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Abstract - Drop dynamics plays a central role in defining the interfacial morphology

in two-phase complex fluids such as emulsions and polymer blends. In such materials, the

components are often microstructured complex fluids themselves. To model and simulate

drop behavior in such systems, one has to deal with the dual complexity of non-Newtonian

rheology and evolving interfaces. Recently, we developed a diffuse-interface formulation

which incorporates complex rheology and interfacial dynamics in a unified framework. This

paper describes applications of our method to simulate drop coalescence after head-on col-

lision and drop retraction in a quiescent matrix. One of the two phases is Newtonian and

the other is rheologically complex; we have considered viscoelastic fluids modeled by an

Oldroyd-B equation and nematic liquid crystals described by a modified Leslie-Ericksen

model. After two drops collide, film drainage is enhanced when either phase is viscoelas-

tic and drop coalescence happens more readily than in a comparable Newtonian system.

The retraction of drops from a stationary state of zero-velocity and zero-stress is initially

hastened but eventually hindered by viscoelasticity in either component. Newtonian the-

ories may be used to back out the interfacial tension only if the polymer relaxation time

is much shorter than the drop retraction time. When retracting from an initial state with

pre-existing stress, as produced by steady shearing, viscoelasticity in the matrix hinders

retraction from the beginning while that in the drop initially enhances retraction but later

resists it. The retraction of nematic drops reveals interactions among surface tension, sur-

face anchoring and bulk orientation. The dynamic interfacial tension drives a Marangoni

flow near the isotropic-nematic interface. In general, the retraction process cannot be used

as a means of measuring the interfacial tension between a liquid crystalline polymer and a

flexible polymer.
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I. INTRODUCTION

Drop dynamics is the key to understanding interfacial morphology in two-phase mate-

rials. In nature and in industrial processes, many such materials have components that are

complex fluids themselves, with internal microstructures whose evolution affects the macro-

scopic dynamics of the material, especially the rheology. Examples include polymer blends

[Utracki (1990)], polymer-dispersed liquid crystals [West (1990)] and various biological fluids

[e.g., Dintenfass (1990)].

Theoretical and numerical analysis of drop dynamics in complex fluids has to strug-

gle with the dual difficulties of moving interfaces and microstructure-dependent rheology.

Specifically, there is the interplay among microscopic, mesoscopic and macroscopic scales:

(a) the internal microstructure, e.g., molecular conformation, inside each component, (b)

the interfaces, and (c) the flow field. The coupling between (b) and (c) alone is well stud-

ied for Newtonian drops [Stone (1994)]. Similarly, the (a)-(c) coupling is the subject of

molecular constitutive theories in rheology [e.g., Feng et al. (2000)]. Having both (a) and

(b) present in a flow problem, and indeed coupled as in the nematic drop retraction to be

discussed in Section IV, is the novelty of this work.

Methods for solving moving-interface problems fall into two broad categories: interface

tracking and interface capturing [Sethian and Smereka (2003); Tezduyar (2003)]. The former

uses a moving mesh with grid points residing on the interface. The latter determines the

position of the interface by using a scalar function, whose evolution is typically represented

by an advection equation on a fixed grid. Conceptually, the interface is seen as a zero-

thickness surface in either case, though an essential ingredient in the fixed-grid methods is

a numerical regularization that spreads the interfacial force over a volume.

Recently, Yue et al. (2004) proposed a fixed-grid diffuse-interface model for two-phase

flows of complex fluids. This model differs from other fixed-grid methods in that the inter-

face is treated as physically diffuse. The interfacial position and thickness are determined by

a phase-field variable whose evolution is governed by a mixing energy. This way, the struc-

ture of the interface is rooted in molecular forces; the tendencies for mixing and demixing

are balanced through the nonlocal mixing energy. In contrast, the level set and volume-of-

fluid methods replace the surface tension by a body force or stress as a numerical device to
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regularize the singularity. When the interfacial width approaches zero, the diffuse-interface

model becomes identical to a sharp-interface level-set formulation. It also reduces properly

to the classical sharp-interface model.

The diffuse-interface method has been applied to numerous interfacial problems [e.g.,

Anderson et al. (1998); Liu and Shen (2003)]. In our context of two-phase complex fluids,

its main attraction is the capability of easily incorporating the rheology of microstructured

fluids. This is by virtue of its energy-based variational formalism. As long as the confor-

mation of the microstructure is describable by a free energy, this energy can be added to

the mixing energy to form the total free energy of the multi-phase system. Then a formal

variational procedure applied to the total free energy will give rise to the proper consti-

tutive equation for the microstructured fluids in addition to the evolution equation of the

phase field variable. Using the Frank distortion energy for a liquid crystal and the Hookean-

dumbbell energy for a polymer chain, Yue et al. (2004) illustrated how interfacial dynamics

and complex rheology can be included in a unified theoretical framework. Dissipative ef-

fects such as viscous stresses, of course, have to be accounted for separately, e.g., via the

standard irreversible thermodynamic procedure [Lowengrub and Truskinovsky (1998)] or

by including Brownian motion in Hamilton’s principle [Peskin (1985); Gliklikh (1997)].

Yue et al. (2004) have implemented the diffuse-interface method using a spectral rep-

resentation, and presented preliminary numerical results to validate the theoretical model

and the numerical method. The goal of this paper is to apply the method to physically

interesting problems where it generates new insights into the physics. We will investigate

two flow problems: drop coalescence after head-on collision and drop retraction.

II. THEORY AND NUMERICAL METHOD

A detailed derivation of the model and a description of the numerical scheme have been

given by Yue et al. (2004). We will summarize the salient features here.

The formulation applies to any microstructured fluid describable by a free energy. As

an example, let us consider the immiscible blend of a Newtonian liquid and a nematic

liquid crystal. There are three types of free energies in this system: mixing energy of the

interface, bulk distortion energy of the nematic, and the anchoring energy of the liquid

crystal molecules on the interface.
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The diffuse-interface has a small but non-zero thickness, inside which the two compo-

nents are mixed and store a mixing energy. We define a phase-field variable φ such that

the concentrations of the nematic and Newtonian components are (1 + φ)/2 and (1− φ)/2,

respectively. For the mixing energy, we adopt the familiar Ginzburg-Landau form:

fmix(φ,∇φ) =
1

2
λ|∇φ|2 +

λ

4ǫ2
(φ2 − 1)2, (1)

where λ is the mixing energy density (with the dimension of force), and ǫ is a capillary width

that scales with the thickness of the diffuse interface. As ǫ → 0, the ratio λ/ǫ produces the

interfacial tension in the classical sense [Jacqmin (1999); Yue et al. (2004)]. The bulk of

the nematic phase has a Frank distortion energy, which we write as [de Gennes and Prost

(1993); Lin and Liu (1995)]:

fbulk = K

[

1

2
∇n : (∇n)T +

(|n|2 − 1)2

4δ2

]

, (2)

where n is the director and K is the elastic constant in the one-constant approximation.

