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Abstract
We develop accurate and efficient spectral methods for elliptic PDEs in complex domains
using a fictitious domain approach. Two types of Petrov–Galerkin formulations with special
trial and test functions are constructed, one is suitable only for the Poisson equation but with
a rigorous error analysis, the other works for general elliptic equations but its analysis is not
yet available. Our numerical examples demonstrate that our methods can achieve spectral
convergence, i.e., the convergence rate only depends on the smoothness of the solution.

Keywords Spectral method · Petrov–Galerkin · Fictitious domain · Elliptic PDE · Error
analysis

Mathematics Subject Classification 65N15 · 65N35 · 65N85

1 Introduction

We consider in this paper spectral methods for solving the following PDE:

Lu = f in�,

u = h on ∂�,
(1.1)

where � ∈ R
d is a simply connected domain, Lu(x) := −∇ · (β(x)∇u(x)) + α(x)u(x) is

a strictly elliptic operator with α, β ∈ C(�), α ≥ 0, β ≥ β0 > 0.
If � is a regular separable domain, spectral methods can solve the above problem in high

accuracy with a computational cost comparable to the finite-elements or finite-difference
methods [20,21]. However, it is still a challenge to solve the above problem in general
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complex domains with spectral methods, and only very limited attempts have been made in
this regard. In [18], Orszag proposed the first spectral method for a class of complex domains
that can be mapped to a regular domain with an explicit mapping. The idea is to transform
the original PDE, usually with constant coefficients, in a complex domain to a transformed
PDE with variable coefficients on a regular domain, then use an iterative method to solve the
resulting dense linear system. For domains that can not be easily mapped to a regular domain,
it appears that the only option for a one-domain approach using spectral methods is through
a domain embedding or fictitious domain approach, which embeds the original domain into
a regular one so that classical spectral methods can be applied. More precisely, one needs to
choose a suitable regular domain ˜� ∈ R

d s.t. � ⊂ ˜�, find extensions α̃, β̃ ∈ L∞(˜�) and
f̃ ∈ L2(˜�) such that

α̃(x) = α(x), β̃(x) = β(x), f̃ (x) = f (x) if x ∈ �,

and then solve the following extended problem:

L̃ũ = f̃ in˜�,

ũ = 0 on ∂�,
(1.2)

where L̃ũ(x) := −∇ ·
(

β̃(x)∇ũ(x)
)

+ α̃(x)ũ(x).

The fictitious domain approach has been well studied in the context of finite-element
methods [9,13] or finite-difference methods [4,19,24] in which the data, the coefficients and
the forcing function, are simply set to zero in the extended domain, but its accuracy is limited
to first- or second-order due to the low regularity of the extended problem.

In order to achieve higher accuracy, there are two essential requirements. The first is to
smoothly extend the coefficient and data functions from the original domain� to the enlarged
one˜�. The smooth extension (or continuation) of a given function by using truncated Fourier
series in 1D is well studied [1,6,15], and in higher dimensional cases, the Fourier extension
is usually implemented by performing 1D extension on a fixed direction [2,3,7,16]. Note
that (1.2) is not a classical boundary value problem since the solution value is prescribed
on a (d − 1)-dimensional manifold inside ˜�. Thus, the second requirement is to setup a
suitable variational formulation for the extended problem so that the extended solution is as
smooth as the solution in the original domain. A first attempt in this direction is a spectral-
collocation method proposed in [14], where the usual boundary condition on ∂˜� is replaced
by setting ũ = 0 at a fixed number of nodes on ∂�, which leads to a dense linear system
with constraints that are very ill conditioned so it can only be used with a small number of
unknowns. In [8], a spectral-Galerkin formulation with Lagrange multipliers is presented,
and the boundary conditions are manipulated by using internal forcing functions which
are compactly supported inside the fictitious domain. This method is improved in [17] by
replacing the Dirac delta function basis for the Lagrange multipliers in the physical space
with Fourier basis functions in the frequency space with improved accuracy.

The aim of this paper is to construct accurate and efficient spectral methods for solving
the extended problem (1.2). We assume a smooth extension for a given function is always
available, through for instance Fourier-extension [15], and concentrate on developing proper
variational formulations and corresponding spectral methods for (1.2). More precisely, we
propose two spectral-Petrov–Galerkin approaches with proper test and trial spaces, investi-
gate their well posedness and error analysis, and develop effective algorithms for solving the
ill-conditioned linear systems resulting from the spectral-Petrov–Galerkin approaches.

The organization of this paper is as follows. In Sect. 2, we present the first spectral-
Petrov–Galerkin method for the extended problem (1.2), and carry out rigorous analysis and
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error estimates for the special case of Poisson equation. In Sect. 3, we present the second
spectral-Petrov–Galerkin method which is suitable for general elliptic equations. In Sect. 4,
we develop a fast and stable algorithm for solving the linear systems resulting from the two
spectral-Petrov–Galerkin methods. We present ample numerical results in Sect. 5 to validate
our algorithms, followed by some concluding remarks in Sect. 6. In the following, we will
simply denote α̃, β̃, ũ and f̃ by α, β, u and f without ambiguity.

