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Abstract. We propose a new method to construct high-order, linear, positivity/bound preserving
and unconditionally energy stable schemes for general dissipative systems whose solutions are posi-

tivity/bound preserving. The method is based on applying a new SAV approach to the transformed
system with a suitable function transform. The resulting schemes enjoy remarkable properties such

as positivity/bound preserving, unconditionally energy stable, can achieve high-order and with com-

putational complexity similar to a semi-implicit scheme. We apply this approach to Keller-Segel and
Poisson-Nernst-Planck (PNP) equations, and construct efficient numerical schemes which, in addi-

tion to positivity/bound preserving and energy dissipative, also conserve mass. Ample numerical

results are presented to validate our theoretical claims.

1. Introduction

Many problems in sciences and engineering require their solutions to be positive or remain in a
prescribed range, such as density, concentration, height, population, etc. Oftentimes, violation of
the positivity or bound preserving in their numerical solutions renders the corresponding discrete
problems ill posed, although the original problems are well posed. For these type of problems, it is of
critical importance for the numerical schemes to be positivity or bound preserving. A particular class
of such problems are the Wasserstein gradient flows which are gradient flows over spaces of proba-
bility distributions according to the topology defined by the Wasserstein metric [21, 28]. Important
examples of Wasserstein gradient flows include the Poisson-Nernst-Planck (PNP) equations [26] and
Keller-Segel equations [22, 17]. For these problems, in addition to positivity or bound preserving, it
is also important for the numerical schemes to obey a discrete energy law. Many attempts have been
made over the years in developing numerical schemes for the PNP and Keller-Segel equations.

For the PNP equations, a quite complicated entropy-based scheme with regularized free energy is
constructed in [27] along with rigorous numerical analyses for a set of finite-element approximations; a
mass-conservative finite difference scheme is constructed in [13]; an arbitrary-order energy dissipative
schemes are constructed using a a discontinuous Galerkin (DG) method for 1-D PNP systems [23];
and most recently a fully discrete positivity-preserving and energy-dissipative finite difference scheme
is developed in [19]. On the other hand, There exist a large number of numerical work for the PNP
equations in the electric and medical engineering literature, see, for examples, [15, 25, 18] and the
references therein.

For the Keller-Segel equations and related models, a finite volume scheme is developed with con-
vergence proof in [12]; a second-order positivity preserving central-upwind scheme is constructed in
[6] (see also [11, 10]); finite volume methods for a Keller-Segel system are considered with discrete
energy dissipation and error estimates in [36]; and a positivity-preserving and asymptotic preserv-
ing method is constructed for a reformulated Keller-Segel system in [24] [36, 7]. We refer to the
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aforementioned papers and the references therein for more details on existing numerical schemes for
Keller-Segel equations.

Some of these numerical schemes preserve positivity and/or some form of energy dissipation under
certain conditions and specific spatial discretization. Oftentimes one needs to solve nonlinear systems
at each time step. Very recently, an interesting approach is proposed to construct unconditionally
energy stable and positivity/bound preserving for Keller-Segel equations in [30] and for PNP equations
in [31]. However, these schemes require solving, at each time step, a nonlinear system which is a unique
minimizer of a strictly convex functional. The question we would like to address in this paper is:
for PDEs which preserve positivity or bound and satisfy an energy dissipation law, how to construct
numerical schemes which are linear, positivity/bound preserving and unconditionally energy stable
for any consistent spatial discretization?

The recently proposed scalar auxiliary variable (SAV) approach [32, 33] is a powerful tool to
design unconditionally energy stable, linear schemes to a large class of gradient flows, and has been
applied successfully to many challenging problems. However, it does not have mechanism to preserve
bounds or positivity. On the other hand, a common strategy to enforce solutions to preserve bounds or
positivity is to use a suitable function transform. A drawback of this approach is that the transformed
equation becomes very complicated that it is very difficult to construct efficient and energy stable
schemes for the transformed equation.

In this work, we propose a new class of bound/positivity preserving and energy stable schemes by
combining the SAV approach and the function transform approach:

• make a suitable function transform to ensure positivity or bound preserving;
• use a recently proposed SAV approach [20] to design linear and unconditionally energy stable

schemes for the transformed equation.

Our new schemes will enjoy the following remarkable properties:

• it can be used with high-order semi-implicit (i.e., IMEX) schemes;
• it is positivity or bound preserving;
• it is unconditionally energy dissipative;
• it only requires solving one set (instead of two in the original SAV approach) decoupled linear

equations with constant coefficients at each time step, so the coding and computational
complexity is similar to that of semi-implicit schemes;

• for problems with mass conservation as in PNP and KS equations, it also conserves mass.

The rest of the paper is organized as follows. In Section 2, we describe our approach for a general
semi-linear or quasi-linear, dissipative system. In Section 3, we construct new schemes for the PNP
equations, followed by the schemes for Keller-Segel equations in Section 4. In section 5, we present
numerical examples to validate our schemes. Some concluding remarks are given in Section 6.

2. Bound/positivity preserving schemes through transform and SAV approaches

In order to clearly describe our idea, we consider a semi-linear or quasilinear parabolic system in
the form

∂u

∂t
−∆u+ g(u) = 0, (2.1)

with either periodic or homogeneous Neumann boundary condition, where g(u) is a nonlinear function.
The following discussions are still valid if we replace −∆ in (2.1) with more general or higher-order
linear elliptic operators.

We assume that the above system satisfies a dissipation law in the form

dE(u)

dt
= −

(
Gu, u

)
, (2.2)
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where E(u) is a typical energy functional given by

E[u] =

∫
Ω

(1

2
Lu · u+ F (u)

)
dx := E0(u) + E1(u), (2.3)

G is a non-negative operator and L is a self-adjoint, linear, non-negative operator. We also assume
that E[u] is bounded from below, without loss of generality, we can assume E[u] > 0, ∀u.

Note that the above framework includes, as special cases, the L2 gradient flows for which g(u) =
F ′(u) where F (u) is a given nonlinear function, L = −∆ and (Gu, u) = (−∆u+ g(u),−∆u+ g(u)).

Solutions of (2.1) is often bound/positivity preserving. It is desirable, and sometimes neces-
sary such as in the case of PNP and Keller-Segel equations, for the numerical solutions to be also
bound/positivity preserving. While it is possible to construct some fully discrete numerical methods
which preserve the bounds/positivity using finite-differences or piecewise linear finite-elements for a
class of (2.1) satisfying a maximum principle, it is in general very difficult to construct higher-order
finite-elements or spectral methods which preserve bounds/positivity as well as energy dissipation.