The second term on the right hand side regularizes the classical Frank energy to permit

defects where |n| deviates from unity over a small region of size δ [Liu and Walkington

(2000)]. Finally, we adapt the Rapini-Popoular form of the anchoring energy, which, in our

diffuse-interface picture, is written as a volumetric energy density:

fanch = A
2 (n · ∇φ)2 for planar anchoring, (3)

fanch = A
2 [|n|2|∇φ|2 − (n · ∇φ)2] for homeotropic anchoring, (4)

where A is the anchoring energy density. Now we have the total free energy density for the

two-phase material:

f(φ,n,∇φ,∇n) = fmix +
1 + φ

2
fbulk + fanch. (5)

Note that φ = 1 and −1 in the bulk nematic and Newtonian phases, respectively.

Following a variational procedure detailed in Yue et al. (2004), evolution equations for

all the configuration variables (v, φ and n in this case) can be derived. After being supple-

mented by the appropriate dissipative terms, these are essentially the governing equations

familiar in the classical context. For v, we have

∇ · v = 0, (6)

4



ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p + ∇ · σ, (7)

where the deviatoric stress tensor σ has an elastic and a viscous component. The former

can be derived from a virtual work principle [Yue et al. (2004)]:

σe = −λ(∇φ ⊗∇φ) − K
1 + φ

2
(∇n) · (∇n)T − G, (8)

where G = A(n ·∇φ)n⊗∇φ for planar anchoring and G = A[(n ·n)∇φ− (n ·∇φ)n]⊗∇φ

for homeotropic anchoring. Note that the anchoring energy fanch, through G, induces a

Marangoni force along isotropic-nematic interfaces [Rey (2000)]. In addition, a Newtonian

viscous stress is assumed:

σv = µ[∇v + (∇vT )], (9)

where the viscosity µ may generally be different in the two phases. The relaxation of φ is

governed by the celebrated Cahn-Hilliard equation [Cahn and Hilliard (1959)]:

∂φ

∂t
+ v · ∇φ = γ1λ∇2

[

−∇2φ +
φ(φ2 − 1)

ǫ2

]

, (10)

where γ1 is the mobility constant. As we are concerned with very thin interfaces between

nominally immiscible fluids, it is impractical to use interfacial relaxation as a criterion for

choosing γ1. Rather it is determined based on maintaining a more or less uniform interface

without overly damping the flow [Jacqmin (1999); Yue et al. (2004)]. Finally, the evolution

equation of n is written as:
∂n

∂t
+ v · ∇n = γ2h, (11)

where the molecular field h arises from the free energies of the system [de Gennes and Prost

(1993)]:

h = −δF

δn
= K

[

−∇ ·
(

1 + φ

2
∇n

)

+
1 + φ

2

(n2 − 1)n

δ2

]

+ g, (12)

with g = A(n · ∇φ)∇φ for planar anchoring, and g = A[(∇φ · ∇φ)n − (n · ∇φ)∇φ] for

homeotropic anchoring. The constant γ2 determines the relaxation time of the director

field.

One notes that equations (8), (9) and (11) constitute a “stripped-down” version of

the Leslie-Ericksen theory [de Gennes and Prost (1993)], with the viscous torque due to

straining flow omitted from Eq. (11) and the anisotropic viscous terms from Eq. (9). The
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rationale for leaving out these dissipative terms is two-fold. First, the conservative dynamics

dictates the trend in the system’s evolution, while dissipation plays the secondary role of

slowing down the process. Second, neglecting these terms brings about considerable savings

in computation. If retained, they would couple the momentum equation closely with the

director evolution, and entail iteration among the equations at every time step. By omitting

these terms, we can solve the system semi-implicitly without iterations. Restoring them

constitutes numerical complications but no conceptual difficulty [Lin and Liu (2000)]. For

numerical convenience, we have only computed equal-viscosity cases in this paper.

Yue et al. (2004) developed a two-dimensional spectral method for these governing equa-

tions, and an interested reader can find details of the numerical algorithm there. To enhance

stability, we advance time semi-implicitly, with the nonlinear transport terms treated ex-

plicitly while the linear terms implicitly. Depending on the periodicity of the boundary

condition in each direction, a Fourier or Chebyshev-Galerkin method is used to discretize

the spatial derivatives on a regular grid. The treatment of non-periodic boundary con-

ditions entails splitting the Cahn-Hilliard equation into two Helmholtz equations to which

Neumann boundary conditions apply as in Shen (1995). The number of operations per time

step scales as O(N log N), N being the number of unknowns. We have carried out grid and

time-step refinements to determine the adequacy of our spatial and temporal resolutions.

The interface typically requires 7–10 grids to resolve, and the total number of grid points

is typically 2048 × 1024. For the time step, we find the Courant-Friedricks-Lewy condition

a useful guideline. In all cases tested, the temporal resolution is adequate as long as the

simulation is stable.

III. DROP COALESCENCE AFTER HEAD-ON COLLISION

An advantage of the diffuse-interface method is its ability to handle topological changes

in the interfacial morphology, and this section exploits this ability to probe the coalescence

of two drops after a head-on collision. Yue et al. (2004) illustrated this ability by a sin-

gle example of Newtonian drops coalescing in a Newtonian matrix. Here we explore two

physically important issues: (a) the representation of short-range molecular forces in the

diffuse-interface framework; (b) the effects of viscoelasticity in either component on the

collision and coalescence.
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We have adopted the scheme of Nobari et al. (1996) to simulate the head-on collision

of two identical drops. Initially, two stationary drops of diameter D are separated by a

center-to-center distance d. Then a body force f is applied to accelerate the drops toward

each other. When the drop velocity attains a prescribed value U/2, f is turned off. The

two drops collide into each other by inertia and coalesce.

A. Newtonian drops in a Newtonian matrix: molecular forces

Figure 1 illustrates a typical run for two Newtonian drops in a Newtonian matrix of the

same viscosity. The initial separation between the centers of the drops is d = 1.5D, and the

Figure 1: Collision and coalescence of two Newtonian drops in a Newtonian matrix. The Reynolds
number, defined using D and U , is Re = 33.6, and the Weber number is We = 12. Other parameters
are: ǫ = 0.01 and γ1 = 3.365 × 10−5 [after Yue et al. (2004), c©Cambridge University Press.]

