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We design and implement a polynomial-based spectral method on graphic processing
units (GPUs). The key to success lies in the seamless integration of the matrix diagonaliza-
tion technique and the new generation CUDA tools. The method is applicable to elliptic
equations in rectangular domains with general boundary condition. We show remarkable
speedups of up to 15 times in the 2-D case and more than 35 times in the 3-D case.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

General-purpose computing on graphics processing units (GPGPU) has drawn much attention recently from the scientific
computing community. The new list of top 500 supercomputers shows that more than 10% of them are now powered by
NVIDIA Tesla GPUs (cf. [4]). Thanks to the high core density and the wide vector width SIMD architecture, using GPGPU
can yield performance that is very hard for a conventional CPU to achieve, especially for high and regular throughput work-
loads (cf. [3]). Therefore, researchers in computational sciences are more and more interested in exploring efficient parallel
strategies on GPUs.

There exist many successful GPU implementations of numerical methods for partial differential equations, to name a few,
fast multipole methods [10], nodal discontinuous Galerkin methods [12], finite difference methods [6], finite element methods
[24,14,13], Fourier spectral methods [9,5], etc. However, to the best of the authors’ knowledge, not much effort, if not at all, are
devoted to implementing, on GPUs, non-Fourier based spectral methods for problems with non-periodic boundary conditions.
The aim of this paper is to exploit how to efficiently implement spectral methods with GPGPU. In particular, we shall design and
implement an efficient matrix diagonalization method with spectral discretizations on the GPU, for solving elliptic and para-
bolic type equations with non-periodic boundary conditions on a d-dimensional rectangular domain (d ¼ 2;3).

It is well-known that, for separable elliptic equations, one can use the so-called matrix diagonalization technique
(cf. [16,11,18]) to solve the linear systems from a spectral discretization in O(Ndþ1) operations, where N is the number of
points in each dimension. For time-dependent problems, these solvers are called repeatedly. Fortunately, the core part of this
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matrix diagonalization process is matrix–matrix multiplications, which can be efficiently parallelized on the GPU. More pre-
cisely, matrix–matrix multiplications can be efficiently addressed by the new generation CUDA tool, CUBLAS.

We found in the numerical experiments that the speedup of using GPU vs. CPU goes up as N increases. For example, the
speedup reaches a factor of 15 with N ¼ 212 in the 2-D case, and a factor of 37 with N ¼ 29 in the 3-D case, where N is the
number of points in each direction. In addition, computing times of different parts scale consistently with the complexity. In
our algorithm, the throughput is regular and the global memory access is completely coalesced, indicating a good perfor-
mance on the GPU.

To initialize the matrix diagonalization procedure, we need to first compute the eigenvalue and eigenvectors of 1-D prob-
lems on the host, then ship these eigenvalues and eigenvectors to the device because they will be used repeatedly in a typical
time marching scheme for evolutionary problems.

This paper is organized as follows. Details of the matrix diagonalization method are described in Section 2 using the spec-
tral-collocation method as an example. They provide a background for an in-depth discussion in Section 3 for the GPU par-
allelization of the same algorithm. In Section 4, we present some benchmark results for solving model elliptic equation in
both 2-D and 3-D, and for solving 2-D multiphase flows based on the coupled system of Navier–Stokes equation and Al-
len–Cahn equation.

2. Matrix diagonalization method for spectral discretizations

In this section, we describe the matrix diagonalization method for spectral discretizations of separable equations. To fix
the idea, we consider the following model equation on a rectangular domain X ¼ ð�1;1Þd (d ¼ 2;3):
au� Du ¼ f ; in X;

uj@X ¼ 0:

�
ð2:1Þ
2.1. Matrix diagonalization method in 2-D

Let PN be the space of polynomials of degree less or equal than N, and XN ¼ fu 2 PN : uð�1Þ ¼ 0g. Let fxj ¼ yj ¼ zjgN
j¼0

be the
set of Legendre Gauss–Lobatto points with x0 ¼ �1 and xN ¼ 1. The Legendre spectral-collocation method for (2.1) is:

Find uN 2 XN � XN such that
auNðxi; yjÞ � DuNðxi; yjÞ ¼ f ðxi; yjÞ; 1 6 i; j 6 N � 1: ð2:2Þ
Let hjðxÞ 2 PN be the Lagrange polynomial based on fxkgN
k¼0, i.e., hjðxiÞ ¼ dij. Writing uNðx; yÞ ¼

PN�1
i;j¼1uNðxi; yjÞhiðxÞhjðyÞ in (2.2)

and denoting
sij ¼ �h00j ðxiÞ; S ¼ ðsijÞ16i;j6N�1;

U ¼ ðuij ¼ uNðxi; yjÞÞ16i;j6N�1
; F ¼ ðfij ¼ f ðxi; yjÞÞ16i;j6N�1;

ð2:3Þ
we find that (2.1) is equivalent to
aU þ SU þ UST ¼ F: ð2:4Þ
In order to apply the matrix diagonalization method, we first solve the eigenvalue problem:
SE ¼ EK; ð2:5Þ
where K ¼ diagðk1; k2; . . . ; kN�1Þ are the eigenvalues of S, and the columns of E are the corresponding eigenvectors. It is well-
known that fkjg are all real and positive (cf. [7]). Then, setting
U ¼ EVET ð2:6Þ
in (2.4), multiplying the result by E�1 from the left, and by E�T from the right, we obtain
aV þKV þ VK ¼ G :¼ E�1FE�T ; ð2:7Þ
which can be written componentwise as
ðaþ ki þ kjÞv ij ¼ gij; ð2:8Þ
where gij is the ði; jÞth element of G. Therefore, the linear system is totally decoupled for each component ði; jÞ. We summarize
below the algorithm for solving (2.1) in 2-D on CPUs.

Algorithm 1.

(1) Pre-compute and store fS; E; E�1;Kg;
(2) Compute G in (2.7);
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(3) Solve for V from the decoupled linear system (2.7);
(4) Calculate U according to (2.6).

2.2. Matrix diagonalization method in 3-D

The above matrix diagonalization can be extended to three-dimensional case in a straightforward fashion. We briefly de-
scribe the corresponding steps below.

In the 3-D case, the spectral-collocation method in 3-D is: find uN 2 XN � XN � XN such that
auNðxi; yj; zkÞ � DuNðxi; yj; zkÞ ¼ f ðxi; yj; zkÞ; 1 6 i; j; k 6 N � 1: ð2:9Þ
The matrix diagonalization method described in the last section will involve multiplications of eigenmatrix E (and E�1) to the
three dimensional unknown array ðulmn ¼ uðxl; ym; znÞÞ16l;m;n6N�1, and the inverse E�1 to the three dimensional forcing array
ðflmn ¼ uðxl; ym; znÞÞ16l;m;n6N�1. More precisely, the 3-D correspondence of (2.4) becomes:
aulmn þ sliuimn þ smjuljn þ snkulmk ¼ flmn; 1 6 l;m;n 6 N � 1: ð2:10Þ
In the above (and below), the repeated index means that a summation of that index from 1 to N � 1.
The transform corresponding to (2.6) becomes
ulnm ¼ eliemjenkv ijk; 1 6 l;m; n 6 N � 1: ð2:11Þ
Let us denote
glnm ¼ e�1
li e�1

mj e�1
nk fijk; 1 6 l;m; n 6 N � 1: ð2:12Þ
where e�1
ij is the ði; jÞth component of E�1. Then, the equation corresponding to (2.8) is:
ðaþ ki þ kj þ kkÞv ijk ¼ gijk; 1 6 i; j; k 6 N � 1: ð2:13Þ
In summary, the matrix diagonalization the algorithm for solving (2.1) in 3-D on CPUs is as follows.

Algorithm 2.
(1) Pre-compute and store fS; E; E�1;Kg;
(2) Compute fglmng in (2.12);
(3) Compute for fv ijkg from the decoupled linear system (2.13);
(4) Compute fulmng according to (2.11).
Remark 2.1. The eigenvalue decompositions in (2.5) can be pre-computed and stored once for all. Therefore, for both 2-D
and 3-D cases, the computational complexity is dominated by the matrix–matrix multiplications in steps (2) and (4), which
cost OðNdþ1Þ flops.
Remark 2.2. While we have presented the algorithm with the spectral-collocation method, the same algorithm can be
applied to spectral-Galerkin methods (cf. [21,22,19]) which lead to sparse, for problems with constant-coefficients, and
well-conditioned systems.