2 The First Method

We restrict our attention to the case of α = 0, i.e. Lu(x) = −∇ · (β(x)∇u(x)). Let the trial
space X and test space Y be defined as

X := {u ∈ H2(˜�) : u = 0 on ∂�}, Y := L2(˜�). (2.1)

X and Y are both Banach spaces with

‖u‖X :=
(∫

˜�

|�u|2
) 1

2

,∀u ∈ X , (2.2)

‖v‖Y :=
(∫

˜�

|v|2
) 1

2

,∀v ∈ Y . (2.3)

It is clear that the norm defined in (2.2) is indeed a norm, since ‖u‖X = 0 implies u is
harmonic, so by the maximum principle, we have u = 0 ∈ �, and by unique continuation of
harmonic function, we have u = 0 ∈ ˜� .

Then the weak formulation of problem (1.2) is to find u ∈ X s.t.

a1(u, v) := −
∫

˜�

∇ · (β∇u) v =
∫

˜�

f v, ∀v ∈ Y . (2.4)

2.1 Well-Posedness

The well-posedness of (2.4) can be shown when β(x) is constant, namely, the Poisson prob-
lem. Without of loss of generality, we suppose β(x) = 1, then it is trivial to see a1(·, ·) is a
continuous bilinear form on X × Y . Also we need the following lemma.

Lemma 2.1 Suppose � satisfies an interior cone condition [12, p.27]. Then under the defi-
nition in (2.2), (2.3) and (2.4) with β(x) = 1, we have

inf
u∈X supv∈Y

a1(u, v)

‖u‖X‖v‖Y ≥ 1; (2.5)

and
sup

0 	=u∈X
a1(u, v) > 0, ∀0 	= v ∈ Y . (2.6)

Specifically, (2.5) and (2.6) holds if � is a C1 domain or a polygon.

Proof Given u ∈ X , we have �u ∈ Y , so

sup
v∈Y

a1(u, v)

‖u‖X‖v‖Y ≥ a1(u,�u)

‖u‖X‖�u‖Y = 1. (2.7)
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Next, for any 0 	= v ∈ Y , the Dirichlet problem

�u = v in�,

u = 0 on ∂�,
(2.8)

admits a solution u ∈ H2(�), denoted by u1. On the other hand, since ˜�\� satisfies an
exterior cone condition, the Dirichlet problem

�u = v in˜�\�,

u = 0 on ∂� ∪ ∂˜�,
(2.9)

admits a solution in H2(˜�\�), denoted by u2 [12, Theorem 2.14]. Let

u =

⎧

⎪

⎨

⎪

⎩

u1 in�

u2 in˜�\�
0 on ∂� ∪ ∂˜�

, (2.10)

then u ∈ X , and

a1(u, v) =
∫

˜�

(�u)v =
∫

�

(�u1)v +
∫

˜�\�
(�u2)v

=
∫

�

v2 +
∫

˜�\�
v2 = ‖v‖2Y > 0.

(2.11)

��

We then derive from the Banach-Necǎs-Babuška theorem [5, p.112] that

Theorem 2.2 Under the hypothesis of Lemma 2.1, the problem (2.4) admits a unique solution
u satisfying

‖u‖X ≤ ‖ f ‖Y , ∀ f ∈ Y . (2.12)

2.2 A Non-Conforming Petrov–Galerkin Spectral Method

Let N be an odd integer, and PN the polynomial space of degree no greater than N . Let
ξi : C(∂�) → Rwith i = 1, · · · , 2N + 2 represents 2N + 2 independent constraints placed
on u to approximate the original boundary condition u = 0 on ∂� in (2.1). This is similar
to the boundary element used in boundary integral method ([10]). For example, one simple
choice for ξi is

ξi (uN ) := uN (zi ), i = 1, · · · , 2N + 2, (2.13)

where {zi } are a set of prescribed points on ∂�. Another choice is

ξi (uN ) :=
∫

∂�

uNχids, i = 1, · · · , 2N + 2, (2.14)

where {χi } are a set of linearly independent functions defined on ∂�, and they play a similar
role to the Lagrange multipliers (see [8]).
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2.2.1 Weak Formulation andWellposedness

To simplify the presentation, we shall consider only the 2-D case althought extension to 3D
is straightforward. We also assume that the problem domain� in (2.4) is scaled so that it can
be enclosed in ˜� = (−1, 1) × (−1, 1). We define

XN := {uN ∈ PN × PN , ξi (uN ) = 0, i = 1, · · · , 2N + 2}, (2.15)

and
YN := span{�(xi y j )}Ni, j=0. (2.16)

Note that XN is not a subspace of X . It is clear that

dim(XN ) = (N + 1)2 − (2N + 2) = N 2 − 1. (2.17)

Lemma 2.3 dim(YN ) = N 2 − 1 if N is odd and dim(YN ) = N 2 if N is even.

Proof We use the following table T to describe {�(xi y j )}Ni, j=0:

0 1 2 3 · · · N

0 0 0 1 x · · · xN−2

1 0 0 y xy · · · xN−2y
2 1 x (x2, y2) (x3, xy2) · · · (xN , xN−2y2)
3 y xy (x2y, y3) (x3y, xy3) · · · (xN y, xN−2y3)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

N yN−2 xyN−2 (x2yN−2, yN ) (x3yN−2, xyN ) · · · (xN yN−2, xN−2yN )

In the above table, T ( j, i) is filled by �(xi y j ) without coefficients, and the parenthesis
(·, ·)means the linear combination of the two terms with nonzero coefficients. From the table
it is straightforward to see that, if N is odd,

T (0, i) ∈ span{T (2, i − 2), T (4, i − 4), · · · , T (i − 1, 1)} (2.18)

and
T (1, i) ∈ span{T (3, i − 2), T (5, i − 4), · · · , T (i, 1)} (2.19)

for i = 2, · · · , N . Hence by removing the first two rows of T , the reduced table
{T (i, j)}Ni=0, j=2 is still a spanning set of YN .

