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We present an accurate and efficient high-order collocation method to solve the integral equation with a
singular kernel derived from the linearized BGK equation in kinetic theory. In particular, we use a Cheby-
shev based collocation method to solve the integral equation with singular kernel for the steady Couette
flow in a wide range of Knudsen numbers, i.e., 0:003 6 k 6 10:0. We compute the flow velocity uðy; kÞ, the
stress PxyðkÞ, and the half-channel total mass flow rate QðkÞ. Our results are uniformly accurate to 11 sig-
nificant digits or better, thus they can serve as benchmark data. We also construct approximations of the
velocity, the slip velocity, and the total mass flow rate as functions of the Knudsen number k.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In rarefied-gas dynamics (RGD) and kinetic theory, the solutions
of the Boltzmann equation for some canonical flows, such as Cou-
ette flow, Poiseuille flow, and Kramers’ problem, have been much
studied for a long time (cf. reviews [1,2] and monographs [3–8]
and references therein). In particular, the linearized Bhatnagar–
Gross–Krook (BGK) equation has been used to study these flows
[1–8]. The linearized BGK equation for the canonical flows can be
recast in an integral equation of the second kind in one dimension
(1D) for the macroscopic flow velocity. Along with the advance of
computing, there has been a persistent and rigorous effort to
obtain accurate solutions of the integral equations for the canoni-
cal flows in kinetic theory [9–25], because the accurate solutions of
these flows can provide the insights about the mathematical prop-
erties of these flows, so allow one to construct models for engi-
neering applications.

Although there have been significant advances made in the
techniques for solving various integral equations [26–35], these
well developed solution techniques have not been widely adopted
by the RGD community. Most studies on numerical solutions of the
integral equations for the classical flows rely on the Nyström
method (cf., e.g., the monograph by Atkinson [36]) or quadrature
method, which directly discretizes the continuous problem into n
intervals and replaces the integral with a representative weighted
sum. There are at least two inherent difficulties which are com-
monly encountered in existing numerical solutions of the integral
equations. First and foremost, the quadratures used to solve the
integral equations are not suitable for the integral equations with
singular kernels. And second, the singular integral kernels are often
represented in terms of the Meijer G-function [37,38], which are
very likely to suffer from catastrophic cancellation for large values
of the argument, and will also be difficult to use in the asymptotic
range [39,40]. These two major difficulties prevent one to obtain
high-precision benchmark solutions of the integral equations effi-
ciently. The existing methodologies often are of low order in terms
of their accuracy, and they require to solve a large linear system
and to use multiple-precision arithmetic in order to obtain high-
precision solutions.

There have been constant attempts to obtain high-precision
benchmark solutions of the linearized BGK equation for canonical
flows [19–22,25]. For Kramers’ problem, Loyalka and Tompson
[22] use the Nyström method with Gauss–Kronrod quadrature to
discretize the integral equation. With the largest quadrature order
of 1312 and the precision of 60 digits, Loyalka and Tompson are
able to obtain the flow velocity with an accuracy of about 7 digits.
More recently, Yap and Sader [25] use the same technique to solve
the linearized BGK equation with Gauss–Legendre quadrature for
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steady and oscillating Couette flows. With a precision of 30 digits,
Yap and Sader achieve the rates of convergence greater than
3.0 and 1.0 on the order of quadrature N and the number of
intervals L, respectively. The largest N and L are 160 and 80,
respectively, resulting in a large linear system of the size
ð160� 80Þ2 = 12,8002 = 163,840,000. For the steady Couette flow,
Yap and Sader obtain the velocity which is correct to 5, 7, and 8
significant digits for the Knudsen number k ¼ 0:01; k ¼ 0:03, and
k P 0:1, respectively.

The intent of the present work is two fold. Our first intent is to
implement an efficient high-order Chebyshev collocation method
to solve the integral equation arisen from the linearized BGK equa-
tion. The singular kernel is to be given by its Chebyshev expansion
[41]. This approach is both effective and efficient, thus overcomes
the difficulty due to the Meijer G-function representation of the
singular kernels. We will, in particular, solve the integral equation
for steady Couette flow [1,9,10,15,20,25] with the Knudsen number
k in a wide range of 0:003 6 k 6 10:0. With mostly double-preci-
sion (64 bits) arithmetic, we can obtain the flow velocity and other
interested quantities uniformly correct to 11 or more digits. Our
results are significantly more accurate than existing ones, thus
can be used as benchmark data. Our second intent is to construct
approximated models based on the accurate solutions for various
interested flow quantities, which can be used in engineering
applications.

The remainder of the paper is organized as follows. Section 2
succinctly describes the integral equation for steady Couette flow
and its solution technique based on Chebyshev collocation method.
Section 3 presents our results. In Section 3.1 we demonstrate the
convergence of our calculations to show that the collocation
method is of high-order indeed. In Section 3.2 we present the
benchmark data for the flow velocity, the shear stress, and the
half-channel total mass flow rate in a wide range of the Knudsen
number 0:003 6 k 6 10:0, which covers flows regions from slip
flow, transition flow, to free-molecular flow. In Section 3.3 we
present approximated solutions for the flow velocity and analyze
their validity and accuracy. And in Section 3.4 we analyze the
velocity defect and slip velocity. Based on our analysis, we con-
struct some approximations for slip velocity and the total mass
flow rate which depends on the Knudsen layer structure. Finally,
Section 4 concludes the paper. Three appendixes are supplemented
for details. Appendix A provides a summary of the properties of
and useful approximations for Abramowitz functions InðxÞ. Appen-
dix B proves that the velocity derivative u0ðy; kÞ diverges at bound-
aries. And Appendix C provides the details of accurate evaluation of
integrals involving Abramowitz function I�1 and Chebyshev poly-
nomials Tn.

2. Integral equation for steady Couette flow and Chebyshev
collocation method

We will study the integral equation derived from the linearized
BGK equation [9,4,6] for the steady Couette flow between two par-
allel infinite horizontal plates, which move in opposite direction
y
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x
o

H

Fig. 1. An illustration of flow configuration of Couette flow.
with the velocity ð�U=2;0; 0Þ, as shown in Fig. 1 for an illustration
of the flow configuration. The flow is one-dimensional, i.e., the
flow fields are functions of the spanwise coordinate in ŷ direction,
and invariant along the streamwise direction x̂, as illustrated in
Fig. 1.

For the steady Couette flow, the linearized BGK equation with
the Maxwell boundary condition [42,5,8] leads to the following
integral equation for the velocity uðy; kÞ [9,6,8]:

uðy; kÞ � 1
k
ffiffiffiffi
p
p

Z 1=2

�1=2
I�1
jy� sj

k

� �
uðsÞds ¼ 1

2
ffiffiffiffi
p
p F0ðy; kÞ; ð1aÞ

InðxÞ ¼
Z 1

0
sne�ðs

2þx=sÞds; n P �1; ð1bÞ

Fnðy; kÞ :¼ In
1� 2y

2k

� �
� In

1þ 2y
2k

� �� �
; ð1cÞ

where y is normalized by the channel width H (cf. Fig. 1) so that
�1=2 6 y 6 þ1=2, the velocity u is normalized by the relative wall
speed U so that �1=2 6 u 6 þ1=2; InðxÞ is the Abramowitz function
of order n; k ¼ cm=Hx is the Knudsen number, cm :¼

ffiffiffiffiffiffiffiffiffiffiffi
2RT0
p

; R is the
gas constant, T0 is a constant temperature, and x is the constant
relaxation frequency of the BGK equation [43].

Eq. (1a) is a Fredholm equation of the second kind with the
kernel I�1, the Abramowitz function of order �1, which has a log-
arithmic singularity at zero, which occurs at both end points
y ¼ �1=2. (Some properties and approximations of Abramowitz
function In relevant to this work are succinctly summarized in
Appendix A.) The singular nature of the integral kernel I�1 makes
it difficult to solve Eq. (1a) numerically. To mitigate the problem
due to the end-point singularities, Eq. (1a) is rewritten as the
following:

G0ðy; kÞuðyÞ �
1
k

Z 1=2

�1=2
I�1
jy� sj

k

� �
uðsÞ � uðyÞ½ �ds ¼ 1

2
F0ðy; kÞ; ð2aÞ

Gnðy; kÞ :¼ In
1� 2y

2k

� �
þ In

1þ 2y
2k

� �� �
: ð2bÞ

It should be emphasized that while the term ½uðsÞ � uðyÞ� in the
integral in Eq. (2a) is introduced to mitigate the difficulty caused
by the end-point singularities, the singularities cannot be removed
by this simple technique. Because the Knudsen number k appears in
the denominator in the argument of I0ðxÞ and I�1ðxÞ in the integral
equation of Eq. (1a) or (2a), it becomes more and more difficult to
solve the equation when k becomes smaller and smaller. This is
understandable because the thickness of the Knudsen layer
becomes thinner as k decreases, thus it requires more and more res-
olution in a thinner and thinner layer in the vicinities about the sin-
gularities at the boundaries y ¼ �1=2.

It has been well known [9,44,45] that the leading order singu-
larity in uðy; kÞ at the end points y ¼ �1=2, is d ln d, where
d :¼ ð1=2� yÞ is the distance to the end-point y ¼ �1=2, as d! 0.
Only recently it has been shown [46] that uðy; kÞ has singular terms
of d ln dð Þm, for all m P 1. The essential singularities at the bound-
aries present the main challenge to numerical solutions of the inte-
gral Eq. (1a).

