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A numerical simulation of the unsteady incompressible flow in the unit cavity is performed 
by using a Chebyshev-Tau approximation for the space variables. The high accuracy of the 
spectral methods and the condensed distribution of the Chebyshev-collocation points near the 
boundary enable us to obtain reliable results for high Reynolds numbers with a moderate 
number of modes. It is found that the flow converges to a stationary state for Reynolds 
numbers (Re) up to 10,000; for Reynolds numbers larger than a critical value 
10,000 < Re 1 < 10,500 and less than another critical value 15,000 < Re 2 < 15,500, the flow 
becomes periodic in time which indicates a Hoph bifurcation; the flow loses time periodicity 
for Re > Re 2. c 1991 Acsdemc Press, Inc. 

1. INTRODUCTION 

With the rapid increase in computing power, we can now envisage solving 
dynamical systems for ranges of values of physical parameters leading to nontrivial 
dynamical features such as Hopf bifurcations, transitions to turbulence, etc. (see, for 
instance, [6, 31). On the other hand, newly developed theoretical models, such as 
attractors, determining modes, inertial manifolds, etc. (see [14] for a review of 
these aspects), lead to a better understanding of complex physical phenomena. 

Gustafson and Halasi [6] found a persistent oscillation in the rectangular driven 
cavity flow of aspect ratio equal to 2 at Re = 10,000 by integrating the unsteady 
Navier-Stokes equations (NSE). This led us to conjecture that as the Reynolds 
number increases to a certain critical value, the same kind of dynamical behavior 
as in the rectangular cavity flow might be observed in the unit cavity flow. The aim 
of this paper is to confirm this conjecture and try to locate the critical Reynolds 
numbers within a relatively small range. Let us also mention that very recently 
Bruneau and Jouron [ 1 ] observed transitions to turbulence in the unit cavity flow 
for a Reynolds number lower than 7500 by solving the steady NSE with a high 
resolution grid. 

Due to the presence of a thin boundary layer (of the order O(Re- ‘j2)), a very 
line grid near the boundary should be used for high Reynolds numbers to 
ensure a proper resolution to the boundary layer. Consequently an irregular grid 
condensing near the boundary is desirable to minimize the number of unknowns. 
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However, most of the authors used a uniform grid for which efficient algorithms are 
available, despite the fact that a huge number of unknowns was involved for high 
Reynolds numbers. 

It is well known that the zeros of Chebyshev polynomials are condensed near the 
boundary. In fact the distance between the adjacent zeros of the Nth Chebyshev 
polynomial near the boundary is of the order O(N-*). In addition, the spectral 
methods using Chebyshev polynomials achieve spectral accuracy for smooth func- 
tions. These nice properties lead us to choose the Chebyshev-Tau formulation (see, 
for instance, [12 or 21) for the space variables. In order to take advantage of the 
spectral accuracy, we consider a regularized driven cavity flow where the singularity 
at the upper corners is removed. Namely, we take the horizontal speed on the 
upper lid of the cavity to be 16x2( 1 -x)’ instead of 1. Since the velocity distribution 
along the upper wall now is weaker than that of the driven cavity flow, it is 
clear that the effective Reynolds numbers would be different for the two flows, as 
are some quantitative characteristics of the flow such as the magnitude and the 
location of the center of the vortices. Although this regularization is less physical, 
it is expected that the regularized driven cavity flow preserves qualitatively the 
dynamical properties of the driven cavity flow. However, as mentioned above, since 
the effective Reynolds number of the flow with unsmoothed boundary conditions 
is larger than that of the flow with regularized boundary conditions, we would 
expect that if the regularized driven cavity flow exhibits Hopf bifurcations at 
certain critical Reynolds number, then the driven cavity flow will also exhibit Hopf 
bifurcations at a smaller critical Reynolds number. 

