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Abstract

A simple and e�ective numerical method is proposed for simulating the temporal di�usive mass transport process

through a microstructure with arbitrary complexity described by a phase-®eld approach. The mass di�usion through a

given microstructure is modeled by a di�usion equation with a variable di�usion coe�cient, which is solved by an

e�cient and accurate semi-implicit spectral method. It is shown that it is possible to extract the e�ective di�usion

coe�cient for any given microstructure from the temporal concentration pro®les. The method is used to simulate the

grain boundary di�usion in a single-phase polycrystalline grain structure and the heterogeneous di�usion in a two-

phase microstructure with di�erent di�usion coe�cient in each phase. Results are compared with existing analytical

theories and computer simulations. Ó 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Di�usion in a solid with a multi-phase micro-
structure or with defects such as grain boundaries
and dislocations can be highly heterogeneous. For
example, in a polycrystalline grain structure, the
di�usion coe�cients along a grain boundary and
through a bulk lattice can be orders of magnitude
di�erent. As a result, although the volume fraction
of grain boundaries is small, grain boundary dif-
fusion may dominate a number of processes such
as grain growth, micro-electronics device failure,

and sintering [1]. Macroscopically, the e�ective
di�usion coe�cient of a grain structure depends
on the relative magnitudes of the grain boundary
and bulk di�usion coe�cients, the average grain
size and grain boundary width. Although it is
possible to derive analytical solutions for very
special microstructures, it is impossible to derive
the e�ective properties of a microstructure exactly.
Therefore, most of the statistical theories are con-
cerned with the property bounds [2]. Recently,
there has been increasing interest in computing the
e�ective properties from a microstructure either
from a digitization of an experimental microstruc-
ture or from a microstructure simulation model [3].
However, most of these approaches are based on
steady-state equations and thus cannot describe the
temporal mass di�usive transport behavior.
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The purpose of this paper is to develop a simple
and e�ective numerical method to simulate the
temporal di�usive transport through microstruc-
tures with arbitrary complexity. A microstructure
is described by ®eld variables and generated by the
phase-®eld method. A semi-implicit Fourier±
Chebyshev spectral method was proposed to e�-
ciently solve the di�usion equation with a variable
di�usion coe�cient. It will be shown that, using
this method, both the temporal di�usion pro®le
through a microstructure and the macroscopic
e�ective di�usivity can be obtained. It is used to
simulate the di�usion through a single-phase grain
structure and two-phase microstructures with dif-
ferent di�usive properties in each phase.

2. Computer modeling

2.1. Microstructure description

To model the di�usion through an arbitrary
microstructure, we used a set of space- and time-
dependent ®eld variables to describe the micro-
structure, similar to the phase-®eld approach [4].
For example, the concentration di�erence
throughout the microstructure is described by a
concentration ®eld C�r�. A single-phase polycrys-
talline microstructure can be described by a set of
order-parameter ®eld variables, g1�r�, g2�r�,. . .,
gp�r� where p is the number of grain orientations in
the system [5].

To simplify the problem, we studied di�usion in
a static microstructure which remained unchanged
during the di�usion process. The solid state reac-
tions between the di�usant atoms and the micro-
structure such as segregation, which may occur in
some practical applications, are not considered in
this work. Therefore, only temporal and spatial
evolution of one variable, the concentration of
di�using species, is needed to investigate the dif-
fusive transport in a microstructure described by a
set of static ®eld variables. The spatial dependence
of di�usivity is introduced through its dependence
on the ®eld variables C�r� or g�r�, i.e., we describe
the di�usion coe�cient D as a function of C or g
written as D � f �C; g1; g2; . . . ; gp�. For example, in
a single-phase polycrystalline material, the di�u-

sion coe�cient throughout the system can be ex-
pressed in a scaled form as D � D��1ÿ a

Pp
i�1 g2

i �,
where D� and a are positive constants. The values
of
P

g2
i in the grain bulk are higher than those in

the grain boundaries, and therefore the di�erence
in grain boundary and bulk di�usion coe�cients
can be easily described by this simple equation.
Although the choice of this equation was quite
arbitrary, we believed it would not a�ect the gen-
eral results of the di�usive transport process. One
important advantage is the fact that it avoids the
speci®cation of boundary conditions at the inter-
faces between di�erent regions with di�erent dif-
fusivites. Since there was no microstructural
evolution in our study, the variable

P
g2

i was only
a function of spatial coordinates r, and thus the
di�usion coe�cient was mapped to each lattice
point as D�r�. It should also be pointed out that
the ®eld variables are not required to be di�use as
they are in the phase-®eld model.