Next, we show that {T (i, j)}Ni=0, j=2 is linearly independent. To this end, note for i =
−(N−2),−(N−1), · · · , 2N−2, each anti-diagonal {T (N , i), T (N−1, i+1), · · · , T (3, i+
N − 3)} consists of all the entries of order N − 2+ i in the reduced table (ignore the entries
with indices which are negative or greater than N + 1), so distinct anti-diagonals are linearly
independent. Also, every anti-diagonal itself is linearly independent since each entry in it
has a special term that cannot be obtained by linear combination of other entries. Therefore,
dim(YN ) is equal to the number of entries in {T (i, j)}Ni=0, j=2, which is (N + 1)(N − 1) =
N 2 − 1.

The case of N even is essentially the same as the odd case except for one entry in (2.19),
that is

T (1, N ) /∈ span{T (3, N − 2), T (5, N − 4), · · · , T (N − 1, 2)}. (2.20)

Hence T (1, N ) ∪ {T (i, j)}Ni=3, j=1 form a basis for YN and dim(YN ) = N 2. ��
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Note that dim(XN ) = dim(YN ) for odd N . Since XN is not a subspace of X , we define

‖uN‖XN :=
(∫

˜�

|�uN |2
) 1

2

, (2.21)

which is consistent with (2.2), and is indeed a norm, as long as {ξi }2N+2
i=1 in (2.15) are

specifically chosen s.t. � : XN → YN has a trivial nullspace (this can always be satisfied in
numerical implementation, and we assume this hypothesis holds in the remaining context).

Let IN : L2(˜�) → PN × PN be the 2D tensorial polynomial interpolation operator at
the Legendre-Gauss-Lobatto points. Our Petrov–Galerkin spectral method for (2.4) is: find
uN ∈ XN s.t.

a1(uN , vN ) =
∫

˜�

IN f vN , ∀vN ∈ YN . (2.22)

To study the well-posedness of (2.22), we need

Lemma 2.4 Under the definition in (2.15),(2.16) and (2.4) with β(x) = 1, we have

inf
uN∈XN

sup
vN∈YN

a1(uN , vN )

‖uN‖XN ‖vN‖YN
≥ 1, (2.23)

and
sup

uN∈XN

|a1(uN , vN )| > 0, ∀0 	= vN ∈ YN . (2.24)

Proof (2.23) can be proven by the exactly same argument as in the proof of Lemma 2.1. And
(2.24) follows the fact dim(XN ) = dim(YN ) and [11, Proposition 2.21]. ��

Finally, by Lemma 2.4 we obtain

Theorem 2.5 The approximate problem (2.22) admits a unique solution uN , which satisfies
the a priori estimate

‖uN‖XN ≤ ‖IN f ‖L2(˜�). (2.25)

2.2.2 Error Estimates

We first consider the approximation property of XN to X .

Lemma 2.6 For any odd integer N,

PN−3
2

× PN−3
2

⊂ YN . (2.26)

Proof By virtue of the proof of Theorem 3.1, the following reduced table consists of a basis
for YN if N is odd.

0 1 2 3 · · · N

2 1 x (x2, y2) (x3, xy2) · · · (xN , xN−2y2)
3 y xy (x2y, y3) (x3y, xy3) · · · (xN y, xN−2y3)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

N yN−2 xyN−2 (x2yN−2, yN ) (x3yN−2, xyN ) · · · (xN yN−2, xN−2yN )
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Denote Tk := {T (k + 2, 0), T (k + 1, 1), T (k, 2), · · · , T (2, k)}, for k = 2, · · · , N − 3,
which consists exactly of k + 1 independent entries of order k. Hence Tk spans the space
of 2D monomial of degree k. Therefore for i ≤ N−3

2 , j ≤ N−3
2 , xi y j ∈ spanTi+ j , which

implies PN−3
2

× PN−3
2

⊂ YN . ��
Next we recall the error estimate for 2D tensorial polynomial interpolation, which is given

by

Lemma 2.7 (cf. [22]) Suppose the interpolation nodes for IN : L2(˜�) → PN × PN are the
roots of the Legendre polynomial of degree N for each variable, and let u ∈ Hr (˜�) with
2 ≤ r ≤ N + 1, then

‖IN u − u‖L2(˜�) ≤ c

√

(N − r + 1)!
N ! (N + r)−

r+1
2 |u|Hr (˜�) (2.27)

with a constant c. In particular, for fixed r, we have that for N sufficiently large,

‖IN u − u‖L2(˜�) ≤ cN−r |u|Hr (˜�). (2.28)

We can then derive the following result:

Theorem 2.8 Assuming u ∈ X ∩ Hr (˜�) with r ≥ 4, we have

inf
uN∈XN

‖�(u − uN )‖L2(˜�) ≤
(

N − 3

2

)−(r−2)

|u|Hr (˜�). (2.29)

Proof Let q := I N−3
2

(�u) ∈ PN−3
2

× PN−3
2

⊂ YN by Lemma 2.6. Note the linear problem

findwN ∈ XN s.t.�wN = q, (2.30)

admits a unique solution since dim(XN ) = dim(YN ) and� has a trivial nullspace. Therefore

inf
uN∈XN

‖�(u − uN )‖L2(˜�) ≤ ‖�u − �wN‖L2(˜�) = ‖�u − I N−3
2

(�u)‖L2(˜�)

≤
(

N − 3

2

)−(r−2)

|�u|H−(r−2)(˜�) ≤
(

N − 3

2

)−(r−2)

|u|Hr (˜�).