In [ 131, we started to investigate the dynamical behaviors of the regularized 
driven cavity flow. We presented there some preliminary results which indicated 
that Hopf bifurcations occurred at Re = 12,000. Due to a limitation of the 
computing source, the approximating solutions presented there had not been 
developed in final asymptotic states. In this paper, we continue the investigation 
initiated in [13], and intend to give more detailed and accurate characterizations 
for the nonstationary solutions of the regularized driven cavity flow. 

By integrating the unsteady NSE with the regularized boundary conditions, we 
found stationary solutions for Reynolds numbers up to 10,000. For Re = 10,500, no 
steady solution was found; instead, after a long transient time, the flow finally 
became periodic in time which indicated that a Hopf bifurcation occurs at a critical 
Reynolds number in (10,000, 10,500]. As we further increase the Reynolds number, 
the qualitative behavior, namely the time periodicity, of the flow remained the same 
for Reynolds numbers up to 15,000. For Re = 15,500, the flow lost its time 
periodicity and became quasi-periodic. This indicates that another bifurcation 
occurs at a critical Reynolds number in (15,000, 15,500]. One would expect that 
further increase of the Reynolds number would lead to a totally turbulent flow. 

The paper is organized as follows. In Section 2, we present the numerical algo- 
rithms for the computation, namely the spatial and temporal discretizations of the 
NSE. Then in Section 3, we present various results on the regularized driven cavity 
flow for a wide range of the Reynolds number. 
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2. NUMERICAL SCHEMES 

The 2D unsteady incompressible NSE in the primitive variable formulation are 
written as: 

au 
at- V AU +(u.V)u+Vp=f, (x, y) in Q, 

(1) 
div u = 0, (x, y) in Q. 

with appropriate boundary conditions. The unknowns are the vector function u 
(velocity) and the scalar function p (pressure). In this paper, we will restrict our- 
selves to the unit cavity, i.e., Sz = [0, l] x [0, 11. 

2.1. Spatial Discretization 

As we will see later, after temporal discretizations of (1) by semi-implicit schemes 
(i.e., the viscous term is treated implicitly while leaving the non-linear term 
explicit), at each time step we will only need to solve a series of Helmholtz equa- 
tions with Dirichlet or Neumann boundary conditions. Consequently, an efficient 
algorithm for solving the Helmholtz equation is desirable. We have chosen the 
Chebyshev-Tau approximation for the Helmholtz equation since the diagonaliza- 
tion procedure (see [7]) associated with this formulation is a very robust 
Helmholtz solver. 

Let us denote PN to be the space of polynomials of order less or equal than N; 
$$ = P, x P,. Then the Chebyshev-Tau approximation of the 2D Helmholtz 
equation reads 

(au-Au> ~1, = (f, u),> QVEP N-23 (2) 

where u E PN satisfying some appropriate boundary conditions and w is the weight 
function associated with the base functions of P,, namely, o = 1 for the Legendre 
polynomials and o = (1 - x2)- ‘I2 . (1 - y’) ‘j2 for the Chebyshev polynomials. It is 
proven (see, for example, [12]) that the system (3) admits a unique solution. In 
addition, this solution converges to the solution of the Helmholtz equation 
exponentilly, provided smoothness of the solution. We refer to [ 121 for a detailed 
investigation of this formulation. 

2.2. Temporal Discretizations 

The velocity and the pressure are coupled together by the incompressibility con- 
dition which makes the equations difficult to solve. The classical projection scheme 
(or fractional step scheme, see, for instance, [ 151) decouples the velocity and 
the pressure, but it suffers from large splitting errors at the boundary. Kim and 
Moin [S] proposed a second-order projection scheme which removes the large 
splitting errors at the boundary while keeping the simplicity of the projection 
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scheme. We will use their scheme for the temporal discretization in conjunction 
with a Chebyshev-Tau space discretization. The scheme reads as follows without 
discretizing the space variables: 

&u*-+;A(u*+u”) 

=~(f(n.~t)-(u”.V)u”)-~(lj(n-l).Ar)-(u”-’.V)u”-’), 
u*I,,=u((n+l)dt)+dtV~“, 

and 

div u n+l=o , 

u “+‘.nl,,=u((n+ l)dt).n. 