7



body force is turned on at t = 0 and off at t = 0.336 to achieve a U value that corresponds

to Re = 33.6. Time is scaled here by D/U . The drops deform while approaching each

other (t = 1.342). As a result, a thin film of the matrix fluid forms between the two

drops. The thinning of this film, via the drainage of the matrix fluid through the narrowing

conduit, determines the time scale of coalescence. The drainage requires a high pressure

in the middle of the film, which produces a “dimpled shape” for the interface [Chuang and

Flumerfelt (1997)], with the minimum film thickness not at the middle point but farther

out toward the sides. Rupture of the film at those locations traps a filament of the the

matrix fluid inside the resultant large drop. The subsequent breakup of the filament into

drops is not due to capillary instability; rather it is caused by the stretching flow due to

the bulging interface [Yue et al. (2004)]. The most important feature, however, is that

coalescence occurs “naturally” as a result of the Cahn-Hilliard dynamics (cf. Eq. 10). This

contrasts sharp-interface simulations where the film separating the two drops has to be

artificially removed to bring about the topological change [Nobari et al. (1996)].

A natural question is whether the breakage and reconnection of the interfaces simulated

here reflects reality. According to our current understanding, the rupture of an interface

is not a purely hydrodynamic process. As the film gets to a critical thickness of tens of

nanometers, van der Waals attraction overcomes electric double-layer repulsion and causes

the film to rupture and the two interfaces to merge [Bradley and Stow (1978); Bhakta and

Ruckenstein (1997); Nemer et al. (2004)]. This type of molecular interaction is what the

Cahn-Hilliard mixing energy strives to represent. In this sense, the diffuse-interface model

contains the physics of short-range molecular forces. However, the form of the Cahn-Hilliard

force turns out to be different from the familiar van der Waals force.

Consider a liquid film (F) of uniform thickness h sandwiched between semi-infinite do-

mains of another fluid (A) (Fig. 2). The van der Waals interaction energy per unit area

between the parallel interface can be written as [Israelachvili (1992)]:

EA = − Ah

12πh2
, (13)

where Ah is the Hamaker constant. The intervening film would in general hamper the van

der Waals interaction, but we neglect this effect here for simplicity. From this energy we

can get the disjoining pressure

Π ≡ pA − pF = −dEA

dh
= − Ah

6πh3
. (14)

8



Figure 2: A draining film and the corresponding φ profile.

To derive the counterpart of the disjoining pressure in the diffuse-interface representation,

we consider the equilibrium φ(y) profile in the configuration of Fig. 2. In the bulk phase A,

φ → 1. If the film is much thicker than the interfaces (h ≫ ǫ), then φ(0) would approach

-1 in the film phase. Since the film is thin, however, φ(0) = φ0 > −1. Now the disjoining

pressure can be calculated from the stress field. Note that the mixing energy of Eq. (1)

produces an elastic stress tensor [Yue et al. (2004)]:

T = −(p − fmix)I − λ∇φ ⊗∇φ, (15)

where p is the thermodynamic pressure, and I is the second-order unit tensor. In the

bulk phase A, the normal stress in the y direction is simply −pA. At the center of the

film, dφ
dy

∣

∣

∣

y=0
= 0 because of symmetry. Thus the normal stress there is −pF + λf0, where

f0 = (φ2
0 − 1)2/4ǫ2 is the local part of the mixing energy. A normal force balance then gives

the disjoining pressure in the diffuse-interface model as

Πφ = −λf0 = −λ(φ2
0 − 1)2

4ǫ2
. (16)

The disjoining pressure in Eq. (16) has the following in common with the van der Waals

force in Eq. (14):

• The disjoining pressure is negative, indicating attraction between the two interfaces;

• The attraction is a short-distance force. It becomes significant only if the film is

sufficiently thin (h ∼ ǫ); for large h, both Π and Πφ vanish.
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Figure 3: Comparison of the disjoining pressure Πφ in the diffuse-interface model, computed from
Eqs. (16) and (19), with Π of Eq. (18) derived from the van der Waals force. The two pressures are
scaled by −λ/4ǫ2, and we have assumed ǫ = ξ in Eq. (18).

There are notable differences, however. As h → 0, the van der Waals force diverges: Π → ∞.

On the other hand, as the two diffuse interfaces merge, φ0 → 0 and Πφ approaches a finite

value −λ/4ǫ2. For a film of thickness h ∼ ǫ, the two expressions for the disjoining pressure

have the same order of magnitude. This can be seen by noting the connection between the

Hamaker constant and the surface tension [Israelachvili (1992)]:

σ =

√
3

2π2

Ah

ξ2
, (17)

where ξ is the intermolecular center-to-center distance. Noting that σ = 2
√

2
3

λ
ǫ

[see Yue

et al. (2004)], we transform Eq. (14) into

Π = −2
√

2π

9
√

3

λ

ǫ2

(

ξ

ǫ

)2 (

ǫ

h

)3

, (18)

which, for h ∼ ǫ ∼ ξ, is on the same order as Πφ in Eq. (16). To estimate Πφ for a non-

vanishing h, we may assume a hyperbolic tangent φ-profile as in a single 1D equilibrium

interface [Yue et al. (2004)]. Then the phase-field function in the middle of the film can be

estimated to be

φ0 = − tanh

(

h

2
√

2ǫ

)

. (19)

Inserting this into Eq. (16), we illustrate the quantitative differences between Πφ and Π at

different h values in Fig. 3. On a fundamental level, the discrepancy between Π and Πφ
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Figure 4: Collision and coalescence of two Newtonian drops in a Newtonian matrix with a thicker
interface. The parameters are the same as Fig. 1 except for ǫ = 0.02.

Figure 5: Collision and coalescence of two Newtonian drops in a Newtonian matrix with a thinner
interface. The parameters are the same as Fig. 1 except for ǫ = 0.005.

stems from the truncation of the Cahn-Hilliard free energy at the quadratic term |∇φ|2. An

elegant explanation has been given by Pismen (2001).