(2.31)

��
Finally, we have the following error estimate for (2.22):

Theorem 2.9 Let β(x) = 1 and f ∈ Hs(˜�) for some s ≥ 2. Suppose the solution u of (2.4)
satisfies the regularity hypothesis u ∈ X ∩ Hr (˜�) for some r ≥ 4, then the solution uN of
(2.22) satisfies

‖u − uN‖X ≤ c

(

(

N − 3

2

)−(r−2)

|u|Hr (˜�) + N−s | f |Hs (˜�)

)

, (2.32)

for some constant c > 0.

Proof Thanks to the discrete inf-sup condition (2.23) and the continuity of a(·, ·) on (X +
XN ) × Y , the problem (2.22) satisfies the hypothesis of the Second Strang Lemma ([23]),
which gives

‖�(u − uN )‖L2(˜�) ≤(1 + ‖a‖) inf
uN∈XN

‖�u − �uN‖L2(˜�)

+ sup
vN∈YN

| ∫
˜�
IN f vN − a(u, vN )|

‖vN‖YN
.

(2.33)
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For f ∈ Hs(˜�), we have by (2.28) that

|
∫

˜�

IN f vN − a(u, vN )| = |
∫

˜�

IN f vN −
∫

˜�

f vN |
≤ ‖IN f − f ‖L2(˜�)‖vN‖L2(˜�) ≤ cN−s | f |Hs (˜�)‖vN‖L2(˜�),

(2.34)

for some constant c > 0. Therefore, the inequality (2.32) follows from (2.29) and (2.33). ��

3 The SecondMethod

Although the method presented in the last section can be applied to more general elliptic
equations with non-constant coefficients, it is only mathematically justified for α(x) ≡ 0
and β(x) ≡ 1. In fact, numerical evidence indicates that the convergence rate deteriorates if
the method is applied to the problem (1.1) with α 	= 0. Therefore, we shall present another
Petrov–Galerkin method which does not have this drawback.

3.1 Weak Formulation

In this method, we set the trial and test spaces to be

X := {u ∈ H1(˜�), tr(u) = 0 on ∂�}, ‖u‖X :=
(∫

˜�

u2 + |∇u|2
) 1

2

, (3.1)

Y := H1
0 (˜�), ‖v‖Y :=

(∫

˜�

v2 + |∇v|2
) 1

2

. (3.2)

Here X differs from Y , as the functions in X vanish on the interior boundary ∂� rather than
the outer boundary ∂˜�.

Then a weak formulation of problem (1.2) is: find u ∈ X s.t.

a2(u, v) :=
∫

˜�

β∇u · ∇v + α(x)uv =
∫

˜�

f v, ∀v ∈ Y . (3.3)

3.2 Spectral Approximation

We set
XN := {uN ∈ PN × PN , ξi (uN ) = 0, i = 1, · · · , 4N }, (3.4)

and
YN := P0

N × P0
N , (3.5)

where P0
N := {p ∈ PN , p(±1) = 0}. The sampling points {ξi } are still distributed on ∂� as

in the first method but the number here is increased to 4N to force dim(XN ) = dim(YN ) =
(N − 1)2.

Our second Petrov–Galerkin method is: find uN ∈ XN s.t.

a2(uN , vN ) =
∫

˜�

IN f vN , ∀vN ∈ YN , (3.6)

where a2(·, ·) is defined in (3.3).
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Unfortunately, we are unable to provide an analysis for the above method, but our numer-
ical experiments show theabove method (3.6) works better than the first method in Sect. 2
for problem (1.1) with a nonzero α(x) (see Sect. 5).

4 Efficient Numerical Implementation

We describe in this section how the two spectral methods presented in previous sections can
be efficiently implemented.

4.1 Derivation of the Linear System

We shall use Legendre polynomials to construct basis functions for XN and YN . Recall the
Legendre polynomials {Lk}Nk=0 form an orthogonal basis for PN satisfying

∫ 1

−1
Ln(x)Lm(x)dx = 2

2n + 1
δmn . (4.1)

Hence, we define Ln(x) be the polynomial that has a second derivative equal to Ln−2(x) for
n ≥ 2, namely

L0(x) = 1, L1(x) = x, L2(x) = x2/2, L3(x) = x3/6, (4.2)

and

Ln(x) :=
∫ x

−1

∫ t

−1
Ln(s)dsdt

= 1

(2n − 3)(2n − 5)
Ln−4(x) − 2

(2n − 1)(2n − 5)
Ln−2(x) + 1

(2n − 1)(2n − 3)
Ln(x),

(4.3)

for n ≥ 4. It can be verified that {Ln(x)}Nn=0 form a basis for PN and

d2

dx2
Ln(x) = Ln−2(x) for n ≥ 2. (4.4)

