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Computing the effective diffusivity using a spectral method
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Abstract

We developed a numerical method for computing the effective properties of a microstructure. The method is particularly
efficient and accurate for microstructures with a diffuse-interface description similar to those generated from phase-field
simulations. In particular, we considered the diffusive transport property of a microstructure by solving the steady-state diffusion
equation using a Fourier–Chebyshev spectral method. Computed effective diffusivities agree very well with existing analytical
solutions and computer simulations for a number of simple model systems. Combining with the phase-field model for simulating
microstructure evolution, the proposed method can be applied for modeling the temporal evolution of effective properties. This
is illustrated by considering grain growth and the corresponding effective transport property evolution as function of time. © 2001
Elsevier Science B.V. All rights reserved.

Keywords: Effective diffusivity; Diffuse interface; Diffusion equation; Spectral method; Microstructures

www.elsevier.com/locate/msea

1. Introduction

The effective properties of a heterogeneous material
such as a composite or a polycrystalline ceramics de-
pend not only on the volume fractions and the proper-
ties of each individual component, but also critically on
the details of a material microstructure. For macro-
scopically homogeneous microstructures, property
bounds can be obtained from a statistical description
via a variety of n-point correlation functions (see e.g.
Refs. [1,2]). However, the exact property of a specific
microstructure has to be computed numerically except
for special cases with very simple microstructures for
which analytical solutions exist. For example, by using
finite difference or finite element methods, Garboczi
and Bentz developed a package for calculating the
effective linear electric and elastic properties of a mi-
crostructure generated either from digitization of exper-
imental data or from a microstructure simulation model
[3]. In the finite difference or finite element methods,
the local property of a material is assumed to change

discontinuously across the interfaces separating differ-
ent phases or domains. Another approach to obtain the
effective properties of a material is to use direct com-
puter simulations. For example, to calculate the effec-
tive diffusion coefficient of a microstructure, Monte
Carlo techniques can be employed to simulate the
distance traveled by the tracers in a certain amount of
walker diffusion time [4,5].

Recently, we modeled the diffusive transport process
in a microstructure by solving the time-dependent diffu-
sion equation using the semi-implicit Fourier–Cheby-
shev spectral method [6]. The microstructures employed
in the calculation were usually generated by a phase-
field model. It was shown that with temporal diffusion
profiles, the effective diffusivity of a microstructure may
be extracted from a given concentration profile at a
particular time.

The purpose of this paper is to present a method to
compute the effective diffusivity of a microstructure by
directly solving the steady-state diffusion equation us-
ing a spectral method. The method is particularly effi-
cient and accurate for microstructures described by
diffuse interfaces, for which current software packages
such as those developed by Garboczi cannot be directly
applied. In combination with a phase-field approach,
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the proposed model allows us to simulate the effective
diffusivity evolution of a material as a function of time
during a microstructural evolution process. Moreover,
we want to point out that although the focus of this
paper is on computing effective properties of a mi-
crostructure with a diffuse-interface description, the
numerical method discussed here can be applied for
modeling microstructure evolution in systems with
multi-rate processes when one or more of the processes
are essentially at steady-state or slaved by the slowest
process.

2. Numerical methods

To model the diffusion process of a given atomic
species through a heterogeneous material, we used the
so-called space-dependent field variables to describe the
microstructure of the material, similar to the phase-field
approach [7]. The field variables represent the spatial
distribution of different phases or domains. The com-
position difference throughout the microstructure can
be described by a compositional field. The structural
difference between domains/phases is usually described
by long-range order parameters. For example, a single-
phase polycrystalline microstructure can be represented
by a set of continuous orientation field variables,
�1(r),�2(r),…,�p(r), where p is the number of grain
orientations in the system [7,8]. Instead of using the
conventional sharp-interface description of a mi-
crostructure, we used a diffuse-interface model, where
the field variables are continuous across the phase/do-
main boundaries and interfaces. One important advan-
tage of the diffuse-interface model is that it avoids the
specification of boundary conditions at those interfaces.