3. Design and implementation of spectral methods on the GPU

We discuss now in detail the design and implementation of the algorithm in the last section on the GPU. There are three
basic strategies for optimizing the performance on GPUs (cf. [1,2]): (i) maximizing memory throughput; (ii) maximizing uti-
lization; and (iii) maximizing instruction throughput. In Section 3.1, we address strategy (i) and describe the overall strategy
of the GPU parallelization for our algorithm. In Section 3.2 and 3.3, we focus on strategy (ii), by using both CUBLAS and a user
lever kernel function. Since our algorithm only involves additions and multiplications, we do not need to address strategy (iii).

All our experiments were done on an Intel Xeon-E5540 CPU (eight-core threaded with the MKL BLAS library) and on an
Nvidia Tesla K20 GPU. Computing times were given in seconds throughout the paper.

To explain essential ideas, we consider the 2-D case first in the first three subsections. Then we consider the 3-D case in
Section 3.4.

3.1. Memory throughput and GPU parallelization

By reviewing Algorithm 1, we observe that data in step (1) need to be pre-computed. We initialize them on the host and
then transfer the results to the GPU. An important motivation for accelerating the matrix-diagonalization algorithm for
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spectral approximations is for solving time-dependent partial differential equations. Therefore, data that do not change in
time should be pre-computed and stored on the GPU once and for all, in order to minimize data transfer between the host
and the device.

We list all auxiliary arrays (scalars omitted) in Table 1. According to Table 1, we need at least 7 q� q (q ¼ N � 1) matrices.
In addition, it is preferred to allocate another two working matrices to avoid in-place function calls for the ease of implemen-
tation. Therefore, the total number of double precision matrices is 9. Current GPUs are still limited by storage. For example,
the Nvidia Tesla K20 GPU has a storage of 6 GB. If we take, N ¼ 2K , a simple calculation reveals that we are limited to K 6 13.

Data in Table 1 will be generated on the CPU, and shipped to the GPU with the CUDA runtime API cudaMemcpy. We denote
the wall time for shipping the memory from the host to the device as HtD.

In Table 2, we list clock times (in seconds) for the initialization and the memory copy. There is only one matrix (the un-
known numerical solution) that needs to be copied back from the device to the host (DtH), in order to complete the algo-
rithm. Hence, DtH is much smaller than HtD.

Note that the initialization cost is dominated by the eigenpair computation of the matrix S. This cost can be drastically
reduced if one uses the Legendre–Galerkin method where only a sparse matrix (tridiagonal or penta-diagonal) is involved
(cf. [21]).

The focus of our method is in parallelizing steps (2)–(4) in Algorithm 1. Each of them involves updating information re-
lated to the unknown matrix U. We are able to perform these steps on GPU only since every matrix in need has been shipped
to the device. This is crucial because lowing the memory transfer between host and device is the high priority for optimizing
CUDA applications. This point has been laid out in the beginning of this section.

3.2. Matrix multiplications with CUBLAS

The steps (2)–(4) in Algorithm 1, especially (2) and (4), dominate the computational complexity and computing times.
Thus, it is important to implement them with efficient parallelizing strategies. The key observation is that steps (2) and
(4) can be performed with a BLAS operation [25]. In Table 3, we list the three core operations. Noted that step (3) is not a
linear operation, and we will deal with it separately in next subsection.

The CUBLAS library comes handy for these numerical linear algebra tasks on GPUs and they are heavily tuned in particular
for Nvidia devices. Therefore, it is natural to perform these BLAS operations on GPUs instead of CPUs. In the implementation,
users of CUBLAS need to create one or several handles for operations in Table 3. That allows CUDA to collect all BLAS oper-
ations involved in the program, and the optimal grids will be arranged automatically by CUBLAS. We emphasize that all the
matrix operations in our algorithm are dense. Hence, the global memory access is completely coalesced. In principle, these
CUBLAS calls can achieve the highest efficiency thanks to the high core density and the massively thread–parallelization.

