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For numerical schemes to the incompressible Navier-Stokes equations with variable 
density, it is a critical property to preserve the bounds of density. A bound-preserving 
high order accurate scheme can be constructed by using high order discontinuous Galerkin 
(DG) methods or finite volume methods with a bound-preserving limiter for the density 
evolution equation, with any popular numerical method for the momentum evolution. 
In this paper, we consider a combination of a continuous finite element method for 
momentum evolution and a bound-preserving DG method for density evolution. Fully 
explicit and explicit-implicit strong stability preserving Runge-Kutta methods can be 
used for the time discretization for the sake of bound-preserving. Numerical tests on 
representative examples are shown to demonstrate the performance of the proposed 
scheme.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The Navier-Stokes equations governing incompressible viscous flows with variable density are given as⎧⎪⎨⎪⎩
ρt + u · ∇ρ = 0, (a)

ρ (ut + (u · ∇)u) + ∇p − ∇ · (μ(ρ)∇u) = f, (b)

∇ · u = 0, (c)

(1.1a)

where the unknowns are the density ρ , the velocity field u and the pressure p. The coefficient μ(ρ) models the dynamic 
viscosity, and f represents the external force, e.g., gravity. For simplicity, we consider the following initial and boundary 
conditions on a two-dimensional bounded domain �:{

ρ(x,0) = ρ0(x), ρ(x, t)|� = a(x, t),
u(x,0) = u0(x), u(x, t)|� = 0,

(1.1b)

where � = ∂� is boundary of �. We note that no initial and boundary conditions are needed for the pressure p which can 
be viewed as a Lagrange multiplier to enforce the incompressibility condition (1.1a)(c). We refer to [22] for the mathematical 
theory on the well-posedness of (1.1).
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For Navier-Stokes equations with constant density, the numerical schemes have been well studied, e.g., see [8] and [10]
and the references therein. However, the Navier-Stokes equations with variable density (1.1) involve a density equation 
which is a purely convection equation thus oscillations may occur near the sharp interface. It is crucial to maintain the 
physical bound of density to ensure numerical stability. The main objective of this paper is to construct a high order bound-
preserving scheme for this variable-density incompressible fluid system.

For solving variable-density incompressible Navier-Stokes equations (1.1), established numerical methods for incompress-
ible flows can be used. One popular approach is the fractional time-stepping method or implicit projection method [5,10], 
which can effectively handle the difficulties associated with the incompressibility constraint. This approach has been devel-
oped and used in [2,3,11,12,21,25], among others, for incompressible fluid flows with variable density. In [11] Guermond 
and Quartapelle gave the stability analysis for any projection type scheme with variable density. Nonetheless, the variable 
density introduces considerable difficulties for the construction and analysis of accurate and stable projection type schemes. 
On the other hand, the system (1.1) can also be solved directly by a Runge-Kutta method with finite element method or 
a non-variational method such as spectral-collocation method for an equivalent pressure Poisson equation formulation. In 
[17] Johnston and Liu presented such a second order finite difference scheme based on local pressure boundary conditions 
for time-dependent viscous incompressible flows with variable density for moderate to large Reynolds number simulations.

For a scalar convection problem, a high order finite volume or a high order DG scheme can be easily rendered bound-
preserving using a simple bound-preserving limiter [32–35]. Thus density can be ensured bound-preserving if using a 
high order bound-preserving DG method for (1.1a)(a). For (1.1a)(b), we can also use a DG method, which however in-
duces unnecessarily more degree of freedoms than a continuous finite element method. So we will explore a combination 
of a bound-preserving discontinuous Galerkin method solving the density equation and a finite element method solving 
momentum equation for variable-density incompressible Navier-Stokes equations. For instance, for using Q k elements on 
rectangular meshes, DG can be implemented as a nodal DG scheme [13,19] and continuous finite element method can be 
implemented as a variational finite difference scheme [20], both of which have degree of freedoms defined on Gauss-Lobatto 
points of the rectangular cells thus can be easily combined. For the sake of bound-preserving, a high order strong stability 
preserving (SSP) time discretization [9] must be used for the time discretization. If considering moderate to large Reynolds 
number flows, i.e., convection-dominated flows, a fully explicit SSP Runge-Kutta method is suitable. For large viscosity flows, 
fully explicit time discretization will impose small time steps for the sake of linear stability. In this case, implicit-explicit 
(IMEX) SSP Runge-Kutta schemes in [24] can be used to both ensure bound-preserving of density and to avoid small time 
steps for low Reynolds number flows.

The rest of the paper is organized as follows. In Section 2, we introduce variable density incompressible Navier-Stokes 
equations and equivalent pressure Poisson equation formulations. The numerical scheme is presented in Section 3. In Sec-
tion 4, we perform representative numerical tests to explore the performance of the proposed scheme. Concluding remarks 
are given in Section 5.

2. Mathematical formulation

One of the challenges for numerically solving the incompressible Navier-Stokes equations is how to ensure a divergence-
free flow field and recover the pressure from the velocity. Following [17], we first take the divergence of the momentum 
equation (1.1a)(b), then along with the incompressibility constraint (1.1a)(c) we get

∇ ·
(

1

ρ
∇p

)
= ∇ ·

(
−(u · ∇)u + 1

ρ
∇ · (μ(ρ)∇u) + f

ρ

)
. (2.1)

This equation gives the evolution of p provided that we know the evolution of ρ and u. A proper boundary condition for 
p is needed for solving (2.1). A natural candidate is given by the normal component of the momentum equation (1.1a)(b) 
along �:

∂ p

∂n

∣∣∣∣
�

= [∇ · (μ(ρ)∇(u · n)) + f · n]
∣∣
�
. (2.2)

On the other hand, with suitable boundary conditions, the exact solution of (1.1a)(a) satisfies the maximum principle 
ρ(x, y, t) ∈ [m, M], for all (x, y, t), where m = minx,y ρ0(x, y) and M = maxx,y ρ0(x, y). For discontinuous solutions or solu-
tions containing sharp gradient regions, it is preferable to solve the following equivalent conservative form

ρt + ∇ · (ρu) = 0, (2.3)

rather than the non-conservative form (1.1a)(a). However, the solution to (2.3) is not necessarily bound-preserving unless 
the velocity field is incompressible, i.e., ∇ · u = 0. It is usually much easier to construct a bound-preserving scheme solving 
the non-conservative form (1.1a)(a) but the conservation would be difficult to preserve. For solving the conservative form 
(2.3) coupled with ∇ · u = 0, a high order accurate DG scheme with a bound-preserving limiter was developed in [32,34].
2



M. Li, Y. Cheng, J. Shen et al. Journal of Computational Physics 425 (2021) 109906
Therefore, we will consider solving an equivalent pressure Poisson equation formulation of (1.1):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρt + ∇ · (ρu) = 0, (a)

ut + (u · ∇)u + 1
ρ ∇p − 1

ρ ∇ · (μ(ρ)∇u) = 1
ρ f, (b)

∇ ·
(

1
ρ ∇p

)
= ∇ ·

(
−(u · ∇)u + 1

ρ ∇ · (μ(ρ)∇u) + f
ρ

)
, (c)

∇ · u = 0, (d)

(2.4a)

with the following initial and boundary conditions for ρ , u and p:⎧⎨⎩
ρ(x,0) = ρ0(x), ρ(x, t)|� = a(x, t),
u(x,0) = u0(x), u(x, t)|� = 0,
∂ p
∂n

∣∣
�

= [∇ · (μ(ρ)∇(u · n)) + f · n]
∣∣
�
.