The spatial dependence of diffusivity is introduced
through its dependence on the field variables, i.e., we
describe the diffusivity D(r) as a function of field
variables. For example, for a single-phase polycrys-
talline microstructure, we expressed the diffusivity D in

a scaled form as D=D*
�

1−a�i=1
p � i

2�, where D* and

a are positive constants. The values of �� i
2 in the grain

bulk are higher than those in the grain boundaries, and
therefore the fact that grain boundary diffusivity Dgb is
higher than grain bulk diffusivity Dv is easily shown
from this simple equation. Changing the value of a
allows us to obtain different ratios of Dgb/Dv. The
difference between grain boundary diffusion coefficient
and grain bulk diffusion coefficient in our simulation
can be as large as four to five orders of magnitude.
Although the choice of diffusivity/field variable rela-
tionship was quite arbitrary, we found it would not
significantly affect the general results in predicting the
effective property. The diffuse-interface approach also
results in a continuous property change across the grain

boundaries or phase interfaces. Consequently, we do
not have to specify the boundary conditions at the
interfaces between different regions with different diffu-
sivities. However, it should be pointed out that the
diffusivity throughout the microstructure is not re-
quired to be continuous across interfaces as they are in
the phase-field model. Examples with a sharp-interface
model as well as a diffuse-interface model are presented
to compare our results with analytical solutions and
some other numerical methods.

Consider the diffusion in a heterogeneous material
when a concentration gradient of a diffusing species is
applied to maintain a steady mass transport. For the
steady-state diffusion problem, where the diffusive flux
is steady in time, the diffusion equation can be written
as
�·[D(r)�C(r)]=0, (1)
where D(r) is the diffusivity (or diffusion coefficient)
and C(r) is the concentration distribution on a given
microstructure. Isotropic diffusivities are considered in
our work. Given C(r), the flux J(r) can be easily
calculated by Fick’s first law J(r)= −D(r)�C(r). We
consider a two-dimensional system with a periodic
boundary condition in the x-direction and a fixed
boundary condition in the y-direction which has fixed
diffusant source and sink. The effective diffusivity Deff,
which was defined simply in terms of the averages of
various diffusivities over the system, is then obtained
from the relation �J�= −Deff�C, where �J� is the
average of the flux at each node in a discretized version
of Eq. (1).

Finite difference or finite element methods are most
commonly used to numerically solve Eq. (1). These
methods are generally easy to implement but their
effectiveness is limited by their low accuracy [9]. Spec-
tral methods, which have been widely used in computa-
tional fluid dynamics [10], however, are accurate and
efficient alternatives for solving partial differential
equations, especially when the underlying computa-
tional domains are rectangular. For simulating mi-
crostructure evolution, rectangular domains are always
used. The diffuse nature of the interfaces also makes
the spectral method very useful for dealing with mi-
crostructures in our model. Recently, we used a semi-
implicit Fourier spectral method to solve the
time-dependent Cahn–Hilliard [11] and diffusion equa-
tion [6]. Significant gains in computing time and mem-
ory were observed by using a high-order spectral
scheme, compared with conventional finite difference
and finite element methods. Thus, we propose a spec-
tral approach here to solve the steady-state diffusion
equation with the underlying boundary conditions.

We consider a rectangular computational domain
[0,2�)× [−1,1]. Any other domain size can be studied
similarily by simple coordinate transformations. The
boundary conditions are
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C(x,−1)=0, C(x,1)=1

for all x� [0,2�); C is periodic in x. (2)

The fixed boundary condition represents a constant
diffusant source and sink at both surfaces in y-direc-

tion. If we denote u(x,y)=C(x,y)−
1+y

2
, then u sa-

tisfies a homogeneous Dirichlet boundary condition in

y. Denoting f(r) as the term �·
�

D(r)�
�1+y

2
�n

, we are

led to consider

−� · [D(r)�u(r)]= f(r), (3)

u(x,�1)=0 for all x� [0,2�),

u is periodic in x.

We now describe briefly a Fourier–Chebyshev method
for solving the above equation. Generally speaking,
spectral methods look for an approximation of the
unknown function u(x,y) as an expansion of a set of
globally smooth basis functions. More precisely, we
choose the trignometric polynomials �(x)=eijx for the
periodic x-direction and Chebyshev polynomials Tk(y)
in the y-direction. Therefore, we look for the approxi-
mate solution uN(x,y) for Eq. (3) in the form

uN(x,y)= �
N/2

j= −N/2

�
N−2

k=0

uj,keijx[Tk(y)−Tk+2(y)], (4)

where uj,k are called the expansion coefficients in the
frequency space. Since Tk(�1)= (�1)k, we have
Tk(�1)−Tk+2(�1)=0 and therefore uN(x,�1)=0.
The boundary conditions are then satisfied. This set of
convenient basis functions was first used in [12] and
offers many computational advantages. In fact, we can
solve Eq. (3) by using the spectral method at a cost
comparable to the finite difference/finite element meth-
ods with the same number of grid points. See Ref. [12]
for more details.