2.2. Numerical method

Neglecting the segregation of di�using species,
the temporal di�usive transport process through
the microstructure can be described by Fick's
second law written as

oC�r; t�
ot

� r � D�r�rC�r; t�; �1�

where C is the concentration of di�usant, t the
time, r the spatial coordinate, and D�r� is the dif-
fusion coe�cient distribution in a given mi-
crostructure. Our numerical simulation was
performed in two dimensions with a periodic
boundary condition in one-dimension and a ®xed
boundary condition in the other which has a ®xed
di�usant source and sink. The initial concentration
of di�usant throughout the system is zero.

Analytical solutions to the above equation are
only possible with highly idealized assumptions
about the di�usion coe�cient distribution D�r�.
For studying a distribution with arbitrary com-
plexity, numerical simulations have to be em-
ployed. Most of the existing numerical simulations
for this problem were performed using explicit
forward Euler method in time and ®nite-di�erence
in space. To maintain the stability of the scheme
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and to achieve high accuracy, the time step and
spatial grid size have to be very small, which se-
riously limit the system size and time duration of a
simulation. Spectral methods, which were widely
used in the ®eld of ¯uid dynamics [6], o�ered us an
accurate and e�cient alternative to solve partial
di�erential equations. Recently, Chen and Shen [7]
used a semi-implicit Fourier spectral method for
solving the time-dependent Ginzburg±Landau and
Cahn±Hilliard equations. They showed that the
semi-implicit Fourier spectral method is signi®-
cantly more e�cient and accurate than a conven-
tional explicit ®nite di�erence method.

Consider the forward Euler method for Eq. (1)

Cn�1 ÿ Cn

Dt
� r � DrCn: �2�

The above scheme with a ®nite di�erence or Fou-
rier approximation in space has a severe time step
constraint of the form Dt6 k=N 2 [6], where k is a
constant and N is the number of lattice points to
be used in each space dimension. The constraint
becomes Dt6 k=N 4 [6] when the problem has a
®xed boundary and a spectral approximation is
used in space. To avoid such a severe restriction,
we consider a semi-implicit treatment. The idea is
to split the variable di�usion coe�cient D�r� into
A and D�r� ÿ A, where A is a suitable constant,
and treat them separately to obtain

Cn�1 ÿ Cn

Dt
ÿ Ar2Cn�1 � ÿr � �Aÿ D�rCn: �3�

write u � Cn�1, a � 1=�ADt�, and f � Cn=�ADt�ÿ
r � �1ÿ �D=A��rCn, and then Eq. (3) can be sim-
pli®ed as

auÿr2u � f ; �4�
with a periodic boundary condition in one direc-
tion and a ®xed boundary condition in the other.
At each time step, this equation can be solved
accurately and e�ciently by a Fourier±Chebyshev
Galerkin algorithm which we brie¯y describe be-
low.

Expanding u and f in Fourier series in the x
direction in which a periodic boundary condition
is applied, and substituting u�x; y� �P1

m�ÿ1 um�y�
eimx (same for f) in Eq. (4), we obtain

�a� m2�um ÿ um
yy � f m;

m � 0;�1;�2; . . . ;

um��1� � 0:

�5�

Then, we solve the above equation for each m by
using the Chebyshev±Galerkin algorithm devel-
oped by Shen [8]. More precisely, let Tk�y� be the
kth degree Chebyshev polynomial, we look for an
approximation of um in the form um

N �PNÿ2
k�0 ûm

k /k�y� where /k�y� � Tk�y� ÿ Tk�2�y� are
the Galerkin basis functions satisfying /k��1� � 0.
Let us denote �u; v�x �

R 1

ÿ1
uvx dy where x �

�1ÿ y2�ÿ�1=2�
is the Chebyshev weight function.