While the SAV approach [33] provided a powerful approach to design numerical schemes which
preserve energy dissipation, it does not have mechanism to preserve bounds or positivity. A common
strategy to enforce solutions to preserve bounds or positivity is to use a suitable function transform.
More precisely, given a prescribed range interval I which could be open, closed or half open, we can
construct an invertible mapping T : R → I, and make the function transform u = T (v) in (2.1),
leading to

∂v

∂t
−∆v − T ′′(v)

T ′(v)
|∇v|2 +

1

T ′(v)
g(T (v)) = 0, (2.4)

with either periodic or homogeneous Neumann boundary condition, since ∂u
∂n = T ′(v) ∂v∂n . After we

solve v from the above, we get u = T (v) whose range is included in I. Two typical cases are:

• I = (a, b): a suitable choice is T (v) = b−a
2 tanh(v) + b+a

2 so that the range of u = T (v) is still
in I.

• I = (0,∞): a suitable choice is T (v) = exp(v/M), where M is a tunable parameter to prevent
T (v) increases too fast, so that u = T (v) is always positive.

The main difficulty with this transformed approach is that the transformed equation (2.4) is much
more complicated than (2.1), and it is difficult to design efficient and energy dissipative schemes.
Fortunately, the recently proposed SAV approach [20] can provide a satisfactory solution as we show
below.

As in the usual SAV approach, we introduce a SAV to enforce energy dissipation (2.2). More
precisely, we set r(t) =

∫
Ω
F (u)dx+ C0 with C0 ≥ E[u0] and expand (2.4) with (2.2) as

∂v

∂t
−∆v − T ′′(v)

T ′(v)
|∇v|2 +

1

T ′(v)
g(T (v)) = 0, (2.5a)

u = T (v), (2.5b)

dE0(u)

dt
+
dr

dt
= −E0(u) + r(t)

E(u)+C0

(
Gu, u

)
, (2.5c)

with r(0) =
∫

Ω
F (u(x, 0))dx+C0, it is clear that the above system is equivalent to (2.4) with (2.2).

However, discretizing the above will allow us to easily construct schemes which is energy dissipative,
in addition to bound/positivity prerserving which is built into the system. We construct below k-th
order BDF-Adams-Bashforth SAV schemes for (4.4b) in a uniform setting: treat the linear term ∆v
implicitly and use Adams-Bashforth extrapolation to deal with all nonlinear terms.



4 F. HUANG AND J. SHEN

More precisely, given rn and (uj , vj) for j = n, · · · , n−k+1, we find (vn+1, un+1, rn+1, ξn+1) such
that

αkv
n+1 −Ak(vn)

δt
−∆vn+1 =

T ′′(Bk(vn))

T ′(Bk(vn))
|∇Bk(vn)|2 − 1

T ′(Bk(vn))
g(Bk(un)), (2.6)

ūn+1 = T (vn+1), (2.7)

1

δt

(1

2

∫
Ω

(Lūn+1 · ūn+1 − Lūn · ūn)dx+ rn+1 − rn
)

= −
1
2

∫
Ω
Lūn+1 · ūn+1dx+ rn+1

E[ūn+1]+C0

(
Gūn+1, ūn+1

)
, (2.8)

ξn+1 =

∫
Ω

1
2Lū

n+1 · ūn+1dx+ rn+1

E[ūn+1]+C0
, (2.9)

un+1 = ηn+1
k ūn+1 with ηn+1

k = 1− (1− ξn+1)Ik , Ik =

{
k + 1, if k is odd

k, if k is even
, (2.10)

where the constant αk, operators Ak, Bk are defined by

first-order scheme:
α1 = 1, A1(vn) = vn, B1(hn) = hn; (2.11)

2nd-order scheme:

α2 =
3

2
, A2(vn) = 2vn − 1

2
vn−1, B2(hn) = 2hn − hn−1; (2.12)

third-order scheme:

α3 =
11

6
, A3(vn) = 3vn − 3

2
vn−1 +

1

3
vn−2, B3(hn) = 3hn − 3hn−1 + hn−2; (2.13)

fourth-order scheme:

α4 =
25

12
, A4(vn) = 4vn−3vn−1 +

4

3
vn−2− 1

4
vn−3, B4(hn) = 4hn−6hn−1 +4hn−2−hn−3. (2.14)

The formulae for k = 5 and k = 6 can be derived similarly.
Several remarks are in oder:

• Since we assume T is invertible, T ′(v) 6= 0 so the above scheme is well defined. The range of
the approximate solution ūn+1 = T (vn+1) is obviously included in I.

• (2.6) is a k-th order approximation to (2.5a) with k-th order BDF for the linear terms and
k-th order Adams-Bashforth extrapolation for the nonlinear terms. Hence, vn+1 is a k-th
order approximation to v(tn+1).

• (2.8) is a first-order approximation to (2.5c). Hence, rn+1 is a first order approximation to
E1(u(·, tn+1)) which implies that ξn+1 is a first order approximation to 1. Hence, ηn+1

k =
1 +O(δt)Ik which implies that both ūn+1 and un+1 are k-th order approximation of u(tn+1).

• The above scheme can be efficiently implemented as follows:
– determine vn+1 from (2.6);
– set ūn+1 = T (vn+1);
– with ūn+1 known, determine rn+1 explicitly from (2.8), and compute ξn+1 from (2.9);
– update un+1 using (2.10), goto the next step.

The main cost is to solve vn+1 from (2.6) which is a linear equation with constant coefficients.

The above scheme looks similar to the scheme in [20], but there are some subtle differences,
particularly in the choice of ηn+1

k . As we show below, this choice allows us to obtain a uniform bound
on (Lun, un), which in turn will play a crucial role in the error analysis as in [29].

Theorem 1. Without loss of generality, we assume ab ≤ 0 if I = (a, b). Given ui with range in
I, vi = T−1(ui) and ri for i = 0, 1, . . . , k − 1. The scheme (2.6)-(2.10) admits a unique solution
satisfying the following properties unconditionally:



BOUND/POSITIVITY PRESERVING SCHEMES 5

1. Positivity or bound preserving: i.e., the range of ūn+1 and un+1 is in I.
2. Unconditionally energy dissipation with a modified energy defined by Ēn =

∫
Ω

1
2Lū

n·ūndx+rn:

More precisely, if Ēn ≥ 0, we have Ēn+1 ≥ 0 and

Ēn+1 − Ēn ≤ −δt Ēn+1

E[ūn+1]+C0

(
Gūn+1, ūn+1

)
≤ 0. (2.15)

3. Furthermore, if E1(u) =
∫

Ω
F (u)dx is bounded from below, then for the k-th order schemes,

there exists constant Mk, such that

(Lun, un)1/2 ≤Mk, ∀n. (2.16)

Proof. By construction, the scheme is obviously positivity or bound preserving for ūn+1.
We derive from (2.8) that

Ēn+1 = Ēn/
(
1 +

δt

E[ūn+1]+C0
(Gūn+1, ūn+1)

)
.

Hence, if Ēn ≥ 0, we have Ēn+1 ≥ 0, and (2.15) follows directly from (2.8). It follows from (2.9),
(2.15) and C0 ≥ E[u0], E[ūn+1] > 0 that

0 < ξn+1 ≤ E[u0] + C0

E[ūn+1] + C0
< 2, (2.17)

which together with (2.10) imply

0 < (1− ξn+1)Ik < 1, 0 < ηn+1
k < 1. (2.18)

Hence, the range of un+1 is also in I as un+1 = ηn+1
k ūn+1 for I = (0,∞) or I = (a, b) with ab ≤ 0.