Let us denote XN to be a set, where all the functions
in XN has a form of Eq. (4) with the expansion coeffi-
cients satisfying ūj,k=u− j,k. Here ūj,k is the complex
conjugate of uj,k. Such a condition ensures that func-
tions in XN are real valued. We used a Galerkin ap-
proach that based on variational formulations using
continuous inner products [10]. More specifically, we
need to find uN�XN such that

− (�·[D(r)�uN(r)],�N)�= (IN f(r),�N)�,

for all �N�XN, (5)

where the inner product (·,·)� is defined as

(u,�)�=
� 2�

0

dx
� 1

−1

u(x,y)�(x,y)(1−y2)−1/2 dy,

and IN is the interpolation operator based on the
spectral-collocation points [10]. The above variational
formulation leads to a linear system of the form

ANū= f� , (6)

where ū and f� are the vectors formed by the unknowns
uj,k and the right-hand side function f, respectively.
However, AN is a full and ill-conditioned matrix that
makes Eq. (6) difficult to solve. Hence, we propose a
preconditioned iterative method to solve this linear
system.

The main idea is that if there exist numbers �, ��0,
such that ��D(x,y)�� for all (x,y), which is the case
for most applications, then the elliptic operator −
(�·D(r)�) is spectrally equivalent to the Laplacian op-
erator −�. Thus, we can use the linear system
associated to −� as a preconditioner for Eq. (6). More
precisely, we consider the Fourier–Chebyshev Galerkin
method for the Poisson equation

− (�uN(r),�N)�= (IN f(r),�N)�, for all �N�XN. (7)

Similarly, the above system leads to a linear system

BNū= f� . (8)

Thus, instead of solving Eq. (6) which is ill-conditioned,
we solve the equivalent preconditioned system

BN
−1ANū=BN

−1f� . (9)

The fact that − (�·D(r)�) is spectrally equivalent to
−� implies that the condition number of BN

−1AN will
be independent of N, and only depend on the ratio �/�.
Thus, a suitable iterative method, for example the
Conjugate Gradient Squared (CGS, [13]), applied to
Eq. (9) will converge quickly if the ratio �/� is within a
certain range. The large the ratio �/� is, the more
number of iterations is needed for converging. We
found that Eq. (9) converged very fast if �/��10.

We note that to apply CGS to Eq. (9), we only need
to carry out the following two types of operations:
1. Given ū, compute ANū ;
2. Given f� , compute ū by solving BNū= f� .

We emphasize that there is no need to compute
explicitly the entries of AN and that the product ANū
can be computed in O(N2logN) operations by using
FFT. On the other hand, Eq. (8) can also be solved in
O(N2logN) operations as described in [12]. Thus, over-
all, Eq. (6) can be solved in O(N2logN) operations.

3. Results and discussion

By numerically solving the steady-state diffusion
equation with variable coefficient, we can obtain the
steady-state concentration profile throughout the mi-
crostructure for any diffusivity distribution D(r). To
test our numerical algorithm, exactly solvable problems
involving a continuous variation of D(r) were exam-
ined. We have tested a few simple cases, where the
diffusivity distribution depends only on y, i.e.,
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D(x,y)=D(y). Diffusional transport is then one-di-
mensional and thus the exact steady-state diffusion
equation can be easily solved [14]. Fig. 1 shows a few
examples of computed concentration distribution along
y. Our computed values agree exactly with the analyti-
cal solutions. For example, curve C, the plot of com-
puted C(x,y) when D(y)=y+2, matches exactly the
analytically derived concentration profile Ca(x,y)=
ln(y+2)/ln 3.

The effective diffusivity is then calculated from the
steady-state flux. For the one-dimensional diffusion
problem considered above, the effective diffusivity can

be analytically derived from the Reuss bound:
1

Deff

=

�i

Vi

Di

, where Vi and Di are the volume fraction and

diffusivity of each component [15]. However, a continu-
ous version needs to be used here considering the
continuous nature of the diffusivity distribution, i.e.,

2
Deff

=	1
−1

dy
D(y)

. For D(y)=y+2, the analytic Deff=2/

ln 3. Our computed Deff from the average steady-state
flux is 1.8204784532614, with an error �10−10 to the
analytic value 2/ln 3. For other types of D(y) in Fig. 1,
excellent agreement was also observed between the
computed and analytically derived effective diffusivity.
Therefore, high accuracy is achieved by using our spec-
tral methods.