We will use the collocation method with Chebyshev polynomi-
als to solve the integral Eq. (2a). The velocity uðy; kÞ is antisymmet-
ric about the channel centerline y ¼ 0, i.e., uðyÞ ¼ �uð�yÞ, because
of the boundary conditions uð�1=2Þ ¼ �1=2, thus it is expanded in
terms of odd-order Chebyshev polynomial Tn with n ¼ ð2j� 1Þ:

uNðyÞ ¼
XN

j¼1

cnTnð2yÞ; n ¼ 2j� 1: ð3Þ

Then Eq. (2a) becomes a linear system for the coefficients
fcnjn ¼ 2j� 1; 1 6 j 6 Ng:
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XN

j¼1

cnAnðyÞ ¼
1
2

F0ðy; kÞ; ð4aÞ

AnðyÞ¼G0ðy;kÞTnð2yÞ�1
k

Z 1=2

�1=2
I�1
jy�sj

k

� �
Tnð2sÞ�Tnð2yÞ½ �ds: ð4bÞ

Eq. (4a) can be solved either by a collocation method or a Galerkin
method [36]. We choose a collocation method for its computational
efficiency. With N collocation points fyij1 6 i 6 Ng, we have a linear
system for fcng

A � c ¼ b; ) c ¼ A�1 � b; ð5Þ

where A is an N � N matrix whose element is amn ¼ AnðymÞ, and b
and c are N-tuple column vectors whose elements are
bm ¼ F0ðym; kÞ=2 and cn, respectively, m ¼ ð2i� 1Þ; n ¼ ð2j� 1Þ;
1 6 i; j 6 N.

We use Gauss–Chebyshev collocation method with the follow-
ing collocation points:

ym ¼
1
2

cos hm; hm :¼ ð4m� 1Þp
4N

; 1 6 m 6 N: ð6Þ

Note that the collocation points fymg do not include end points
y ¼ �1=2. With N collocation points fymj1 6 m 6 Ng, we observe
that the velocity uNðyÞ is accurate in the interval
ðyN � �; y1 þ �Þ � ½�1=2;þ1=2�, where � > 0. That is, the numerics
become less accurate near the vicinities of the end points
y ¼ �1=2. In fact, the numerical accuracy of the quadrature in the
interval ð1=2� �;1=2� is only about one half of that in the interior
interval ðyN � �; y1 þ �Þ. To overcome this deficiency, we include
one end point, say, y ¼ þ1=2, in the set of the collocation points.
With this augmented set of collocation points, the quadrature is
accurate in the vicinity of the included end point, i.e.,
ð1=2� �;1=2�. However, with the augmented set of collocation
points the accuracy of the quadrature deteriorates in the interior
ðyN � �; y1 þ �Þ. In fact, with the augmented set of collocation points
the accuracy of the quadrature in the interior interval
ðyN � �; y1 þ �Þ is only about one half of the quadrature without
the end point. Thus, to maintain a uniform accuracy in the entire
interval ½�1=2;þ1=2�, we use the quadrature with the usual colloca-
tion points for y 2 ½yN; y1�, and the augmented set of collocation
points with one end point, say y ¼ þ1=2, for the vicinity of the
end point, say, y 2 ½y1;þ1=2�. More details about the numerics are
given in Appendix C.

We intend to devise an effective and efficient numerical scheme
to compute uðy; kÞwith high precision. More specifically, we would
like to obtain uðy; kÞ with the accuracy of ten digits or better by
using double-precision arithmetic. To attain this objective, we
need to compute all the elements in linear system of Eq. (5) with
desirable accuracy. First, we must accurately evaluate the zeroth-
order Abramowitz function, I0, which is accomplished by using
the method of Chebyshev expansion proposed by MacLeod [41].
The approximations we use to evaluate the Abramowitz function
are given in Appendix A.

The second part of the calculation is to accurately evaluate the
integral in Eq. (4b). With high-order Chebyshev function
Tnð2yÞ;n	 1, the integrand in Eq. (4b) is highly oscillatory. Also,
the integral is singular when the argument of I�1 is zero. To accu-
rately evaluate the integral, we divide the interval ½�1=2;þ1=2�
into n sub-intervals in the interior of ½�1=2;þ1=2�, every two adja-
cent interior sub-intervals covering one period of Tn, plus one
interval for each end point. The integral on each sub-interval is
computed by using adaptive quadrature [47]. With Macleod’s
scheme [41], we can accurately compute fbmg in the right-hand-
side of Eq. (5) and some parts needed in the elements of
matrix A. The details of evaluation of the integral is described in
Appendix C.

The third part of the calculation is to invert the dense matrix A

in Eq. (5). Since the size of the matrix A is moderate – it is at most
2048� 2048 in the present work, it is reasonable to use the direct
method. We apply LU decomposition with pivoting to decompose
the matrix A and solve for the resulting system by using forward
elimination and backward substitution algorithm. To ensure the
solution to be accurate up to at least double precision, we imple-
ment the algorithms for the LU decomposition, the forward elimi-
nation, and the backward substitution by using C++/Fortran 90
with arbitrary precision package [48]. We use 40 digits in the
inversion of A and this is the only place where we have to use arbi-
trary precision package. All other calculations are carried out with
double-precision arithmetic.
3. Results and discussion

We numerically solve the integral Eq. (2a) of uðy; kÞ for the Cou-
ette flow with a wide range of the Knudsen number k, i.e.,
0:003 6 k 6 10:0, which spans more than four decades. We vary
the size of the linear system, N2;N ¼ 2n, for 4 6 n 6 11, i.e.,
16 6 N 6 2048, to ensure the convergence of the results. In what
follows we will report numerical results and their analysis. It
should also be mentioned that, for numerical efficiency and accu-
racy, the Clenshaw algorithm [49] must be used to compute sums
of Chebyshev polynomials, such as Eq. (3).
3.1. Convergence

We compute the local relative error of the velocity uðy; kÞ at a
specific location y and a given value of k:

jduNðy; kÞj :¼
juNðy; kÞ � u
ðy; kÞj

ju
ðy; kÞj
; ð7Þ

where the reference solution u
ðy; kÞ is obtained with N ¼ 2048. We
compute jduNðy; kÞj at y ¼ 0:1, 0.2, 0.4, and 0.5, and 0:003 6 k 6
10:0. Fig. 2 shows the log–log plots of N-dependence of jduN j at
y ¼ 0:1 and k ¼ 0:01; y ¼ 0:2 and k ¼ 0:1; y ¼ 0:3 and k ¼ 1:0,
and y ¼ 0:4 and k ¼ 10:0. The results indicate that

ln
jduNðy; kÞj
jduMðy; kÞj

� �a ln
N
M
; ð8Þ

where N – M < 2048.
Table 1 shows the dependence of a and its standard deviation

Da on k. We observe that the rate of convergence a is independent
of position y with 0:1 6 y 6 0:5 and is only dependent on the
Knudsen number k. For small values of k, i.e., k < 1:0, the rate of
convergence a increases as k does, then it exceeds 4.0 and stays
constant after k P 1:0. Clearly our scheme is indeed of high-order.
The cases of small k converge slightly slower than all the cases of
larger k P 1:0. This is expected because the Knudsen layer
becomes thinner and thinner as k becomes smaller and smaller,
thus it requires more and more collocation points near the end
points y ¼ �1=2, which is a typical problem encountered in the
numerical solutions of the kinetic equation for small Knudsen
number k. This is clearly seen in Eq. (1a) – near the boundary,
uðy; kÞ is approximately a function d=k, where d :¼ j1=2� yj is the
distance to the end points y ¼ �1=2. This issue will be further dis-
cussed later in the next section. The rate of convergence clearly
indicate that our method is a high-order one.

We next compute the global relative L2 error of the velocity
uNðyÞ:



Fig. 2. The grid size N dependence of the relative error of the velocity, jduNðy; kÞj. Top row, from left to right: k ¼ 0:01 at y ¼ 0:1, and k ¼ 0:1 at y ¼ 0:2. Bottom row, from left
to right: k ¼ 1:0 at y ¼ 0:3, and k ¼ 10:0 at y ¼ 0:4.

Table 1
The dependence of the rate of convergence, a, for the velocity uNðyÞ on the Knudsen number k. The rate of convergence a and its standard deviation are computed by using the
least-square fitting.

k 0.003 0.01 0.03 0.1 1.0
a� Da 3:5559� 0:0821 3:7229� 0:0586 3:8682� 0:0978 3:9660� 0:2486 4:1325� 0:1567

k 2.0 3.0 5.0 7.0 10.0
a� Da 4:0949� 0:1580 4:0844� 0:1668 4:0705� 0:1793 4:0709� 0:1829 4:0651� 0:1881
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kduNðkÞk2 :¼

R 1=2
�1=2 juNðy; kÞ � u
ðy; kÞj2dy

h i1=2

R 1=2
�1=2 ju
ðy; kÞj

2dy
h i1=2 ; ð9Þ

where the reference solution u
ðy; kÞ is obtained with N ¼ 2048. The
results of kduNðkÞk2 with k ¼ 0:003, 0.01, 0.03, 0.1, 1.0, and 10.0 are
given in Table 2. The global L2 error kduNðkÞk2 shows very weak
dependence on k. For all values of 0:003 6 k 6 10:0, the rate of con-
vergence a > 3, indicating again that the scheme is of high-order.
3.2. The flow velocity uðy; kÞ, the shear stress PxyðkÞ, and the half-
channel total mass flow rate QðkÞ

In this section we present our results for the velocity uNðy; kÞ
with 0:003 6 k 6 10:0. For each value of k, we solve Eq. (2a) with
16 6 N 6 2048. All calculations are carried out with double-preci-
sion arithmetic unless otherwise stated.

We compile two tables to summarize the numerical results
related to the velocity uðy; kÞ. Table 3 compiles the values of
uNðy; kÞ at y ¼ 0:1, 0.2, 0.3, 0.4, and 0.5. At channel center
y ¼ 0;uNð0; kÞ ¼ 0. For all cases of k, the results of uðy; kÞ are accu-
rate for at the least eleven (11) significant digits. In addition,
Table 4 compiles the values of the velocity at the boundary,
uð1=2; kÞ, and the derivative of the velocity at the channel center,
u0ð0; kÞ. Both uð1=2; kÞ and u0ð0; kÞ decrease monotonically as k
increases. Also, the normalized derivative, u0ð0; kÞ=uð1=2; kÞ,
decreases monotonically as k increases. The data of uð1=2; kÞ and
u0ð0; kÞ will be used later to construct approximated solutions for
uðy; kÞ and other quantities.