If E1(u) =
∫

Ω
F (u)dx is bounded from below, without loss of generality, we assume E1(u) > 1.

Denote M := Ē[u(·, 0)], then (2.15) implies Ēn ≤ M, ∀n. Now, it follows from (2.9) and the
assumption of E1(u) > 1 that

|ξn+1| = Ēn+1

E[ūn+1] + C0
≤ 2M

(Lūn+1, ūn+1) + 2
. (2.19)

Since ηn+1
k = 1− (1− ξn+1)Ik , there exists a polynomial Pk of degree Ik − 1 and a constant Mk > 0

such that

|ηn+1
k | = |ξn+1Pk(ξn+1)| ≤ Mk

(Lūn+1, ūn+1) + 2
. (2.20)

Therefore, by the fact
√
A ≤ A+ 2 for all A ≥ 0, we have

(Lun+1, un+1)1/2 = ηn+1
k (Lūn+1, ūn+1)1/2 ≤Mk. (2.21)

�

The above scheme can be directly applied to bound/positivity preserving L2 gradient flows, in-
cluding in particular the Allen-Cahn equation. In the following two sections, we shall extend the
approach presented in this section to construct positivity preserving and energy stable schemes for
Poisson-Nernst-Planck and Keller-Segel equations for which it is essential to preserve positivity.

Remark 1. We emphasize that both ūn+1 and un+1 are k-th order approximation to u(·, tn+1).
We only considered the time discretization in this section. However, it is clear from the proof of

the above theorem that, as long as the spatial approximations of G and L are still positive definite,
the results of Theorem 1 also holds for the fully discrete schemes.
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3. Positivity preserving schemes for the Poisson-Nernst-Planck equation

We consider in this section the Poisson-Nernst-Planck (PNP) equation which describes the dy-
namics of N species of charged particles driven by Brownian motion and electric field (cf. [2, 14, 9]
and the references therein). To simplify the presentation, we will focus on the two-component system
(N = 2). The schemes can be easily extended to more general PNP system with N components.

3.1. Poisson-Nernst-Planck equation. We consider a two-component PNP system in the follow-
ing form:

∂c1
∂t

= D1∇ · (∇c1 + χ1z1c1∇φ), (3.1a)

∂c2
∂t

= D2∇ · (∇c2 + χ1z2c2∇φ), (3.1b)

−∆φ = χ2(z1c1 + z2c2), (3.1c)

in an open bounded domain Ω ⊂ Rd (d = 1, 2, 3) and supplemented with either periodic boundary
condition, or no flux boundary conditions

∂ci
∂~n
|∂Ω = 0, i = 1, 2;

∂φ

∂~n
|∂Ω = 0. (3.2)

It is also possible to use the Dirichlet boundary condition φ|∂Ω = 0 or a Robin type boundary

condition (αφ+ β ∂φ∂~n )|∂Ω = 0.
In the above, the unknown are ci, the density of the i-th species, and φ, the internal electric

potential, Di > 0 is the diffusion constant of the i-th specie (i = 1, 2), zi are the valence constant
and χ1, χ2 are dimensionless parameters. To make the formulas below more concise, in the following
we fix z1 = 1, z2 = −1 and χ1 = χ2 = 1.

Using the identity ∇ψ = ψ∇ logψ, we can rewrite (3.1) as a Wasserstein gradient flow

∂c1
∂t

= D1∇ · (c1∇ log c1 + c1∇φ), (3.3a)

∂c2
∂t

= D2∇ · (c2∇ log c2 − c2∇φ), (3.3b)

−∆φ = c1 − c2, (3.3c)

with the free energy

E(c1, c2, φ) =

∫
Ω

c1(log c1 − 1) + c2(log c2 − 1) +
1

2
|∇φ|2dx. (3.4)

Indeed, taking the inner product of (3.3a) with log c1 + φ and of (3.3b) with log c2 − φ, summing
them up along with (−∆∂tφ = ∂t(c1 − c2), φ), we obtain the following energy law:

dE(c1, c2, φ)

dt
= −

∫
Ω

(
D1 c1|∇(log c1 + φ)|2 +D2 c2|∇(log c2 − φ)|2

)
dx. (3.5)

Note that the form of the free energy, as well as the well-posedness of (3.3), requires c1, c2 > 0.
Therefore, it is of critical importance that numerical schemes for the PNP system preserve positivity.

On the other hand, we also derive from (3.3) and (3.2) that

d

dt

∫
Ω

cidx = 0, i = 1, 2, (3.6)

i.e., the mass for each component is conserved.
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3.2. Positivity preserving SAV schemes. As explained in Section 2, we can preserve the positivity
using suitable function transforms. Since only c1, c2 are positivity preserving, we only make function
transform for c1, c2. More precisely, we introduce two new functions p1 and p2 through

ci = T (pi) := exp(pi), i = 1, 2, (3.7)

which implies in particular ci > 0, i = 1, 2.
Substituting (3.7) into (3.3a)-(3.3b), we obtain

∂p1

∂t
= D1(∆p1 + |∇p1|2 +∇p1 · ∇φ+ ∆φ), (3.8a)

∂p2

∂t
= D2(∆p2 + |∇p2|2 −∇p1 · ∇φ−∆φ). (3.8b)

Note that for this transform, we have T ′(pi) = T ′′(pi) = T (pi), so the transformed equations are not
too complicated.

Next we split the free energy E(c1, c2, φ) into the sum of E0(φ) := 1
2 (∇φ,∇φ) and E1(c1, c2) :=∫

Ω
c1(log c1 − 1) + c2(log c2 − 1)dx. It is clear that E1(c1, c2) is convex and bounded from below in

the admissible set D := {(c1, c2) : c1, c2 > 0}, so we assume that for some C0 > 0,

E1(c1, c2) ≥ −C0 + 1, (3.9)

and define a SAV r(t) = E1(c1, c2) + C0 > 1. Then, the total free energy E and its time derivative
can be rewritten as

E(c1, c2, φ) =
1

2
(∇φ,∇φ) + r(t) = E0(φ) + r(t), (3.10a)

dE

dt
=
dE0

dt
+ rt. (3.10b)

Denote µ1 = log c1 + φ, µ2 = log c2 − φ, we can reformulate (3.3) and (3.5) as

∂p1

∂t
= D1(∆p1 + |∇p1|2 +∇p1 · ∇φ+ ∆φ), (3.11a)

∂p2

∂t
= D2(∆p2 + |∇p2|2 −∇p2 · ∇φ−∆φ), (3.11b)

c1 = exp(p1), c2 = exp(p2), (3.11c)

−∆φ = c1 − c2, (3.11d)

dE0

dt
+ rt = − E0(φ) + r(t)

E(c1, c2, φ) + C0

∫
Ω

(
D1 c1|∇µ1|2 +D2 c2|∇µ2|2

)
dx. (3.11e)

We remark that since the above system is equivalent to the original system (3.3), the masses of ci are
still conserved, but that of pi are not.