(2.4b)

3. Numerical methods

In this section, we describe the numerical methods for the system (2.4). For simplicity, we only consider a rectangu-
lar domain �, discretized by �h consisting of uniform rectangular cells. Extension to nonuniform rectangular meshes is 
straightforward. Consider polynomial approximation spaces on rectangular cells

V k
h =

{
v : v|K ∈ Q k(K ),∀K ∈ �h

}
, W k

h = V k
h ∩ C0(�h), W k

0,h = {u|u ∈ W k
h, u|� = 0},

Vk
h = {u = (u, v)|u, v ∈ V k

h}, Wk
0,h = {u = (u, v)|u, v ∈ W k

0,h},
where Q k refers to the space of tensor products of 1D polynomials of degree k. A bound-preserving discontinuous Galerkin 
scheme [32,35,34] will be used for the density evolution (2.4a)(a) and a finite element method [20] will be used for the 
velocity evolution (2.4a)(b) and pressure (2.4a)(c).

3.1. A high order accurate DG scheme for the density evolution

We first consider a high order accurate DG scheme for the equation (2.4a)(a), following the approach of constructing 
bound-preserving high order schemes for passive convection with an incompressible velocity field in [32,35,34]. For given 
velocity field uh ∈ Vk

h , on a rectangular cell K , the DG solution ρh ∈ V k
h satisfies

ˆ

K

∂tρhφhdxdy −
ˆ

K

ρhuh · ∇φhdxdy +
∑

e∈∂ K

ˆ

e

ρ̂huh · nφhds = 0, ∀φh ∈ V k
h , (3.1)

where n denotes the unit outward normal vector to ∂ K and ρ̂huh · n is the numerical flux.
To construct a bound-preserving scheme as in [32,35,34], it would be convenient to require the velocity field uh to satisfy 

two constraints:

1. The incompressibility ∇ · uh = 0 holds everywhere inside the cell K .
2. The normal velocity uh · n is continuous across cell boundaries ∂ K .

These two constraints can be easily satisfied if the stream function ψh is available. Namely, if we compute the velocity 
field by uh = 〈uh, vh〉 =

〈
− ∂ψh

∂ y ,
∂ψh
∂x

〉
from some stream function ψh ∈ W k

0,h . Notice that we have the normal velocity uh ·n =〈
− ∂ψh

∂ y ,
∂ψh
∂x

〉
· n = ∂ψh

∂τ where τ denote the unit vector tangent to ∂ K , thus uh · n is continuous across any element boundary 

∂ K since ψh is continuous. For now we assume ψh ∈ W k
0,h is given and we will discuss how to obtain it in Section 3.5.

Assume the rectangular cell K can be denoted as [xi− 1
2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
], then we can also refer to the cell K as 

(i, j) cell. Let 	x = xi+ 1
2

− xi− 1
2

and 	y = y j+ 1
2

− y j− 1
2

. At time level n, in (i, j) cell, let ρ+
i− 1

2 , j
(y), ρ−

i+ 1
2 , j

(y), ρ+
i, j− 1

2
(x), 

and ρ−
i, j+ 1

2
(x) denote the traces of the DG polynomial ρi, j(x, y) on the left, right, bottom and top edges, respectively. On 

the left, right, bottom and top edges, uh · n is ui− 1
2 , j(y), ui+ 1

2 , j(y), vi, j− 1
2
(x), and vi, j+ 1

2
(x), respectively. Since the normal 

velocity is continuous, we can define the Lax-Friedrichs flux as:

ρ̂huh · n = h
(
ρ−

h ,ρ+
h ,uh · n

)= 1

2

[
uh · n

(
ρ+

h + ρ−
h

)− a
(
ρ+

h − ρ−
h

)]
, (3.2)

where a can be taken as the maximum of |uh · n| either locally or globally, corresponding to a local Lax-Friedrichs flux or a 
global Lax-Friedrichs flux. If we simply take a = |uh · n|, then it is exactly the same as the upwind flux used in [23,32].
3
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By setting the test function φh ≡ 1, we obtain the scheme satisfied by the cell average ρK = ρ i, j = 1
	x	y

˜
K ρ(x, y)dxdy, 

i.e., the scheme (3.1) with φh ≡ 1 becomes,

d

dt
ρ i, j + 1

	x	y

∑
e∈∂ K

ˆ

e

ρ̂huh · nds = 0.

With the forward Euler time discretization, the cell average scheme in the DG method is

ρn+1
i, j = ρn

i, j − 	t

	x	y

y
j+ 1

2ˆ

y
j− 1

2

[
h

(
ρ−

i+ 1
2 , j

(y),ρ+
i+ 1

2 , j
(y), ui+ 1

2 , j(y)

)
− h

(
ρ−

i− 1
2 , j

(y),ρ+
i− 1

2 , j
(y), ui− 1

2 , j(y)

)]
dy

− 	t

	x	y

x
i+ 1

2ˆ

x
i− 1

2

[
h

(
ρ−

i, j+ 1
2
(x),ρ+

i, j+ 1
2
(x), vi, j+ 1

2
(x)

)
− h

(
ρ−

i, j− 1
2
(x),ρ+

i, j− 1
2
(x), vi, j− 1

2
(x)

)]
dx.