The accurate solutions of uNðy; kÞ allow us to obtain accurate
shear stress Pxy and the half-channel mass flow rate (for the upper
half channel) Q. The shear stress Pxy normalized by
2Up0=cm ¼ 2Uq0RT0=cm is

Pxyðy; kÞ ¼
1ffiffiffiffi
p
p

Z 1

�1
/nye�n2

y dny; ð10Þ

where /ðy; nyÞ and its relation with the velocity u are given by

ny
@/
@y
¼ �1

k
½/� u�; ð11aÞ

u ¼ 1ffiffiffiffi
p
p

Z 1

�1
/e�n2

y dny: ð11bÞ

It is easy to prove that Pxy is a constant independent of y, with a
fixed value of k, because [2]:

@Pxy

@y
¼ 1ffiffiffiffi

p
p

Z 1

�1

@/
@y

nye�n2
y dny ¼ �

1
k
ffiffiffiffi
p
p

Z 1

�1
ð/� uÞe�n2

y dny ¼ 0:

ð12Þ

The value of Pxy can be obtained as the following:

Pxy ¼
1ffiffiffiffi
p
p 1

k

Z 1=2

�1=2
I0
jy� sj

k

� �
sgnðy� sÞuðsÞds� G1ðy; kÞ

2

" #
: ð13Þ



Table 2
The global relative L2 error of the velocity uNðyÞ and the rate of convergence a.

k N kduNðkÞk2 k N kduNðkÞk2

0.003 16 9:073159564311592 � 10�5 0.01 16 6:850638233262458 � 10�5

32 1:173595294063363 � 10�5 32 1:158034979497339 � 10�5

64 1:998332365494139 � 10�6 64 2:040512264077090 � 10�6

128 3:555748458719578 � 10�7 128 3:589887685163785 � 10�7

256 6:318807893148573 � 10�8 256 6:336243964057072 � 10�8

512 1:167675652196907 � 10�8 512 1:168038817604225 � 10�8

1024 2:398181505564065 � 10�9 1024 2:396621872127319 � 10�9

a 3.3570 a 3.4584

0.03 16 6:906363108665610 � 10�5 0.1 16 7:023168944878657 � 10�5

32 1:186616010647807 � 10�5 32 1:176707411570782 � 10�6

64 2:056433398329269 � 10�6 64 2:015858660824019 � 10�6

128 3:588564081981813 � 10�7 128 3:503976368566796 � 10�7

256 6:316031862395808 � 10�8 256 6:159685518862506 � 10�8

512 1:163297719138161 � 10�8 512 1:134097387572629 � 10�8

1024 2:386153226120782 � 10�9 1024 2:325951729127107 � 10�9

a 3.4554 a 3.4494

1.0 16 5:455348234878563 � 10�5 10.0 16 3:217798103809692 � 10�5

32 8:956151509566837 � 10�6 32 5:264751883741950 � 10�6

64 1:524372937533699 � 10�6 64 8:952332255181793 � 10�7

128 2:644513283117079 � 10�7 128 1:552658662784406 � 10�7

256 4:646189890073849 � 10�8 256 2:727692020475305 � 10�8

512 8:553006371558081 � 10�9 512 5:021210272459947 � 10�9

1024 1:754065729796481 � 10�9 1024 1:029752165284958 � 10�9

a 3.5405 a 3.7309

22 W. Li et al. / Computers & Fluids 111 (2015) 18–32
Because Pxy is a constant independent of y, we can set y ¼ 0 in Eq.
(13) so that

Pxy ¼ �
1ffiffiffiffi
p
p 2

k

Z 1=2

0
I0 s=kð ÞuðsÞdsþ I1 1=2kð Þ

� �
: ð14Þ

Thus, when k!1, the asymptotic value of PxyðkÞ ¼ �1=2
ffiffiffiffi
p
p
�

�0:282094792. Also, it can be shown that PxyðkÞ ! 0 as k! 0. Thus
0 P PxyðkÞ > �1=2

ffiffiffiffi
p
p

.
The half-channel mass flow rate is defined as

QðkÞ ¼
Z 1=2

0
uðy; kÞdy: ð15Þ

With the Chebyshev expansion of uðy; kÞ given by Eq. (3), we have:

Q NðkÞ ¼
1
2

XN

j¼1

c2j�1ðkÞ
1� ð�1Þjð2j� 1Þ

: ð16Þ

The values of both Pxy and Q computed from Eqs. (14) and (16),
respectively, are given in Table 5. The results in the table have at
least eleven digits of accuracy. Our results given in Tables 3–5 are
consistent with the most recent and accurate results for steady Cou-
ette flow [25].

3.3. Approximations of velocity uðy; kÞ

In this section we will first explore the features of the velocity
uðy; kÞ and then construct approximations of it. Fig. 3 shows the
Knudsen number dependence of the velocity uðy; kÞ. In the figure
we compare the velocity uðy; kÞ of the integral Eq. (2a) obtained
by the collocation method with N ¼ 2048 and the straight line
u1ðy; kÞ ¼ u0ð0; kÞy, which is tangent to uðy; kÞ at the channel center
y ¼ 0. The straight line u1ðy; kÞ ¼ u0ð0; kÞy is also a solution of the
Navier–Stokes equation with a given slip velocity. The figure shows
that in the flow domain about the channel center y ¼ 0, the veloc-
ity uðy; kÞ is very close to the hydrodynamic solution u1ðy; kÞ.

To measure the kinetic component of the velocity, we compute
the nonlinear component of uðy; kÞ=uð1=2; kÞ,
uNL :¼ uðy; kÞ
uð1=2; kÞ � 2y: ð17Þ

As shown in Fig. 3, the nonlinear component of uðy; kÞ=uð1=2; kÞ
increases as k increases. While it is not obvious in the figure, it
can be proved that u0ðy; kÞ does not exist at the boundaries
y ¼ �1=2, that is, the velocity profile uðy; kÞ is tangent to the bound-
aries y ¼ �1=2. (The proof of u0ðy; kÞ ! �1 as y! �1=2 is given in
Appendix B.) In what follows, we will construct approximations of
uðy; kÞ which will retain some features of uðy; kÞ based on a set of
specified criteria.

In the case of zero Knudsen number, i.e., k ¼ 0, the velocity uðyÞ
is a solution of steady Stokes equation which is a linear function of
y, and with the normalizations given in Section 2, it is:

u0ðyÞ ¼ y; �1=2 6 y 6 þ1=2: ð18Þ

The kinetic solution uðy; kÞ deviates from the Stokes solution u0ðyÞ
especially at large Knudsen number k. First, there is a slip velocity
us at the wall, i.e., the velocity uðy; kÞ at the wall is not equal to
the wall velocity Uw. And second, the velocity profile uðy; kÞ is non-
linear as shown in Fig. 3; there is a Knudsen layer near the walls.
The accurate solutions of uðy; kÞ obtained in the preceding section
allows us to gain some insights on the Knudsen layer quantitatively.
To do so, we need to define several quantities.

The slope of uðy; kÞ at the center of the channel is an important
quantity to characterize uðy; kÞ and can be accurately obtained
from the Chebyshev expansion of uNðy; kÞ:

u0ð0; kÞ ¼ �2
XN

j¼1

ð�1Þjð2j� 1Þc2j�1ðkÞ: ð19Þ

We define the following hydrodynamic solution:

u1ðy; kÞ :¼ u0ð0; kÞy: ð20Þ

While Eq. (20) is linear, however, the slope u0ð0; kÞ is defined by the
kinetic solution uðy; kÞ at y ¼ 0. The hydrodynamic solution defined
by Eq. (20) is the straight line tangent to uðy; kÞ at the channel



Table 3
The values of the velocity uNðy; kÞ at y ¼ 0:1, 0.2, 0.3, 0.4, and 0.5, for 0:003 6 k 6 10:0 and 256 6 N 6 2048.

y 0.1 0.2 0.3 0.4 0.5

N k = 0.003
256 9:93939802817675 � 10�2 1:98787960563724 � 10�1 2:98181940854607 � 10�1 3:97575921205698 � 10�1 4:97891532817256 � 10�1

512 9:93939801575752 � 10�2 1:98787960322574 � 10�1 2:98181940467945 � 10�1 3:97575920708319 � 10�1 4:97891535105931 � 10�1

1024 9:93939801487210 � 10�2 1:98787960304567 � 10�1 2:98181940443658 � 10�1 3:97575920673503 � 10�1 4:97891535267197 � 10�1

2048 9:93939801484713 � 10�2 1:98787960303896 � 10�1 2:98181940442773 � 10�1 3:97575920671607 � 10�1 4:97891535278427 � 10�1

k = 0.01
256 9:80081002587778 � 10�2 1:96016201408749 � 10�1 2:94024342763042 � 10�1 3:92035572153263 � 10�1 4:93069779961988 � 10�1

512 9:80081002254805 � 10�2 1:96016201348442 � 10�1 2:94024342646767 � 10�1 3:92035572014922 � 10�1 4:93069780717902 � 10�1

1024 9:80081002231047 � 10�2 1:96016201342903 � 10�1 2:94024342640619 � 10�1 3:92035572003626 � 10�1 4:93069780770369 � 10�1

2048 9:80081002229763 � 10�2 1:96016201342550 � 10�1 2:94024342640308 � 10�1 3:92035572002762 � 10�1 4:93069780773982 � 10�1

k = 0.03
256 9:42551023448203 � 10�2 1:88515596522206 � 10�1 2:82808471818603 � 10�1 3:77352560943944 � 10�1 4:80005867993200 � 10�1

512 9:42551023372640 � 10�2 1:88515596512985 � 10�1 2:82808471779802 � 10�1 3:77352560907856 � 10�1 4:80005868257133 � 10�1

1024 9:42551023364727 � 10�2 1:88515596510692 � 10�1 2:82808471778404 � 10�1 3:77352560903030 � 10�1 4:80005868275276 � 10�1

