25 × 10−3 1.94E(−6) 1.95 1.94E(−6) 1.96
6.25 × 10−4 4.93E(−7) 1.97 4.94E(−7) 1.97
3.125 × 10−4 1.24E(−7) 1.99 1.27E(−7) 1.95
1.5625 × 10−4 3.11E(−8) 1.99 3.11E(−8) 2.02

4.2. Phase separation

In this example, we study the molecular self-assembly in BCP thin films to form lamellar or cylindrical nanostructures 
through phase separation, or referred as to spinodal decomposition. The process of the phase separation can be studied by 
considering a homogeneous binary mixture, which is quenched into the unstable part of its miscibility gap. In this case, the 
spinodal decomposition takes place, which manifests in the spontaneous growth of the concentration fluctuations that leads 
the system from the homogeneous state to the two-phase state. Shortly after the phase separation starts, the domains of 
the binary components are formed and the interface between the two phases can be specified [2,9,66].

The initial conditions are taken as a randomly perturbed concentration field as follows:

φ(t = 0) = φ̂0 + 0.01 rand(x, y), (4.5)

where the rand(x, y) is a uniformly distributed random function in [−1, 1]2 with zero mean. We present below numerical 
simulations for the PF-BCP model (2.4)–(2.5), PF-BCP-NS model (2.19)–(2.22), and PF-BCP model with imposed electric field 
(4.6)–(4.7) by varying the nonlocal parameter α and initial average value φ̂0.

4.2.1. For PF-BCP model
We first choose a very small nonlocal parameter α = 0.001. For this choice, the PF-BCP model (2.4)–(2.5) is expected to 

be consistent with the standard Cahn–Hilliard model [5,14,27,29].
Before we run the phase separation simulation to the steady state, we need to choose a suitable time step. Even though 

any time step size δt is allowable for the computations from the stability concern since all developed schemes are uncondi-
tionally energy stable, we emphasize that larger time step will definitely induce large numerical errors. Therefore, we need 
to discover the rough range of the allowable maximum time step size in order to obtain good accuracy and to consume 
as low computational cost as possible. This time step range could be estimated through the energy evolution curve plots, 
shown in Fig. 1, where we compare the time evolution of the free energy for five different time step sizes until t = 1 using 
Scheme 1. We observe that all five energy curves show decays monotonically for all time step sizes, which numerically con-
firms that our algorithms are unconditionally energy stable. For smaller time steps of δt = 0.0001, 0.0005, 0.001, 0.005, the 
four energy curves coincide very well. But for the larger time step of δt = 0.01 (∼ O (ε)), the energy curve deviates viewable 
away from others. This means the adopted time step size should not be larger than 0.01, in order to get reasonably good 
accuracy. Thus we choose δt = 0.001 for all simulations.

In Fig. 2, we perform numerical simulations for initial values φ̂0 = 0, that means the volume of two monomer blocks is 
almost identical. We observe that phase dislocations immediately appear in the very beginning during the process of phase 
coarsening (t = 0.25 for instance). The final equilibrium solution is obtained after t = 100, where the lamellar (banded) 
nanostructures finally formed. In Fig. 3, we take the initial value of φ̂0 = 0.3 where the volume of one monomer (yellow 
region of φ = 1) is more than the volume of the other monomer (blue region of φ = −1). The dynamics are quite different 
from the case of φ̂0 = 0. The monomers with less volume merge and finally accumulate to circular pattern. The banded 
shape, as well as the circular pattern are consistent with the experimental results of lamellar phase and the cylindrical state 
(cf. [15,52,60]).

Next, we increase the nonlocal parameter to α = 5. In Fig. 4, with the initial value of φ̂0 = 0, we observe that the initial 
phase separation behaviors are similar to the case of α = 0.001 in Fig. 2. But the final lamellar phase presents very different 
pattern and the equilibrium is obtained at t = 40, that is much faster than the case of α = 0.001.

We present in Fig. 5 results with the initial value φ̂0 = 0.3. The phase separation dynamics is still consistent to the case 
of α = 0.001 in Fig. 3. The final steady state exhibits a circular pattern (cylindrical state) but with much smaller radius.

In Fig. 6, we present the evolution of the free energy functional for both initial averages of φ̂0 = 0, 0.3 and α = 0, 5. The 
energy curves show the decays with time that confirms that our algorithms are unconditionally energy stable.

4.2.2. For PF-BCP-NS model
We study next the PF-BCP-NS model (2.19)–(2.22). The nonlocal parameter is set to be α = 5. First, we take the initial 

value φ̂0 = 0. In Fig. 7, we observe that the initial phase separation process is similar to the no flow case of Fig. 4. The result 
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Fig. 1. Time evolution of the free energy functional for five different time steps of δt = 0.0001, 0.0005, 0.001, 0.005, and 0.01 for ̂φ0 = 0. The energy curves 
show the decays for all time steps, which confirms that our algorithm is unconditionally energy stable. The small inset figure shows the small differences 
in the energy evolution for all four time steps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

Fig. 2. The 2D dynamical evolution of the phase variable φ for the PF-BCP model with the initial condition φ̂0 = 0, α = 0.001 and time step δt = 0.001. 
Snapshots of the numerical approximation are taken at t = 0.25, 0.5, 1, 5, 10, 20, 30, 100. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

with the initial value of φ̂0 = 0.3 is presented in Fig. 8. The morphology behaviors and final equilibrium solutions are quite 
similar to the no flow case of Fig. 5. In Fig. 9, we present the evolution of the free energy functional of φ̂0 = 0 and 0.3. The 
energy curves show the decays with time that confirms that our algorithms are unconditionally stable.