(3.3)

The integrals in (3.3) can be computed exactly. Since all the integrands are single variable polynomials of degree at most 2k, 
the integrals in (3.3) are equal to the L-point Gauss quadrature if L ≥ k + 1. In a DG scheme with polynomial basis of degree 
k, L ≥ k + 1 must be used, see [7]. Let Sx

i = {xβ

i : β = 1, · · · , L} denote the Gauss quadrature points on [xi− 1
2
, xi+ 1

2
] and 

S y
j = {yβ

j : β = 1, · · · , L} denote the Gauss quadrature points on [y j− 1
2
, y j+ 1

2
]. Let wβ denote the corresponding quadrature 

weights on the interval [− 1
2 , 12 ] so that 

∑L
i=1 wβ = 1. We will use the subscript β to denote the values at the Gauss 

quadrature points, for instance, ρ−
i+ 1

2 ,β
= ρ−(xi+ 1

2
, yβ

j ). Substituting the integrals by the L-point Gauss quadrature in (3.3), 
we obtain the mathematically equivalent expression

ρn+1
i, j = ρn

i, j − λ1

L∑
β=1

wβ

[
h

(
ρ−

i+ 1
2 ,β

,ρ+
i+ 1

2 ,β
, ui+ 1

2 ,β

)
− h

(
ρ−

i− 1
2 ,β

,ρ+
i− 1

2 ,β
, ui− 1

2 ,β

)]

−λ2

L∑
β=1

wβ

[
h

(
ρ−

β, j+ 1
2
,ρ+

β, j+ 1
2
, vβ, j+ 1

2

)
− h

(
ρ−

β, j− 1
2
,ρ+

β, j− 1
2
, vβ, j− 1

2

)]
, (3.4)

where λ1 = 	t
	x and λ2 = 	t

	y .

3.2. The bound-preserving property in the high order DG method

In this subsection we focus on the first order forward Euler time discretization. Bound-preserving high order time dis-
cretizations will be discussed in Section 3.6. We show that the cell average ρn+1

i, j in (3.4) is a monotonically increasing 
function with respect to some quadrature point values of the DG polynomial ρi, j(x, y) in K , thus it is possible to obtain a 
bound-preserving scheme.

For completeness, we include a detailed discussion, which is slightly different from those in [32,34] but essentially the 
same. Let N be the smallest integer such that 2N − 3 ≥ k then the N-point Gauss-Lobatto quadrature rule is exact for poly-
nomials of degree k. Let Ŝx

i = {̂xα
i : α = 1, · · · , N} and Ŝ y

j = {̂yα
j : α = 1, · · · , N} denote the Gauss-Lobatto quadrature points 

on 
[

xi− 1
2
, xi+ 1

2

]
and 

[
y j− 1

2
, y j+ 1

2

]
respectively. Let ŵα denote the quadrature weights on the interval [− 1

2 , 12 ] respectively. 

We will use subscript α to denote the evaluation at the Gauss-Lobatto quadrature points, for instance, ρα,β = ρ(̂xα
i , yβ

j ).

After replacing the integrals by quadrature rules, the cell average ρn
i, j can be written as

ρn
i, j = 1

	x	y

y
j+ 1

2ˆ

y
j− 1

2

x
i+ 1

2ˆ

x
i− 1

2

ρi, j(x, y)dxdy = 1

	x	y

L∑
β=1

N∑
α=1

wβ ŵαρi, j

(
xβ

i , ŷα
j

)
	x	y

=
L∑

β=1

N∑
α=1

wβ ŵαρβ,α =
L∑

β=1

N−1∑
α=2

wβ ŵαρβ,α +
L∑

β=1

wβ ŵ1ρ
+
β, j− 1

2
+

L∑
β=1

wβ ŵ Nρ−
β, j+ 1

2
,

and similarly we have
4
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ρn
i, j =

N∑
α=1

L∑
β=1

ŵα wβρα,β =
N−1∑
α=2

L∑
β=1

ŵα wβρα,β +
L∑

β=1

ŵ1 wβρ+
i− 1

2 ,β
+

L∑
β=1

ŵ N wβρ−
i+ 1

2 ,β
.

Let a1 and a2 be the global maximum of |u| and |v| respectively, and let μ1 = a1λ1
a1λ1+a2λ2

and μ2 = a2λ2
a1λ1+a2λ2

, then μ1 +μ2 =
1. We can decompose the cell average as

ρn
i, j =μ1

N∑
α=1

L∑
β=1

ŵα wβρα,β + μ2

L∑
β=1

N∑
α=1

wβ ŵαρβ,α

=μ1

N−1∑
α=2

L∑
β=1

ŵα wβρα,β + μ1

L∑
β=1

ŵ1 wβρ+
i− 1

2 ,β
+ μ1

L∑
β=1

ŵ N wβρ−
i+ 1

2 ,β

+ μ2

L∑
β=1

N−1∑
α=2

wβ ŵαρβ,α + μ2

L∑
β=1

wβ ŵ1ρ
+
β, j− 1

2
+ μ2

L∑
β=1

wβ ŵ Nρ−
β, j+ 1

2
. (3.5)

Notice that, for any λ > 0, under the constraint λa ≤ 1, the numerical flux (3.2) satisfies

∂

∂ρ+
[
ρ+ + λh(ρ−,ρ+, |u · n|)]= 1 + λ

|u · n| − a

2
≥ 0,

∂

∂ρ−
[
ρ+ + λh(ρ−,ρ+, |u · n|)]= λ

|u · n| + a

2
≥ 0,

∂

∂ρ−
[
ρ− − λh(ρ−,ρ+, |u · n|)]= 1 − λ

|u · n| + a

2
≥ 0,

∂

∂ρ+
[
ρ− − λh(ρ−,ρ+, |u · n|)]= λ

a − |u · n|
2

≥ 0.

Plugging (3.2) and (3.5) into (3.4), we get

ρn+1
i, j =ρn

i, j − λ1

L∑
β=1

wβ

[
h

(
ρ−

i+ 1
2 ,β

,ρ+
i+ 1

2 ,β
, ui+ 1

2 ,β

)
− h

(
ρ−

i− 1
2 ,β

,ρ+
i− 1

2 ,β
, ui− 1

2 ,β

)]

− λ2

L∑
β=1

wβ

[
h

(
ρ−

β, j+ 1
2
,ρ+

β, j+ 1
2
, vβ, j+ 1

2

)
− h

(
ρ−

β, j− 1
2
,ρ+

β, j− 1
2
, vβ, j− 1

2

)]

=μ1

N−1∑
α=2

L∑
β=1

ŵα wβρα,β + μ2

L∑
β=1

N−1∑
α=2

wβ ŵαρβ,α

+ μ1

L∑
β=1

wβ ŵ1

[
ρ+

i− 1
2 ,β

+ λ1

μ1 ŵ1
h

(
ρ−

i− 1
2 ,β

,ρ+
i− 1

2 ,β
, ui− 1

2 ,β

)]

+ μ1

L∑
β=1

wβ ŵ N

[
ρ−

i+ 1
2 ,β

− λ1

μ1 ŵ N
h

(
ρ−

i+ 1
2 ,β

,ρ+
i+ 1

2 ,β
, ui+ 1

2 ,β

)]

+ μ2

L∑
β=1

wβ ŵ1

[
ρ+

β, j− 1
2

+ λ2

ŵ1μ2
h

(
ρ−

β, j− 1
2
,ρ+

β, j− 1
2
, vβ, j− 1

2

)]

+ μ2

L∑
β=1

wβ ŵ N

[
ρ−

β, j+ 1
2

− λ2

ŵ Nμ2
h

(
ρ−

β, j+ 1
2
,ρ+

β, j+ 1
2
, vβ, j+ 1

2

)]
, (3.6)

which is a monotonically increasing function with respect to all the point values ρα,β , ρβ,α , ρ±
β, j± 1

2
and ρ±

i± 1
2 ,β

under the 

CFL conditions λ1a1
ŵ1μ1

≤ 1 and λ2a2
ŵ1μ2

≤ 1, i.e.,

max |u| 	t

	x
+ max |v| 	t

	y
≤ ŵ1 = ŵ N = 1

N(N − 1)
. (3.7)

The bound-preserving property in a high order DG method (3.1) can be stated as the following theorem.