(3) 

(4) 

In the first step, we solve an intermediate velocity U* which is not physical. In fact, 
U* does not satisfy the incompressibility condition. Then, in the second step we pro- 
ject U* onto the divergence free space to get an adequate velocity approximation 

n+l. We note that &‘+I . u m the scheme is not a proper approximation of the 
original pressure, since we can derive from (3)-(4) that 

84 n+l w %’ Vn -=-= . . . =- 
an an an’ ’ 

which is certainly not satisfied by the exact pressure. We will show below that a 
proper approximation for the pressure is given by 

We derive from (4) that 

&Qp+‘+/&v;+’ 

Now we replace U* in (3) by the above formula, taking into account (5), we obtain 

=i(f(n.df)-(24” .V)u~)-~(f(n-l).nt)-(U’-I.V)UII-’), (6) 

div u n+l=o . 
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with the boundary conditions 

u “+‘.nl~n=~((n+l)dt).n, 
(7) 

u “+‘.~I~n=U((n+1)dt).r-drV(~“+‘-~”).2. 

The scheme (6) with these boundary conditions is nothing else than the second- 
order Crank-Nicolson-Adams-Bashforth scheme with an O(dt’) deviation in the 
tangent direction of the boundary. It follows that u”+ ‘, is a second-order 
approximation of u( (n + 1) dt). (See [ 141 for more precise error estimates on the 
projection methods.) 

By applying the divergence operator to (4), we find that (4) is equivalent to 
(taking 4’ = 0) 

4 “fl- l . - dt div u*, 

a4 
n+l 

an dQ 
= 0, 

u n+l= u*-AtVqP+‘. 

(8) 

Therefore, at each time step, we only need to solve one vector Helmholtz equation 
(3) and one scalar Helmholtz equation (8). 

Since no results for Re 2 1000 were available for the regularized driven cavity 
flow given the author’s knowledge, in order to double-check our results, we have 
implemented also the following first-order semi-implicit scheme: 

~(U~+‘-Iln)--llA1141+1+VPN+1=/lnAt)-(U”.V)U”, 

div u = 0, 

~“+~l,a~=u((n+l)At). 

(9) 

Knowing u’, the system (9) is noting more than a generalized Stokes equation. We 
approximate it by the influenced matrix method (see, for instance, [9, 11 J) which 
transforms the generalized Stokes equation into two vector Heimholtz equations 
and two scalar Poisson equations with the aid of a pre-computed influenced matrix. 
This matrix, of the order of (4N- 5) x (4N- 5) if (N+ 1) x (N+ 1) modes used for 
the spatial discretization, can be used repeatly at each time step for a fixed com- 
bination of (N, v, At). However, the computation of this matrix involves the inver- 
sion of a full matrix of the same order; double precision is then advisable for the 
computation of this influenced matrix for relatively large N. 

From now on, we will refer to the first-order scheme (9) with the influenced 
matrix technique as the first scheme, and the second-order projection scheme 
(3)(4) with the Chebyshev-Tau space discretization as the second scheme. We 
should point out that the time discretization error of (9) does not affect the preci- 
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sion of approximate stationary solutions. However, due to the splitting error intro- 
duced by the projection method, the approximate stationary solutions obtained by 
using the second scheme do depend on the time discretization error, so that a 
sufficiently small time step should be used to achieve the desired accuracy. On the 
other hand, the precision of approximate nonstationary solutions depends on the 
time discretization errors. Since the first scheme is only of first order, all the non- 
stationary solutions presented below are obtained by using the second scheme. 