3.3. The grid arrangement: maximizing utilization on the multiprocessor level

While the computational complexity (not necessarily computing times) of the step (3) is negligible compared to that of
steps (2) and (4), it still needs to be parallelized once the dynamic data is on the device. Otherwise, the overall speedup can
deteriorate by intermediate serial operations or possible memory transfers. In this subsection, we focus on the parallel strat-
egy for step (3), which is the only kernel function that needs to be written by users.

We can immediately see that solving (2.8) is a perfect scenario for the GPU parallelization, because each component of V
is decoupled and each index ði; jÞ can be mapped to an independent thread of the device. The question remains on how to
design appropriate grid and block sizes for this particular kernel function. In general, the grid size should be large. Therefore,
what we need to determine is the block size. To this end, we carried on an experiment of the CUDA kernel operation using
random matrices of size 2K � 2K . The result is listed in Table 4.

It is observed that the optimal grid size should match the warp size or half-warp size of the device. On many GPUs, the
number would be either 16 or 32. Though Grid A (see Table 4) leads to the largest grid size, it does not achieve the highest
efficiency since the latency between different threads becomes significant.

We summarize below the algorithm outline for the spectral-collocation method on the GPU.
Table 1
Auxiliary data that are static in time (q ¼ N � 1).

Variable Size Meaning

x ðN þ 1Þ � 1 Gauss–Lobatto points

Sð2Þ q� q Collocation matrices

E; E�1 2q� q Eigen-vector matrices

F;G;U;V 4q� q r.h.s. and solution
K q� 1 Eigenvalues of Sð2Þ



Table 2
The eigenvalue decomposition (initialization) is done on the host. HtD (DtH) is the wall time of memory copies from the host
(device) to the device (host). These operations can be done once for all in most applications.

K Initialization HtD DtH

3 3.8e�04 3.3e�04 1.0e�04
4 6.0e�04 3.4e�04 9.9e�05
5 1.2e�03 3.9e�04 1.1e�04
6 5.7e�03 6.1e�04 1.4e�04
7 3.6e�02 1.4e�03 2.8e�04
8 1.9e�01 4.3e�03 7.5e�04
9 1.0e+00 1.6e�02 3.0e�03

10 6.3e+00 5.5e�02 9.6e�03
11 5.1e+01 2.1e�01 3.1e�02
12 4.0e+02 8.1e�01 1.3e�01

Table 3
Core operations in the spectral-collocation method: p2s: performing the physical-to-spectral transformation according to (2.7);
s2p: performing the spectral-to-physical transformation according to (2.6).

Operation Program Step Meaning

p2s dgemm (2) G E�1FE�T

kernel / (3) Solving for V in (2.7)
s2p dgemm (4) U  EVE�1

Table 4
Computing times in seconds for different grid configurations in kernel. The block size (number of threads per block) in each of the
above three grids is: 1� 1; 16� 16; 32� 32. The grid size is then determined as the quotient of the matrix size and block size.

K Grid A Grid B Grid C

3 4.3e�05 4.2e�05 1.9e�05
4 2.0e�05 1.4e�05 2.1e�05
5 2.3e�05 1.3e�05 1.6e�05
6 3.0e�05 1.5e�05 1.6e�05
7 6.9e�05 1.6e�05 1.7e�05
8 2.7e�04 2.6e�05 2.7e�05
9 1.2e�03 4.9e�05 5.1e�05

10 4.9e�03 1.7e�04 1.8e�04
11 1.9e�02 6.7e�04 6.7e�04
12 7.8e�02 2.8e�03 2.8e�03
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Algorithm 3.
(1) Pre-computation on the host:

(a) Pre-compute and store fS; E; E�1;Kg in (2.5);

(2) Ship the above static variables from host to device;
(3) Computation on the device:
(a) p2s: Compute G in (2.7);
(b) kernel: Solve the decoupled linear system (2.7) for V;
(c) s2p: Calculate U according to (2.6);

(4) Ship the result U from device to host.