Besides the disjoining pressure, two additional factors affect the film drainage and rup-

ture in a diffuse-interface framework. The first is the capillary thickness ǫ, which can be

seen as a measure of the thickness of the interface. Figures 4 and 5 show simulations with

a larger or smaller ǫ than in Fig. 1 with all other parameters unchanged. The early stage
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of the simulations, say for t ≤ 1.342, is identical with Fig. 1. This is before the interfacial

profiles of the two drops overlap. For a larger ǫ, the interfaces of the two drops overlap at an

earlier time during their approach, and the ensuing coalescence occurs more readily (Fig. 4).

Note that the interface does not have time to develop the dimpled shape, and no matrix

fluid is trapped inside the drop. On the other hand, a smaller ǫ prolongs the coalescence

process (Fig. 5). As compared with Fig. 1, the points of rupture are more toward the ends

of the film. This produces a less pronounced waist in the resultant compound drop, and the

entrapped matrix filament does not break up but retracts into a droplet. The effect of ǫ is

not to be confused with numerical resolution of the interface. For each ǫ, mesh refinement

has confirmed that the grid used here is adequate for resolving the interface [see also Yue

et al. (2004)]. The optimal ǫ cannot be determined by an a priori criterion. Rather, it

needs to reflect the range of the molecular forces at work in the particular experiment to

be simulated.

Figure 6: Collision and coalescence of two Newtonian drops in a Newtonian matrix, with initial
deformation artificially suppressed by using an interfacial energy 100 times larger until t = 0.503.
The Weber number is We = 0.12 before t = 0.503 and We = 12 afterwards. Other parameters are
the same as Fig. 1.

The coalescence process also depends on the global curvature of the interfaces. In other

words, it depends on how deformed the drops are at the start of the film drainage process.

We have varied the degree of “initial deformation” by artificially using a higher surface

tension (with the surface energy density λ a hundred times larger) for various lengths of
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time before coalescence. An example is shown in Fig. 6 in which the higher interfacial

tension, corresponding to We = 0.12, is applied for t ≤ 0.503. Compared with Fig. 1, the

initial deformation is smaller and the interfaces between the drops have a larger curvature.

This results in a speedier film drainage and coalescence. Note also the lack of an inflection

point on the interface between film rupture; no matrix fluid is entrapped in the resultant

drop.

B. Role of viscoelasticity in coalescence

To investigate the role of viscoelasticity in film drainage, we compare three runs that

are identical except for the rheology of the matrix or drop fluid: Newtonian drops in a

Newtonian matrix (N/N), Newtonian drops in an Oldroyd-B matrix (N/O) and Oldroyd-B

drops in a Newtonian matrix (O/N). The Oldroyd-B and Newtonian fluids have the same

shear viscosity. This scheme is complicated somewhat by the fact that the coalescence

process depends on the initial deformation of the drops. For two viscoelastic drops, the

initial acceleration and approach will lead to a slightly different geometry at what may be

considered the start of film drainage than for two Newtonian drops. To obtain a uniform

initial drop shape, we place two Newtonian drops closer to each other at d = 1.2D in a

Newtonian matrix, accelerate them using a larger body force for a shorter period t = 0.087,

and suppress their initial deformation by temporarily raising the interfacial energy λ by

a factor of 100. At the end of the acceleration, the original λ is restored, and the phase

function and velocity at t = 0.087 are used as the “initial condition” for all the calculations

in this section including N/O and O/N cases. For the viscoelastic fluid the polymer stress

is simply set to zero at t = 0.087. This gives us an identical “initial configuration” at

t = 0.087 for all three runs. The N/N case is illustrated in Fig. 7. Note that the drops are

essentially undeformed at t = 0.087, with a minimum film thickness hmin = 0.171. During

film drainage, the minimum thickness always occurs at the middle of the film, and no matrix

filament is trapped in the combined drop.

Figure 8 compares the thinning of the film thickness hmin for the three cases at several

Deborah numbers. When either the matrix or the drop phase is viscoelastic, the film

drainage is faster than for N/N. Moreover, this effect becomes stronger with increasing

Deborah number De. This trend is also born out by the velocity profile of the drainage

flow in various cases (Fig. 9).
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Figure 7: Collision and coalescence of two Newtonian drops in a Newtonian matrix, with initial
deformation artificially suppressed by using an interfacial energy 100 times larger until t = 0.087.
The Reynolds number is Re = 26.1, and the Weber number is We = 9.6. Other parameters are:
ǫ = 0.01 and γ1 = 3.48 × 10−5.

Let us consider the N/O case first where the matrix is an Oldroyd-B fluid. The flow

in the draining film is essentially planar extension; this has been verified by calculating

the components of the strain-rate tensor. Figure 10 shows the temporal variation of the

extensional rate ǫ̇ at the center of the film. While the drops accelerate toward each other,

the strain rate must have increased. When the acceleration stops at t = 0.087 and the film

drainage commences, the strain rate starts to decrease in time. The upturn toward the end

is due to short-range forces discussed before, and corresponds to the precipitous decrease

of film thickness just before coalescence (Fig. 8). In this final stage, the disjoining pressure

Πφ ∼ λ
ǫ2

[cf. Eq. (16)] is much larger than the pressure drop caused by interfacial tension

∆p ∼ λ
ǫD

and dominates the film drainage process.

The reaction of the Oldroyd-B matrix to this time-dependent squeezing flow is illustrated

by the normal stress difference N1 = τyy − τxx and elongational viscosity η = N1/ǫ̇ in
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(a) (b)

Figure 8: Decrease of the minimum film thickness hmin during film drainage. (a) Comparison of
N/O runs at 4 Deborah numbers with the N/N case; (b) comparison of O/N runs at 4 Deborah
numbers with the N/N case. All other parameters are the same as in Fig. 7.

(a) (b)

Figure 9: Velocity profiles v(x) along a horizontal line y = 0.105 (position shown in the inset)
for the draining flow in Fig. 8 at t = 0.695. (a) Newtonian drops in an Oldroyd-B matrix (N/O);
(b) Oldroyd-B drops in a Newtonian matrix (O/N). The x and y axes are along and normal to the
direction of drop acceleration, with the origin at the center of the film.

Fig. 11. The Newtonian fluid has a constant η, of course, and its normal stress N1 traces

the extension rate. The Oldroyd-B fluids have lower N1 and η at the beginning of the

drainage process since the polymer chains are predominantly in the coiled state. These

are stretched by the extensional flow, and continue to unravel even as ǫ̇ declines. Hence, a

cross-over occurs both in N1 and in η, at a time tc that roughly scales with the polymer
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Figure 10: Variation of the extension rate ǫ̇ = ∂v/∂y = −∂u/∂x at the center of the film during
drainage. The drops are Newtonian while the matrix is Newtonian or Oldroyd-B with various
relaxation times.