3. NUMERICAL RESULTS AND DISCUSSIONS 

The numerical computations were made on an Alliant FX/8 with four processors. 
Double precision was used for all the computations to increase the reliability of the 
results. The non-linear term was computed by the transform method (or pseudo- 
spectral method, see [lo]). The transformation between the physical space and the 
spectral space was made directly by the standard matrix multiplication subroutine 
in the Alliant scientific library. Direct multiplication turned out to be more efficient 
for moderate N (up to Nx N= 65 x 65) than using the FFT on this parallel com- 
puter especially when N- 1 was not a power of 2. 

In Table I, we list the cpu per time step for both schemes. We observe that the 
first scheme is roughly 35 % more time consuming than the second one for each 
time step. 

As explained in the Introduction, in order to take advantage of the high accuracy 
of the spectral space discretization, we consider the so-called regularized driven 
cavity flow. The boundary conditions for the regularized driven cavity flow are 
u = (16x2( 1 -x)*, 0) on the upper lid and u = (0,O) on other parts of the boundary. 
The initial condition was taken to be 0 for all the computations unless otherwise 
specified. 

3.1. Stationary Solutions 

To test our schemes, we have run both schemes with Reynolds numbers up to 
10,000, and we have always obtained stationary solutions. We should point out that 

TABLE I 

Cpu per Time Step 

Number Cpu in seconds 
of modes for first scheme 

Cpu in seconds 
for second scheme 

17x 17 0.089 0.063 
25 x 25 0.164 0.122 
33 x 33 0.269 0.218 
49x49 0.647 0.472 
65 x 65 1.202 0.928 
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TABLE II 

Time Step and Convergence Speed 

1st Scheme 2nd Scheme 

Re No. of modes At No. of iter. At No. of iter. 

100 17x 17 4.0 38 0.4 260 
400 17x 17 0.5 390 0.3 600 
1000 25 x 25 0.15 1750 0.15 1780 
2000 25 x 25 0.1 4420 0.12 3910 
5000 33 x 33 0.03 28800 0.05 18100 

even though we have found a stationary solution for Re = 10,000, our results are 
not in contradiction with those presented in [l] because the effective Reynolds 
numbers for the driven cavity flow and for the regularized driven cavity flow are 
different. As mentioned in the Introduction, it is expected that the driven cavity 
flow would lose its stability at a Reynolds number less than 10,000. 

The differences between the two approximate solutions provided by the two 
schemes are of order 0((~It)~) due to the splitting errors committed by the projec- 
tion method. This also confirms that the projection scheme we used is indeed 
second order. Both schemes are only conditionally stable due to the explicit treat- 

TABLE III 

Some Characteristics of the Stream Functions 

Re 

(17Yl7) 

400 
(17x 17) 

1000 
(25 x 25) 

2000 
(25 x 25) 

2000 
(33 x 33) 

5000 
(33x33) 

10000 
(49 x 49) 

Primary 
vortex 

-0.08368 
(0.609,0.750) 

-0.08584 
(0.578, 0.625) 

-0.08719 
(0.547,0.578) 

-0.08762 
(0.531,0.547) 

-0.08776 
(0.531,0.547) 

- 0.08803 
(0.516, 0.531) 

-0.08824 
(0.536, 0.531) 

Scondary Secondary 
vortex votex 

bottom right bottom left 

4.6676E-6 1.3987E-6 
(0.953,0.047) (0.031,0.031) 

1,9774E-4 6.3146E-6 
(0.922, 0.094) (0.03 1,0.047) 

5.6762E-4 8.2841 E-5 
(0.922, 0.094) (0.078, 0.063) 

8.0667E-4 3.1772E-4 
(0.922,0.094) (0.078,0.094) 

8.0841E-4 3.5432E-4 
(0.922, 0.094) (0.094,0.094) 

7.7475E-4 7.5268E-4 
(0.922, 0.94) (0.094, 0.094) 

3.2494E-4 7.9246E-4 
(0.922, 0.094) (0.094, 0.094) 

Secondary 
vortex 

upper left 

1.4497E-5 
(0.031, 0.092) 

1.7143E-5 
(0.031, 0.092) 

6.7780E-4 
(0.078,0.092) 