Theorem 1. Under the CFL condition (3.7), the cell average ρn+1
i, j computed in the (3.3) is a monotonically increasing function with 

respect to the point values ρ(̂xα
i , yβ

j ) and ρ(xβ

i , ̂yα
j ) for all α = 1, · · · , N and β = 1, · · · , L and all i, j. Furthermore, if ρ(̂xα

i , yβ

j ) ∈
[m, M] and ρ(xβ

i , ̂yα
j ) ∈ [m, M] for all α = 1, · · · , N and β = 1, · · · , L and all i, j, then ρn+1

i, j ∈ [m, M] provided that ∇ · u = 0 holds 
inside the (i, j) cell.
5
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Proof. We only discuss the lower bound and the upper bound can be similarly discussed. First, by setting ρ ≡ m in (3.5), 
we have

m = μ1

N∑
α=1

L∑
β=1

ŵα wβm + μ2

L∑
β=1

N−1∑
α=2

wβ ŵαm.

Since ρn+1
i, j computed in the (3.3) is a monotonically increasing function with all the point values, ρn+1

i, j should be greater 
than or equal to the right hand side of (3.6) with all point values replaced by m. Thus we have

ρn+1
i, j ≥μ1

N−1∑
α=2

L∑
β=1

ŵα wβm + μ2

L∑
β=1

N−1∑
α=2

wβ ŵαm

+ μ1

L∑
β=1

wβ ŵ1

[
m + λ1

μ1 ŵ1
mui− 1

2 ,β

]
+ μ1

L∑
β=1

wβ ŵ N

[
m − λ1

μ1 ŵ N
mui+ 1

2 ,β

]

+ μ2

L∑
β=1

wβ ŵ1

[
m + λ2

ŵ1μ2
mvβ, j− 1

2

]
+ μ2

L∑
β=1

wβ ŵ N

[
m − λ2

ŵ Nμ2
mvβ, j+ 1

2

]

=m + m

⎡⎣λ1

L∑
β=1

wβui− 1
2 ,β − λ1

L∑
β=1

wβui+ 1
2 ,β + λ2

L∑
β=1

wβ vβ, j− 1
2

− λ2

L∑
β=1

wβ vβ, j+ 1
2

⎤⎦

=m + m
	t

	x	y

⎡⎢⎢⎣
y

j+ 1
2ˆ

y
j− 1

2

u(xi− 1
2
, y)dy −

y
j+ 1

2ˆ

y
j− 1

2

u(xi+ 1
2
, y)dy +

x
i+ 1

2ˆ

x
i− 1

2

v(x, y j− 1
2
)dx −

x
i+ 1

2ˆ

x
i− 1

2

v(x, y j+ 1
2
)dx

⎤⎥⎥⎦
=m − m

	t

	x	y

¨

K

∇ · 〈u, v〉dxdy

=m,

where we have used Gauss quadrature for the line integrals of polynomial integrands and the Divergence Theorem. �
Remark 1. The divergence free constraint ∇ · 〈u, v〉 = 0 is trivially satisfied on the cell K since we assume the velocity is 
computed by 〈uh, vh〉 =

〈
− ∂ψh

∂ y ,
∂ψh
∂x

〉
for some stream function ψh ∈ W k

0,h .

Remark 2. If one is interested in preserving a special lower bound m = 0, i.e., positivity-preserving, then the result above 
also holds without the incompressibility constraint ∇ · 〈u, v〉 = 0.

3.3. A simple high order accurate bound-preserving limiter

Let ⊗ denote the tensor product, for instance, Sx
i ⊗ S y

j =
{
(x, y) : x ∈ Sx

i , y ∈ S y
j

}
. Now we define the set Si, j as

Si, j = (̂Sx
i ⊗ S y

j ) ∪ (Sx
i ⊗ Ŝ y

j ). (3.8)

At time level n, given the DG polynomial ρn
i, j(x, y) on the (i, j) cell with a bounded cell average ρn

i, j ∈ [m, M], by Theorem 1

we need ρn
i, j(x, y) ∈ [m, M] for any (x, y) ∈ Si, j to ensure ρn+1

i, j ∈ [m, M]. The simple bound-preserving limiter in [32] is to 
modify ρn

i, j(x, y) into a new polynomial ρ̃n
i, j(x, y):

ρ̃n
i, j(x, y) = θ

(
ρn

i, j(x, y) − ρn
i, j

)
+ ρn

i, j, θ = min

{∣∣∣∣∣ m − ρn
i, j

mi, j − ρn
i, j

∣∣∣∣∣ ,
∣∣∣∣∣ M − ρn

i, j

Mi, j − ρn
i, j

∣∣∣∣∣ ,1

}
, (3.9)

mi, j = min
(x,y)∈Si, j

ρn
i, j(x, y), Mi, j = max

(x,y)∈Si, j

ρn
i, j(x, y). (3.10)

Then ρ̃n
i, j(x, y) ∈ [m, M] for all (x, y) ∈ Si, j and the cell average of ρ̃n

i, j(x, y) is still ρn
i, j . Moreover, this limiter does not 

destroy high order accuracy if ρn
i, j(x, y) is high order approximation to any smooth function bounded by m and M , see the 

appendix in [31]. The limiter (3.9) should be used for all (i, j) cells.
6
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3.4. A finite element method for the velocity and pressure evolution

For solving the momentum equation (2.4a)(b) on a rectangular domain, we can use a continuous finite element method 
following the method with pressure p treated explicitly in time in the momentum equation.