3.4. 3-D case

Essential ideas in the previous three subsections remain the same for the 3-D case. Auxiliary data are initialized on the
host and shipped to the device once for all. In terms of the grid arrangement, the optimal grid size still matches the warp size,
though a 3-D grid is launched.
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The only thing that deserves more explanation is how to perform the matrix–matrix multiplications in (2.11) and (2.12).
Vector data in the present algorithm are re-aligned as one dimensional arrays by going through x dimension first, y second,
and z third. This is a natural convention that does not cause any trouble in the 2-D case. It is because that (2.7) and (2.6) can
be calculated directly by calling CUBLAS_Dgemm and tuning the two operational parameters, CUBLAS_OP_N and
CUBLAS_OP_T.

However, this convention brings a problem to the 3-D case, that is, the memory access is not coalesced in the y dimension.
Therefore, before performing the matrix–matrix multiplication along the y dimension, the array needs to be re-aligned in
order to be accessed continuously. In other words, we perform a matrix transpose before applying emj in (2.11), to ensure
the y-index goes first, and perform another transpose after to reset the order, similarly for (2.12).

For the matrix transpose, two approaches are in consideration: (i) transpose with naive copy, and (ii) transpose with
the memory coalesce. Consider the transpose of a matrix A of size n1 � n2. If the column major ordering is used, then
there is a stride of length of n1 in the memory access of AT . Therefore, the first approach is relatively slow for transpos-
ing large matrices. We use the second approach that yields much better efficiency when K is large. By dividing the ma-
trix into tiles of size 24 � 24, this technique leads to a remarkable performance on the GPU. The essential idea of the
memory coalesce is utilizing the on-cache feature of the shared memory on each block. Readers refer [17] for more
details.

We summarize below the 3-D algorithm on the GPU.
Algorithm 4.
(1) Pre-computation on the host:

(a) Pre-compute and store fS; E; E�1;Kg in (2.5);

(2) Ship the above static variables from host to device;
(3) Computation on the device:
(a) p2s: Compute G in (2.12);
(i) matrix multiplication in x;
(ii) matrix transpose; matrix multiplication in y; another transpose;
(iii) matrix multiplication in z;

(b) kernel: Solve the decoupled linear system (2.13) for V;
(c) s2p: Calculate U according to (2.11), in a similar way as p2s;

(4) Ship the result U from device to host.

4. Numerical experiments

In the first subsection, we demonstrate the performance of our spectral-collocation method on the GPU for some model
elliptic equations in 2-D and 3-D. In the second subsection, we apply the algorithm to solve the Navier–Stokes equation and
the Allen–Cahn equation through an energy stable scheme which leads to a sequence of Poisson type equations at each time
step. The detailed information of the CPU and the GPU in use was described at the beginning of Section 3.

4.1. The model equation

As a first test example, we consider the following second-order separable equations with general boundary conditions:
ðaðxÞ þ bðyÞÞu� ðaðxÞuxÞx � ðbðyÞuyÞy ¼ f in X ¼ ð�1;1Þ2;

a�uðx;�1Þ þ b�uyðx;�1Þ ¼ g�ðxÞ; 8x 2 ð�1;1Þ;
c�uð�1; yÞ þ d�uxð�1; yÞ ¼ h�ðyÞ; 8y 2 ð�1;1Þ:

ð4:1Þ
We observe first that the algorithm presented in Section 2 can be easily extended to handle the above equation (cf. [19]).
To test our algorithm, we choose the exact solution in (4.1) to be
uðx; yÞ ¼ expðxÞ expðyÞ; ð4:2Þ
and set the coefficients to be
aðxÞ ¼ 2x; bðyÞ ¼ 3y; aðxÞ ¼ 3 sinðxÞ; bðyÞ ¼ 4 cosðyÞ;
a� ¼ 1; b� ¼ 3; c� ¼ �1; d� ¼ �2:

ð4:3Þ
The right hand side functions, f ðx; yÞ, g�ðxÞ, and h�ðyÞ, are calculated accordingly.



Table 5
Computing times (in seconds) and speedups for (4.1) and (4.2).