(a) (b)

Figure 11: Evolution of (a) the normal stress difference and (b) the elongational viscosity at the
center of the film for the same simulations as in Fig. 10.

relaxation time. For t < tc, the Oldroyd-B fluids present less elongational viscosity than

the Newtonian fluid, which implies faster drainage. For t > tc, on the other hand, the

viscoelastic normal stress grows beyond that of the Newtonian stress. As a result, the

Oldroyd-B fluids now exhibit a stronger resistance to deformation. The drainage is then

hampered by viscoelasticity. This scenario is confirmed by Table 1, which lists the time

∆t for the final stage of drainage from a film thickness hmin = 0.04 to 0. With increasing
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test case ∆t

N/N 0.541

N/O, De=0.017 0.545

N/O, De=0.087 0.533

N/O, De=0.348 0.542

N/O, De=1.390 0.555

O/N, De=0.017 0.540

O/N, De=0.087 0.514

O/N, De=0.348 0.500

O/N, De=1.390 0.508

Table 1: Duration of the final stage of film drainage as hmin decreases from 0.04 to 0.

De, ∆t decreases first and then increases. ∆t for N/O at De = 0.017 being slightly longer

than that of N/N is a numerical artifact due to errors in determining the exact time when

hmin reaches 0.04. Only at large enough De can the Oldroyd-B fluid attain a stress much

higher than its Newtonian counterpart, and the hardening of the polymer is felt only toward

the end of the drainage process. In fact, if we measure the time taken to drain the film

from a larger initial thickness hmin ≥ 0.06 to 0, then the upturn for large De will not show

up. To summarize, the apparent viscoelastic effect of hastening film drainage and drop

coalescence in Fig. 8 is actually the integrated result of two stages of opposing tendencies.

The first stage, where the polymeric matrix offers weaker resistance to extension, dominates

the second stage, where the high level of viscoelastic stress suppresses film drainage.

Essentially the same argument applies to Oldroyd-B drops coalescing in a Newtonian

matrix (O/N). Figure 12 illustrates the evolution of the normal stress difference N1 and the

elongational viscosity η just inside the Oldroyd-B drop (at φ = 0.9). The viscous normal

stress from the baseline N/N case is also shown for comparison. The viscoelastic stress is

initially slow in developing but in time exceeds that of the Newtonian stress. This resembles

Fig. 11 except that the viscoelastic stress now acts on the drop side of the interfaces. The

effect on film drainage is the same, however, considering that the interfaces have negligible

curvature over most of the film, and simply transmit the viscoelastic stress into the film.

Finally, the duration of the last stage of drainage ∆t first decreases with De and then turns

up, in a similar way to the N/O case (Table 1).
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(a) (b)

Figure 12: Evolution of (a) the normal stress difference and (b) the elongational viscosity at the
intersection of y = 0 and φ = 0.9, just inside the Oldroyd-B drop. The matrix is Newtonian.

IV. DROP RETRACTION IN A QUIESCENT MEDIUM

Drop retraction is a convenient method for measuring the interfacial tension between

the drop and matrix fluids [Mo et al. (2000); Son and Yoon (2001)]. The basis of this

measurement is the relationship between the evolution of the drop shape and the interfacial

tension. Various phenomenological formulae have been developed by assuming Newtonian

rheology in both the drop and the matrix phases, and they typically give similar results

[Maffettone and Minale (1998); Jackson and Tucker (2003); Yu and Bousmina (2003)].

Maffettone and Minale’s (1998) model, for example, describes the retraction of an ellipsoidal

drop by:

L2 − B2 = (L2 − B2)t=0 exp

[

− σ

µmR0
f(β)t

]

, (20)

where R0 is the equilibrium drop radius, µm is the matrix viscosity, f(β) = 40(β+1)
(2β+3)(19β+16)

and β is the viscosity ratio between the drop and the matrix. By measuring L(t) and B(t),

the half-length and half-width of the drop, the interfacial tension σ can be calculated from

curve fitting. Since these models are intended for Newtonian fluids, it is surprising that they

give fairly good results for some two-phase systems of flexible polymers [Mo et al. (2000)].

On the other hand, if the drop is a thermotropic liquid crystalline polymer, Yu et al. (2004a)

found that the drop size deviates from the exponential law and the scheme fails.
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Figure 13: Computational domain for drop retraction.

To explain these experimental findings, we investigate the effects of viscoelasticity and

liquid crystallinity, in either the drop or the matrix phase, on drop retraction. One of the

two components is Newtonian, while the other is an Oldroyd-B fluid or a regularized Leslie-

Ericksen nematic fluid. The calculations are in 2D, but we expect the physical insights

gained here to be relevant to the 3D experiments. As in previous theoretical and numerical

calculations, we assume the retraction is slow and the fluids are highly viscous so as to

render inertia negligible. For simplicity, the two components are assumed to have the same

density and same steady-shear viscosity.

The geometry of the problem is shown in Fig. 13. We use periodic boundary condition

for both directions and discretize the equations using a Fourier spectral method. Initially,

the drop is elliptic with semi-axes L0 and B0. We will use the final drop radius R0 =
√

L0B0

as the characteristic length.

A. Effects of viscoelasticity on drop retraction

Let us first consider the retraction of an elliptic drop from a stationary initial state with

zero velocity and zero stress. This is intended to mimic experiments where the elongated

drop is produced by melting a filament sandwiched between two sheets of the matrix fluid

[Yu et al. (2004a)]. Depending on how the filament is produced, there may be residual

stress frozen inside, but we neglect this possibility. In this subsection the initial geometric
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Figure 14: The L2−B2 ∼ t curves for drop relaxation from an initially elliptic shape with D0 = 0.1.

parameters are W = 6, L0 = 1.1055 and B0 = 0.9045, which correspond to an initial

deformation parameter D0 = (L0 −B0)/(L0 +B0) = 0.1. From the equilibrium drop radius

R0, viscosity µ and interfacial tension σ, we define a characteristic time scale for retraction:

tret =
µR0

σ
. (21)

The Deborah number is defined as De = λH/tret, where λH is the relaxation time of the

polymer. Note that De differs from its usual definition using a strain rate by a factor that

is the capillary number. Two Deborah numbers are simulated: De = 1 and 5. The other

dimensionless parameters are: ǫ = 0.01, λ = 1.0607 × 10−2 (corresponding to σ = 1). For

the Oldroyd-B fluid, the retardation time is one half of the relaxation time.