We now construct k-th order SAV schemes (1 ≤ k ≤ 6) for the above system in a uniform setting.

Given (cji , p
j
i , φ

j , rj , ξj), i = 1, 2, j = n, n− 1, · · · , n− k + 1 such that

∫
Ω

cjidx =

∫
Ω

c0i dx, i = 1, 2, j = n, n− 1, · · · , n− k + 1, (3.12)
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we determine (cn+1
i , pn+1

i , λn+1
i ), i = 1, 2 and (φn+1, rn+1, ξn+1) as follows:

αkp
n+1
i −Ak(pni )

δt
−Di∆p

n+1
i = gi(Bk(pni ), Bk(φn)), i = 1, 2, (3.13)

c̄n+1
i = exp(pn+1

i ), i = 1, 2, (3.14)

λn+1
i

∫
Ω

αk c̄
n+1
i dx−

∫
Ω

Ak(cni )dx = 0, i = 1, 2, (3.15)

cn+1
i = λn+1

i c̄n+1
i , i = 1, 2, (3.16)

−∆φ̄n+1 = cn+1
1 − cn+1

2 , (3.17)

1

δt

(
E0(φ̄n+1)− E0(φ̄n) + rn+1 − rn

)
= − E0(φ̄n+1) + rn+1

E(cn+1
1 , cn+1

2 , φ̄n+1) + C0

∫
Ω

(
D1 c

n+1
1 |∇µn+1

1 |2 +D2 c
n+1
2 |∇µn+1

2 |2
)
dx, (3.18)

ξn+1 =
E0(φ̄n+1) + rn+1

E(cn+1
1 , cn+1

2 , φ̄n+1) + C0

, (3.19)

φn+1 = ηn+1
k φ̄n+1 with ηn+1

k = 1− (1− ξn+1)k, (3.20)

together with homogeneous Neumann boundary conditions

∂pn+1
i

∂~n
|∂Ω = 0, i = 1, 2;

∂φn+1

∂~n
|∂Ω = 0, (3.21)

where µn+1
1 = log cn+1

1 + φ̄n+1, µn+1
2 = log cn+1

2 − φ̄n+1, αk, Ak and Bk are the same as in the last
section, and

g1(p1, φ) = D1(|∇p1|2 +∇p1 · ∇φ+ ∆φ),

g2(p2, φ) = D1(|∇p2|2 −∇p2 · ∇φ−∆φ).

Similar to the last section, we have the following remarks:

• Clearly, (3.13) is a k-th order semi-implicit scheme for (3.11a)-(3.11b). We then derive from
(3.14)-(3.17) that λn+1

i is k-th order approximations to 1, cn+1
i and φ̄n+1 are k-th order

approximations to ci(tn+1) and φ(tn+1).
• (3.18) is a first-order approximation to (3.11e), so rn+1 is a first-order approximation to
E1(cn+1

1 , cn+1
2 ) and ξn+1 = 1 +O(δt) which implies that ηn+1

k = 1 +O(δtk). Therefore, φn+1

is also a k-th order approximation of φ(tn+1).
• The scheme (3.13)- (3.20) can be efficiently implemented by the following steps:

1. solve pn+1
i from (3.13);

2. compute c̄n+1
1 , c̄n+1

2 from (3.14) and compute λn+1
i explicitly from (3.15);

3. update cn+1
1 , cn+1

2 from (3.16) and solve φ̄ from (3.17);
4. compute rn+1 explicitly from (3.18) and then obtain ξn+1 from (3.19);
5. update φn+1 from (3.20), goto next step.

The main computational cost is to solve the linear equations with constant coefficients in
(3.13) and (3.17).

We have the following results:

Theorem 2. Given cji > 0, pji = log cji , φ
j, and rj such that

∫
Ω
cjidx =

∫
Ω
c0i dx for i = 1, 2 and

j = n, n−1, . . . , n−k+1. The scheme (3.13)-(3.20) admits a unique solution satisfying the following
properties unconditionally:

1. Positivity preserving: cn+1
1 , cn+1

2 > 0.
2. Mass conserving:

∫
Ω
cn+1
i dx =

∫
Ω
c0i dx for i = 1, 2.
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3. Unconditionally energy dissipation with a modified energy defined by Ēn = E0(φ̄n)+rn: More
precisely, if Ēn ≥ 0, we have Ēn+1 ≥ 0, ξn+1 ≥ 0 and

Ēn+1 − Ēn = −ξn+1

∫
Ω

(
D1 c

n+1
1 |∇µn+1

1 |2 +D2 c
n+1
2 |∇µn+1

2 |2
)
dx ≤ 0. (3.22)

4. There exists constant Mk, such that√
E0[φn] ≤Mk, ∀n. (3.23)

Proof. From (3.14), we obviously have c̄n+1
1 , c̄n+1

2 > 0.

We derive from the assumption that
∫

Ω
cjidx =

∫
Ω
c0i dx for i = 1, 2 and j = n, n− 1, . . . , n− k+ 1,

and the definition of coefficients αk and Ak in section 2 that∫
Ω

Ak(cni )dx = αk

∫
Ω

c0i dx.

It then follows from (3.12) and (3.15) that

αkλ
n+1
i

∫
Ω

c̄n+1
i dx = αk

∫
Ω

c0i dx, (3.24)

which, along with c̄n+1
i > 0, implies that λn+1

i > 0. Hence, we have cn+1
1 , cn+1

2 > 0, and we derive

from the above and (3.16) that
∫

Ω
cn+1
i dx =

∫
Ω
c0i dx for i = 1, 2.

It follows from (3.18) that

E0(φ̄n+1) + rn+1 =
E0(φ̄n) + rn

1 + δt
∫
Ω

(
D1 c

n+1
1 |∇µn+1

1 |2+D2 c
n+1
2 |∇µn+1

2 |2
)
dx

E(cn+1
1 ,cn+1

2 ,φ̄n+1)+C0

≥ 0. (3.25)

Therefore, we derive from (3.19) that ξn+1 ≥ 0, which, together with (3.18), implies (3.22).
Denote M := Ē0, then (3.22) implies Ēn ≤M, ∀n. It follows from (3.18) and (3.9) that

|ξn+1| = Ēn+1

E(c1n+1, c2n+1, φ̄n+1) + C0
≤ M

E0(φ̄n+1) + 1
. (3.26)

Since ηn+1
k = 1− (1− ξn+1)k, there exists a polynomial Pk−1 of degree k− 1 and a constant Mk > 0

such that

|ηn+1
k | = |ξn+1Pk−1(ξn+1)| ≤ Mk

E0(φ̄n+1) + 1
. (3.27)

Therefore, by the fact that
√
A ≤ A+ 1 for all A ≥ 0, we derive√

E0[φn+1] = |ηn+1
k |

√
E0[φ̄n+1] ≤Mk.