Then, the coe�cients fûm
k gNÿ2

k�0 (hence the approx-
imation um

N ) are determined by the weighted vari-
ational formulation for Eq. (5)

�a� m2��um
N ;/k�x ÿ ��um

N �yy ;/k�x
� �IN f m;/k�x; k � 0; 1; 2; . . . ;N ÿ 2; �6�

where IN is a polynomial interpolation operator
based on the Chebyshev±Gauss±Lobatto (CGL)
points: yj � cos�jp=N�; j � 0; 1; . . . ;N . More pre-
cisely, for any continuous function g on �ÿ1; 1�,
IN g is the unique polynomial of degree less or
equal than N such that

IN g�yj� � g�yj�; j � 0; 1; . . . ;N :

Furthermore, the transform between the function
values ff �yj�gN

j�0 and the Chebyshev coe�cients of
IN f can be evaluated in O�N log N� operations by
using the fast Fourier transform (FFT).

Now, we describe how to determine the coe�-
cients fûm

k gNÿ2
k�0 from Eq. (6). Let us denote

fk �
Z 1

ÿ1

IN f /kx dy; �f � �f0; f1; . . . ; fNÿ2�T;

skj � ÿ
Z 1

ÿ1

/00j /kx dy; S � �skj�k;j�0;1;...;Nÿ2;

bkj �
Z 1

ÿ1

/j/kx dy; B � �bkj�k;j�0;1;...;Nÿ2:

Then, it is easy to see that Eq. (6) is equivalent to
the following linear system

��a� m2�B� S��u � �f ; �7�
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where �u � �ûm
0 ; û

m
1 ; . . . ; ûm

Nÿ2�T. It is shown in [8]
that the entries of the matrices S and B are given
by:

skk � 2p�k � 1��k � 2�; k � 0; 1; . . . ;N ÿ 2;

skj � 4p�k � 1�; j � k � 2; k � 4; k � 6; . . . ;

skj � 0; j < k or j� k odd;

and

bkk � p; k 6� 0; and b00 � 2p;

bkj � ÿ p
2
; j � k � 2;

bkj � 0; otherwise:

Although S is not sparse but it is a special up-
per-triangular matrix whose non-zero elements
(except the diagonal element) at each row are all
the same. Therefore, one can design a special
Gaussian elimination process which takes into
account this special structure to solve Eq. (7) in
O�N� operations (more precisely, at a cost com-
parable to that of solving a penda-diagonal ma-
trix). We refer to [8] for more details on this
matter.

Thus, the overall operation counts for solving
Eq. (5) is O�N log N� for each m. Hence, as-
suming M Fourier coe�cients are retained in the
Fourier expansion, the total cost of the Fourier±
Chebyshev Galerkin method for solving Eq. (4)
is O�NM log�NM�� which is quasi optimal with
respect to the number of points (lattices) used.
Note that the total cost is only slightly more
than O�NM� operations which are required by
the conventional ®nite di�erence/®nite element
methods, but the Fourier±Chebyshev Galerkin
method is capable of producing much more ac-
curate results using signi®cantly less number of
points (lattices). On the other hand, the semi-
implicit treatment will allow us to use much
larger time steps than that is allowed by an ex-
plicit method (about two orders of magnitude
larger from our numerical experiments). Hence,
the resulting semi-implicit Fourier±Chebyshev
Galerkin method is an extremely e�cient method
for solving di�usion equation with a variable
di�usion coe�cient.

3. Results and discussion

3.1. Grain boundary di�usion

By numerically solving the di�usion equation
with a variable coe�cient, we can obtain the
temporal evolution of the concentration pro®le
through any arbitrary microstructure. The ®rst
example is the grain boundary di�usion, which has
been studied for many years since the early 50s.
For an idealized grain boundary geometry, ana-
lytical solutions are available for the concentration
pro®les [9±11]. These solutions can be employed to
analyze the grain boundary di�usion coe�cients
from experimental measurements [12]. In recent
years, some numerical models were developed to
overcome the simple geometry and topology re-
strictions. Gui et al. [13] analyzed the grain
boundary di�usion process in thin ®lms by trans-
mission-line-matrix modeling . More recently,
Swiler et al. [14,15] investigated some important
heterogeneous di�usion e�ects in polycrystalline
microstructures obtained from Potts model simu-
lations.