We start with basis functions for YN . For the first spectral method described in Sect. 2,

YN = span{˜Lmn}Nm=0,n=2, with˜Lmn = Lm−2(x)Ln(y) + Lm(x)Ln−2(y), (4.5)

where L−2 = L−1 := 0. And for the second method described in Sect. 3,

YN = span{˜Lmn}N−2
m,n=0, with˜Lmn = ˜Lm(x)˜Ln(y), (4.6)

where ˜Lm(t) := Lm+2(t) − Lm(t) ∈ P0
N . Generally, we denote YN = span{ψ j }M ′

j=1, where

M ′ = N 2 − 1 for the first one and M ′ = (N − 1)2 for the second one is the dimension of
YN and XN .

Next we consider how to construct basis functions {φi }M ′
i=1 for XN . Due to complexity of

domain boundary ∂� and the prescribed constraints {ξk(uN ) = 0} in the definition of XN , it
is not possible to write these basis functions in a closed form, so we write

φi =
N

∑

s,t=0

dist Ls(x)Lt (y) such that ξk(φi ) = 0 ∀k = 1, · · · , M, (4.7)
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where M = 2N + 2 for the first one and M = 4N for the second one is the number of
sampling points on the boundary of �.

For each φi , the M constraints {ξk(φi ) = 0}Mk=1 defined in (2.15) can be written in a
matrix-vector form:

Bdi = 0, (4.8)

where B ∈ R
M×(M+M ′), independent of i , with the k-th row corresponding to the k-th

constraint {ξk(φ j ) = 0}M ′
j=1, and

di :=
[

di00 d
i
01 · · · diNN

]T
, (4.9)

which is a long vector consisting all the coefficients of φi in (4.7) lexicographically. We
observe that B is determined by �, ˜� and the choice for ξk , and is independent of the PDE
operator L and the data f .

It is now evident that {φi }M ′
i=1 can be constructed by finding a basis for null(B), since

the basis contains exactly M ′ vectors, each of which corresponds to one element of {φi }M ′
i=1.

More precisely, let

D :=
[

d1 d2 · · · dM ′] ∈ R
(M+M ′)×M ′

(4.10)

with linearly independent columns such that BD = 0, and denote

L(x, y) := [

L0(x)L0(y) L0(x)L1(y) · · · LN (x)LN (y)
]

, (4.11)

then formally we have
[φ1 φ2 · · · φM ′ ] = L(x, y)D. (4.12)

Writing uN = ∑M ′
i=1 ũiφi , then (2.22) (or (3.6)) leads to the following linear system,

M ′
∑

i=1

a(φi , ψ j )ũi =
∫

˜�

IN f ψ j := f j , for j = 1, · · · , M ′. (4.13)

Denoting
A := [

a
(

Ls(x)Lt (y), ψ j
)] ∈ R

M ′×(M+M ′) (4.14)

with row indices j = 1, · · · , M ′ and column indices s, t = 0, · · · , N , and with the notation
in (4.12), we can rewrite (4.13) in the matrix form as

ADu = f , (4.15)

where

u := [

ũ1 ũ2 · · · ũM ′
]T

, f :=
[

f̃1 f̃2 · · · f̃M ′
]T

.

Note that for any given point (xp, yp) at which the solution is evaluated,

uN (xp, yp) = [φ1 φ2 · · · φM ′ ] |(xp,yp)u = ˜L(xp, yp)Du := ˜L(xp, yp) y, (4.16)

which means the evaluation of uN only depends on ˜L(xp, yp) and y, Hence, instead of
solving (4.15) for u explicitly, we can solve

Ay = f , (4.17)

directly.
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Note that (4.17) has M ′ equations for M + M ′ unknowns. The remaining equations are
from the boundary constraints

By = 0. (4.18)

Hence, the final linear system to be solved is
[

A
B

]

y =
[

f
0

]

. (4.19)

For problems with non-homogeneous boundary condition u|∂� = h, it suffices to let

h =
[∫

∂�

hχ1ds
∫

∂�

hχ2ds · · ·
∫

∂�

hχMds

]T

, (4.20)

and replace the right vector in (4.19) by
[

A
B

]

y =
[

f
h

]

. (4.21)

4.2 Fast and Robust Algorithm for Solving the Linear System

Unfortunately, it is numerically observed that (4.21) is very ill-conditioned so a direct solver
is not feasible. Note that the upper part Ay = f is the approximation to the PDE Lu = f ,
while the lower part By = h describes the boundary constraints. The idea is to solve the upper
part accurately and relax the accuracy requirement for the lower part. More precisely, we aim
to reduce the residue of By = h as much as possible subject to Ay = f . A straightforward
approach is to solve the least square problem

min
y∈ ys+YK

‖h − By‖2, (4.22)

where ys is a particular solution of Ay = f and YK is a K -dimensional subspace of null(A)

with K ≤ M . Note that if K = M , (4.22) is equivalent to (4.21). Hence, to avoid the
ill-conditioning, K should not be too close to M in practical computation.