Figure 14 compares several cases of drop retraction, with a Newtonian drop in an

Oldroyd-B matrix (N/O), an Oldroyd-B drop in a Newtonian matrix (O/N), and a New-

tonian drop in a Newtonian matrix (N/N) as the baseline. Perhaps surprisingly, the O/N

and N/O cases differ very little for the same De. This is because the interfacial tension

drives the retraction against resistance from both the drop and the matrix, and whether

the viscoelasticity occurs in the drop or the matrix, it produces roughly the same amount

of resistance. First, the fluids in the drop and in the matrix are subject to roughly equal

extension rates, but with opposite signs. At the pointed ends of the drop, for instance, the
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(a) (b)

Figure 15: Local flow profiles across the interface at t = 5. (a) u(x) ; (b) ∂u/∂x. The interface is
at x ≈ 1.02.

interface compresses the drop fluid and stretches the matrix fluid, regardless of their rheol-

ogy. This can be seen from the velocity profile u(x) in Fig. 15(a); |u| reaches its maximum

near the interface (at x ≈ 1.02) for both N/O and O/N. Furthermore, the velocity gradient

∂u/∂x—or the extension rate—has roughly the same magnitude on both sides of the inter-

face and between N/O and O/N; this is evident from Fig. 15(b). A similar argument can

be made at the “waist” of the drop, i.e., the ends of the minor axes.

Second, we may write out the polymer tensile stress for a planar extensional flow (u, v) =

(ǫ̇x,−ǫ̇y) of an Oldroyd-B fluid [Bird et al. (1987)]:

τp,xx =
2µpǫ̇

1 − 2λH ǫ̇

{

1 − exp

[

− t

λH

(1 − 2λH ǫ̇)

]}

. (22)

Given the small value of ∂u/∂x at the interface, the local Deborah number |λH ǫ̇| ≪ 1.

Equation (22) implies that the polymers will produce roughly the same amount of stress

if stretched or compressed at the same |ǫ̇|. In other words, between N/O and O/N, the

polymer normal stress τp,xx has more or less the same magnitude on the polymer side, as

does the viscous normal stress on the Newtonian side. Therefore, the total resistance to

retraction is roughly the same for the two cases. Hence the proximity of O/N and N/O

curves in Fig. 14. This contrasts flow-induced drop deformation [e.g., Mighri et al. (1997;

1998)] where the two cases present opposite trends. There, the deformation is driven by a

prescribed flow and the interplay between interfacial tension and normal stresses is different.
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The second notable feature is the effect of De, which can be explained as in Section

III.B. Owing to the finite time needed for stress growth in a viscoelastic fluid, the resistance

to retraction is initially weaker than in a Newtonian fluid. Hence, the retraction is faster in

the initial stage for N/O and O/N than for N/N. This is reversed later as the viscoelastic

stress exceeds the Newtonian stress, and the retraction becomes slower than that for N/N.

Not surprisingly, this effect is more pronounced at higher De.

Based on the above discussion, the drop retraction method for measuring interfacial

tension is likely to work for viscoelastic fluids if the retraction is slow (due to high viscos-

ity, say), and the Deborah number is small. Otherwise the retraction does not follow an

exponential law and the method will fail. Indeed, the experiments of Mo et al. (2000) and

Son and Yoon (2001) involve retraction times of many hundreds of seconds. Assuming a

polymer relaxation time of several seconds, the Deborah number as defined here will be

De ∼ 0.01.

Most previous work on drop retraction deals with a different initial condition: the

cessation of a steady shear or elongational flow that has deformed the drop to a steady

shape. Compared with the retraction discussed above, a new factor is the initial stress field;

the polymer chains are stretched and their relaxation will be coupled with the relaxation

of the drop shape. We have simulated drop retraction from initial conditions produced by

steady shear at a capillary number of Ca = 0.1; Fig. 16 compares the behavior of O/N,

N/O and N/N systems. Note that the initial deformation D0 differs slightly among the 5

runs because of the different viscoelasticity of the components. It is also slightly larger than

that in Fig. 14.

Despite the differing D0, the retraction of an Oldroyd-B drop in a Newtonian matrix

(O/N) is very close to that starting with zero initial stress (Fig. 14). In contrast, the

retraction of a Newtonian drop in an Oldroyd-B matrix (N/O) is quite different from its

counterpart in Fig. 14. The retraction is slower than the N/N case from the very beginning,

and the discrepancy grows with time. The effect is also more pronounced for higher De.

These observations can be explained by studying the flow field and the polymer stress

distribution. During the steady shear prior to retraction, the flow inside the drop is highly

rotational in all cases, while outside it is shear or moderately extensional (Fig. 17). Thus,
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Figure 16: The L2 − B2 ∼ t curves for drop relaxation from initial conditions produced by steady
shear. For the 5 runs, the initial deformation parameters are D0 = 0.1078 (N/N), 0.1065 (N/O,
De = 1), 0.1035 (N/O, De = 5), 0.1072 (O/N, De = 1), and 0.1053 (O/N, De = 5).

(a) (b)

Figure 17: Streamlines (a) and flow type contours (b) near a drop in steady shear. Both the drop

and and the matrix are Newtonian. Ca = 0.1. The flow type parameter is defined as γ = ||D||−||Ω||

||D||+||Ω||
,

where D = ∇v+(∇v)T

2 , Ω = (∇v)T−∇v
2 , and the norm of the matrices is defined by, e.g., ||D|| =

√

D:DT

2 .

if the matrix is viscoelastic, a considerable normal stress builds up around the drop. In

contrast, if the drop is viscoelastic, there is little polymer stress inside the drop. Figure 18

plots the evolution of the normal stress difference N1 = τnn − τtt just outside the end of

the drop for N/O and just inside for O/N during retraction, n and t being the local normal

and tangential direction. The former is much larger and lasts longer, and explains the
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Figure 18: Normal stress difference in the Oldroyd-B fluid near the drop tip. The data are take
at the intersection of φ = 0.9 and the major axis of drop. Recall that φ = 1 in the bulk Oldroyd-B
fluid.

retarded retraction in the Oldroyd-B matrix. The persistence of polymer stress outside the

contracting ends of the drop is partly due to the fact the retraction further stretches the

polymer chains or at least postpones their recoiling [Tretheway and Leal (2001)]. This effect

is significant since De = λH/tret ≥ 1, with the polymer chain relaxing more slowly than the

drop. Also note that for O/N, the small residual viscoelastic stress inside the drop tends to

promote drop retraction initially because N1 > 0.