We ®rst tested our approach by studying the
di�usion through an ideal grain boundary de-
scribed by the Fisher's model where the analytical
results were available [9]. The grain boundary is
treated as a high-di�usivity, semi-in®nite isotropic
slab of uniform width, embedded in a low-di�u-
sivity, semi-in®nite perfect crystal which is normal
to the surface that carries the di�usant shown in
Fig. 1(a). However, in numerical simulations we
can approximate a grain boundary as a ®nite slab
embedded in a ®nite crystal. This approximation
can represent a semi-in®nite system very well if the
grain boundary thickness d is far less than the
system size L (d� L). A simple way to describe
such a grain boundary in Fisher's model is to
choose two ®eld variables g1, g2. In grain 1, g1 � 1,
g2� 0. In grain 2 g1 � 0, g2� 1. The phase ®eld
model applied to describe the microstructure usu-
ally involves a di�usive interface, where the ®eld
variables g1, g2 change continuously from 0 to 1
across the grain boundary, shown in Fig. 1(b). The
solid line in the Fig. 1(b) plotted the di�usion co-
e�cient D across the grain boundary de-
scribed by D � D��1ÿ a�g2

1 � g2
2�� where D� � 1
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and a � 0:999. Fig. 1(c) shows an isoconcentra-
tion contour plot through a grain boundary after
a certain di�usion time. The di�usion coe�cient
within the grain boundary being higher than in
the crystal, the di�usion penetrated deeper
along the grain boundary than in the grain
bulk. Consequently, it started leaking through
the two walls of the grain boundary into the
grain bulk.

The kinetics of grain boundary di�usion are
usually classi®ed to type A, B, and C according to
the parameters of the model, such as the ratio of
grain boundary di�usion coe�cient to the bulk
lattice di�usion coe�cient, the di�usion time, and
the ratio of grain boundary width to the grain size
[16]. We have carried out simulations in all three
regimes and compared the concentration pro®le at
di�erent times obtained from our simulations with
the analytical solutions in each regime. The A re-
gime is for long di�usion time t and small grain
size d with the condition: �Dvt�1=2 � d. The con-
centration pro®les in type A kinetics appear to
obey Fick's law for a homogeneous system with an
e�ective coe�cient Deff which can be written as

hCi � erfc
y

2
���������
Deff t
p

� �
; �8�

where Deff � fDgb � �1ÿ f �Dv and f is the volume
fraction of grain boundaries. The comparison of
the average concentration hCi at di�erent times in
A regime was shown in Fig. 2(a) where our nu-
merical results (shown in symbols) agree very well
with analytical solutions from Eq. (8) (shown in
lines).

Type C kinetics is the opposite of type A ki-
netics where volume di�usion in the grain bulk is
negligible, i.e., �Dvt�1=2 � d. Therefore the di�u-
sion is only one-dimensional in Fig. 1(a) (along y
direction). With the de®ned boundary condition,
the concentration along the grain boundary in
Fig. 1(a) is

C�y; t� � erfc
y

2
���������
Dgbt

p !
: �9�

Fig. 2(b) showed a good agreement of the nu-
merically calculated and analytical results of the
concentration along the grain boundary in regime
C.

Type B kinetics is of the intermediate case be-
tween B regime and C regime with the condition
d� �Dvt�1=2 < d=2. Most experimental conditions
fall into this regime. The analytical solution in the
B regime was obtained by Whipple in a complex
form [10]. The distribution of concentration
through the microstructure is described by

Fig. 1. Di�usion through an idealized grain boundary: (a)

Fisher's model for grain boundary di�usion; (b) ®eld variables

g1, g2 and di�usion coe�cient D across a grain boundary in a

phase-®eld description; (c) an isoconcentration contour plot

with eight levels through a grain boundary after a certain dif-

fusion time, D � D��1ÿ a�g2
1 � g2

2��, D� � 1 and a � 0:999.
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C � erfc
g
2

� �
� g

2
���
p
p

Z D

1

1

r3=2
exp

�
ÿ g2

4r

�
� erfc

1

2

������������
Dÿ 1

Dÿ r

r
n

�"
� rÿ 1

b

�#
dr: �10�

Several dimensionless parameters are de®ned in
the above equation as: g � y=

�������
Dvt
p

, D � Dgb=Dv,
b � �Dÿ 1�d=�2 �������

Dvt
p �, and n � �xÿ d=2�= �������

Dvt
p

.
Eq. (10) was evaluated with all parameters the

same as those chosen in our simulations. For ex-
ample, the thickness of the grain boundary d
should be determined from the di�use-interface
®eld variable pro®le [7]. Fig. 2(c) shows one ex-
ample of the average concentration hCi as a
function of y6=5 at 3 di�erent time steps. We ob-
served a good agreement between the simulation
results and the analytical Whipple's solution, es-
pecially at long times in a type-B kinetics where the
Whipple's solution is valid [17]. However, at short
times �t � 2000� there is a little di�erence between
the simulated hCi and the calculated hCi because
the condition d� �Dvt�1=2

is not well satis®ed at
short times. The plot of the logarithm of the av-
erage concentration versus y6=5 was the basis for
experimental measurements of grain boundary
di�usion coe�cients [12].