Spectral methods are most efficiently applied to
problems with smooth changes in the variables and the
coefficients, which are generally not easy to approach
by conventional finite difference and finite element
methods. However, from our numerical experiments,
we find that our spectral methods also yield reasonably
accurate results even for systems with sharp interfaces.
As test examples, we have compared our numerical
computations with exact analytical solutions for a few
very special microstructures.

We first consider a two-phase system, where the
property difference between the two phases is small. In
this case, the effective property can be expressed as a
power series expansion in terms of this difference [1,16].
For example, for a general two-dimensional microstruc-
ture, it was shown by Brown et al. that the effective
diffusivity was written as [17]

Deff=DA+VB(DB−DA)−
1
2

VAVB

(DB−DA)2

DA

+O(DB−DA)3+… (10)

In a second order approximation, the coefficients for
the O(DB−DA)3 and higher order terms, which involve
details of the microstructure, can be omitted if the
property difference is sufficiently small. Following the
work of Garboczi [17], we tested our program with a
100×100 pixel square (phase B) centered in a 256×
256 lattice as the microstructure. It is very convenient
for us to carry out comparisons between our spectral
computations and their FEM and FD results. Fig. 2
shows one example of such a comparison for a mi-
crostructure with a small contrast between two phase
diffusivities, where Deff was plotted against DB. DA is
set to be 1. Here a sharp-interface description was used
in our spectral methods, NIST’s finite difference
method and NIST’s finite element method. The quan-
tity DA+VB (DB−DA) was subtracted from both nu-
merical and analytical results. Our numerical data agree
very well with the FEM and FD results although
different boundary conditions were employed in their
programs. As the difference between DA and DB be-
comes larger, the difference between numerical results

Fig. 1. Computed steady-state concentration distribution along y-di-
rection when the diffusivity distribution depends only on y. Ca(x,y) is
the analytical solution for different D(y). Computed C(x,y) agree
exactly with Ca(x,y). (a) D=1, Ca(x,y)= (1+y)/2; (b) D=1/(y+2),
Ca(x,y)= (y2/8)+ (y/2)+ (3/8); (c) D=y+2, Ca(x,y)= (ln(y+2))/
(ln 3); (d) D=y2+1, Ca(x,y)= (2/�) tan−1(y)+ (1/2).

Fig. 2. Deff as a function of DB for a microstructure with a small
contrast of the diffusivities DA=1.0. The quantity DA+VB(DB−
DA) was subtracted from both numerical and analytical results.
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Fig. 3. Intrinsic diffusivity [D ] for a circle embedded in a square
matrix as a function of the two phase diffusivity ratio, DB/DA, SP,
FEM, FD and the analytical results are compared.

spectral method can produce reasonably accurate re-
sults as compared with previous FD and FEM calcula-
tions as well as with analytical solutions. The spectral
method is particularly effective for smooth interfaces in
a microstructure described by the phase-field model. As
an example, we consider the evolution of the effective
diffusivity for a single-phase polycrystalline material
during a grain growth process. We have utilized a
diffuse-interface field model for modeling microstruc-
ture evolution processes such as spinodal decomposi-
tion, Ostwald ripening, and grain growth [7]. By
combining the phase-field simulation of microstructural
evolution with our spectral method for computing ef-
fective property, we are able to obtain not only the
mesoscale morphological pattern evolution, but also the
effective property evolution from the time-dependent
microstructures.

As discussed previously, an arbitrary single-phase
polycrystalline microstructure was described by a large
set of continuous nonconserved orientation field vari-
ables which distinguish the different orientations of
grains. Their values change continuously from 0 to 1.
According to the diffuse-interface theory, the total free
energy of an inhomogeneous system can be written as
[19]

F=
��

f0(�1(r),�2(r),…,�p(r))+ �
p

i=1

�i

2
(��i(r))2n dV,

(13)

where f0 is the local free energy depending on field
variables, and grain boundary energy is represented by
the second term in the above integral. � is the gradient
energy coefficient. The spatial and temporal evolution
of the orientation field variables is described by
Ginzburg–Landau equations

d�i(r,t)
dt

= −Li

�F
��i(r,t)

, (14)

where Li are the kinetic coefficients related to grain
boundary mobility, t is time and F is the total free
energy. With a proper chosen local free energy form f0,
Eq. (14) can be solved efficiently by a semi-implicit
Fourier spectral method [9].

An example of a grain growth process from a two-di-
mensional simulation is shown in Fig. 4, where 36
nonconserved field variables were introduced. The mi-
crostructure was represented by ��i(r)2, which were
displayed by gray levels with low and high values
represented by dark and bright colors. The initial val-
ues of �i were essentially zero with a small perturbation.
After a short time, a well-defined grain structure
formed. Further grain growth was driven by the reduc-
tion of grain boundary energy, resulting in an increase
of average grain size.