For a fixed K < M , we first find a particular solution ys of Ay = f by letting ys being
in the row space of A, i.e.

ys = AT x. (4.23)

Hence if follows
(

AAT
)

x = f , (4.24)

where AAT is symmetric positive-definite, so the above can be easily solved.
Thanks to the orthogonality of the Legendre polynomials, A is a sparse block band matrix

with 4 block bands (the structure of A for N = 15 is shown in Fig. 1). So we can find easily
an orthonormal set y1, y2, · · · , yK in null(A). Denote

YK = [ y1 y2 · · · yK ] ∈ R
(M+M ′)×K , (4.25)

then (4.22) can be rewritten as

min
zK∈RK

‖h − B(YK zK + ys))‖2. (4.26)

Therefore it suffices to compute the least square solution zK to (4.26) so that the solution to
(4.22) is given by

y = YK zK + ys . (4.27)
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Fig. 1 The structure of A for N=15 (around 50,000 total entries)

The choice of K is of critical importance, since large K may cause a large condition
number, and small K may lead to large errors for the boundary constraints By = 0. Therefore,
we employ an adaptive procedure to choose K which better balances the ill-conditioning and
the errors for the boundary constraints By = 0.

We now describe how to solve the problem (4.26). We first rewrite it as the following
over-determined linear system

BYK zK = g := h − Bys . (4.28)

We start by using the QR factorization with Householder transformation to (4.28). In the
(k − 1)-th iteration, we have the following form

˜Qk−1 ˜Qk−2 · · · ˜Q1BYk−1 = Rk−1, (4.29)

where ˜Qk−1, ˜Qk−2, · · · , ˜Q1 ∈ R
M×M is an orthogonal matrix and Rk−1 ∈ R

M×(k−1) is
upper-triangular. Note in the k-th iteration,

BYk = B
[

Yk−1 yk
] = [

BYk−1 Byk
]

, (4.30)

which is obtained by adding a new column Byk to BYk−1. Hence

˜Qk−1 ˜Qk−2 · · · ˜Q1BYk = [

Rk−1 rk
]

, (4.31)

where rk = ˜Qk−1 ˜Qk−2 · · · ˜Q1Byk . Write rk =
[

r tk
rbk

]

with r tk ∈ R
k−1 and rbk ∈ R

M−k+1,

and let Hk be the Householder reflector associated with rbk , then ˜Qk :=
[

I
Hk

]

will make

˜Qk ˜Qk−1 · · · ˜Q1BYk = Rk, (4.32)

which is upper-triangular. So far we can estimate the condition number of the k-step least
square system (4.28) by estimating the condition number κ(Rk) (it suffices to consider κ(˜Rk),
where ˜Rk := Rk(1 : k, :) is the top square part of Rk) and decide whether to continue the
iteration or not. Given a threshold ε > 0, the k-th iteration stops if κ(˜Rk) > ε−1. Actually,
κ(˜Rk) can also be computed iteratively, that is, we can update κ(˜Rk) by the information
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of ˜Rk−1. For example, one simple approach is to use 1 or ∞-condition number κ∗(˜Rk) for
∗ = 1 or∞. Suppose we have evaluated ˜R−1

k−1 by the (k − 1)-th iteration, and obtained ˜Rk

in the k-th iteration as following form

˜Rk =
[

˜Rk−1 rk
0 σk

]

, (4.33)

then ˜R−1
k can be evaluated by

˜R−1
k =

[

˜R−1
k−1 −σ−1

k
˜R−1
k−1rk

0 σ−1
k

]

, (4.34)

which only costs O(k2) flops. Next κ∗(˜Rk) = ‖˜Rk‖∗‖˜R−1
k ‖∗ can be updated from the

information of ˜Rk−1 and ˜R−1
k−1 by O(k) flops. Hence the total flops for computing κ∗(Rk) in

all iterations will be no greater than O(K 3) flops, where K is the total number of iterations.
After the QR factorization, (4.28) can be rewritten as

QK RK zK ≈ g, (4.35)

and then the least square solution zK is computed by applying back-substitution to

˜RK zK =
(

QT
K g

)

(1 : K ). (4.36)

All in all, the whole algorithm for solving (4.21) can be depicted as follows.

Algorithm SOLVE.

1. find a particular solution ys by (4.23) and (4.24), and let g := h − Bys ;
2. define R = [ ] which is an empty matrix in the beginning;
3. for k = 1 : M
4. find yk ∈ null(A) which is orthonormal to y1, · · · , yk−1;
5. rk = Byk ;
6. rk = ˜Qk−1 · · · ˜Q1rk ; (if k = 1, skip this line)
7. define r tk = rk(1 : k − 1), rbk = rk(k : M);
8. sk = −sign((rbk )1)‖rbk ‖e1,
9. vk = (sk − rbk )/‖sk − rbk ‖;
10. R =

[

R
[

r tk
sk

]]

;

11. if κ(R(1 : k, :)) > ε−1, break;
12. end for
13. g = ˜Qk · · · ˜Q1g;
14. solve R(1 : k, :)z = g(1 : k) for z by back-substitution;
15. y = [ y1 · · · yk] z + ys .

Note that in Line 6, rk = ˜Qk−1 · · · ˜Q1rk can be computed by

• for i = 1 : k − 1
• rk(i : M) = rk(i : M) − 2vi

(

vTi rk(i : M)
)

;
• end for

and in Line 13, g can be computed by the same way.