1.486OE-3 
(0.094,0.092) 
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FIG. 1. Streamlines: (a) Re = 2000; (b) Re = 5000; (c) Re = 10,000 

ment of the non-linear term. Unfortunately, the critical time step At,. (i.e., the 
scheme is stable when At 6 At,) varies with Re and the number of modes N non- 
linearly, and it can only be determined by numerical experiments. In Table II the 
time steps At and the number of steps used to get maximal residual less than l.OE-6 
are given. Our experiments show that the time steps in the Table II are very close 
to At,. This indicates that At, is not very restrictive with respect to Re and N. We 
also observe that as Re and N increase, At, of the second scheme becomes less 
restrictive than that of the first scheme. 

In Table III the magnitudes and the locatons of the centes (based on the 65 x 65 
uniform grid) of the primary and secondary vortices for some Reynolds numbers 
are given. In order to eliminate the time discretization error, all the results reported 
in Table III are obtained by using the first scheme. Note that two results at 
Re = 2000 with different space discretization modes are given for comparison. We 
also plot the streamline contours at Re = 2000 from these two results together on 
the same paper (see Fig. la). We note that the difference between them is too small 
to be visible in the figure. This indicates that the flow at Re = 2000 can be very well 
represented with only 25 x 25 modes, thanks to the condensed distribution of the 
Chebyshev-collocation points near the boundary. 

The streamline contours and the normalized velocity fields for Re = 5000 and 
Re = 10,000 are also presented in the Figs. 1 and 2. At Re = 2000, a secondary 
vortex appears at the top left of the cavity; a tertiary vortex becomes visible at the 
bottom right of the cavity at about Re = 5000; another tertiary vortex appears at 

FIG. 2. Velocity field: (a) Re=2000; (b) Re= 5000; (c) Re= 10,000 
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the top right corner at Re = 10,000. We observe that the vortex dynamics of the 
regularized driven cavity flow is similar to that of the driven cavity flow although 
the quantitative characteristics for the two flows are somewhat different (see, for 
instance, [4] and the references therein for a detailed presentation of the driven 
cavity flow). 

3.2. Nonstationary solutions 

Since the second-order projection scheme is more economical and accurate for 
time-dependent problems, all the results reported below are obtained by using the 
second scheme with time step fixed at At = 0.02. 

Taking the steady solution at Re = 10,000 as the initial data, we started to run the 
second scheme with Re = 10,500 by using 49 x 49 modes. The approximate solution 
quickly developed into a time periodic pattern, although it actually took a very 
long time for the solution to attain its final asymptotic periodic state. The main 
measure we used to determine whether a flow had attained its final asymptotic state 
was the total kinetic energy: 

N-1 

1 

112 
E(nAt)= 2 [(U~i)‘+(u:j)21 > 

FIG. 3. One complete cycle of streamline contours at time interval of 1.52 
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FIG. 4. Convergence histories of kinetic energy of the flow at Re = 10,500 with 49 x 49 modes. 
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FICUKE b-continued 

aE(t+T) 

0.37533 

> E(t) 

0.3752s a.37533 0.375aa 0.375‘la 

phase diagram T = 1.5 

b u(t+T) 

O.l4E-02. 

0.76E-03. 

) u(t) 
-.44E-a3 0.16E-03 0.76E-03 0.1-K-02 

phase diagram T = 1.5 

0.60E-04 

0.45E-04 

0.3OE-04 

O.l5E-04 

a. 