�

Remark 2. We emphasize that both c̄n+1
i (resp. φ̄n+1

i ) and cn+1
i (resp. φn+1) are k-th order

approximation to ci(·, tn+1) (resp. φ(·, tn+1)), i = 1, 2.
Obviously, the positivity of ci will be preserved with any spatial approximation of the schemes

(3.13)-(3.20).
It is clear from the proof of the above theorem that the mass conservation and the energy dissipation

(3.22) still hold for any fully discrete schemes.

4. Bound preserving schemes for Keller-Segel equations

We first introduce the Keller-Segel equations, followed by the construction of bound preserving
schemes for one particular case of the Keller-Segel equations whose solution is bound preserving.
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4.1. Keller-Segel equations. To fix the idea, we consider the following Keller-Segel system with
only one organism and one chemoattractant in a bounded domain Ω:

∂u

∂t
= D

(
γ∆u− χ∇ · (η(u)∇φ)

)
, (4.1a)

τ
∂φ

∂t
= µ∆φ− αφ+ χu, (4.1b)

with either periodic boundary conditions, or no-flux boundary conditions on u and the Neumann
boundary conditions on φ,

γ
∂u

∂~n
− χη(u)

∂φ

∂~n
= 0,

∂φ

∂~n
= 0 on ∂Ω. (4.2)

Here, the unknown are u, the concentration of the organism, and φ, the concentration of the chemoat-
tractant. The parameters D, γ, χ, τ, µ, α are all positive. The function η(u) ≥ 0 describes the
concentration-dependent mobility. It is a smooth function with η(0) = 0.

The model is a parabolic-parabolic system when τ > 0, and a parabolic-elliptic system when
τ = 0.

The system (4.1) with (4.2) can be interpreted as a gradient flow about (u, φ). To this end, we
choose f(u) such that f ′′(u) = 1/η(u), and define the free energy

E[u, φ] =

∫
Ω

(γf(u)− χuφ+
µ

2
|∇φ|2 +

α

2
φ2)dx. (4.3)

Then writing ∆u = ∇ ·
(

1
f ′′(u)∇f

′(u)
)
, we can rewrite (4.1) as

∂u

∂t
= D∇ ·

( 1

f ′′(u)
∇(γf ′(u)− χφ)

)
= D∇ ·

( 1

f ′′(u)
∇δE
δu

)
, (4.4a)

τ
∂φ

∂t
= µ∆φ− αφ+ χu = −δE

δφ
. (4.4b)

Taking the inner products of (4.4a) with δE
δu , and of (4.4b) with ∂φ

∂t , and summing up the results, we
obtain the energy dissipation law:

dE[u(t), φ(t)]

dt
= −

∫
Ω

[D
1

f ′′(u)

(
∇δE
δu

)2
+ τ
(∂φ
∂t

)2
]dx. (4.5)

We now consider several typical choices of η(u) and the corresponding function f(u).

(i) The classical Keller-Segel system: η(u) = u. We can choose f(u) = u log u − u with the
domain of definition (0,+∞). In this case, it is known that its solution can blow up in finite
time if the initial mass is large enough [3, 4, 5].

(ii) Keller-Segel system with a bounded mobility: a typical choice [34, 35] is η(u) = u
1+κu (κ > 0).

In this case, we can choose f(u) = u log u−u+κu2/2 with the domain of definition (0,+∞).
(iii) Keller-Segel system with a saturation concentration: η(u) = u(1− u/M), whereM > 0 is the

saturation concentration, and the mobility tends to zero when it is near saturation [8, 16]. In
this case, we can choose f(u) = u log u+ (M −u) log(1−u/M) with the domain of definition
(0,M).

Hence, the solution of the Keller-Segel system is positivity preserving in cases (i) and (ii), and bound
preserving in case (iii). Furthermore, we observe from (4.1) that

d

dt

∫
Ω

udx = 0. (4.6)

To simplify the presentation, we shall only consider the third case where the solution is bound
preserving. For the first and second order cases, the solution is positivity preserving, so one can
construct positivity preserving schemes for these two cases similarly by replacing the mapping below
with Y (v) = exp(v) as in the last section.
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4.2. Bound preserving SAV schemes. We set η(u) = u(1 − u/M) and f(u) = u log u + (M −
u) log(1− u/M), and split E[u, φ] into two parts as follows

E[u, φ] =

∫
Ω

(γf(u)− χuφ+
α

4
φ2)dx+

∫
Ω

(
µ

2
|∇φ|2 +

α

4
φ2)dx = E1[u, φ] + E0[φ]. (4.7)

Note that f(u) = u log u + (M − u) log(1 − u/M) implies that u ∈ (0,M). Along with α > 0 and f
is strictly convex, it is easy to see that E1 is bounded from below. Hence, there exists C0 > 0 such
that,

E1[u, φ] ≥ −C0 + 1. (4.8)

Due to the form of f(u), it is necessary that the range of numerical solution is also in (0,M). To
this end, we consider the transform

u = T (v) :=
M

2
tanh(v) +

M

2
. (4.9)

As tanh(x) ∈ (−1, 1), ∀x ∈ (−∞,+∞), then for v ∈ (−∞,+∞), we have u ∈ (0,M). Since φ is not
bound preserving, we do not need to transform φ.

Substituting (4.9) into (4.1a), we obtain the equation for v

∂v

∂t
= Dγ∆v +Dγ

tanh′′(v)

tanh′(v)
|∇v|2 − 2Dχ

M tanh′(v)
∇ ·
(
η(u)∇φ

)
. (4.10)

Note that tanh′(x) = 1− tanh2(x), we know tanh′(v) 6= 0 and (4.10) is well-defined.
We introduce r(t) = E1(u, φ) + C0 ≥ 1. Then, we have

E[u, φ] =
µ

2

(
φ,−∆φ

)
Ω

+
α

4

(
φ, φ

)
Ω

+ r = E0(φ) + r, (4.11a)

d

dt
E[u, φ] = µ

(
φt,−∆φ

)
Ω

+
α

2

(
φt, φ

)
Ω

+ rt =
dE0(φ)

dt
+ rt. (4.11b)

We can reformulate (4.1) and (4.5) as

∂v

∂t
= Dγ∆v +

(
Dγ

tanh′′(v)

tanh′(v)
|∇v|2 − 2Dχ

M tanh′(v)
∇ · (η(u)∇φ)

)
, (4.12a)

u =
M

2
tanh(v) +

M

2
, (4.12b)

τ
∂φ

∂t
= µ∆φ− αφ+ χu, (4.12c)

dE0(φ)

dt
+ rt = −E0(φ) + r(t)

E(u, φ) + C0

∫
Ω

[D
1

f ′′(u)

(
∇δE
δu

)2
+ τ
(∂φ
∂t

)2
]dx. (4.12d)

We now construct k-th order schemes for (4.12) in a uniform setting.
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Given (vi, ui, φi, ri), i = n, n− 1, · · · , n− k + 1, we find (vn+1, un+1, φn+1, rn+1) as follows:

αkv
n+1 −Ak(vn)

δt
−Dγ∆vn+1 = g(Bk(vn), Bk(un), Bk(φn)), (4.13)