The experiment most relevant to our simulation is that of Tretheway and Leal (2001),

who measured the retraction of Newtonian drops suspended in a PIB/PB Boger fluid follow-

ing planar extensional flow. Although quantitative comparison is precluded by the different

flow types and dimensionality, the qualitative trends are the same. In particular, Tretheway

and Leal (2001) suggested that the tensile stress induced by the contraction of the drop

ends causes the drop retraction to slow down in a viscoelastic matrix. This is essentially

borne out by our Fig. 18. In addition, the prediction that persisting polymer stresses in the

matrix hinder drop retraction confirms similar predictions by the phenomenological models

of Maffettone and Greco (2004) and Yu et al. (2004b). Hooper et al. (2001) computed the

retraction of a drop pre-deformed by a uniaxial elongational flow. The cessation of flow,

however, is effected by instantaneously freezing the outer boundaries of the computational

domain. The induced backflow inside the domain causes the drop to stretch further before

retraction.
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B. Effects of liquid crystallinity on drop retraction

Liquid crystallinity, be it inside or outside the drop, enters the interfacial dynamics via

the anchoring energy fanch [cf. Eqs. (3, 4)]. It is little wonder that drop retraction should

be modified qualitatively, and that Newtonian formulae such as Eq. (20) should fail [Yu

et al. (2004a)]. Yue et al. (2004) have described one example of the anchoring effects on

the retraction of a nematic drop, and Liu et al. (2004) have discussed the role of liquid

crystallinity in the matrix phase. Our objective here is an in-depth analysis of the physical

mechanisms involved in the retraction of a nematic drop in a Newtonian matrix.

We have simulated 3 cases with the drop being Newtonian (baseline case), nematic with

planar anchoring and nematic with homeotropic anchoring. The geometric parameters are

W = 3.9738, L0 = 1.5811 and B0 = 0.6325. Using the capillary time scale µmR0/σ, we

make the other parameters dimensionless: λ = 1.342×10−2, γ1 = 4×10−5, ǫ = 1.265×10−2,

δ = 6.325 × 10−2, K = 6.708 × 10−2, A = 6.708 × 10−3 and γ2 = 10. Compared with the

material constants of common liquid crystals and liquid crystal polymers [Larson (1999)],

the anchoring energy A is in the realistic range, while the bulk elastic constant K and

director relaxation parameter γ2 are about an order of magnitude too large. These are used

to amplify the novel effects brought on by the liquid crystallinity inside the drop. For planar

anchoring, n is initially horizontal everywhere. For homeotropic anchoring, we impose a

radial n emanating from the center of the drop. Since the drop is elliptic, the initial n field

deviates from the easy direction over much of the interface in both cases.

Figure 19 shows that the nematic drop with homeotropic anchoring retracts faster than

the Newtonian drop while the one with planar anchoring is slower than the Newtonian

drop. Heuristically, these results can be explained in terms of the anchoring energy fanch

[Yue et al. (2004)]. Given the initial n fields, the retraction reduces fanch for homeotropic

anchoring but increases it for planar anchoring. The final equilibrium shape is circular for

homeotropic anchoring, with a hedgehog defect at the center. For planar anchoring, the

final shape is prolate. The director field exhibits the well-known bipolar configuration with

two surface defects at the poles [West (1990); Shen et al. (2002)]. If we use smaller and

more realistic K values, the bipolar drop will be nearly circular. Using these retraction

curves, one may determine an apparent interfacial tension σapp from the Maffettone-Minale

formula [Eq. (20)], which is plotted in Fig. 20 for the three cases.
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Figure 19: Drop retraction: variation of the major and minor semi-axes for a Newtonian drop
and nematic drops with planar and homeotropic anchoring [after Yue et al. (2004) c©Cambridge
University Press.]

(a) (b)

Figure 20: True interfacial tension calculated from the interfacial energy [Eq. (23)] compared with
the apparent interfacial tension σapp. (a) Bipolar configuration; (b) homeotropic configuration. The
apparent interfacial tension for the Newtonian drop is also shown for comparison.

The remainder of this section is devoted to understanding the correlation between the

interfacial energy, the interfacial forces and the drop retraction. First, we note that σapp

is not the same as the true dynamic interfacial tension, which varies with time as well as

location along the interface. Because our numerical method is based on the free energy,

it is very convenient to calculate the dynamic interface tension by equating the interfacial
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energy per unit area in the sharp- and diffuse-interface representations:

σtrue =

∫

(fmix + fanch) dh, (23)

where the integration is performed across the interface. Since fanch may vary along the

interface because of different anchoring angles, so may σtrue. We plot the true interfacial

tension at the tip (Point 1) and waist (Point 2) of the drop in Fig. 20. If there was no

anchoring energy, the variation of σtrue would be entirely due to the relaxation of the

interfacial φ profile [Yue et al. (2004)]. This effect is very small for the current parameters,

and σtrue would appear as roughly a constant, which is unity here because of our scaling.

For planar anchoring, the directors are almost perpendicular to the interface at Point 1,

thus fanch > 0 there and the true interfacial tension σ1 > 1. At Point 2 the true interfacial

tension σ2 ≈ 1 because the director is always parallel to the interface at that point, which

produces zero anchoring energy [cf. Eq. (3)]. By the same token, the homeotropic anchoring

is satisfied at both points in Fig. 20(b), and σ1 and σ2 both remain roughly constant at

unity. The lack of temporal variation of σtrue in Fig. 20 is coincidental because our initial

conditions are such that fanch barely changes at the two points during the retraction. For

points between 1 and 2, σtrue should vary in time. The dependence of σtrue on the local

director anchoring forms an interesting analogy to the Monte Carlo simulations of Li and

Denn (2001), although the anchoring energy is postulated here, but manifested by chain

interactions between the components in their work. Also note that for the Newtonian drop,

σapp < 1. This is because the Maffettone-Minale formula is intended for three dimensions,

and our two-dimensional drop retracts more slowly.

Because the anchoring energy is not constant along the interface, the gradient of the

dynamic interfacial tension drives a Marangoni flow. Figure 21(a) shows the velocity field

near the nematic drop with planar anchoring toward the end of the retraction. The time

scales of our system are such that the slowly relaxing interfacial profile is driving a flow

long after the macroscopic retraction has been completed. Note that the flow goes from

point 2 to point 1, along the gradient of the interfacial tension. For the radial configuration

in Fig. 21(b), the flow is negligible. The Marangoni effect in our diffuse-interface theory is

equivalent to that formulated by Rey (2000) in a sharp interface framework.
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(a) (b)

Figure 21: Velocity field at t = 29.82 near the nematic drop. (a) Bipolar configuration, where a
Maragoni flow prevails. (b) Homeotropic configuration, where the velocity is negligible compared
with that in (a).