a. 1.3 2.5 3.8 5.0 6.3 

sDectra1 density 

) 
a. 1.3 2.5 3.8 5.0 6.3 

spectral density 

FIG. 5. (a) Kinetic energy at Re = 10,500 with 49 x 49 modes. (b) The First component of velocity at 
(x, y) = (0.038, 0.990). Re = 10,500 with 49 x 49 modes. 
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where uyj, uy j are the (i, j)th coefficients of the Chebychev expansion of* the two 
components of the velocity at the n th step. The convergence histories of the kinetic 
energy of the solution are presented in the Fig. 4. We see clearly from Fig. 4 that 
the solution reaches its asymptotic periodic state at about t = 4500. In Fig. 5, we 
present the phase diagrams and the spectral density of the kinetic energy and the 
first component of velocity at a particular point (x, v) = (0.038,0.990), based on the 
data taken at 50,000 time steps which are about 82.5 complete cycles, after the flow 
reached its asymptotic periodic state. Those plots indicate a perfect periodic pattern 
for our asymptotic solutions. To exhibit the global asymptotic state of the flow, in 
Fig. 3 we plot a series of nine streamline contours at time interval of 1.52 such that 
the nine plots make one complete cycle. We observe that there are persistent osciila- 
tions at all the secondary and tertiary vortices. The most significant changes during 
one period are the periodic appearance and disappearance of two tertiary vortices 

a 
u(t+T) 

OSSE-02.. 

-.7x-04 
) 40 

-.736-02 -.JlE-02 0.1X-02 0.5X-02 

0.63E-02 

0.51E-02 

O.ME-02 

0.25E-02 

O.lSE-02 

0. I n 

0. 

phase diagram T = 1.5 

b 
E(t+T) 

0.36621 

0.36alO ., 

) E(t) 
0.36786 0.36799 0.36810 0.36621 

phase diagram T = 1.5 

) 
1.3 2.5 3.6 5.0 6.3 

O.l7E-03 

O.l3E-03 

0.99E-04 

0.66E-04 

O.SJE-04 

0. 1 

0. 

spectral density 

) 
1.3 2.5 3.6 5.0 6.3 

spectral density 

FIG. 6. (a) The first component of velocity at (x, JI)= (0.084, 0.990), Re= 14,000 with 65 x65 
modes. (b) The kinetic energy at Re = 14,000 with 6.5 x 65 modes. 

581/95/l-16 
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10.5 11.0 12.0 

12.14 > 
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Re/lOOO 

Time period vs. Re 

0.37266 

0.36660 

Re/ 1000 0.36647 4 3 Re/lOOO 
10.5 11.0 12.0 14.0 15.0 10.5 11.0 12.0 14.0 15.0 

Maximum kinetic energy vs. Re Minimum kinetic energy vs. Re 

FIG. 7. The dependency of the time periodic solutions on Re. 

TABLE IV 

The Dependency of the Periodic Solutions on Re 

Re 

10500 
(48x48) 

10500 
(64 x 64) 

11000 
(48 x 48) 

11000 
(64 x 64) 

12000 
(64x64) 

14000 
(64 x 64) 

15000 
(64 x 64) 

Time Maximum Minimum 
period kinetic energy kinetic energy 

12.12 0.37548 0.37525 

12.14 0.37521 0.37499 

12.22 0.37438 0.37402 

12.20 0.37411 0.37375 

12.34 0.37202 0.37160 

12.65 0.36822 0.36780 

12.80 0.36678 0.36647 
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at the bottom left and at the top left. We observe that the streamline contour 
pattern at the beginning of the cycle is perfectly recaptured at the end of the cycle. 
This strongly indicates the global periodic feature of the solution in the entire 
domain. 

To ensure that the computed periodic solution was not a numerical artifact, we 
have also run the scheme for Re = 10,500 with 65 x 65 modes. Although it took a 
longer time to attain the final asymptotic state (at about t = 7000), we found that 
the period and the maximum and the minimum of the kinetic energy of the solu- 
tions obtained by using those two different grids were essentially the same (see 
Table IV) and the two asymptotic states were both qualitatively and quantitatively 
consistent. We can then conclude that the regularized driven cavity flow possesses 
a Hopf bifurcation at a critical number Re 1 E (10,000, lO,SOO]. 

Let us mention that most recently in [S] which was a continued study of [6], 
Goodrich, Gustafson, and Halasi have given a very detailed investigation for the 
rectangular driven cavity flow at Re = 5000. The qualitative behaviors of their 
asymptotic solution were very similar to those presented here. 