2048 9:42551023363842 � 10�2 1:88515596510505 � 10�1 2:82808471778333 � 10�1 3:77352560902472 � 10�1 4:80005868276515 � 10�1

k = 0.1
256 8:35610402937810 � 10�2 1:67349050225909 � 10�1 2:51810807114286 � 10�1 3:38368406078662 � 10�1 4:41224640891364 � 10�1

512 8:35610402944326 � 10�2 1:67349050232477 � 10�1 2:51810807101969 � 10�1 3:38368406075732 � 10�1 4:41224640966721 � 10�1

1024 8:35610402942453 � 10�2 1:67349050231428 � 10�1 2:51810807102181 � 10�1 3:38368406073280 � 10�1 4:41224640971868 � 10�1

2048 8:35610402942564 � 10�2 1:67349050231355 � 10�1 2:51810807102247 � 10�1 3:38368406072997 � 10�1 4:41224640972217 � 10�1

k = 0.3
256 6:64543006930748 � 10�2 1:33570950940784 � 10�1 2:02360723344343 � 10�1 2:75170669357004 � 10�1 3:67212569528701 � 10�1

512 6:64543006949853 � 10�2 1:33570950948607 � 10�1 2:02360723339400 � 10�1 2:75170669360757 � 10�1 3:67212569548601 � 10�1

1024 6:64543006949260 � 10�2 1:33570950947971 � 10�1 2:02360723339812 � 10�1 2:75170669359285 � 10�1 3:67212569549952 � 10�1

2048 6:64543006949395 � 10�2 1:33570950947927 � 10�1 2:02360723339879 � 10�1 2:75170669359094 � 10�1 3:67212569550043 � 10�1

k = 1.0
256 4:45319411508086 � 10�2 8:97629000550284 � 10�2 1:36669180693308 � 10�1 1:87233642995143 � 10�1 2:51861339985755 � 10�1

512 4:45319411521308 � 10�2 8:97629000599260 � 10�2 1:36669180691337 � 10�1 1:87233642998431 � 10�1 2:51861339989221 � 10�1

1024 4:45319411521130 � 10�2 8:97629000596012 � 10�2 1:36669180691618 � 10�1 1:87233642997678 � 10�1 2:51861339989455 � 10�1

2048 4:45319411521217 � 10�2 8:97629000595787 � 10�2 1:36669180691658 � 10�1 1:87233642997577 � 10�1 2:51861339989471 � 10�1

k = 2.0
256 3:28317510127771 � 10�2 6:62008086650869 � 10�2 1:00839934023394 � 10�1 1:38179710139242 � 10�1 1:85246299372828 � 10�1

512 3:28317510136486 � 10�2 6:62008086682613 � 10�2 1:00839934022253 � 10�1 1:38179710141497 � 10�1 1:85246299373941 � 10�1

1024 3:28317510136395 � 10�2 6:62008086680595 � 10�2 1:00839934022438 � 10�1 1:38179710141030 � 10�1 1:85246299374016 � 10�1

2048 3:28317510136450 � 10�2 6:62008086680455 � 10�2 1:00839934022465 � 10�1 1:38179710140967 � 10�1 1:85246299374021 � 10�1

k = 3.0
256 2:67884225065252 � 10�2 5:40076130212065 � 10�2 8:22393190026562 � 10�2 1:12600645437724 � 10�1 1:50428244498615 � 10�1

512 2:67884225071785 � 10�2 5:40076130235737 � 10�2 8:22393190018391 � 10�2 1:12600645439436 � 10�1 1:50428244499167 � 10�1

1024 2:67884225071721 � 10�2 5:40076130234255 � 10�2 8:22393190019777 � 10�2 1:12600645439093 � 10�1 1:50428244499204 � 10�1

2048 2:67884225071763 � 10�2 5:40076130234154 � 10�2 8:22393190019973 � 10�2 1:12600645439046 � 10�1 1:50428244499207 � 10�1

k = 5.0
256 2:02181035056891 � 10�2 4:07451054936705 � 10�2 6:19942703911553 � 10�2 8:47465578276147 � 10�2 1:12635188029221 � 10�1

512 2:02181035061279 � 10�2 4:07451054952536 � 10�2 6:19942703906268 � 10�2 8:47465578287766 � 10�2 1:12635188029443 � 10�1

1024 2:02181035061240 � 10�2 4:07451054951556 � 10�2 6:19942703907201 � 10�2 8:47465578285502 � 10�2 1:12635188029458 � 10�1

2048 2:02181035061269 � 10�2 4:07451054951488 � 10�2 6:19942703907331 � 10�2 8:47465578285188 � 10�2 1:12635188029459 � 10�1

k = 7.0
256 1:65589614002174 � 10�2 3:33595222277592 � 10�2 5:07233582368858 � 10�2 6:92533624010780 � 10�2 9:17168961350864 � 10�2

512 1:65589614005492 � 10�2 3:33595222289539 � 10�2 5:07233582364927 � 10�2 6:92533624019604 � 10�2 9:17168961352056 � 10�2

1024 1:65589614005463 � 10�2 3:33595222288803 � 10�2 5:07233582365632 � 10�2 6:92533624017904 � 10�2 9:17168961352137 � 10�2

2048 1:65589614005484 � 10�2 3:33595222288753 � 10�2 5:07233582365731 � 10�2 6:92533624017670 � 10�2 9:17168961352143 � 10�2

k = 10.0
256 1:32484005418904 � 10�2 2:66795457529754 � 10�2 4:05357403215398 � 10�2 5:52678934659797 � 10�2 7:29221129932192 � 10�2

512 1:32484005421342 � 10�2 2:66795457538518 � 10�2 4:05357403212547 � 10�2 5:52678934666303 � 10�2 7:29221129932804 � 10�2

1024 1:32484005421322 � 10�2 2:66795457537980 � 10�2 4:05357403213064 � 10�2 5:52678934665059 � 10�2 7:29221129932845 � 10�2

2048 1:32484005421337 � 10�2 2:66795457537942 � 10�2 4:05357403213135 � 10�2 5:52678934664887 � 10�2 7:29221129932848 � 10�2
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Table 4
The dependence of the velocity at boundary y ¼ 1=2;uð1=2; kÞ, and the velocity
derivative at the channel center y ¼ 0, u0ð0; kÞ, on the Knudsen number k. The results
are obtained with the Chebyshev expansion with N ¼ 2048.

k uð1=2; kÞ u0ð0; kÞ

0.003 4:97891535278427 � 10�1 0.993939801103754

0.01 4:93069780773982 � 10�1 0.980081001908009

0.03 4:80005868276515 � 10�1 0.942545599824700

0.1 4:41224640972217 � 10�1 0.835285765647133

0.3 3:67212569550043 � 10�1 0.663530077027944

1.0 2:51861339989471 � 10�1 0.444228469746625

2.0 1:85246299374021 � 10�1 0.327474576937359

3.0 1:50428244499207 � 10�1 0.267207005940212

5.0 1:12635188029459 � 10�1 0.201694431817770

7.0 9:17168961352143 � 10�2 0.165208634795606

10.0 7:29221129932848 � 10�2 0.132195579051697

Table 5
The dependence of the stress Pxy and the total mass flow rate Q on the Knudsen
number k.

k PxyðkÞ Q(k)

0.003 �1:490909702173263 � 10�3 1:242445655358978 � 10�1

0.01 �4:900405009668500 � 10�3 1:225330275294396 � 10�1

0.03 �1:413798601517447 � 10�2 1:180147037185861 � 10�1

0.1 �4:155607782559217 � 10�2 1:057028408172310 � 10�1

0.3 �9:344983511356993 � 10�2 8:560111699820641 � 10�2

1.0 �1:694625753368235 � 10�1 5:804708735555424 � 10�2

2.0 �2:083322536749378 � 10�1 4:281659776113900 � 10�2

3.0 �2:266437497658086 � 10�1 3:489298506190797 � 10�2

5.0 �2:446632678455995 � 10�1 2:627042060967372 � 10�2

7.0 �2:536943539674480 � 10�1 2:147460412330824 � 10�2

10.0 �2:611624603488405 � 10�1 1:714449048590636 � 10�2
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center y ¼ 0. The linear profile defined by Eq. (20) can be seen as the
hydrodynamic component of the velocity uðy; kÞ.

By substituting the following linear approximation of uðy; kÞ

~u0ðy; kÞ ¼
y

1þ k
ffiffiffiffiffiffiffiffiffi
p=2

p ; ð21Þ

into the right-hand-side of the integral Eq. (1a), we can obtain an
approximated solution of uðy; kÞ to illustrate its nonlinearity and
the singular nature of the Knudsen layer near the boundary [9]:

~uðy; kÞ ¼ k

1þ k
ffiffiffiffiffiffiffiffiffi
p=2

p y
k
þ F0ðy; kÞ

2
ffiffiffi
2
p � F1ðy; kÞffiffiffiffi

p
p

� �
; ð22Þ

where Fnðy; kÞ is defined in Eq. (1c). Near the wall at y ¼ þ1=2,
d :¼ ð1=2� yÞ 
 1, then both Inðð1=2þ yÞ=kÞ ¼ Inðð1� dÞ=kÞ �
Inð1=kÞ and Inðð1=2� yÞ=kÞ ¼ Inðd=kÞ can be approximated by their
Fig. 3. The Knudsen number k dependence of velocity uðy; kÞ. Left: The solid and
u1ðy; kÞ ¼ u0ð0; kÞy, i.e., the straight line tangent to uðy; kÞ at y ¼ 0. Right: The normalized
leading order expansions [41], which are given in Appendix A, thus
Eq. (22) becomes:

~uðy; kÞ � k

1þ k
ffiffiffiffiffiffiffiffiffi
p=2

p 1
2
ðd=kÞ þ 1

2
ffiffiffi
2
p ðd=kÞ lnðd=kÞ

�

þ 1
2k
þ

ffiffiffiffi
p
p

4
ffiffiffi
2
p � 1

2
ffiffiffiffi
p
p � 1

2
ffiffiffi
2
p I0ð1=kÞ þ 1ffiffiffiffi

p
p I1ð1=kÞ

� ��

¼ a0 d=kð Þ 1þ 1ffiffiffi
2
p lnðd=kÞ

� �
þ ~uð1=2; kÞ; ð23aÞ

~uð1=2;kÞ :¼ a0
1
k
þ 2ffiffiffiffi

p
p F1ð0;kÞ�

1ffiffiffi
2
p F0ð0;kÞ

� �

¼ a0
1
k
þ

ffiffiffiffi
p
p

2
ffiffiffi
2
p � 1ffiffiffiffi

p
p � 1ffiffiffi

2
p I0ð1=kÞþ 2ffiffiffiffi

p
p I1ð1=kÞ

� �� �
; ð23bÞ

a0 :¼ k

2þ k
ffiffiffiffiffiffiffi
2p
p : ð23cÞ

Eq. (23a) manifests the leading order singularity of uðy; kÞ at the
boundary y ¼ �1=2 is ðd=kÞ lnðd=kÞ with d :¼ 1=2� y. Clearly, when
y! �1=2; u0ðy; kÞ � lnðd=kÞ, thus u0ðy; kÞ does not exist at the
boundaries y ¼ �1=2 for k – 0. While the approximated solution
~uðy; kÞ reveals the singular nature of uðy; kÞ, it does not approximate
uðy; kÞ well quantitatively. For instance, ~uð1=2; kÞ– uð1=2; kÞ and
~u0ð0; kÞ – u0ð0; kÞ.

We can improve the approximation of uðy; kÞ based on ~uðy; kÞ by
assuming that the approximation of uðy; kÞ has the following form:

~u1ðy; kÞ ¼ AðkÞyþ BðkÞF0ðy; kÞ þ CðkÞF1ðy; kÞ; ð24Þ

where AðkÞ;BðkÞ, and CðkÞ are functions of k alone and are fully
determined by the following constraints on ~u1ðy; kÞ:

~u1ð1=2; kÞ ¼ uð1=2; kÞ; ð25aÞ
~u01ð0; kÞ ¼ u0ð0; kÞ; ð25bÞZ 1=2

0
~u1ðy; kÞdy ¼ QðkÞ; ð25cÞ

where uð1=2; kÞ;u0ð0; kÞ, and QðkÞ are obtained by using the accurate
solutions uNðy; kÞ of the integral Eq. (2a) presented in the previous
section. Specifically, the equations for A;B, and C are:

Aþ 2
k

I�1 1=2kð ÞBþ 2
k

I0 1=2kð ÞC ¼ u0ð0; kÞ; ð26aÞ

1
2

Aþ
ffiffiffiffi
p
p

2
� I0 1=kð Þ

� �
Bþ 1

2
� I1 1=kð Þ

� �
C ¼ uð1=2; kÞ; ð26bÞ

1
8

Aþk
1
2
þ I1 1=kð Þ�2I1 1=2kð Þ

� �
Bþk

ffiffiffiffi
p
p

4
þ I2 1=kð Þ�2I2 1=2kð Þ

� �
C¼QðkÞ:

ð26cÞ
dashed lines correspond to the numerical solution uNðy; kÞ with N ¼ 2048 and
nonlinear component of the velocity, uNL defined by Eq. (17). uðy; kÞ=uð1=2; kÞ.



Table 7
The global L2 error of the approximated ~u1ðy; kÞ ¼ Ayþ BF0ðy; kÞ þ CF1ðy; kÞ and the
shear stress Pxy obtained from ~u1ðy; kÞ.

k kd~u1ðkÞk2 PxyðkÞ

0.003 4:1196 � 10�6 �1:490909701655703 � 10�3 � 5:4872 � 10�15

0.01 2:8713 � 10�5 �4:900405009089867 � 10�3 � 2:0275 � 10�14

0.03 2:8279 � 10�4 �1:413793251056168 � 10�2 � 5:6901 � 10�9

0.1 6:8547 � 10�4 �4:155030609974823 � 10�2 � 2:0460 � 10�6

0.3 4:8290 � 10�4 �9:344448147076767 � 10�2 � 5:6934 � 10�6

1.0 2:0757 � 10�4 �1:694619104626556 � 10�1 � 2:3569 � 10�6

2.0 1:1023 � 10�4 �2:083321401486735 � 10�1 � 8:0488 � 10�7

3.0 7:3370 � 10�5 �2:266437144577648 � 10�1 � 3:7549 � 10�7

5.0 4:2699 � 10�5 �2:446632605710038 � 10�1 � 1:2894 � 10�7

7.0 2:9503 � 10�5 �2:536943515313993 � 10�1 � 6:0449 � 10�8

10.0 1:9772 � 10�5 �2:611624596132240 � 10�1 � 2:6077 � 10�8
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The numerical solutions of AðkÞ; BðkÞ and CðkÞ are given in Table 6.
The solutions of AðkÞ;BðkÞ and CðkÞ show that they are smooth func-
tions of k.

To measure the accuracy and quality of the approximated solu-
tion ~u1ðy; kÞ, we compute the global L2 error of ~u1ðy; kÞ and the
shear stress Pxy obtained from ~u1ðy; kÞ, and tabulate the results in
Table 7. The half channel mass flow rate Q is used as one of the con-
straints to determine ~u1ðy; kÞ, and Q computed from the approxi-
mated solution ~u1ðy; kÞ is indeed identical to Q computed with
uNðy; kÞ given in Table 5. The L2 global error of ~u1ðy; kÞ never
exceeds 7 � 10�4, and the errors in the stress Pxy obtained from
~u1ðy; kÞ are in the fifth digit or smaller. Clearly, the approximated
solution ~u1ðy; kÞ of Eq. (24) is accurate in terms of the above
measurements.

The approximated solution ~u1ðy; kÞ of Eq. (24) captures the lead-
ing-order singularities of uðy; kÞ at the boundaries. However, to
construct boundary conditions of Maxwell’s slip-velocity model
[42], which can be used in the Navier–Stokes equations [50–
53,24,54,55], we cannot allow the boundary singularities in the
velocity uðy; kÞ, because these models require derivatives of
uðy; kÞ at the boundary. We can approximate uðy; kÞ with the fol-
lowing simple cubic polynomial which has the correct symmetry
of the flow but without the boundary singularities:

~u2ðy; kÞ ¼ u0ð0; kÞyþ aðkÞy3; jyj 6 h0 6 1=2; ð27Þ

where u0ð0; kÞ is given by Eq. (19) and aðkÞ is the only parameter in
~u2ðy; kÞ which is obtained by the least-square fitting of ~u2ðy; kÞ to
uðy; kÞ. Eq. (27) is inspired by the fact that uðy; kÞ can be accurately
approximated by cubic polynomial through variational approach
[12]. We compute aðkÞ by using different flow domain sizes
jyj 6 h0;h0 ¼ 0:1, 0.25, 0.4, and 0.5. The results are given in Table 8.

The coefficient aðkÞ in Eq. (27) measures the strength of the
nonlinear component of the velocity uðy; kÞ. It is interesting to note
that the maximum of aðkÞ occurs at k ¼ 1:0 for the values of k with
which uðy; kÞ has been computed. However, if we use the normal-
ized velocity uðy; kÞ=uð1=2; kÞ, then aðkÞ=uð1=2; kÞ increases mono-
tonically with k, as shown in Fig. 3. For almost all cases of k; aðkÞ
increases monotonically as increases the domain size in which
~u2ðy; kÞ is used to approximate uðy; kÞ. For all values of
k 2 ½0:003;10:0�, the velocity uðy; kÞ is very well approximated by
the linear profile u0ð0; kÞy in the flow domain about the channel
center – the L2 global error of ~u2ðy; kÞ in the domain of jyj 6 0:1
never exceeds 5 � 10�6.

There are other quantities which can be used to measure
~u2ðy; kÞ about its accuracy to approximate uðy; kÞ, including the
boundary value ~u2ð1=2; kÞ, the half-channel mass flow rate Q, and
the stress Pxy. The values of ~u2ð1=2; kÞ;Q , and Pxy computed with
~u2ðy; kÞ are given in Table 9. Comparing ~u2ð1=2; kÞ in Table 9 with
the data of uð1=2; kÞ of Table 4, we see that the errors of
Table 6
The numerical solutions of Eq. (26) for the coefficients AðkÞ;BðkÞ and CðkÞ.

k A B

0.003 9:939398011037547 � 10�1 4
0.01 9:800810019019697 � 10�1 1
0.03 9:425419498579877 � 10�1 4
0.1 8:329356170017682 � 10�1 1
0.3 6:379645268711726 � 10�1 6
1.0 3:827430174542746 � 10�1 1
2.0 2:644689510083537 � 10�1 1
3.0 2:100280076555217 � 10�1 1
5.0 1:554441376291299 � 10�1 2
7.0 1:267321809253623 � 10�1 2
10.0 1:015072463335740 � 10�1 2
~u2ð1=2; kÞ are less than 3%. And comparing the data of Q and Pxy

of Table 9 computed by using ~u2ðy; kÞ with the data of Table 5,
we can see that the errors of Q are less than 1% and the errors of
Pxy are less than 0.5%. Thus for practical purposes and in terms of
the above measurements, ~u2ðy; kÞ is an adequate approximation
for uðy; kÞ.