4.2.3. For PF-BCP model with imposed electric field
Applying an external electric field is one of the most efficient approach to control and produce various nano-structured 

materials, and has attracted substantial attentions since the original work in [50]. When an external electric filed is applied 
along some direction, for instance, x− axis, an additional term contributed by the electric field is added to the model system 
(2.8)–(2.9). The new phase equation model reads as follows (cf. [48,50]):

φt = M�w + βφxx, (4.6)
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Fig. 3. The 2D dynamical evolution of the phase variable φ for the PF-BCP model with the initial condition φ̂0 = 0.3, α = 0.001 and time step δt = 0.001. 
Snapshots of the numerical approximation are taken at t = 0.25, 0.5, 1, 10, 40, 60, 100, 400. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 4. The 2D dynamical evolution of the phase variable φ for the PF-BCP model with the initial condition ̂φ0 = 0, α = 5 and time step δt = 0.001. Snapshots 
of the numerical approximation are taken at t = 0.25, 0.5, 40, 700. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

Fig. 5. The 2D dynamical evolution of the phase variable φ for the PF-BCP model with the initial condition φ̂0 = 0.3, α = 10 and time step δt = 0.001. 
Snapshots of the numerical approximation are taken at t = 0.25, 1, 60, 700. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

w = −ε2�φ + f (φ) + αψ, (4.7)

where β is the magnitude of the electric field.
The electric field term can be viewed as an imposed external force. Note that the system (4.6)–(4.7) does not follow the 

energy dissipation law when β �= 0. To solve the equation (4.6), notice that the imposed term is linear, therefore we can 
simply modify (3.8) in Scheme 1 as

φn+1 − φn

δt
= M�wn+ 1

2 + βφ
n+ 1

2
xx , (4.8)

and the rest of the scheme ((3.9)–(3.10)) is still the same.
We let β = 0.2 for the following two simulations. First, we set φ̂0 = 0, in Fig. 10, we observe that phase dislocations 

exist in the lamellar nano-structures during the initial process of phase coarsening (t = 0.25, 0.5). The dislocations gradually 
disappear through climbing and molecular diffusion under the action of the electric driving force. The final equilibrium 
solution that presents lamellar phase with a few dislocations is obtained around t = 20. Note the convergence speed to the 
steady state is much faster than the case without the electric field (t = 200 in Fig. 2).
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Fig. 6. Time evolution of the free energy functional for PF-BCP model. The parameters are (α, ̂φ0) = (0.001, 0) (Case A), (α, ̂φ0) = (0.001, 0.3) (Case B), 
(α, ̂φ0) = (5, 0) (Case C), (α, ̂φ0) = (5, 0.3) (Case D). The energy curves decay for all time steps, which confirms that our algorithm is unconditionally 
energy stable.

Fig. 7. The 2D dynamical evolution of the phase variable φ for the PF-BCP-NS model with nonlocal parameter α = 5 and the initial condition φ̂0 = 0 and 
time step δt = 0.001. Snapshots of the numerical approximation are taken at t = 0.25, 1, 20, 200. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 8. The 2D dynamical evolution of the phase variable φ for the PF-BCP-NS model with nonlocal parameter α = 5 and the initial condition φ̂0 = 0.3 and 
time step δt = 0.001. Snapshots of the numerical approximation are taken at t = 0.25, 1, 20, 200. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

We further set φ̂0 = 0.3, since the volume of one monomer is less than the volume of the other one, we observe more 
phase dislocations during the initial process of phase coarsening (t = 0.5, 4 for instance) in Fig. 11. The final equilibrium 
solution also exhibits a lamellar phase due to the electric effects. Note for the case without the electric field, the steady 
state when φ̂0 = 0.3 is always the cylindrical state (cf. Fig. 3, Fig. 5 or Fig. 8). This means the electric field plays a dominant 
role in forming lamellar nano-structures. The obtained simulations are qualitatively consistent with the numerical results in 
[25,48,50].

4.3. Summary

In this paper, we presented a set of efficient time discretization schemes for solving the PF-BCP model and PF-BCP-NS 
model. The schemes are (i) second order accurate in time; (ii) unconditional energy stable; and (iii) linear and easy to 
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Fig. 9. Time evolution of the free energy functional for PF-BCP-NS model for α = 5 with various initial values of φ̂0 = 0 (Case A) and φ̂0 = 0.3 (Case B). The 
energy curves show the decays for all time steps, which confirms that our algorithm is unconditionally stable.

Fig. 10. The 2D dynamical evolution of the phase variable φ for the PF-BCP model with imposed electric filed for the initial condition φ̂0 = 0 and the 
nonlocal parameter α = 10 and time step δt = 0.001. Snapshots of the numerical approximation are taken at t = 0.25, 0.5, 5, 700. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. The 2D dynamical evolution of the phase variable φ for the PF-BCP model with imposed electric filed for the initial condition φ̂0 = 0.3 and the 
nonlocal parameter α = 10 and time step δt = 0.001. Snapshots of the numerical approximation are taken at t = 0.25, 0.5, 4, 700. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

implement as one only needs to solve a linear system with symmetric positive definite operator at each time step. Various 
numerical results are presented to validate the accuracy of our schemes. We have also presented numerical simulations to 
show the morphological evolutions of PF-BCP model and PF-BCP-NS model. In particular, phase separations for different 
cases with or without flow and with or without external electric field are investigated.
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