ūn+1 =
M

2
tanh(vn+1) +

M

2
, (4.14)

λn+1

∫
Ω

αkū
n+1dx−

∫
Ω

Ak(un)dx = 0, (4.15)

un+1 = λn+1ūn+1, (4.16)

τ
αkφ̄

n+1 −Ak(φ̄n)

δt
= µ∆φ̄n+1 − αφ̄n+1 + χun+1, (4.17)

1

δt

(
E0(φ̄n+1)− E0(φ̄n) + rn+1 − rn

)
= − E0(φ̄n+1) + rn+1

E[ūn+1, φ̄n+1] + C0

∫
Ω

[
D

f ′′(ūn+1)

(
∇δE
δu

(ūn+1)
)2

+ τ
( φ̄n+1 − φ̄n

δt

)2
]dx, (4.18)

ξn+1 =
E0(φ̄n+1) + rn+1

E[ūn+1, φ̄n+1] + C0
, (4.19)

φn+1 = ηn+1
k φ̄n+1 with ηn+1

k = 1− (1− ξn+1)k, (4.20)

where the constant αk, operators Ak, Bk are defined in Section 2, and

g(u, v, φ) = Dγ
tanh′′(v)

tanh′(v)
|∇v|2 − 2Dχ

M tanh′(v)
∇ · (η(u)∇φ). (4.21)

Essential properties of the above schemes are as follows:

• (4.13) and (4.17) are k-th order semi-implicit schemes for (4.12a) and (4.12c), (4.15) is k-
th order approximation to (4.6), which imply that vn+1, λn+1, un+1, φ̄n+1 are k-th order
approximations to v(tn+1), 1, u(tn+1), φ(tn+1).

• (4.18) is a first-order approximation to (4.12d), which implies that rn+1 is a first-order ap-
proximation to r(tn+1). Then, (4.19) implies that ξn+1 = 1 + O(δt), which in turn implies
ηn+1
k = 1 +O(δt)k and φn+1 is a k-th order approximations to φ(tn+1).

• The above scheme can be efficiently implemented as follows:
1. solve vn+1 from (4.13);
2. compute ūn+1 from (4.14) and compute λn+1 explicitly from (4.15);
3. update un+1 from (4.16);
4. with un+1 known, solve φ̄n+1 from (4.17);
5. with ūn+1, φ̄n+1 known, determine rn+1 explicitly from (4.18);
6. compute ξn+1 from (4.19) and update φn+1 from (4.20), goto the next step.

We have the following results:

Theorem 3. Given ui, φi, vi and ri such that∫
Ω

uidx =

∫
Ω

u0dx, i = n, n− 1, . . . , n− k + 1. (4.22)

Then, the scheme (4.13)-(4.20) admits a unique solution satisfying the following properties uncondi-
tionally:

1. Bound preserving for ūn+1 : i.e., the range of ūn+1 is in (0,M).
2. Mass conservation: i.e.,

∫
Ω
un+1dx =

∫
Ω
u0dx.

3. Unconditionally energy dissipation with a modified energy defined by Ēn = E0(φ̄n+1) + rn:
More precisely, if Ēn ≥ 0, we have Ēn+1 ≥ 0, ξn+1 ≥ 0 and

Ēn+1 − Ēn = −ξn+1

∫
Ω

[
1

f ′′(ūn+1)

(
∇δE
δu

(ūn+1)
)2

+ τ
( φ̄n+1 − φ̄n

δt

)2
]dx ≤ 0. (4.23)
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4. There exists constant Mk, such that

√
E0[φn] =

√∫
Ω

(
µ

2
|∇φn|2 +

α

4
(φn)2)dx ≤Mk, ∀n. (4.24)

Proof. The proof is essentially the same as that of Theorem 2. For the readers’ convenience, we still
carry it out below.

We derive from (4.14) that the range of ūn+1 is in (0,M).
Noting the definition of coefficients αk and Ak in Section 2, it follows from (4.22) and (4.15) that

αkλ
n+1

∫
Ω

ūn+1dx = αk

∫
Ω

u0dx, (4.25)

which implies λn+1 > 0, and consequently un+1 > 0. Furthermore, along with (4.16), it also implies∫
Ω
un+1dx =

∫
Ω
u0dx.

It follows from (4.18) that

E0(φ̄n+1) + rn+1 =
E0(φ̄n) + rn

1 +
δt

∫
Ω

[ D

f′′(ūn+1)

(
∇ δE
δu (ūn+1)

)2
+τ
(
φ̄n+1−φ̄n

δt

)2
]dx

E(ūn+1,φ̄n+1)+C0

≥ 0.

Therefore, we derive from (4.19) that ξn+1 ≥ 0, which, together with (4.18), implies the energy
dissipation.

Denote M := Ē0, then (4.23) implies Ēn ≤M, ∀n. Now, it follows from (4.19) and (4.8) that

|ξn+1| = Ēn+1

E(ūn+1, φ̄n+1) + C0
≤ M

E0(φ̄n+1) + 1
. (4.26)

Since ηn+1
k = 1− (1− ξn+1)k, there exists a polynomial Pk−1 of degree k− 1 and a constant Mk > 0

such that

|ηn+1
k | = |ξn+1Pk−1(ξn+1)| ≤ Mk

E0(φ̄n+1) + 1
. (4.27)

Therefore, by the fact that
√
A ≤ A+ 1 for all A ≥ 0, we obtain√

E0[φn+1] = |ηn+1
k |

√
E0[φ̄n+1] ≤Mk.

�

We only consider the semi-discretization in time in this paper. As for fully discretizations, we have
the following remarks:

Remark 3. We emphasize that both ūn+1 (resp. φ̄n+1
i ) and un+1 (resp. φn+1) are k-th order

approximation to u(·, tn+1) (resp. φ(·, tn+1)). While only the range of ūn+1 is guaranteed in (0,M),
the range of un+1 is in (0,M +O(δtk)).

The positivity of ūn+1 and un+1 will be preserved with any spatial approximation of the schemes
(4.13)-(4.20).

It is also clear from the proof of the above theorem that the mass conservation and the energy
dissipation (4.23) still hold for any fully discrete schemes.

One can easily extend these schemes to deal with Keller-Segel equations with multiple organisms.
We leave the detail to the interested readers.

5. Numerical examples

In this section, we provide some numerical examples to validate our numerical schemes.
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5.1. Allen-Cahn equation with a singular potential. We first use the schemes presented in
Section 2 to solve the Allen-Cahn equation with a singular potential. In all examples for the Allen-
Cahn equation, we consider problems with periodic boundary conditions and use a Fourier-spectral
method to discretize in space.

Example 1. We consider the Allen-Cahn equation [1]

∂tu = −δE
δu

= ε2∆u+ λu− ln(1 + u) + ln(1− u), (5.1)

where ε > 0, λ > 0 and

E(u) =

∫
Ω

(ε2

2
|∇φ|2 − λ

2
u2 + (1 + φ) ln(1 + u) + (1− u) ln(1− u)

)
dx, (5.2)

is the free energy with a singular potential. The well posedness of the above equation requires that
u ∈ (−1, 1).