Based on the simple examples discussed above,
the numerical model works quite well in all three
regimes of grain boundary di�usion. Although for
the idealized Fisher's model, analytical solutions
are possible, it is usually not the case for poly-
crystals, particularly if one is interested in the
spatial distribution of di�using species in the mi-
crostructure. The numerical model proposed in
this work can be applied to di�usion through a
polycrystal without any further complication.
Fig. 3 shows an example of the temporal evolution
of concentration during di�usion through a poly-
crystalline grain structure. The grain microstruc-
ture, which was generated from a phase ®eld
simulation of grain growth [5], was mapped to the
x-y plane. Heterogeneous di�usion e�ect is clear
that the concentration values in the grain bound-
aries are much higher than those in the grain bulk.
As can be seen from the concentration distribution
in Fig. 3(a) (t� 50,000) and Fig. 3(b) (t� 500,000),
more species di�used into the microstructure at
longer di�usion times.

The di�usion coe�cient in the grain micro-
structure is written as D � D��1ÿ a

P
i g

2
i � where

D� and a are positive constants. Di�erent ratio of
grain boundary di�usion coe�cient Dgb and bulk
di�usion coe�cient Dv can be easily obtained by

Fig. 2. Comparison of the concentration pro®le at di�erent

di�usion distance y for a grain boundary di�usion at di�erent

di�usion times: (a) type A kinetics, hCi vs y; (b) type C kinetics,

C�y; t� vs y; (c) type B kinetics, hCi vs y6=5.
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adjusting the value of a. Fig. 4 shows the concen-
tration pro®le through a polycrystalline material
for two ratios of Dgb=Dv at the same di�usion time.
The ratio in Fig. 4(b) (Dgb=Dv � 20) is higher than in
Fig. 4(a) (Dgb=Dv � 2:5), and thus the concentration
of the di�using atoms in the grain boundary di�ers
more considerably from that in the grain bulk.

3.2. E�ective di�usion coe�cients of microstruc-
tures

The e�ective properties of a microstructure,
such as electrical conductivity, dielectric constant,
magnetic permeability, elastic moduli, thermal

conductivity and di�usion coe�cient, were often
approximated using the so-called mixture rules
[18,19]

Kn
eff �

X
i

ViKn
i ; ÿ16 n6 1; �11�

where Keff is the e�ective property of the micro-
structure, Ki and Vi are the corresponding property
and volume fraction of the ith phase. More rig-
orous theories can predict the upper and lower
bounds for the properties [2,18]. Recently, there
has been increasing interest in directly calculat-
ing e�ective properties of digitized experimental
microstructures or microstructures generated from

Fig. 4. Concentration pro®le in a polycrystal for two ratios

of Dgb=Dv at the same di�usion time t� 10,000, D � D��1ÿ
a
P

i g
2
i �, D� � 1: (a) a � 0:8; (b) a � 0:98.

Fig. 3. Temporal evolution of concentration through a poly-

crystalline microstructure at two di�erent times, D �
D��1ÿ a

P
i g

2
i �, D� � 1 and a � 0:9999: (a) t� 50,000; (b) t�

500,000.
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computer models [3]. Most of these numerical
approaches aimed at approximate solutions of the
steady-state equations using ®nite element or ®nite
di�erent methods [3].