We focus on the first order forward Euler time discretization. High order time discretizations will be discussed in Sec-
tion 3.6. Let ρn , un and pn denote numerical solutions of the flow variables at time tn . We rewrite the diffusion term in 
momentum equation (2.4a)(b) into a divergence form then compute un+1 ∈ Wk

0,h by discretizing the equation with a finite 
element method as follows〈

un+1 − un

	t
,v
〉
�h

+
〈(

un · ∇)un + ∇ 1

ρn
· (μ(ρn)∇un) + ∇pn − fn

ρn
,v
〉
�h

+
〈

1

ρn
μ(ρn)∇un,∇v

〉
�h

= 0,

∀v ∈ Wk
0,h,

(3.11)

where 〈u, v〉� denotes the L2 inner product of u and v on �h .
Notice that ρn or ρn+1 computed by the DG method is not single valued across the cell boundaries. To map point values 

of ρ from a DG mesh to a continuous finite element mesh, we can simply define ρ as average of values from two neighbor 
cells at edge centers, and as average of values from four neighbor cells at interior knots.

After ρn+1, un+1 are computed, we can update the pressure pn+1 ∈ W k
h by solving the variable-coefficient pressure 

Poisson equation (2.4a)(c) with the Neumann boundary condition by a finite element method, which is given by〈
1

ρn+1 ∇pn+1,∇v

〉
�h

=
〈

f p
n+1, v

〉
�h

+
〈

1

ρn+1 gn+1, v

〉
�

, ∀v ∈ W k
h, (3.12)

where gn+1 = [∇ · (μ(ρn+1)∇(un+1 · n)) + fn+1 · n
] ∣∣

�
is the boundary condition and

f p
n+1 = ∇ ·

(
(un+1 · ∇)un+1 − 1

ρn+1 ∇ · (μ(ρn+1)∇un+1) − fn+1

ρn+1

)
.

Here for solving the pressure Poisson equation, we regard f p
n+1 as a given source term and the derivatives involved in f p

n+1

can be computed by finite difference. Since un+1, ρn+1 are continuous piecewise Q k polynomials, they can be equivalently 
represented as point values at a global grid consisting of all Gauss-Lobatto quadrature points for all cells. Then derivatives 
of ρn+1, un+1, μ at this global grid can be approximated by any conventional high order accurate finite difference method.

In practice it is computationally demanding to solve (2.4a)(c) for three reasons. First, since variable coefficient 1
ρn+1 is 

different in each time step, it is preferred to have an efficient assembly of stiffness matrix such as a few compact matrix
multiplications in a traditional finite difference scheme. Second, the purely Neumann boundary condition results in an 
inconsistent linear system Ax = b for any scheme discretizing (2.4a)(c). To find the least square solution, one needs to 
project b onto the column space of A, for which the left null vector of A is needed. Third, condition number of A will 
deteriorate when discontinuity appears in the coefficient ρ , e.g., for computing large density ratio flows. Let 1 denote the 
constant one vector, then A1 = 0 since A approximates a differential operator ∇ · ( 1

ρ ∇). Thus the left null vector of A is also 
1 if A is symmetric. The variational formulation of (3.12) naturally gives a symmetric stiffness matrix, which is one of main 
practical advantages in finite element method over conventional finite difference schemes for purely Neumann boundary 
condition since the stiffness matrix in traditional finite difference methods is difficult to symmetrize and the left null vector 
is expensive to compute. A simple assembly of stiffness matrix for finite element method on rectangular meshes, as efficient 
as in a conventional finite difference scheme, along with a simple and efficient Laplacian based preconditioner for variable 
coefficient problem, were discussed in Section 7 of [20]. For the linear system Ax = b from the scheme (3.12), since 1 is 
the left null vector A, the projection of b onto column space of A is b = b − (b · 1)/(1 · 1)1. Thus to obtain the least square 
solution Ax = b, we can use preconditioned conjugate gradient method for the consistent linear system Ax = b.

3.5. The stream function

Given un , we need to enforce the incompressibility condition ∇ · un = 0 inside each element for the sake of bound-
preserving. To this end, we consider the stream function ψ satisfying u = ∇⊥ψ = (−ψy,ψx

)
for an incompressible velocity 

field u. We consider enforcing the boundary conditions u = 0 on the boundary � for which we need both ψ
∣∣∣∣
�

= 0 and 

∂ψ
∂n

∣∣∣∣
�

= 0. Enforcing both Dirichlet and Neumann boundary conditions for Poisson equation will result in an overdetermined 

linear system. Thus we first find a stream function satisfying a Poisson equation with the Dirichlet boundary condition

	ψ̃n = ωn, ψ̃n

∣∣∣∣ = 0, (3.13)

�

7
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Fig. 3.1. An illustration of the local least square problem for a Q 2 element ψh ∈ W k
0,h on a boundary cell. All boundary grid points have fixed value zero 

due to the boundary condition.

where ωn = ∇ × un = vn
x − un

y is the vorticity. Then we modify ψ̃n to enforce the Neumann boundary condition, for which 
we need the solution to a constrained least square problem,

min
ψn∈W k

0,h

∑
i, j

∑
(x,y)∈ Ŝx

i ⊗ Ŝ y
j

|ψn(x, y) − ψ̃n(x, y)|2, ∂ψn

∂n

∣∣∣∣
�

= 0. (3.14)

Due to the fact that ψ̃, ψ ∈ W k
0,h , the least square problem can be decoupled into local least square problems for each 

boundary cell. For each boundary rectangular cell K , which is also denoted as (i, j) cell, a local least square problem is to 
find ψn ∈ Q k(K ) by minimizing the distance∑

(x,y)∈ Ŝx
i ⊗ Ŝ y

j

|ψn(x, y) − ψ̃n(x, y)|2, s.t. ψn

∣∣∣∣
∂ K
⋂

�

= ∂ψn

∂n

∣∣∣∣
∂ K
⋂

�

= 0. (3.15)

The Q k basis in each cell can be represented as Lagrangian basis at (k + 1) × (k + 1) Gauss-Lobatto points, e.g., Fig. 3.1 (a). 
There are two types of boundary cells: corner cells and non-corner boundary cells. For simplicity, consider Q 2 basis as an 
example, since boundary point values are already fixed as zero, only four interior points are degree of freedoms in solving 
(3.15), see Fig. 3.1 (c). For ψh ∈ W k

0,h on a non-corner boundary cell K adjacent to the left boundary, ∂ψh
∂n at a boundary grid 

point is determined by point values at grid points on the same horizontal line, thus the local least square problem (3.15)
can be further decoupled and solved in a line by line fashion, see Fig. 3.1 (b). Therefore, the global least square problem can 
be easily solved without losing global continuity of ψ :

1. First, solve the local least square problems (3.15) for four corner cells.
2. Second, solve the local least square problem (3.15) for non-corner boundary cells in a line by line fashion, excluding the 

lines included in four corner cells.