If the derivative u0ð0; kÞ is the quantity of primary concern, then
we can use the following approximation for the velocity uðy; kÞ:

~u3ðy; kÞ ¼ u0ð0; kÞyþ 4½2uð1=2; kÞ � u0ð0; kÞ�y3; jyj 6 h0 6 1=2:

ð28Þ

Now there is no fitting parameter in the above approximation of
uðy; kÞ; ~u3ð1=2; kÞ ¼ uð1=2; kÞ and ~u03ð0; kÞ ¼ u0ð0; kÞ, and both
uð1=2; kÞ and u0ð0; kÞ are provided by the accurate solution of the
integral solution (2a) given in Table 4. We compute the L2 global
error, the half-channel total mass flow rate Q, and the stress Pxy

by using the approximated solution ~u3ðy; kÞ, and the results are
given in Table 10. The L2 global errors of ~u3ðy; kÞ are larger than that
of ~u2ðy; kÞ given by Eq. (27) by a factor no more than 3; the errors in
Q and Pxy are also larger than that with ~u2ðy; kÞ, although they
remain relatively small: the errors in Q and Pxy are bounded by
2.4% and 0.7%, respectively.

To investigate the possibility of improving the approximation
given by Eq. (28), we introduce the following approximation:

~u4ðy; kÞ ¼ u0ð0; kÞyþ uð1=2; kÞ � 1
2

u0ð0; kÞ
� �

ð2yÞc; jyj 6 h0 6 1=2;

ð29Þ

where the exponent c is the only adjustable parameter, which is
obtained by the least-square fitting. The results of c, as well as
the results of the L2 global errors, the half-channel mass flow rate,
C

:203888321649420 � 10�4 1:098149648651225 � 10�3

:381929614714690 � 10�3 3:609153178711989 � 10�3

:117989399334418 � 10�3 1:017084072395429 � 10�2

:958836369520414 � 10�2 1:480875860779301 � 10�2

:031742674360471 � 10�2 �9:010953908070029 � 10�3

:289092270309213 � 10�1 �9:736027778683470 � 10�2

:695879157944917 � 10�1 �1:888905977706435 � 10�1

:909461676316779 � 10�1 �2:568629932617473 � 10�1

:141141551745609 � 10�1 �3:566589264444766 � 10�1

:269031187313728 � 10�1 �4:302171682790011 � 10�1

:383573140063627 � 10�1 �5:141844415188976 � 10�1



Table 8
The coefficient aðkÞ of the cubic term in ~u2ðy; kÞ ¼ aðkÞy3 þ u0ð0Þy and L2 global error of
~u2ðy; kÞ.

k a kduk2

0 6 y 6 0.1
0.003 5:099593062063754 � 10�8 1:3874 � 10�10

0.01 3:343744310958851 � 10�8 3:0183 � 10�11

0.03 5:281661481222335 � 10�4 8:6155 � 10�8

0.1 3:221450332360452 � 10�2 1:7249 � 10�6

1.0 1:087385972974718 � 10�1 4:6313 � 10�6

2.0 8:404038575996586 � 10�2 4:4692 � 10�6

3.0 6:752579776310266 � 10�2 4:2472 � 10�6

5.0 4:852427628554858 � 10�2 3:9039 � 10�6

7.0 3:799335117677678 � 10�2 3:6636 � 10�6

10.0 2:876474290181471 � 10�2 3:4109 � 10�6

0 6 y 6 0.25
0.003 8:910398731314538 � 10�9 1:6440 � 10�10

0.01 2:281723886791297 � 10�7 4:4609 � 10�9

0.03 9:362491604139115 � 10�4 6:0262 � 10�6

0.1 3:801461087150716 � 10�2 8:5867 � 10�5

1.0 1:166555192399757 � 10�1 2:1281 � 10�4

2.0 8:965402727287951 � 10�2 2:0421 � 10�4

3.0 7:187268534084894 � 10�2 1:9367 � 10�4

5.0 5:153603790568363 � 10�2 1:7772 � 10�4

7.0 4:030682982958223 � 10�2 1:6667 � 10�4

10.0 3:048715410738038 � 10�2 1:5511 � 10�4

0 6 y 6 0.4
0.003 3:461904416529674 � 10�9 1:5676 � 10�10

0.01 1:856312338363668 � 10�5 1:7824 � 10�6

0.03 3:299567364766678 � 10�3 1:4500 � 10�4

0.1 5:579151702265811 � 10�2 1:0135 � 10�3

1.0 1:375949468072168 � 10�1 2:0840 � 10�3

2.0 1:043359531536905 � 10�1 1:9723 � 10�3

3.0 8:318922556028895 � 10�2 1:8612 � 10�3

5.0 5:934281798850302 � 10�2 1:7010 � 10�3

7.0 4:629066041789258 � 10�2 1:5926 � 10�3

10.0 3:493410766837902 � 10�2 1:4803 � 10�3

0 6 y 6 0.45
0.003 1:019246570609792 � 10�7 2:4671 � 10�8

0.01 1:451549152540907 � 10�4 2:1444 � 10�5

0.03 6:572911061238614 � 10�3 4:9401 � 10�4

0.1 6:996991026752306 � 10�2 2:3617 � 10�3

1.0 1:517910790377233 � 10�1 4:3275 � 10�3

2.0 1:141552197717352 � 10�1 4:0589 � 10�3

3.0 9:071566848876420 � 10�2 3:8176 � 10�3

5.0 6:450797155323322 � 10�2 3:4795 � 10�3

7.0 5:023949416869138 � 10�2 3:2539 � 10�3

10.0 3:786238847877981 � 10�2 3:0220 � 10�3

0 6 y 6 0.5
0.003 1:004492580134579 � 10�3 4:1487 � 10�4

0.01 4:397838806966825 � 10�3 1:3460 � 10�3

0.03 2:219498738086498 � 10�2 3:7467 � 10�3

0.1 1:055162854697281 � 10�1 8:3746 � 10�3

1.0 1:801024605942818 � 10�1 1:1638 � 10�2

2.0 1:333459015123582 � 10�1 1:0673 � 10�2

3.0 1:053062819728655 � 10�1 9:9541 � 10�3

5.0 7:444629837254586 � 10�2 9:0068 � 10�3

7.0 5:780969662306304 � 10�2 8:3953 � 10�3

10.0 4:345906835580813 � 10�2 7:7775 � 10�3
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and the stress Pxy, are given in Table 11. The value of the exponent c
decreases monotonically as k increases. However, c varies only
slightly and it is rather close to 3.0; in fact it is bounded by
2:8 < c < 3:3. Also the approximation ~u4ðy; kÞ does not cause much
change to the L2 global error kduk2, the half-channel total mass flow
rate Q, and the stress Pxy when compared to ~u3ðy; kÞ. This indicates
that the exponent c has a very limited effect on the velocity uðy; kÞ
in terms of the L2 global error kduk2, the half-channel total mass
flow rate Q, and the stress Pxy, and ~u3ðy; kÞ given by Eq. (28) with
c ¼ 3 is a good approximation for the velocity uðy; kÞ.

In summary, the approximated solution ~u1ðy; kÞ given by Eq.
(24) in terms of Abramowitz functions captures the leading order
singularities of uðy; kÞ at the end-points, and approximates uðy; kÞ
very accurately. For many practical purposes, the approximation
~u2ðy; kÞ of the cubic polynomial given by Eq. (27) can be used as
an adequate model for wall-function.

3.4. The velocity defect and slip velocities

The linear velocity u1 :¼ u0ð0; kÞy is the hydrodynamic compo-
nent of the velocity uðy; kÞ. Thus, the kinetic component of the
velocity uðy; kÞ can be characterized by the so-called the ‘‘velocity
defect’’ defined as the following [6]:

udðy; kÞ ¼
ffiffiffiffiffiffiffi
2p
p

uð1=2; kÞ uðy; kÞ � u0ð0; kÞy½ �: ð30Þ

The velocity defect essentially shows the structure of Knudsen layer
in the velocity profile uðy; kÞ. For Kramers’ problem which has only
one wall thus the flow domain is semi-infinite, i.e., 0 6 y <1, the
velocity defect is a function of y=k. For the Couette flow, the velocity
defect udðy; kÞ is not a function of y=k [6]. This can be seen clearly
from the approximated solution of uðy; kÞ given by Eqs. (22) and
(23a): uðy; kÞ is indeed a function of both y=k and k.

The microscopic slip velocity us and the macroscopic one Us are
defined as the following:

usðkÞ ¼ Uw � uð1=2; kÞ ¼ 1
2
� uð1=2; kÞ; ð31Þ

UsðkÞ ¼ Uw � u0ð0; kÞyjy¼1=2 ¼
1
2
½1� u0ð0; kÞ�; ð32Þ

where Uw :¼ �U=2 is the velocity of the wall at y ¼ �1=2 specified
by the boundary conditions, and uð1=2; kÞ and u0ð0; kÞ are the veloc-
ity at the wall and the velocity derivative at the channel center,
respectively, obtained with the linearized BGK equation. Note that
all the velocities are normalized by U. Clearly, the difference
between Us and us is due to the nonlinearity in uðy; kÞ and can be
used as a measure of that.