It is easy to show that one can derive the ef-
fective properties of a microstructure from the
temporal concentration pro®les by solving the
non-steady-state di�usion equation. We employed
two approaches to extract the e�ective di�usion
coe�cient Deff for any given microstructure. One is
studying the average concentration pro®le hCi as a
function of di�usion distance y at short di�usion
times. Assuming Eq. (8) describes the relationship
between hCi and y, we can approximately calculate
Deff by ®tting di�usion data to Eq. (8). Another
approach is to derive Deff from the steady-state
solution of the non-steady-state di�usion equation
at longer intervals of time. The ¯ux J for long
di�usion time is related to the concentration gra-
dient by Fick's ®rst law,

J � ÿDeffrC: �12�
The total ¯ux J can be obtained easily from the
di�usion coe�cient distribution D�r� and the
concentration distribution C�r� through the mi-
crostructure at the steady state. rC in Eq. (12) is
determined by the applied concentration gradient.
Our numerical work shows Deff computed from
Eqs. (8) and (12) has a di�erence less than 2%,
which can satisfy most of the practical applica-
tions. One of the main advantages of this ap-
proach is that it produces both the time-dependent

concentration pro®les in a microstructure and the
e�ective properties of the microstructure. In ad-
dition, it avoids any complicated boundary con-
ditions and thus allows one to study the di�usion
transport through any arbitrary microstructures.

As test examples, we ®rst computed Deff for two
of the simplest possible microstructures. The sys-
tem is composed of parallel slabs of A and B with
di�erent di�usion coe�cients DA and DB, shown in
Fig. 5. In Fig. 5(a), the ¯ux is parallel to the plane
of the slabs, and the arrangement is equivalent to a
parallel electrical circuit. Each slab has the same
concentration gradient, and most of the ¯ux is
through the component with higher di�usivity. Deff

is given by Deff � DAVA � DBVB, where VA and VB

are the volume fraction of each component. This
corresponds to n � 1 in Eq. (11). In contrast, for
di�usion ¯ux perpendicular to the plane of the
slabs in Fig. 5(b), it is equivalent to a series elec-
trical circuits. The ¯ux through each slab is equal,
but the concentration gradients are di�erent. In
this case, n � ÿ1 in Eq. (11) and Deff � DADB=
�DAVB � DBVA�. Fig. 6 shows the comparison of
calculated and theoretical Deff as a function of
volume fraction for these two parallel slab micro-
structures. Slab arrangements in Fig. 5(a) and (b)
are indicated by jj and � respectively. As can be
seen from the graph, the e�ective di�usion coe�-
cients computed agree well with those of theoret-
ical solutions for both cases, thus validating our
methods. Generally Deff for the two parallel slab
microstructures will cover the complete range of

Fig. 5. Idealized two-phase microstructures ± parallel slabs: (a) ¯ux parallel to the plane of slabs �jj�; (b) ¯ux perpendicular to the plane

of slabs (� ).
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e�ective properties between the upper and lower
bounds as shown in the solid line and dashed line
in Fig. 6. It would be expected that for arbitrary
microstructures, Deff was within this range.

For a polycrystalline material, di�usion was
carried out as described in the previous section. In
particular, we examined the e�ect of the average
grain size d of a grain structure on the e�ective
di�usion coe�cient. The results are plotted as the
®lled circles shown in Fig. 7, where Deff;simulation is
calculated from steady state concentration pro®le.
Deff;simulation varies inversely with the average grain

size d. This result is in good agreement with that of
sharp-interface simulations by Swiler et al. [14].
The driving force for grain growth is the reduction
of grain boundary energy. As the grain size be-
comes larger, the volume fraction of grain
boundaries decreases, resulting in a decrease in the
e�ective di�usion coe�cient. In Fig. 7, we also
plotted the theoretical e�ective di�usion coe�-
cients Deff ;upper and Deff ;low as the upper and low
bounds of the e�ective di�usion coe�cients which
can be predicted by rule of mixing as Dgbfgb�
Dv�1ÿ fgb� and DgbDv=�Dgb�1ÿ fgb�� Dvfgb�, re-
spectively, where fgb is the volume fraction of grain
boundaries. However, for a di�use-interface de-
scription of the microstructure, there is some am-
biguity in determining the exact values of Dgb, Dv

and fgb. Recognizing that Deff predicted by rule of
mixing is essentially a volume average, we calcu-
lated Deff ;upper as �1=N�Pr D�r� where N is the total
number of lattice points. Similarly Deff ;low was
computed as N=�P 1=D�r��. As expected, for all
the grain sizes studied, Deff;simulation is between
Deff ;upper and Deff ;low, which are the e�ective di�u-
sion coe�cients for idealized grain structures
where grain boundaries can be treated as parallel
slabs embedded in the grains. The di�erence be-
tween Deff ;simulation and Deff ;upper was explained by
Swiler et al. [15] as a result of triple junctions be-
tween grains as bottlenecks to di�usion. Their
sharp-interface simulations showed that
Deff ;simulation � 0:27Dgbd=d [14], where d is the grain
boundary width and d=d is the approximated
volume fraction of grain boundaries.