3.6. High order time discretizations

3.6.1. Explicit SSP Runge-Kutta methods
For preserving bounds of density, any strong stability preserving (SSP) high order time discretizations [9] can be used 

instead of the forward Euler time discretization. SSP high order time discretizations are convex combinations of forward 
Euler steps. Thus if forward Euler can preserve bounds, then so is a SSP time discretization due to the convex combination. 
For example, we can use the following explicit third order SSP Runge-Kutta method (with the CFL coefficient c = 1) for 
solving

ut = F (u), (3.16)
8
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where F (u) is a spatial discretization operator,

u(1) = un + 	t F (un),

u(2) = 3

4
un + 1

4

(
u(1) + 	t F (u(1))

)
, (3.17)

un+1 = 1

3
un + 2

3

(
u(2) + 	t F (u(2))

)
.

Here, the CFL coefficient c for a SSP time discretization refers to the fact that, if we assume the forward Euler time dis-
cretization for solving the equation ut = F (u) is stable in a norm or preserves bounds/positivity under a time step restriction 
	t ≤ 	t0, then the high order SSP time discretization is also stable in the same norm or preserves bounds/positivity under 
the time step restriction 	t ≤ c	t0. The bound-preserving limiter (3.9) should be applied to the DG polynomials for ρ in 
each time stage of the third order SSP Runge-Kutta method.

Notice that the CFL condition (3.7) is only sufficient for preserving bounds of the density in the DG scheme solving 
(2.4a)(a). Even though (3.7) happens to be sufficient for the linear stability of a DG method solving a convection equation 
[32], it is not enough for the linear stability of the full scheme. For the stability of the numerical method solving (2.4a)(b), 
we also need to enforce suitable CFL constraints for an explicit time discretization solving a convection diffusion equation 
[18]. For example, for forward Euler, in addition to CFL for preserving bounds for density (3.7), we also need 	t =O( 1

μ	x2)

to ensure linear stability for momentum evolution. Thus such a fully explicit time discretization is more suitable for high 
Reynolds number flows, i.e., when μ is small.

3.6.2. Implicit-explicit SSP Runge-Kutta methods
An alternative to avoid the constraint 	t = O( 1

μ	x2) is to use an implicit-explicit (IMEX) SSP Runge-Kutta schemes in 
[24]. For IMEX type time discretizations, stability can be proven under time step constraints in the form of 	t = O(

√
μ)

which is independent of 	x, see [27] and also [28–30]. We emphasize that an IMEX SSP Runge-Kutta method is not a 
convex combination of first order IMEX schemes, because such a convex combination is only first order accurate, see [16,15]
and references therein. Consider solving a problem in the form Ut + F (U ) = G(U ). An IMEX Runge-Kutta scheme consists of 
applying an implicit discretization to G and an explicit one to F :

U (i) = Un − 	t
i−1∑
j=1

ãi j F (U ( j)) + 	t
i∑

j=1

aij G(U ( j)), (3.18a)

Un+1 = Un − 	t
ν∑

i=1

w̃i F (U (i)) + 	t
ν∑

i=1

wi G(U (i)), (3.18b)

where the matrices Ã = (ãi j), with ãi j = 0 for j ≥ i and A = (aij) are ν × ν matrices such that the resulting scheme is 
explicit in F and implicit in G . An IMEX Runge-Kutta scheme is characterized by these two matrices and the coefficient 
vectors w̃ = (w̃1, · · · , w̃ν)T and w = (w1, · · · , wν)T , thus can be represented by a double Butcher tableau:

c̃ Ã
w̃ T

c A
w T

where the vectors c̃ = (c̃1, . . . , ̃cs)
T , c = (c1, . . . , cs)

T are defined as

c̃i =
i−1∑
j=1

ãi j, ci =
i∑

j=1

aij .

If the explicit table coincides with a SSP Runge-Kutta method, then we say the full scheme is an IMEX SSP Runge-Kutta 
method. For instance, the double Butcher tableau for a third order accurate IMEX SSP Runge-Kutta scheme SSP3(4,3,3) given 
in [24] is:

0 0 0 0 0
0 0 0 0 0
1 0 1 0 0

1/2 0 1/4 1/4 0
0 1/6 1/6 2/3

α α 0 0 0
0 −α α 0 0
1 0 1 − α α 0

1/2 β η 1/2 − β − η − α α

0 1/6 1/6 2/3

with

α = 0.24169426078821, β = 0.06042356519705, η = 0.12915286960590.
9
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If we use the SSP3(4,3,3) scheme above for solving (2.4a)(a) and (2.4a)(b) with U = (ρ, u)T , G representing only the 
diffusion term ∇ · (μ∇u) and F rerepresenting all other spatial and forcing terms in (3.18), then the time discretization 
for the variable ρ is equivalent to the third order SSP TVD Runge-Kutta method (3.17). By doing so, bound-preserving is 
achieved in a third order time solver, and small time steps due to linear stability in a fully explicit time solver for low 
Reynolds number are avoided, since there is no viscosity term for the density evolution.

Remark 3. When implementing the SSP3(4,3,3) scheme above for solving (2.4a)(a) and (2.4a)(b), the time discretization for 
density evolution (2.4a)(a) must be implemented in the form of (3.17) so that the bound-preserving limiter can be applied 
to each forward Euler step.

3.7. Summary of the scheme with implementation details

For the readers’ convenience, we summarize below the implementation of the bound-preserving scheme with forward 
Euler time discretization. For high order Runge-Kutta time discretizations, the implementation for each time stage is similar.

Given un ∈ Wk
0,h , pn ∈ W k

h and ρn ∈ V k
h with ρ̄n ∈ [m, M] at time level n, the variables can be updated as follows.

1. First solve (3.13) then solve local least square problems along boundary cells to find ψn . Obtain locally divergence free 
velocity field by setting un = ∇⊥ψn = (−ψn

y ,ψn
x

)
. The velocity on the DG method mesh to be used for solving (2.4a)(a) 

is recovered from un = ∇⊥ψn = (−ψn
y ,ψn

x

)
. Notice that un, vn ∈ V k

h with the following three desired properties trivially 
satisfied:

• The boundary condition un

∣∣∣∣
�

= 0.

• Discrete incompressibility ∇ · un = 0 holds inside each cell in the mesh for DG method.
• Across any inner cell boundary, the normal velocity un · n is continuous because it is exactly the tangential derivative 

of a continuous function ψn(x, y) along cell boundaries.
2. Apply the bound-preserving limiter (3.9) to density variable so that ρn is the desired range [m, M] at suitable points. 

Compute ρn+1 ∈ V k
h by (3.1) with forward Euler time discretization with CFL constraint (3.7). By Theorem 1, bound-

preserving of cell averages ρ̄n+1 ∈ [m, M] is ensured.
3. Update un+1 by (3.11) and update pn+1 by (3.12).