Fig. 4 shows the velocity defect udðy; kÞ and the velocity defect
udðy; kÞ normalized by its maximum value at the boundary
udð1=2; kÞ for k ¼ 0:03, 0.1, 1.0, and 10.0. The velocity defect
udðy; kÞ exhibits a non-monotonic dependence on k. First, udðy; kÞ
increases rapidly to its maximum at k � 1, then it decreases
slightly and slowly as k further increases, as seen in the left figure
in Fig. 4. The reason for this non-monotonic k-dependence of
udðy; kÞ is because of overlapping of the two Knudsen layers due
to two walls, as clearly indicated by the leading order approxi-
mated solution of uðy; kÞ given by Eq. (22), which includes terms
singular at both walls. The non-monotonic dependence of the
velocity defect udðy; kÞ on k can be further quantified as the follow-
ing. From Fig. 3 we can see that, as k increases, so does the slip
velocity usðkÞ, hence the magnitude of the velocity uðy; kÞ
decreases. On the other hand, the kinetic component of the veloc-
ity, uðy; kÞ � u0ð0; kÞy, increases with k. That is, the nonlinearity in
the velocity uðy; kÞ increases while its magnitude uð1=2; kÞ
decreases as k increases. Therefore, the non-monotonic k depen-
dence of the velocity defect udðy; kÞ is due to the competition
between the increasing nonlinearity and the decreasing magnitude
of uð1=2; kÞ, which is characterized by the quantity
1� u0ð0; kÞ=2uð1=2; kÞ. To make this point clearer, we show that
the non-monotonic k-dependence of the velocity defect udðy; kÞ
can be removed when it is normalized by its maximum,



Table 9
The values ~u2ð0; kÞ, and the half-channel mass flow rate Q, and the stress Pxy computed from ~u2ðy; kÞ ¼ ay3 þ u0ð0Þy.

k ~u2ð1=2Þ Q(k) PxyðkÞ

0.003 4:970954621243941 � 10�1 � 0:1599% 1:242581703345339 � 10�1 � 0:0110% �1:490909823701481 � 10�3 � 1:2152 � 10�10

0.01 4:905902308048756 � 10�1 � 0:5029% 1:225788414698600 � 10�1 � 0:0374% �4:900424799305580 � 10�3 � 1:9789 � 10�8

0.03 4:740471733349583 � 10�1 � 1:2414% 1:181707716833412 � 10�1 � 0:1322% �1:414048256521453 � 10�2 � 2:4965 � 10�6

0.1 4:308324185072827 � 10�1 � 2:3553% 1:060594126663562 � 10�1 � 0:3373% �4:165343452234106 � 10�2 � 9:7356 � 10�5

0.3 3:563868803731906 � 10�1 � 2:9481% 8:601898986089533 � 10�2 � 0:4882% �9:370544518610212 � 10�2 � 2:5561 � 10�4

1.0 2:446270424475982 � 10�1 � 2:8723% 5:834265966511390 � 10�2 � 0:5092% �1:696070068509743 � 10�1 � 1:4443 � 10�4

2.0 1:804055261577246 � 10�1 � 2:6132% 4:301785182830057 � 10�2 � 0:4700% �2:083977602271475 � 10�1 � 6:5506 � 10�5

3.0 1:467667882167143 � 10�1 � 2:4340% 3:504628639835256 � 10�2 � 0:4393% �2:266809875895623 � 10�1 � 3:7237 � 10�5

5.0 1:101530032054535 � 10�1 � 2:2037% 2:649017400821707 � 10�2 � 0:8365% �2:446801545148576 � 10�1 � 1:6886 � 10�5

7.0 8:983052947568622 � 10�2 � 2:0567% 2:649017400821707 � 10�2 � 0:8365% �2:537040133056390 � 10�1 � 9:6593 � 10�6

10.0 7:153017307032454 � 10�2 � 1:9088% 1:720349532452163 � 10�2 � 0:3442% �2:611676684381582 � 10�1 � 5:2080 � 10�6

Table 10
The L2 global error of the approximated solution ~u3ðy; kÞ ¼ 4½2uð1=2; kÞ � u0ð0; kÞ�y3 þ u0ð0; kÞy, the half-channel total mass flow rate Q, and the stress Pxy .

k kduk2 Q(k) Pxy ðkÞ

0.003 1:1469 � 10�3 1:243576794787881 � 10�1 � 0:0910% �1:490910597484586 � 10�3 � 8:9531 � 10�10

0.01 3:6347 � 10�3 1:228887852159983 � 10�1 � 0:2903% �4:900514063030057 � 10�3 � 1:0905 � 10�7

0.03 9:2130 � 10�3 1:189098335236083 � 10�1 � 0:7585% �1:414617804249189 � 10�2 � 8:1920 � 10�6

0.1 1:8350 � 10�2 1:073584404744730 � 10�1 � 1:5663% �4:183060986138169 � 10�2 � 2:7453 � 10�4

0.3 2:3822 � 10�2 8:737220100800198 � 10�2 � 2:0690% �9:425838992151225 � 10�2 � 8:0855 � 10�4

1.0 2:3595 � 10�2 5:924694685784809 � 10�2 � 2:0670% �1:699706480158879 � 10�1 � 5:0807 � 10�4

2.0 2:1464 � 10�2 4:362294848033766 � 10�2 � 1:8833% �2:085717852369104 � 10�1 � 2:3953 � 10�4

3.0 1:9953 � 10�2 3:550396843366418 � 10�2 � 1:7510% �2:267821881356465 � 10�1 � 1:3843 � 10�4

5.0 1:8000 � 10�2 2:668530049229303 � 10�2 � 1:5793% �2:447270513741618 � 10�1 � 6:3783 � 10�5

7.0 1:6753 � 10�2 2:179015169162721 � 10�2 � 1:4694% �2:537311316853772 � 10�1 � 3:6777 � 10�5

10.0 1:5501 � 10�2 1:737748781489167 � 10�2 � 1:3590% �2:611824247306578 � 10�1 � 1:9964 � 10�5

Table 11
The exponent c, the L2 global error, the mass flow rate Q, and the stress Pxy computed by using ~u4ðy; kÞ of Eq. (29).

k c kduk2 Q(k) PxyðkÞ

0.003 3.248329323033803 1:1050 � 10�3 1:243509453925648 � 10�1 � 0:0856% �1:490910081133585 � 10�3 � 3:7896 � 10�10

0.01 3.239676061098960 3:4945 � 10�3 1:228673789267926 � 10�1 � 0:2729% �4:900468505233785 � 10�3 � 6:3495 � 10�8

0.03 3.187314282375971 8:8572 � 10�3 1:188610006583377 � 10�1 � 0:7171% �1:414450517167787 � 10�2 � 6:5191 � 10�6

0.1 3.031991051258164 1:8150 � 10�2 1:073350523634845 � 10�1 � 1:5442% �4:182382594026332 � 10�2 � 2:6774 � 10�4

0.3 2.916177429820853 2:4838 � 10�2 8:746704167888562 � 10�2 � 2:1798% �9:431350942302831 � 10�2 � 8:6367 � 10�4

1.0 2.855100787910733 2:5821 � 10�2 5:938670753890424 � 10�2 � 2:3078% �1:700359908390864 � 10�1 � 5:7341 � 10�4

2.0 2.836174755461950 2:3952 � 10�2 4:373776725150815 � 10�2 � 2:1514% �2:086079889573638 � 10�1 � 2:7573 � 10�4

3.0 2.828237564262746 2:2466 � 10�2 3:559832838838151 � 10�2 � 2:0214% �2:268045365488366 � 10�1 � 1:6078 � 10�4

5.0 2.820598517515874 2:0453 � 10�2 2:675449055715516 � 10�2 � 1:8426% �2:447380163789222 � 10�1 � 7:4748 � 10�5

7.0 2.816697371284773 1:9129 � 10�2 2:184485735317340 � 10�2 � 1:7241% �2:537376600108247 � 10�1 � 4:3306 � 10�5

10.0 2.813344241739956 1:7776 � 10�2 1:741924247925830 � 10�2 � 1:6026% �2:611860675848703 � 10�1 � 2:3607 � 10�5

Fig. 4. The velocity defect udðy; kÞ (left) and the normalized velocity defect udðy; kÞ=udð1=2; kÞ (right) for k ¼ 0:03, 0.1, 1.0, and 10.0. Note that the normalized velocity defect
udðy; kÞ=udð1=2; kÞ (right) increases monotonically as k increases.
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Table 12
The values of parameters in the models for the (microscopic) slip velocity usðkÞ, the
fitting range of k for the parameters, and the L2 of the models in the corresponding
fitting range of k.

Model Parameters k range kdusk2

Eq. (33) A0 ¼ 0:4701623488541722 0:003 6 k 6 10:0 1:1205 � 10�3

A1 ¼ �0:3569325916063242
A2 ¼ 0:9303088949385295

Eq. (34) B1 ¼ 1:279758697826314 0:003 6 k 6 0:3 4:6599 � 10�4

B2 ¼ �0:5685759260098272

Eq. (35) C1 ¼ 0:7037931880441636 0:003 6 k 6 0:3 5:0112 � 10�4

C2 ¼ 1:967040348835866

Eq. (35) C1 ¼ 0:6171898550504058 0:003 6 k 6 0:3 3:4415 � 10�2

C2 ¼ 2C1

Eq. (36) D1 ¼ 0:7049600580160285 0:003 6 k 6 0:3 9:4363 � 10�5

D2 ¼ �1:320955381122892
D3 ¼ 1:488348609420158

Fig. 5. The k-dependence of the slip velocity usðkÞ. The circles are the solution of the
integral Eq. (2a) given in Table 4. The solid, dash, dot, and dash-dot lines are the
approximations of usðkÞ by Eqs. (33), (34), (35) with C2 – 2C1, and (36),
respectively. Note that the lines of Eqs. (33) and (34) overlap each other completely.
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udð1=2; kÞ that is, udðy; kÞ=udð1=2; kÞ increases with k monotoni-
cally, as shown in the right figure in Fig. 4.

The microscopic slip velocity usðkÞ can be directly extracted
from the accurate data of the uðy; kÞ given in the previous section.
To gain some insights of the Knudsen number dependence of usðkÞ,
we can use the approximated solutions of uðy; kÞ discussed previ-
ously. To capture the singular behavior of uðy; kÞ, we have to use
~u1ðy; kÞ of Eq. (24) given in terms of Abramowitz functions I0 and
I1. Similarly, we can approximate usðkÞ in terms of I0 and I1 with
the following formula:

us1ðkÞ ¼
k

1þ 2A2k
A2 þ A0 I0ð1=kÞ �

ffiffiffiffi
p
p

2

� �
þ A1 I1ð1=kÞ � 1

2

� �� �
;

ð33Þ

where coefficients A0;A1, and A2, are obtained by the least-square
fitting of usðkÞ with 0:003 6 k 6 10:0. The data of
usðkÞ :¼ 1=2� uð1=2; kÞ are extracted from the data of uð1=2; kÞ
given in Table 4. The above approximation of usðkÞ includes the cor-
rect asymptotic behaviors of usðkÞ, i.e., usð0Þ ¼ 0 and usðkÞ ! 1=2 as
k!1.