FIG. 8. One complete cycle of streamline contours at Re = 14,000 with 65 x 65 modes at time interval 
of 1.59. 
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FIG. 9. One complete cycle of the surface of the kinetic energy at Re = 14,000 with 65 x 65 modes 
at time interval of 1.59. 

One would expect for Re larger than another critical number Re 2, the solution 
would lose time periodicity and its temporal variation would become more com- 
plex. Still using 65 x 65 modes, we went on to increase the Reynolds number, 
hoping to locate Re 2 within a relative small range. It turned out that the solution 
always converged to an asymptotic periodic state for Re up to 15,000. Some of the 
characteristics of these periodic solutions for different Re are reported in Table TV. 
In Fig. 7, we illustrate the dependency of the periodic solutions, obtained by using 
65 x 65 modes, on the Reynolds number. We find that the period of the asymptotic 
solutions increases almost linearly with respect to Re, while on the other hand, the 
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FIGURE S-Continued 

maximum and minimum kinetic energy decrease almost linearly with respect to Re 
(see Fig. 7). 

As an example, we will present the results at Re = 14,000 in some detail. In Fig. 6, 
we present the phase diagrams and the spectral density of the kinetic energy and the 
first component of velocity at a particular point (x, v) = (0.084,0.990), based on the 
data taken at 50,000 time steps which are about 79 complete cycles. A complete 
cycle of a series of nine streamline contours at time interval of 1.59 is presented in 
Fig. 8. This time, the oscillation is much more pronounced throughout the domain: 
each of the secondary vortices at the top left and at the bottom left split up into 
two vortices and the two vortices rejoin each other to form a single vortex 
periodically in time; there are also significant oscillations inside the secondary and 
the tertiary vortices at the bottom right; a close look at the primary vortex shows 
that even the primary vortex is undergoing signiicant oscillations during each 
period. As a complement for the streamline contours, we plot a series of nine kinetic 
energy surfaces in Fig. 9 (data taken at the same time t as the corresponding 
streamline contour presented in Fig. 8) which give us a nice visualization of the 
momentum scale over the entire domain. From these surface plots one can observe 
a remarkable energy movement at the bottom left and at the bottom right. The 
oscillation of the kinetic energy distribution at the top left is also significant. Once 
again, the streamline contours and the sruface of the kinetic energy at the beginning 
of the cycle are perfectly recaptured at the end of the cycle. Those plots indecate a 
perfect periodic state has been reached in this case. 
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FIG. 10. Kinetic energy at Re = 16,000 with 65 x 65 modes. 

We continued to increase the Reynolds number, taking the final asymptotic 
solution at Re = 15,000 as the initial data for Re = 15,500; we have run the scheme 
to as far as t = 20,000 and there was still no sign that the solution would converge 
to a periodic asymptotic state. The oscillating histories, the phase diagram, and the 
spectral density of the kinetic energy at Re = 15,500, based on the data from 
t = 19,000 to t = 20,000 are presented in Fig. 10. The phase diagram looks like a 
two-dimensional torus embedded in a higher dimensional space. The plot of the 
spectral density suggests that there are essentially two incommensurate active 
frequencies, which indicates that the flow is quasi-periodic, or more precisely, 
two-periodic. 

4. CONCLUSION 

By integrating the unsteady NSE, we have found that a Hopf bifurcation occurs 
at a critical Renolds number in (10,000, 10,500] for the regularized driven cavity 
flow. It seems that the periodic solutions we obtained for Re E [ 10,500, 15,000] are 
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not merely numerical artifacts because the computations made on a refined grid 
have given virtually the same results. At Re = 15,500, the computed solution loses 
time periodicity and becomes quasi-perioid, which indicates another bifurcation 
occurs at a critical Reynolds number in (15,000, 15,500]. It is almost certain that 
further increase of the Reynolds number would lead to a totally turbulent flow. 
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