K CPU GPU Speedup

3 6.7e�05 1.4e�04 0
4 1.5e�05 1.2e�04 0
5 5.7e�05 1.4e�04 0
6 8.3e�04 1.6e�04 5
7 9.2e�04 2.3e�04 4
8 3.2e�03 3.8e�04 8
9 2.1e�02 1.9e�03 11

10 1.3e�01 8.8e�03 15
11 9.5e�01 6.7e�02 14
12 7.6e+00 5.2e�01 15

F. Chen, J. Shen / Journal of Computational Physics 250 (2013) 555–564 561
After confirming that our algorithm does lead to spectral accuracy as expected, we list computing times for our algorithm
on CPU and GPU respectively in Table 5. We set N ¼ 2K , where N is the highest polynomial degree in each direction. As K
increases, the CUDA threads achieve higher parallel efficiency and speedups. In general, the speedup is more than 10 when
K P 9.

In Table 6, we compare computing times of different parts corresponding to Table 3. For the above problem with general
boundary conditions, we also need to form a new right hand side matrix (rhs), which only involves a level-one CUBLAS call.
Note that the computing time for rhs and kernel is negligible compared to the other parts.

As a second example, we consider
2u� 3uxx � 4uyy � 5uzz ¼ f in X ¼ ð�1;1Þ3; ð4:4Þ
with the homogeneous Dirichlet boundary condition in each dimension. We take the exact solution to be
u ¼ sinðpxÞ sinðpyÞ sinðpzÞ with the right hand side f ðx; y; zÞ computed accordingly. The computing times of both CPU and
GPU for solving the above equation are listed in Table 7. We observe that the speedups go up as K increases, and are better
than those in the 2-D case.

4.2. Incompressible Navier–Stokes equations

As an example of applications, we apply our GPU accelerated spectral solver to the 2-D incompressible Navier–Stokes
equations:
ut þ u � ru ¼ mDu�rpþ f ;
r � u ¼ 0;
uj@X ¼ g; ujt¼0 ¼ u0;

8><
>: ð4:5Þ
where X ¼ ð�1;1Þ2;u is the unknown velocity field, p is the unknown pressure, f is a given body force, and g is the given
Dirichlet data.

We discretize the above system in time with the following first-order rotational pressure correction scheme (cf. [8]).
Given fun; png, we solve first for an intermediate velocity ~unþ1 from
~unþ1 � un

dt
þ un � run ¼ mD~unþ1 �rpn þ f nþ1;

~unþ1j@X ¼ g:

8<
: ð4:6Þ
Then, we solve ðunþ1;wnþ1Þ from
unþ1 � ~unþ1

dt
þrwnþ1 ¼ 0;

r � unþ1 ¼ 0;
unþ1 � nj@X ¼ g � n:

8>>><
>>>:

ð4:7Þ
Finally, we update the velocity and pressure as follows:
unþ1 ¼ ~unþ1 � dtrwnþ1;

pnþ1 ¼ pn þ wnþ1 � mr � ~unþ1:
ð4:8Þ
Note that, by applying the divergence operator, (4.7) can be written equivalently as a Poisson equation for wnþ1. As a conse-
quence, at each time step, we need to solve three Poisson type equations (for u1;u2, and w), and perform several CUBLAS calls
to update unþ1 and pnþ1.

As a test example, we consider the driven cavity flow where the top plate of the domain moves towards left with the unit
velocity. In Table 8, we compare the running times on the CPU and the GPU respectively. More specifically, we take dt ¼ 10�3,



Table 6
Computing times of different parts in Table 3 for (4.1) and (4.2).

K rhs p2s kernel s2p

3 2.1e�05 4.1e�05 1.3e�05 4.0e�05
4 1.7e�05 4.6e�05 1.3e�05 4.6e�05
5 1.7e�05 5.5e�05 1.4e�05 5.5e�05
6 1.7e�05 7.1e�05 1.3e�05 7.1e�05
7 1.9e�05 1.0e�04 1.5e�05 1.0e�04
8 2.9e�05 1.7e�04 1.8e�05 1.7e�04
9 1.0e�04 8.8e�04 4.7e�05 8.8e�04

10 3.5e�04 4.2e�03 1.5e�04 4.2e�03
11 1.4e�03 3.3e�02 5.4e�04 3.3e�02
12 5.3e�03 2.6e�01 2.2e�03 2.6e�01

Table 7
Computing times (in seconds) and speedups for the 3-D case.