The computation of the effective properties at differ-
ent times can be performed by applying a concentration

and Brown’s second-order analytical results becomes
larger due to the contributions from the cubic term in
Eq. (10).

The effective property of a dilute mixture can be
derived analytically in a power series in terms of the
volume fraction of the second phase. For example, for
particles of phase B randomly distributed in a matrix
(phase A) with a small volume fraction, the effective
property can be written as [17,18]

Deff

DA

=1+ [D ]VB+O(VB
2 ). (11)

The term [D ] in the above equation is called the intrin-
sic property, which is a function of the shape of the
particle and the contrast between its property DB and
the property of the matrix DA. For circular particles in
two-dimensional, the intrinsic property is given by

[D ]=
2(DB−DA)

DA+DB

. (12)

We put a circular particle with a radius 25 centered on
the middle of a square 256×256 lattice (VB�3%).
Diffusivity has a discontinuous change (sharp interface)
across the circle interface. The intrinsic property was
plotted against the ratio of diffusivity DB/DA, shown in
Fig. 3. Good agreement was achieved between the FD
and FEM results, which were obtained from computer
programs developed by NIST, and our spectral compu-
tation results. All the numerical data are close to the
solid line, which was the exact solution from Eq. (12)
when DB/DA is within the range 0.1�10. However,
when DB is significantly different from DA, the differ-
ence between numerical results and theoretical predic-
tions becomes large. It would be expected that smaller
volume fraction could improve the result.

The above examples demonstrate that even for sys-
tems with a sharp-interface description, the proposed
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Fig. 4. The microstructure evolution during a single-phase grain growth displayed by � � i
2 (36 nonconserved orientation field variables �i were

used): (a) t=200; (b) t=1000; (c) t=2000; (d) t=4000.

gradient across the corresponding microstructure. As-
suming the diffusion atoms do not interact with the
polycrystalline media, we compute the effective diffusiv-
ity by inputting the microstructure into Eq. (1) by
relating D(r) with ��i(r)2. Fig. 5 shows an example of
Deff evolving as a function of time. At later times, as the
grain size becomes larger, the volume fraction of grain
boundaries decreases, resulting a decrease in the effec-
tive diffusion coefficient. In Fig. 5, we also plotted the
theoretical effective diffusivities Dupper and Dlower as the
upper and lower bounds, which were predicted by first
order series and parallel bounds (or called Voigt and
Reuss bounds), as Dgbfgb+Dv(1− fgb) and DgbDv/
[Dgb(1− fgb)+Dvfgb], respectively, where fgb is the vol-
ume fraction of grain boundaries. However, for a
diffuse-interface description of the microstructure, there
is some ambiguity in determining the exact values of
the diffusivity of grain boundary Dgb, the diffusivity of
grain bulk Dv and fgb. Recognizing that Deff predicted
by Voigt and Reuss bounds is essentially a volume

average, we calculated Dupper as
1
N

�rD(r), where N is

the total number of lattice points. Similarly Dlower was

computed as N/
��r1/D(r)

n
. As expected, for all the

grain sizes studied, Deff is between Dupper and Dlower,
which are the effective diffusivities for idealized grain
structures, where grain boundaries can be treated as
parallel slabs embedded in the grains. These results are
generally in good agreement with our previous simula-
tion results from solving a time-dependent diffusion
equation [6].

4. Conclusion

We applied an efficient and accurate spectral method
to compute the effective diffusivity for any arbitrary
microstructures. The method is particularly effective
and accurate for systems with smooth and diffuse inter-
faces. Even for systems with sharp interfaces with
jumps in the property across the interfaces, the pro-

posed method produces good results as compared to
previous FD and FEM calculations as well as analytical
solutions. In combination with the phase-field modeling
of microstructure evolution, the proposed method al-
lows us to study both the microstructure evolution and
the effective diffusivity evolution. Our methods can be
used to calculate other effective physical properties,
such as thermal conductivity and electrical conductiv-
ity, if we recognize that the equations describing the
steady-state or equilibrium are essentially the same.
Moreover, the proposed approach can be utilized for
studying a general class of problems involving rate
processes with different time scales, where one of the
processes is essentially at steady-state or in equilibrium.
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Fig. 5. Effective diffusivity Deff evolution as a function of time during
a single-phase grain growth. Filled circles are from our simulations.
Open circles and diamonds represent the effective diffusivities pre-
dicted by mixtured rules.
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