Fast matrix-vector multiplication.
Most of computational time in the above algorithm is spent by Line 5, namely, computing

Byk . Since B is of size O(N )×O(N 2), a directmatrix-vectormultiplication By costsO(N 3)
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arithmetic operations. Fortunately, the specific data array of B allows a fast multiplication.
Note that the adjacent rows of B are highly linearly dependent, and each row varies smoothly
from previous ones. We first consider the boundary constraints (2.13), where B has the
following form

B =

⎡

⎢

⎢

⎣

L0(x1)L0(y1) L0(x1)L1(y1) · · · LN (x1)LN (y1)
L0(x2)L0(y2) L0(x2)L1(y2) · · · LN (x2)LN (y2)

· · · · · · · · · · · ·
L0(xM )L0(yM ) L0(xM )L1(yM ) · · · LN (xM )LN (yM )

⎤

⎥

⎥

⎦

, (4.37)

where (xi , yi ) = zi , i = 1, · · · , M are the points spaced on ∂�. Given

y = [y00 y01 · · · yN+1,N+1]T ∈ R
(N+1)2 , (4.38)

then
B(i, :) y =

∑

j,k

L j (xi )Lk(yi )y jk (4.39)

evaluates the expansion with base functions L j Lk and coefficients y jk at point zi . Hence, the
plot of By shows the profile of

∑

L j (x)Lk(y)y jk defined on ∂�, which is usually (piecewise)
smooth as long as ∂� is (piecewise) smooth.

Due to its smoothness, instead of evaluating the whole product By, it suffices to choose
several sampling nodes on ∂� (namely, several rows of B) and do multiplication on them.
After that, the value at non-sampling points on ∂� can be interpolated based on the data at
sampling nodes. Fortunately, the complexity of evaluation at a point by usual interpolation
techniques is much less than doing a direct vector multiplication. Therefore, when computing
the product By, we can only multiply a fixed number N0 rows of B by y, and estimate other
part of By by interpolation, for instance, the cubic spline interpolationwhich costs O(N0) for
a solo entry and O(N0N ) for all entries. By this method, the total complexity for computing
By is O(N0N 2). In practical implementation, N0 is determined by the accuracy requirement
and is independent of N . We demonstrate it by the following example, in which ∂� is set by
r = 0.65 + 0.25 sin(3θ) and B is multiplied by an all-one vector e. In Fig. 2, the l2 errors
of computing Be by our interpolation method versus N are shown, and it is observed the
errors only depend on the number of sampling nodes, rather than the size of B. Furthermore,
the numbers of operations for different N and N0 are estimated and presented in Fig. 3,
from which we see the complexity for the matrix-vector multiplication on B is indeed about
O(N 2).

For boundary constraints (2.14), we suppose the number of test functions {χi } and the
quadrature nodes are set by O(N ), then in this case B is formed as the product of a O(N ) ×
O(N )matrix related to {χi } and another O(N )×O(N 2)matrix of the form in (4.37). Hence
By is computed by first applying the preceding fast multiplication technique, and then doing
a usual O(N ) by O(N ) matrix-vector multiplication. Thus the total number of operations is
also O(N 2).

Now we can determine the complexity of Algorithm SOLVE. First, Line 4 can be pre-
computed since it does not depend on the domain and the data. Due to the orthogonality,
A ∈ R

O(N2)×O(N2) is sparsely structured with O(1) nonzero entries in each row. So sparse
solvers can be applied to compute an orthonormal set of null(A) in advance. Then for other
lines relate to computation, Line 1 costs O(sN 2) if an iterative solver is used for (4.24) with
s iterations. Inside the for-loop, Line 5 costs O(N 2) by fast computation and Line 6,8,9,11
and 13 each costs no more than O(N 2), hence the whole for-loop costs at most O(N 3) due
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Fig. 2 l2 error for computing Be
by interpolation method for
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to M = O(N ). Finally the cost of Line 14 and 15 is within O(N 3). Therefore, the total cost
for solving (4.21) is O(N 3) + O(sN 2) operations.

5 Numerical Results

We present in this section several numerical results using the two proposed methods. For all
examples below, (2.13) is chosen as the approximate boundary condition.

5.1 Poisson Type Equations with Smooth Solutions

In the first example, we use the first method to solve the following Poisson-type equation

−�u + αu = f in�,

u = h on ∂�,
(5.1)
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Fig. 4 The first example: the first method applied to (5.1) with N = 51

where ∂� (see Fig. 4a) is characterized by the polar expression

r = r0 + δ sin(nθ), (5.2)

and the exact solution is set by

u = r3(r0 + δ sin(nθ) − r), (5.3)

with r0 = 0.65, δ = 0.25, n = 3. Note that the exact solution satisfies the homogeneous
Dirichlet boundary condition.

First, we let α = 0, and choose N = 51 (M = 104) where N is the degree of tensorial
polynomial space specified in (2.15)-(2.16). The original domain �, extended domain ˜� and
the sampling nodes {zi } defined in (2.13) for N = 51 are shown in Fig. 4a. We plot the
condition number of Rk in Fig. 4b for all k ≤ M , and observe that κ1(Rk) increases rapidly
from the beginning, and reaches an acceptable level of 106 when k is around 1

3M . therefore
in this example we choose K = � 1

3M� = � 2N+2
3 � as a prescribed number of iterations in the

for-loop in Algorithm SOLVE, that means the solution to the least square problem (4.26) is
searched in a K -dimensional subspace of null(A).