K CPU GPU Speedup

3 7.3e�04 1.4e�04 5
4 9.5e�04 1.6e�04 6
5 1.2e�03 2.2e�04 5
6 1.3e�02 7.7e�04 17
7 1.7e�01 5.4e�03 31
8 2.4e+00 6.6e�02 36
9 3.4e+01 9.1e�01 37

Table 8
Running times for the driven cavity flow with dt ¼ 10�3; T ¼ 10; m ¼ 10�4.

K 7 8 9 10 11

CPU 3.05e+01 2.55e+02 1.11e+03 8.01e+03 5.98e+04
GPU 1.50e+01 2.58e+01 1.24e+02 5.71e+02 4.20e+03
Speedup 2 10 9 14 14
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the final time T ¼ 10, and m ¼ 10�4 that corresponds to a Reynolds number of 20,000. At this Reynolds number, the solution
no longer converges to a steady state. We observe that speedups of using the GPU over the CPU for solving Navier–Stokes
equations are consistent with those listed in Table 5 for solving an elliptic equation. In particular, with K ¼ 10, which means
a grid size of 1024� 1024, the CPU takes more than two hours to finish, while the GPU takes less than ten minutes.

4.3. Incompressible two-phase flows

Next, we consider a phase-field model for incompressible, immiscible, two-phase flows, for simplicity, with matching
density and viscosity (cf. [15]). The cases of variable density and viscosity can be treated in a similar manner (cf., for instance,
[23]).

Let /ð_;tÞ be a phase-field function which takes the value 1 in fluid one and �1 in fluid two, with a smooth transitional
layer of thickness � linking the two fluids. The phase-field model consists of the Navier–Stokes equations with an extra elas-
tic stress,
ut þ u � ru ¼ mDu�rp� kr � ðr/�r/Þ; in X; ð4:9aÞ
r � u ¼ 0; in X; ð4:9bÞ
u ¼ g; on @X ð4:9cÞ
and the advected Allen–Cahn equation with a Lagrange multiplier nðtÞ to preserve the volume fraction:
/t þ u � r/ ¼ Mk D/� /3 � /

�2 þ nðtÞ
 !

; in X; ð4:10aÞ

@t

Z
X

/ðx; tÞdx ¼ 0; ð4:10bÞ

@n/ ¼ 0; on @X; ð4:10cÞ
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Fig. 1. Dynamics of two kissing bubbles under shear.
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where u is the flow velocity field, p is the flow pressure, m is the dimensionless viscosity, k is related to the surface tension
density, M is related to the relaxation time scale of the dynamics, and n is the outward normal of @X.

To solve this coupled nonlinear system numerically, we use a first-order energy stable scheme (cf. [20,23,26]), which in-
volves solving four decoupled elliptic equations at each time step.

As a test example, we consider the dynamics of two kissing bubbles under shear, namely, the top (bottom) plate moves
toward right (left) with 4 units of velocity. The following parameters are used: m ¼ 1; � ¼ 5� 10�3; k ¼ 0:02; M ¼ 0:1. The
time step size dt ¼ 10�5, and spatial discretization is by a 512� 512 Chebyshev grid. In this example, the running times are
nearly five hours on the CPU and less than thirty minutes on the GPU. Several snapshots of the dynamics are displayed in
Fig. 1.

In summary, we designed and implemented a GPU parallelized matrix diagonalization method for spectral approxima-
tions of elliptic equations in two- and three-dimensional rectangular domains. The method achieved remarkable speedups
compared with CPU. We applied our algorithm to solving the time dependent Navier–Stokes equations and the phase-field
model for two-phase flows, and observed a speedup consistent to that for the elliptic equation. It is clear that the algorithm
presented in this paper can be applied to a wide range of time dependent PDEs, and is expected to be able to offer significant
speedups for many practical problems.
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