As a ®nal example, di�usion through two-phase
microstructures was studied. The two-phase mi-
crostructures in Fig. 8 were obtained from our
phase ®eld simulations of phase separation of an
initially homogeneous system. The two-phase
system forms an inter-connected or a dispersed
microstructure at di�erent volume fractions. Fig. 9
shows the change of Deff (obtained from the steady
state concentration pro®le) as a function of vol-
ume fraction for these microstructures (plotted
with circle symbols). As the volume fraction of
phase A with high di�usion coe�cient �DA � DB�
increases, the shape of A droplets changes, and
Deff increases gradually. After VA reaching about
50%, there is a sharp increase in Deff when the

Fig. 7. E�ective di�usion coe�cient Deff as a function of av-

erage grain size d for a single-phase polycrystalline micro-

structure, D � 1ÿ 0:999
P

i g
2. Deff;upper and Deff ;low are the

e�ective di�usion coe�cients predicted by mixture rules.

Fig. 6. Computed and theoretical e�ective di�usion coe�cient

Deff as a function of volume fraction of phase A for parallel slab

microstructures, DA� 1.0, DB� 0.2.
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microstructure changes from isolated phase A in B
to inter-connected A and B phases. The ratio of
DA=DB is three orders of magnitude in Fig. 9. The
dashed line and solid line represent the upper and
low bounds of Deff determined from Eq. (11) as
n� 1 and ÿ1, respectively. It is usually observed
that the larger the distinction between the prop-
erties of di�erent phases in heterogeneous systems,
the more obvious is the percolation transition [18].

Our numerical experiments have demonstrated
that the Fourier±Chebyshev spectral method is
very e�cient for solving the time-dependent dif-
fusion equation in which the di�usivity distribu-
tion is a smooth function throughout the

microstructure, especially for microstructures de-
scribed by the di�use-interface model. The excellent
agreement between our di�use-interface simulation
and sharp-interface analytical or numerical meth-
ods showed that di�use-interface model is very ef-
fective for describing di�usional transport in
mesoscale microstructures. In recent years, the
di�use-interface phase-®eld approach has been
recognized as a powerful mathematical model for
simulating the mesoscale morphological pattern
formation such as grain growth and Ostwald rip-
ening. By coupling the phase-®eld modeling of
microstructure evolution, the approach developed
in this paper allows us to model the e�ective di�u-
sivity evolution in an evolving microstructure.
More details will be reported in the near future.

4. Conclusion

We have simulated the temporal mass di�usion
transport through an arbitrary microstructure
based on a phase-®eld approach. Di�usion coe�-
cients were calculated as a function of the order
parameters describing a single-phase grain struc-
ture where grain boundary di�usion was much
higher than bulk di�usion and a two-phase mi-
crostructure where the di�usivities varied with the
phase. The semi-implicit Fourier±Chebyshev
spectral method was shown to be accurate and
e�cient in solving the variable di�usion equations.
The accuracy of the model was demonstrated by
reproducing the classic di�usion results of grain
boundary di�usion in all three kinetic regimes

Fig. 8. Two-phase microstructures for di�erent volume fraction of phase A (shown in white color) showing the percolation transition,

(a)±(e) for VA� 16%, 32%, 50%, 62%, and 87%, respectively.

Fig. 9. E�ective di�usion coe�cient Deff as a function of vol-

ume fraction. Circles were calculated from the microstructures

in Fig. 8. Dashed line and solid line were plotted from Eq. (11)

representing the upper and lower bounds of Deff .

DA=DB� 1000.
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(type A, B and C) as well as the parallel slabs ge-
ometries. We demonstrated that one can extract
e�ective di�usion coe�cient of a microstructure
from the temporal di�usion pro®les. Furthermore,
the sharp interface results of Swiler et al. were
reproduced to show that the e�ective di�usivity
varies inversely with grain size. This model was
used to predict the e�ective di�usivity of two-
phase percolating and non-percolating structures
where each phase has very di�erent di�usivities.
This approach can be also used to study similar
transport problems such as heat transport by rec-
ognizing the similarity between mass di�usion and
thermal di�usion equations.
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