We use the transformation u = tanh(v), in the scheme (2.6)-(2.10).
We first test the accuracy with the following exact solution and the corresponding external forcing

f

u(x, y, t) =
(

exp(− sin2(πx))− exp(− sin2(πy))
)

sin(t),

f = ∂tu+
δE

δu
.

The parameters are chosen as ε = 0.1, λ = 3 and the computational domain is (0, 2)× (0, 2). Fourier
spectral method with 96 × 96 modes is used for special discretization. we plot in Figure 1 (a) the
errors of the first- and second-order schemes at tn = 1, and in Figure 1 (b), the errors of the third-
and fourth-order schemes at tn = 1. Expected convergence rates are observed for all cases.

(a) BDF1 and BDF2 for Allen-Cahn (b) BDF3 and BDF4 for Allen-Cahn

Figure 1. (Example 1.) Accuracy test for the Allen-Cahn equation using the new
SAV/BDFk schemes (k = 1, 2, 3, 4).

Next, we consider the spinodal decomposition of a homogeneous mixture into two coexisting phases
governed by the Allen-Cahn equation. The parameters are chosen as ε = 0.005, λ = 3 and the
computational domain is (0, 1)× (0, 1). The time step is set to δt = 0.001. Fourier spectral method
with 256 × 256 modes is used for space discretization. The initial condition is chosen as a random
variable with uniform distribution in [−0.05, 0.05]. We plot the evolution of energy, the evolution of
maxu, minu and four snapshots in Figure 2.
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(a) T = 0 (b) T = 10 (c) T = 50

(d) T = 100 (e) evolution of origina energy (f) evolution of umax and umin

Figure 2. Example 1. Spinodal decomposition by the Allen-Cahn equation. The simula-
tion is obtained with δt = 0.001 using the scheme (2.6)-(2.10).

5.2. Two-component PNP system. We present here numerical results of using the scheme (3.13)-
(3.20) to solve the two-component PNP system (3.1).

Example 2. We test accuracy by considering the two-component PNP system (3.3), i.e. we fix
z1 = 1, z2 = −1 and χ1 = χ2 = 1 in (3.1). We first consider the following manufactured exact
solutions in Ω = (−0.5, 0.5)× (−0.5, 0.5) with suitable external forcing:

c1(x, y, t) = 1.1 + sin(πx) sin(πy) sin(t), (5.3a)

c2(x, y, t) = 1.1− sin(πx) sin(πy) sin(t), (5.3b)

φ(x, y, t) =
1

π2
sin(πx) sin(πy) sin(t). (5.3c)

In this example, we use Legendre spectral-Galerkin method and (Nx, Ny) = (40, 40). Other param-

eters are D1 = D2 = 1. Define the L2-error at tn as
√
‖cn1 − c1(tn)‖2 + ‖cn2 − c2(tn)‖2, we plot in

Figure 3 (a) the errors of the first- and second-order schemes at tn = 1, and in Figure 3 (b), the
errors of the third- and fourth-order schemes at tn = 10. Expected convergence rates are observed
for all cases.

Next, we test the accuracy in the computational domain Ω = (0, 2π) × (0, 2π) with periodic
boundary condition and the initial conditions are given by

c1(x, y, 0) = 1.1 + sin(x) cos(y), (5.4a)

c2(x, y, 0) = 1.1− sin(x) cos(y). (5.4b)

In this example, we use Fourier-spectral method to discretize in space and (Nx, Ny) = (128, 128).
Other parameters are D1 = D2 = 1. We generate the reference solution by the fourth-order scheme
with δt = 0.0001. Define the L2-error at tn as above, we plot in Figure 3 (c) the errors of the first-
and second-order schemes at tn = 0.1, and in Figure 3 (d), the errors of the third- and fourth-order
schemes at tn = 0.1. Expected convergence rates are observed for all cases.
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(a) BDF1 and BDF2 for PNP with known exact solution (b) BDF3 and BDF4 for PNP with known exact solution

(c) BDF1 and BDF2 for PNP with unknown exact solution (d) BDF3 and BDF4 for PNP with unknown exact solu-

tion

Figure 3. Example 2. Accuracy test for PNP equation using the SAV/BDFk schemes
(k = 1, 2, 3, 4).

Example 3. In this example, we test the so-called Gouy-Chapman model [13] which is used to
describe the evolution of the distributions of the ions.

We consider the PNP system (3.1) in (−1, 1) with the following parameters: D1 = D2 = 1, z1 = 1,
z2 = −1, and χ1 = 3.1, χ2 = 125.4. The boundary conditions for ci and φ are given as

∂xci + ziχ1ci∂xφ = 0, i = 1, 2, (5.5)

αφ(t,−1)− βφx(t,−1) = f−1, αφ(t, 1) + βφx(t, 1) = f1, t ≥ 0, (5.6)

with α = 1, β = 4.63 × 10−5, f−1 = 1 and f1 = −1. For space discretization, we use Legendre
spectral-Galerkin method. We set δt = 0.001 and used 80 nodes in space. The initial condition on ci
are ci(x, 0) = 1, i = 1, 2 for all −1 ≤ x ≤ 1. The profiles of c1, c2 and φ at different times are plotted
in Fig 4, which are consistent with the results in [13]. In Fig 4(d), we also plot the mass evolution of
ci and pi with ci = exp(pi), i = 1, 2. We can see the masses of ci are well conserved, but that of pi
are not.

5.3. Keller-Segel equations. In this subsection, we present numerical results of using scheme
(4.13)-(4.20) to solve the Keller-Segel equations (4.1).
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(a) c1 (b) c2

(c) φ (d) mass evolution

Figure 4. Example 3. Gouy-Chapman model: Profiles of c1, c2 and φ

Example 4. We test the accuracy of the scheme. First consider the one-specie parabolic-elliptic
(τ = 0) Keller-Segel equations (4.1) in Ω = (−0.5, 0.5) × (−0.5, 0.5) with external forcing such that
the exact solutions are given by

u(x, y, t) = sin(πx) sin(πy) sin(t) + 1.1, (5.7a)

φ(x, y, t) =
1

2π2
sin(πx) sin(πy) sin(t) + 1.1. (5.7b)

Other parameters are D = γ = µ = α = χ = 1, M = 5. We use Legendre spectral-Galerkin method
and (Nx, Ny) = (40, 40) in space. Define the L2-error as

√
‖un − u(tn)‖2 + ‖φn − φ(tn)‖2, we plot

in Figure 5 (a) the errors at tn = 1 for the first- and second-order schemes, and in Figure 5 (b) the
errors at tn = 10 for the third- and fourth-order schemes.