In Fig. 5a, we plot the L2-error for the numerical solution of (5.1) with α = 0 for various
N , and observe that the error converges exponentially as predicted by Theorem 2.9. On the
other hand, we plot in Fig. 5b the L2-error for the numerical solution of (5.1) with various
α 	= 0. We observe that the convergence rate deteriorates as α increases, which explains why
we were only able to prove the results in Theorem 2.9 for α = 0.

In the second example, we use the second method to solve the problem (5.1) where � is a
pentagon with vertices (0, 0.9), (−0.9, 0.2), (−0.7,−0.8), (0.7,−0.8), and (0.9, 0.2). The
exact solution is chosen to be

u = exp

(

− x21 + x22
2

)

. (5.4)

First we take α = 10, N = 35, and plot κ1(Rk) for different k in Fig. 6b, together with the
original domain �, extended domain ˜� and the sampling nodes {zi } shown in Fig. 6a. We
observe that κ1(Rk) behaviors similarly as with the first method.
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Fig. 5 ‖u − uN ‖L2(�) versus N for the first example
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Fig. 6 The second example: the second method applied to (5.1) with N = 35

Then, we set ε−1 = 101+N/10 in the Algorithm SOLVE, and plot L2 error with various
α in Fig. 6c. We observe that exponential convergence is achieved for all α.

5.2 Problems with Corner Singularities

In the third example, we apply the first method to the Poisson equation

−�u = 1 in�,

u = 0 on ∂�,
(5.5)

where � is a square with vertices (T , T ), (T ,−T ), (−T ,−T ), (−T , T ) with T = 0.8. The
exact solution is given by

u(x1, x2) = −64T 2

π4

∞
∑

n,m=1
n,m odd

(−1)
n+m
2

cos
( nπx1

2T

)

cos
(mπx2

2T

)

nm
(

n2 + m2
) , (5.6)

which are weakly singular at the four corners. The original domain �, extended domain ˜�

and the boundary nodes are shown in Fig. 7a, together with the L2-error vs. N in Fig. 7b.
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Fig. 7 The third example: Poisson equation with corner singularity using the first method
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Fig. 8 The fourth example: Poisson equation in L-shaped domain using the second method

We observe that the convergence rate is between 4th and 5th order which is similar to the
rate by the spectral Galerkin method [20] and about twice the rate by finite differences with
a uniform grid.

For the fourth example, we consider (5.5) in a L-shaped domain with vertices (0, 0),
(T , 0), (T ,−T ), (−T ,−T ), (−T , T ) and (0, T ) with T = 0.8. The solution of the PDE
is weakly singular at all corners but with the strongest singularity at the reentry corner. We
apply the second method with stopping criteria ε−1 = 10N/20 to this problem. The original
domain �, extended domain ˜� and the boundary nodes {zi } for N = 15 is shown in Fig.
8a. Since an exact solution is not available, we use the approximate solution obtained with
N = 255 as the reference solution. We plot the L2-errors for variour N in Fig. 8b, and
observe that the convergence rate is between 2nd and 3rd order, which is also much better
than the rate by finite differences or finite elements with a uniform grid.
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Fig. 9 A problem with variable coefficients

5.3 A Problemwith Variable Coefficients

As the last example, we apply the second method to the Dirichlet problem (1.1) with non-
constant coefficients on a triangle with vertices (0, 0.9), (0.6,−0.9), (−0.6,−0.9). We set
β(x) = exp(x1 + x2) with α(x) = 0 and α(x) = (sin x1 + 1)(cos x2 + 1) with the exact
solution given by (5.4). In Fig. 9a and b, we plot the problem domains and boundary nodes
with N = 15, the L2 errors with α(x) = (sin x1 + 1)(cos x2 + 1), respectively.

6 Concluding Remarks

We developed in this paper two novel spectral methods for solving two-dimensional elliptic
PDEs in complex domains using a fictitious domain approach.One is specifically designed for
thePoisson equationwith the trial spaceH2(�̃) satisfying the original boundary condition and
the test space L2(�̃), where �̃ is the extended domain. Thismethod is proved to bewell-posed
with spectral accuracy in the sense that the convergence rate increases with the smoothness of
the solution. However, the error deteriorates if the method is applied to more general elliptic
equations. On the other hand, the second method can achieve spectral accuracy for general
elliptic equations with trial space H1(�̃) satisfying the original boundary condition and the
test space H1

0 (�̃). However, its well-posedness and error estimate are still elusive.
Both methods lead to ill-conditioned linear systems which can not be efficiently solved

by a direct methods. We developed a tailored least square algorithm which allows us to solve
these ill-conditioned linear systemswith a O(N 3) computational complexity (where N being
the number of points in each direction), which is comparable to the fast spectral elliptic solver
in rectangular domains. We presented ample numerical results to show that the new methods
are very effective for problems with smooth as well as weakly singular exact solutions.

While the twofictitious domain formulations can be essentially applied to elliptic problems
in three dimensional complex domains, their implementations are much more involved and
will be left for a future endever.
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