Remark 4. For the sake of bound-preserving in Theorem 1, to enforce local divergence free constraint, an extra Poisson 
equation for stream function (3.13) needs be solved in each time stage. The extra computational cost is marginal though, 
because inverting Laplacian is much cheaper compared to solving (3.12), especially for problems with large density ratios. 
For continuous finite element method with Q k elements, Laplacian can be efficiently inverted by eigenvector method as 
explained in Section 7.4 in [20].

4. Numerical examples

In this section, we provide some numerical examples to investigate the performance of the proposed scheme. In all 
examples, Q 2 polynomials were used on uniform rectangular meshes. For the DG method solving density, besides the 
bound-preserving limiter, a total variation bounded (TVB) limiter [6] is also used for reducing oscillations.

4.1. Accuracy test

We test the accuracy of the numerical scheme by considering smooth exact solutions in the following form [17]:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ(x, y, t) = ((3/4) + (1/4) sin t)(2 + cos x cos y),

u(x, y, t) = ((3/4) + (1/4) sin t)(− sin2 x sin y cos y),

v(x, y, t) = ((3/4) + (1/4) sin t)(sin x cos x sin2 y),

p(x, y, t) = ((3/4) + (1/4) sin t)(cos x sin y).

(4.1)

Here we set μ = π
5000 , and to ensure that (4.1) is an exact solution of (2.4), appropriate forcing functions are applied to the 

system. The errors on a unit square � = [0, π ] m × [0, π ] m at t = 0.1 are shown in Table 4.1, in which we observe around 
third order accuracy for the explicit SSP Runge-Kutta method. In this test, the time step for the explicit SSP Runge-Kutta 
method is set as 	t = 0.1	x2. The time step for the IMEX SSP Runge-Kutta method is set as 	t = 0.1	x, with which 
the explicit SSP Runge-Kutta method is not stable. For IMEX SSP Runge-Kutta method, we observe some obvious order 
reduction, which could be due to the well known order reduction phenomenon for IMEX Runge-Kutta methods in certain 
regime [4,16,15]. To the best of our knowledge, only for IMEX BDF methods, uniform accuracy can be proven [1,14]. For this 
particular accuracy test, the order reduction for the IMEX SSP Runge-Kutta method is more prominent for larger viscosity 
coefficient μ, and clean third order accuracy can be observed if using a third order IMEX BDF method.
10
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Table 4.1
Errors at time t = 0.1 for the scheme using Q 2 polynomials with Nx × N y cells with third order Runge-Kutta methods.

Nx × N y Explicit SSP Runge-Kutta IMEX SSP Runge-Kutta

L∞ error Order L1 error Order L∞ error Order L1 error Order

10 × 10 5.84e-4 — 4.32e-4 — 6.08e-4 — 4.41e-4 —

20 × 20 7.39e-5 2.98 5.38e-5 3.01 8.20e-5 2.89 5.88e-5 2.91

ρ 30 × 30 2.20e-5 2.99 1.68e-5 2.87 2.52e-5 2.91 1.94e-5 2.73

40 × 40 9.27e-6 3.00 7.41e-6 2.85 1.34e-5 2.21 8.96e-6 2.69

50 × 50 4.76e-6 2.99 3.86e-6 2.92 8.16e-6 2.20 4.89e-6 2.71

60 × 60 2.84e-6 2.83 2.24e-6 2.98 5.40e-6 2.27 2.97e-6 2.75

70 × 70 1.87e-6 2.71 1.40e-6 3.05 3.77e-6 2.33 1.94e-6 2.77

10 × 10 2.15e-4 — 2.71e-4 — 1.77e-4 — 2.08e-4 —

20 × 20 2.79e-5 2.95 3.41e-5 2.99 2.52e-5 2.81 3.28e-5 2.66

u 30 × 30 8.40e-6 2.96 1.01e-5 3.00 7.60e-6 2.95 9.85e-6 2.97

40 × 40 3.56e-6 2.98 4.28e-6 2.98 3.12e-6 3.10 4.01e-6 3.12

50 × 50 1.85e-6 2.93 2.19e-6 3.00 1.54e-6 3.16 1.94e-6 3.25

60 × 60 1.08e-6 2.95 1.27e-6 2.99 8.58e-7 3.22 1.05e-6 3.36

70 × 70 6.86e-7 2.94 8.01e-7 2.99 5.15e-7 3.31 6.22e-7 3.42

10 × 10 4.75e-5 — 5.98e-5 — 1.77e-4 — 2.12e-4 —

20 × 20 6.89e-6 2.79 7.06e-6 3.08 2.63e-5 2.75 3.36e-5 2.66

v 30 × 30 2.22e-6 2.79 2.21e-6 2.86 8.14e-6 2.89 1.08e-5 2.80

40 × 40 9.71e-7 2.87 9.68e-7 2.87 3.61e-6 2.82 4.84e-6 2.79

50 × 50 5.04e-7 2.94 5.07e-7 2.90 1.98e-6 2.70 2.63e-6 2.73

60 × 60 2.99e-7 2.86 2.99e-7 2.90 1.22e-6 2.63 1.62e-6 2.66

70 × 70 1.94e-7 2.81 1.91e-7 2.91 8.23e-7 2.57 1.08e-6 2.59

4.2. Rayleigh-Taylor instability

We consider the development of Rayleigh-Taylor instabilities in the viscous regime as documented by Tryggvason in [26]. 
This problem consists of two layers of fluid initially at rest in the gravity field. The initial perturbed interface between the 
two fluids is given by η(x) = −0.1d cos(2πx/d). The Atwood number is defined as

At = ρM − ρm

ρM + ρm
, (4.2)

and the Reynolds number is given by

Re = ρmd3/2 g1/2

μ
, (4.3)

where g is the gravitational acceleration. For t > 0 the system evolves under the action of a vertical downward gravity field 
of intensity g , so the source term in the momentum equation is downward and equal to ρg . In the numerical tests, we 
set Re = 1000, g = −9.80665 m/s2 and ρm = 1.0 kg/m3, and we test three different cases with At = 0.5, 0.75 and 0.9. 
The computational domain is [−0.5, 0.5] m × [−2, 1] m. The time evolution of the density with At = 0.5 on three different 
meshes are shown in Fig. 4.1, Fig. 4.2 and Fig. 4.3. The time evolution of the density with At = 0.75 on three different 
meshes are shown in Fig. 4.4, Fig. 4.5 and Fig. 4.6. The time evolution of the density with At = 0.9 on three different 
meshes are shown in Fig. 4.7, Fig. 4.8 and Fig. 4.9. From the results of these cases, we can observe the similar structure and 
the global characteristics of the flow in the early stage. At the same time, we found that the heavy fluid falls faster when 
the low Atwood number becomes larger. In order to verify the performance of the bound-preserving limiter, we show the 
numerical results obtained from the proposed scheme with and without the bound-preserving limiter Fig. 4.10. We can see 
that the proposed scheme with the bound-preserving limiter maintains the numerical results of density in the domain [1, 3]
for At = 0.5, in the domain [1, 7] for At = 0.75, and in the domain [1, 19] for At = 0.9, respectively.