Figure 22: A pillbox control-volume for calculating interfacial forces.

According to the true interfacial tension in Fig. 20, the nematic drop with planar an-

choring should retract faster than the Newtonian drop owing to the larger σtrue, while that

with homeotropic anchoring should retract with roughly the same speed. This expectation

is at odds with Fig. 19 because the anchoring energy generates a normal surface force in

addition to the interfacial tension, which influences the retraction as well. To illustrate this

mechanism, we will use the planar anchoring case as an example to analyze the interfacial

forces.

Figure 22 shows a pillbox control-volume that covers the interface. Rigorously, the stress

tensors due to the mixing energy fmix and the anchoring energy fanch can be written as [cf.

Eq. (8)]:

T mix = fmixI − λ(∇φ ⊗∇φ), (24)
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T anch = fanchI − A(n · ∇φ)n ⊗∇φ. (25)

Noting that ∇φ is parallel to the surface normal m and perpendicular to t, we write the

tangential and normal tractions on the sides as:

ft =

∫

(t · T · t) dh =

∫

(fmix + fanch) dh, (26)

fm =

∫

(t · T · m) dh = −
∫

A(n · ∇φ)(t · n)(∇φ · m) dh, (27)

where T = T mix + T anch, and the integration is performed across the interface. Now ft is

the conventional interfacial tension as in Eq. (23). But fm is an additional normal force

that stems from the anchoring energy. Although this force does not stretch the interface,

it nevertheless affects the retraction of the drop in a way analyzed below.

The total force per unit area due to the interfacial energy is g =
∫

(∇ · T ) dh, and

g = g ·(−m) is the normal traction pushing inward. In view of the Young-Laplace equation,

we may consider gR a local “effective interfacial tension” that determines the retraction of

the drop, R being the local radius of curvature. Figure 23(a) plots gR at the tip and

waist of the drop with planar anchoring. Our scaling is such that for a Newtonian drop,

σ = g ·(−m)R = 1. The initial transient (t ≤ 1) is a numerical artifact due to the relaxation

of the initially imposed φ profile and the relaxation of director whose initial condition is not

the equilibrium state [Yue et al. (2004)]. Such relaxations should exist in the true interfacial

tension of Fig. 20 as well, but their effects are much weaker there.

For the bipolar configuration, (gR)1 < 1 < (gR)2. This implies that compared with a

Newtonian drop, the normal force pushing inward is stronger at the waist and weaker at

the poles. Thus, the nematic drop retracts more slowly than the Newtonian drop as seen

in Fig. 19, and the apparent interfacial tension σapp, estimated from the retraction curves,

is smaller than that of the Newtonian drop [Fig. 20(a)]. The further divergence of (gR)1

and (gR)2 in time causes σapp to decrease with time. The later fall of σapp toward zero is

because the bipolar drop fails to attain a circular shape. In Yu et al.’s (2004a) experiment,

the retraction indeed produces a σapp that declines in time as in Fig. 20(a). However, the

nematic drop retracts to a spherical shape because it contains multiple micro-domains. In

this case, the declining σapp is probably a combined effect of fanch and the relaxation of the

micro-domains [Yu et al. (2004a)].
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(a) (b)

Figure 23: The effective interfacial tension gR at the waist (Point 1) and pole (Point 2) of the
drop, where g is the total normal traction pushing inward, and R is the local radius of curvature
calculated by assuming an elliptic drop. (a) Planar anchoring; (b) homeotropic anchoring.

A similar analysis of the surface forces can be carried out for the homeotropically

anchored drop [Fig. 23(b)], although the expression for the normal force will differ from

Eq. (27). For t ≤ 12, (gR)1 > 1 > (gR)2, implying that the anchoring energy will make

the retraction go faster than for the Newtonian drop. This explains Fig. 19 as well as the

higher σapp in Fig. 20(b). For t > 13, (gR)2 exceeds (gR)1 slightly. The retraction of

the homeotropic drop is thus hampered toward the end, consistent with the fall of σapp in

Fig. 20(b).

To summarize this section, the interfacial anchoring energy fanch plays a fundamental

role in the interfacial dynamics of nematic liquids. In particular, it gives rise to a dynamic

interfacial tension that may vary along the interface and induce a Marangoni flow. It also

induces a normal force on the interface, which influences the drop retraction in addition to

the interfacial tension. We confined our discussion here to nematic drops in a Newtonian

matrix. The retraction of Newtonian drops in a nematic matrix has been simulated as

well and the results have been reported elsewhere [Liu et al. (2004)]. Finally, recall that

our nematic is represented by a simplified Leslie-Ericksen theory with a single viscosity [cf.

Eq. (9)]. Anisotropic viscosities would introduce additional complications in the retraction

of the nematic drop.
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V. CONCLUDING REMARKS

In this paper, we applied a diffuse-interface formulation to drop coalescence and retrac-

tion involving viscoelastic and liquid crystalline fluids, represented by the Oldroyd-B model

and a modified Leslie-Ericksen model, respectively. Somewhat coincidentally, in these two

processes the non-Newtonian rheology works in much the same way whether it occurs in

the drop or in the matrix.

The diffuse interface makes it possible to simulate topological changes such as drop

coalescence. The final stage of the coalescence is dominated by short-range molecular forces,

and we have shown that the Cahn-Hilliard energy produces such a force comparable with

the van der Waals force. Viscoelasticity in either component hastens film drainage and

drop coalescence, and the effect can be explained by the relatively slow stress growth in the

non-Newtonian component. Drop retraction is generally hindered by viscoelasticity, owing

to the persistence of the polymer stresses. For nematic drops, the anchoring energy enters

the retraction processes and forms an intrinsic part of the dynamic interfacial tension. In

particular, the spatial gradient of the interfacial tension drives a Marangoni flow near the

nematic-isotropic interface. Furthermore, the anchoring energy gives rise to an additional

normal force on the interface that affects the retraction process in addition to the interfacial

tension. As a result, one cannot define an interfacial tension as a material constant between

a nematic and an isotropic liquid, much less measure it from the shape evolution during

drop retraction. Nevertheless, the retraction of nematic drops reveals the intricate interplay

among the mixing, anchoring and bulk energies that is likely to play a role in any physical

problem involving nematic-isotropic interfaces.
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