Next, we test the accuracy in Ω = (0, 2π)×(0, 2π) with periodic boundary condition and the initial
conditions are given by

u(x, y, 0) = sin(x) sin(y) + 1.1. (5.8)

In this example, we use Fourier-spectral method to discretize in space and (Nx, Ny) = (128, 128).
Other parameters are D = γ = µ = α = χ = 1, M = 3. We generate the reference solution by
the fourth-order scheme with δt = 0.0001. Define the L2-error as above, we plot in Figure 5 (c) the
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errors at tn = 0.1 for the first- and second-order schemes, and in Figure 5 (d) the errors at tn = 0.1
for the third- and fourth-order schemes. As in the Allen-Cahn case and the PNP case, the expected
convergence rates are observed for all cases.

(a) BDF1 and BDF2 for Keller-Segel with known exact

solution

(b) BDF3 and BDF4 for Keller-Segel with known exact

solution

(c) BDF1 and BDF2 for Keller-Segel with unknown exact
solution

(d) BDF3 and BDF4 for Keller-Segel with unknown exact
solution

Figure 5. Example 4. Accuracy test for Keller-Segel equations using the SAV/BDFk
(4.13)-(4.20) (k = 1, 2, 3, 4).

Example 5. In this example, we consider the one-specie parabolic-elliptic (τ = 0) Keller-Segel
equations with the following initial condition

u(x, y, 0) = 4 exp
(
− (x− L/2)2 + (y − L/2)2

4

)
(5.9)

such that the total mass is large enough that chemotaxis happens, in (0, 2π) × (0, 2π) with the
homogeneous Neumann boundary conditions. We use Legendre spectral-Galerkin method method
with (Nx, Ny) = (64, 64) nodes to discretize in space, and the second-order scheme with time step
δt = 0.001. The parameters are chosen as D = γ = µ = 1, χ = 1, M = 100, α = 0.1 and L = 2π.

We carry out simulation until the system reaches steady state at t = 8. Several snapshots of
concentration at different times are shown in Figure 6, where we plot the snapshots by using smaller
time steps and more nodes in the right hand side , and evolutions of max u, mass of u, mass of v and
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energy are shown in Figure 7. These results agree well with those in [30] computed with a nonlinear
scheme. In particular, the energy is dissipative at all time, and the mass of u is conserved up to
machine accuracy.

Example 6. We consider the one specie parabolic-elliptic system with an initial condition with two
bulges, given by

u(x, y, 0) = 2 exp(− (x− 3L/8)2 + (y − 3L/8)2

4
) + 2 exp(− (x− 5L/8)2 + (y − 5L/8)2

4
) (5.10)

with L = 4π. We take M = 50 while all other settings are the same as Example 5. We use the
third-order scheme, and plot the evolution of energy, maximum concentration and four snapshots of
u in Figure 8. We observe that the energy is dissipative at all times, the maximum of u increases
while the support of u shrinks to maintain the mass conservation.

Example 7. In this example, we consider the parabolic-elliptic Keller-Segel system with two species:

∂u1

∂t
= D1

(
γ1∆u1 − χ1∇ · (η1(u1)∇φ)

)
, (5.11a)

∂u2

∂t
= D2

(
γ2∆u2 − χ2∇ · (η2(u2)∇φ)

)
, (5.11b)

0 = µ∆φ− αφ+ χ1u1 + χ2u2, (5.11c)

with the initial conditions

u1(x, y, 0) = u2(x, y, 0) = φ(x, y, 0) = 4 exp
(
− (x− L/2)2 + (y − L/2)2

4

)
. (5.12)

The parameters are chosen as D1 = D2 = γ1 = γ2 = µ = χ1 = 1, α = 0.1 with all other settings are
the same as Example 5. We use the first order scheme for this example. The results with two different
chemotactic sensitivities with χ2 = 0.1 and χ2 = 0.01 are plotted in Figure 9 and 10 respectively.

In both cases, we observe accumulation for u1, while for u2, it diffuses first and then accumulates
in the case χ2 = 0.1, and it keeps diffusing in the case χ2 = 0.01. These results are consistent with
the results in [30].

6. Concluding remarks

For PDEs whose solutions are required to be positive or in a prescribed range, it is of critical
importance to construct numerical schemes which are positivity or bound preserving. If the PDEs
are also energy dissipative and/or mass conservative, it is important that the numerical schemes
would be energy dissipative and/or mass conservative at the discrete level.

In this paper, we proposed a new approach to construct linear, positivity/bound preserving and
unconditionally energy stable schemes for general dissipative systems whose solutions are positiv-
ity/bound preserving. The essential ideas of this new approach are (i) to first make a function
transform so that the solution will always be positivity/bound preserving, and (ii) apply a new SAV
approach presented in [20] to the transformed system and the original energy dissipation law to
construct efficient and accurate time discretization schemes.

The resulting schemes enjoy remarkable properties such as positivity/bound preserving, uncondi-
tionally energy stable, can achieve high-order and with computational complexity similar to a semi-
implicit scheme. We applied this approach to Allen-Cahn equation with a singular potential, and
to Keller-Segel and Poisson-Nernst-Planck (PNP) equations which can be classified as Wasserstein
gradient flows with an additional property of mass conservation.

While we only discussed semi-discretization in time in this paper, we pointed out that the energy
dissipation, positivity or bound preserving and mass conservation can all be naturally carried over to
consistent fully discretizations.
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(a) T=0 (b) T=0

(c) T=1 (d) T=1

(e) T=2 (f) T=2

(g) T=8 (h) T=8

Figure 6. Example 5. Simulation of Keller-Segel equations with chemotaxis.
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(a) max u evolution (b) energy evolution (c) mass evolution

Figure 7. Example 5. Simulation of Keller-Segel equations with chemotaxis.
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[7] Luis Neves De Almeida, Federica Bubba, Benôıt Perthame, and Camille Pouchol. Energy and implicit discretization

of the Fokker-Planck and Keller-Segel type equations. arXiv preprint arXiv:1803.10629, 2018.
[8] Yasmin Dolak and Christian Schmeiser. The Keller–Segel model with logistic sensitivity function and small diffu-

sivity. SIAM Journal on Applied Mathematics, 66(1):286–308, 2005.

[9] Bob Eisenberg. Ionic channels in biological membranes-electrostatic analysis of a natural nanotube. Contemporary
Physics, 39(6):447–466, 1998.

[10] Yekaterina Epshteyn. Upwind-difference potentials method for Patlak-Keller-Segel chemotaxis model. Journal of
Scientific Computing, 53(3):689–713, 2012.

[11] Yekaterina Epshteyn and Alexander Kurganov. New interior penalty discontinuous Galerkin methods for the

Keller–Segel chemotaxis model. SIAM Journal on Numerical Analysis, 47(1):386–408, 2009.
[12] Francis Filbet. A finite volume scheme for the Patlak–Keller–Segel chemotaxis model. Numerische Mathematik,

104(4):457–488, 2006.

[13] Allen Flavell, Michael Machen, Bob Eisenberg, Julienne Kabre, Chun Liu, and Xiaofan Li. A conservative finite
difference scheme for Poisson-Nernst-Planck equations. Journal of Computational Electronics, 13(1):235–249, 2014.
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Figure 9. Example 7. Simulation with χ2 = 0.1
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