4.3. Falling bubble test

In this subsection, we investigate the capability of our method to work with larger density variations, and consider the 
falling bubble problem [21]. In this problem, a heavy droplet falls through a light fluid and impacts into the plane surface of 
the heavy fluid in a cavity. The computational domain is � = [0, d] ×[0, 2d], where d = 2 m and the initial density interface 
takes the form

ρ(x, y,0) =
{

100 kg/m3, if 0 m ≤ y ≤ 1 m or 0 m ≤ r ≤ 0.2 m,

1 kg/m3, if 1 m < y ≤ 2 m and r ≥ 0.2 m,
11
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Fig. 4.1. Numerical solution of Rayleigh-Taylor instability with At = 0.5 at t = 0 s, 0.2 s, 0.4 s, 0.6 s, 0.8 s, 1.0 s, 1.2 s and 1.4 s (from left to right, from top 
to bottom). Mesh: 20 × 50.

Fig. 4.2. Numerical solution of Rayleigh-Taylor instability with At = 0.5 at t = 0 s, 0.2 s, 0.4 s, 0.6 s, 0.8 s, 1.0 s, 1.2 s and 1.4 s (from left to right, from top 
to bottom). Mesh: 40 × 100.

where r =√
(x − 0.5)2 + (y − 1.75)2. In the test, the gravity term is f = (0, ρg)� with g = −1 m/s2, the viscosity of the 

fluid is assumed be constant in the whole domain and we have Re = 1000. The computational domain is divided into 
50 × 100 cells.

The results are displayed in Fig. 4.11. The snapshots show that the droplet travels up through a light fluid and merges 
with a light fluid below. As the droplet falls, its shape changes a little due to the absence of the surface tension. As the 
droplet hits the interface, it merges with the heavy fluid below and creates waves on the surface.

4.4. Rising bubble test

In this subsection, we test our numerical scheme by simulating an air bubble rising in water. Since the air and water 
have different viscosities. The air bubble with radius 0.0025 m is initially at rest and located at (0, 0.0075). The gravity term 
12
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Fig. 4.3. Numerical solution of Rayleigh-Taylor instability with At = 0.5 at t = 0 s, 0.2 s, 0.4 s, 0.6 s, 0.8 s, 1.0 s, 1.2 s and 1.4 s (from left to right, from top 
to bottom). Mesh: 80 × 200.

Fig. 4.4. Numerical solution of Rayleigh-Taylor instability with At = 0.75 at t = 0 s, 0.2 s, 0.4 s, 0.5 s, 0.6 s, 0.7 s, 0.8 s and 0.9 s (from left to right, from 
top to bottom). Mesh: 20 × 50.

Table 4.2
Physical parameters for an air bubble rising in water.

Physical parameters Air Water Units (MKS)

Density (ρ) 1.161 995.65 kg/m3

Viscosity (μ) 0.0000186 0.0007977 kg/m s

is f = (0, ρg)� with g = −9.80665 m/s2. The initial condition for the velocity is set to be zero. We computed the problem 
in a rectangle of size [−0.01, 0.01] m ×[0, 0.03] m. We use the true physical parameters in Table 4.2. For numerical density 
taking intermediate values, the viscosity is defined as a linear interpolation.
13
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Fig. 4.5. Numerical solution of Rayleigh-Taylor instability with At = 0.75 at t = 0 s, 0.2 s, 0.4 s, 0.5 s, 0.6 s, 0.7 s, 0.8 s, 0.9 s and 0.9 s (from left to right, 
from top to bottom). Mesh: 40 × 100.

Fig. 4.6. Numerical solution of Rayleigh-Taylor instability with At = 0.75 at t = 0 s, 0.2 s, 0.4 s, 0.5 s, 0.6 s, 0.7 s, 0.8 s, 0.9 s and 0.9 s (from left to right, 
from top to bottom). Mesh: 80 × 200.

The time evolution of the density field of the air bubble at nine different times 0 s, 0.2 s, 0.4 s, 0.6 s, 0.8 s and 1.0 s is 
displayed in Fig. 4.12. These results are very close to the results reported in the literature [17,25].

5. Conclusions

We constructed in this paper a high order accurate numerical method for solving variable density incompressible Navier-
Stokes equations in its pressure Poisson equation formulation. The bound-preserving discontinuous Galerkin scheme is used 
for the density evolution and a continuous finite element method is used for the momentum evolution. Numerical results 
14
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Fig. 4.7. Numerical solution of Rayleigh-Taylor instability with At = 0.9 at t = 0 s, 0.1 s, 0.2 s, 0.3 s, 0.4 s, 0.5 s, 0.55 s and 0.6 s (from left to right, from top 
to bottom). Mesh: 20 × 50.

Fig. 4.8. Numerical solution of Rayleigh-Taylor instability with At = 0.9 at t = 0 s, 0.1 s, 0.2 s, 0.3 s, 0.4 s, 0.5 s, 0.55 s and 0.6 s (from left to right, from 
top to bottom). Mesh: 40 × 100.

indicate that the scheme is strictly bound-preserving and well suited for numerical simulation of incompressible flows with 
variable density.
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Fig. 4.9. Numerical solution of Rayleigh-Taylor instability with At = 0.9 at t = 0 s, 0.1 s, 0.2 s, 0.3 s, 0.4 s, 0.5 s, 0.55 s and 0.6 s (from left to right, from 
top to bottom). Mesh: 80 × 200.

Fig. 4.10. Rayleigh-Taylor instability: comparison between numerical schemes with and without bound-preserving (BP) limiter. Solid line: with BP limiter; 
Circle: without BP limiter. Top: At = 0.5 and t = 0.5 s. Middle: At = 0.75 and t = 0.5 s. Bottom: At = 0.9 and t = 0.15 s. The right column and middle 
column are partially enlarged lower and upper parts of the picture on the left column, respectively.
16
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Fig. 4.11. Numerical solution of air bubble rising in water at t = 0 s, 0.5 s, 1.1 s, 1.3 s, 1.5 s and 20 s (from left to right, from top to bottom). Mesh: 50 ×100.

Fig. 4.12. Numerical solution of air bubble rising in water at t = 0 s, 0.02 s, 0.04 s, 0.06 s, 0.08 s and 0.1 s (from left to right, from top to bottom). Mesh: 
80 × 120.
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