In consideration of the limits of usðkÞ at k ¼ 0 and at infinity, we
can use the following simple approximation for usðkÞ:

us2ðkÞ ¼
B1kþ B2 lnð1þ kÞ

1þ 2B1k
; ð34Þ

where parameters B1 and B2 are obtained by the least-square fitting
in the interval 0:003 6 k 6 0:3. To maintain the correct limits at
k ¼ 0 and at infinity, we can use a much simpler rational approxi-
mation of usðkÞ:

us3ðkÞ ¼
C1k

1þ C2k
; ð35Þ

where coefficients C1 and C2 are obtained by the least-square fitting
in the interval 0:003 6 k 6 0:3. We can set C2 ¼ 2C1 to satisfy the
asymptotic limit of usðkÞ at k!1. However, this increases the L2

error in the fitting range of k.
Finally, we can also use the following cubic polynomial to

approximate usðkÞ for k < 1:

us3ðkÞ ¼ D1kþ D2k2 þ D3k3
; ð36Þ

where coefficients D1;D2, and D3 are obtained by the least-square
fitting for 0:003 6 k 6 0:3. The values of the parameters in models
us1; us2;us3, and us4, given by Eqs. (33)–(36), respectively, as well
as the L2 error of the models in the range of k in which the param-
eters are obtained, are given in Table 12.

Fig. 5 shows the Knudsen number dependence of the slip veloc-
ity usðkÞ as well as the approximations of usðkÞ given by Eqs. (33)–
(36). Clearly, the model of Eq. (33) approximates usðkÞ very well,
the asymptotic values of usðkÞ in both k ¼ 0 and k!1 are
matched by Eq. (33) exactly, and the L2 global error is
1:1205 � 10�3 in the range of 0:003 6 k 6 10:0. Although the
parameters B1 and B2 in Eq. (34) are obtained in the interval
0:003 6 k 6 0:3, the model of Eq. (34) is indistinguishable from
that of Eq. (33). The models of Eqs. (35) and (36) are only valid
for small k in the interval 0:003 6 k 6 0:3 – the L2 global errors
of these models are 5:0112 � 10�4 and 9:4363 � 10�5, respectively.
Note that while the model of Eq. (35) with C2 ¼ 2C1 has the correct
asymptotic limits at both k ¼ 0 and k!1, the model with
C2 – 2C1 actually fits usðkÞ better in the interval 0:003 6 k 6 0:3.

When considering slip-velocity models which can be used as
boundary conditions in the Navier–Stokes equations, the macro-
scopic slip velocity UsðkÞ is used [56,52]. The models for UsðkÞ
can be directly derived from those for the velocity uðy; kÞ. Since
the models for UsðkÞ are only useful for small k, we will only con-
sider the following cubic polynomial approximation of UsðkÞ:
UsðkÞ � C1kþ C2k2 þ C3k3
; ð37Þ

where C1 ¼ 1:020794919617355; C2 ¼ �2:191441518439700, and
C3 ¼ 2:193562264423130, and the L2 error is 1:9880 � 10�4 for
0:003 6 k 6 0:3. In Fig. 6 we show UsðkÞ directly computed from
the solution of the integral Eq. (2a), the model derived from Eq.
(24) and the cubic polynomial fit of Eq. (37). Clearly, the cubic poly-
nomial fit of Eq. (37) approximates UsðkÞ adequately for k 6 0:3. In
fact, the cubic polynomial fitting (37) approximate UsðkÞ better than
the model derived from Eq. (33) does for k 6 0:3.

The half channel mass flow rate QðkÞ is a measure of not only
the effect due to the slip velocity usðyÞ, but also the structure of
the Knudsen layer in the velocity profile uðy; kÞ [24]. Based on
the approximation of uðy; kÞ given by Eq. (33), we can approximate
QðkÞ with the following formula:

Q1ðkÞ ¼
k

1þ A3k

1
8k
þ A1k

1
2
þ I1 1=kð Þ � 2I1 1=2kð Þ

� ��

þ A2k
ffiffiffiffi
p
p

4
þ I2ð1=kÞ � 2I2ð1=2kÞ

� ��
; ð38Þ

where A1;A2, and A3 are obtained range 0:003 6 k 6 10:0. A simpler
approximation of QðkÞ is:

Q2ðkÞ ¼
1þ 8B1 ln 1þ k2

	 

1þ B2k

; ð39Þ



Fig. 6. The k-dependence of the macro-slip velocity UsðkÞ. The circles are the
solution of the integral Eq. (2a). The solid and dash lines are the approximations of
UsðkÞ by the model derived from Eq. (24) and the cubic polynomial fit given by Eq.
(37), respectively.

Fig. 7. The k-dependence of the normalized half-channel mass flow rate QðkÞ=Q0.
The circles are the solution of the integral Eq. (2a) given in Table 4. The solid, dash,
dash-dot, and dash-dot-dot lines are the approximations of QðkÞ=Q0 by Eqs. (38),
(39), (41), and (42) respectively. Note that the lines for Eqs. (38) and (39) are
overlapped with each other.
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where B1 and B2 are also obtained by the least-square fitting for
0:003 6 k 6 10:0. We note that both Q1ðkÞ and Q2ðkÞ have the cor-
rect behaviors in both k ¼ 0 and k!1, i.e., Qð0Þ ¼ 1=8 and

lim
k!1

QðkÞ ¼ 0: ð40Þ

For small k < 1, we can use the following rational approximation

Q 3ðkÞ ¼
1þ 8C1k2

8ð1þ C2kÞ
; ð41Þ

where C1 and C2 are obtained for 0:003 6 k 6 0:3. We can also use a
cubic polynomial to fit QðkÞ:

Q 4ðkÞ ¼
1
8
þ D1kþ D2k2 þ D3k3

; ð42Þ

where D1;D2, and D3 are also obtained for 0:003 6 k 6 0:3. The val-
ues of the parameters in the models for QðkÞ are given in Table 13.

Fig. 7 shows the half-channel mass flow rate QðkÞ normalized
its value at k ¼ 0, i.e., Q0 ¼ 1=8, as well as the models for QðkÞ given
by Eqs. (38), (39), (41), and (42). Clearly, the approximation of Eq.
(38) with Abramowitz functions I1 and I2 covers the entire range of
k with the correct limits at both k ¼ 0 and 1 and it quantitatively
agrees with the solution of the integral Eq. (2a). It is interesting to
note that, although the simple analytic model of Eq. (39) uses only
elementary functions with two fitting parameters, it also has the
correct limits at k ¼ 0 and 1, and approximates QðkÞ quite accu-
rately, as indicated by its small L2 error. It is also interesting to note
Table 13
The values of parameters in the models for the half-channel flow rate QðkÞ, the fitting
range of k for the parameters, and the L2 errors of the models in the corresponding
fitting range of k.

Model Parameters k range kdQk2

Eq. (38) A1 ¼ 0:4339896731456645 0:003 6 k 6 10:0 2:7451 � 10�3

A2 ¼ �0:2037173094079779

A3 ¼ 1:916439270306587

Eq. (39) B1 ¼ 0:03771029254176309 0:003 6 k 6 10:0 9:6796 � 10�3

B2 ¼ 1:665037574894380

Eq. (41) C1 ¼ 0:1187836129667822 0:003 6 k 6 0:3 9:0564 � 10�4

C2 ¼ 1:949726554024494

Eq. (42) D1 ¼ �0:2529994267391535 0:003 6 k 6 0:3 2:8209 � 10�5

D2 ¼ 0:6976773399315172
D3 ¼ �0:9737045663563917
that the cubic polynomial of Eq. (42) is a very accurate approxima-
tion of QðkÞ for small values of k, i.e., k 6 0:3.

4. Conclusion

In this work, we present an accurate and efficient high-order
method to solve the integral equation derived from linearized
BGK equation. The numerical technique used in this work differs
from the previous approaches in two aspects. First, the method
used in this work is based on a collocation method, as opposed
to the quadrature method or the Nyström method. And second,
the singular integral kernels are represented in terms of Chebyshev
expansion, as opposed to the Meijer G-function. The high-order
collocation method and Chebyshev expansion enable us to solve
the integral equation with high precision for the steady Couette
flow in a wide range of the Knudsen number 0:003 6 k 6 10:0,
which covers from near-continuum to free-molecular flow region.
We compute the velocity uðy; kÞ, the stress PxyðkÞ, and the half-
channel mass flow rate QðkÞ. We also compute the slip velocity
and the velocity defect. With mostly double-precision arithmetic
and a linear system no larger than 2048� 2048, we can obtain
results correct to at least eleven (11) significant digits in a wide
range of the Knudsen number 0:003 6 k 6 10:0. Our results are
much more accurate than the existing ones, and are perhaps the
most accurate ones available to date thus can be used as bench-
mark data.

Using the accurate data obtained in this work, we also consider
various approximations for the velocity uðy; kÞ, the slip velocities
usðkÞ and UsðkÞ, and the half-channel flow rate QðkÞ. These approx-
imations can be useful for modeling and simulation of Couette flow
in a wide range of the Knudsen number.

It should be emphasized that the present method is effective
and efficient to solve the integral equation derived from the linear-
ized BGK equation. While we have only dealt with the isothermal
Couette flow in this work, we would like to point out that integral
equations for both the velocity and temperature can also be
derived from the linearized BGK equation [57–59], to which our
method can be directly applied. Of course, there exist other deter-
ministic methods to solve the kinetic equation, such as discrete
ordinates methods [20,60,61], discrete velocity models [62,63],
and gas kinetic scheme [64,65]. However, to our best knowledge,
none of these methods can yield results of benchmark quality with
very high precision as the present method.

We note that the Chebyshev expansion method appears to have
two limitations. First, it cannot directly deal with the singularities
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of the velocity at the boundaries, that is, the Chebyshev expansion
cannot be used to accurately compute u0ðy; kÞ when y is very close
to the boundaries and ju0ðy; kÞj ! 1. And second, the Chebyshev
expansion of the Abramowitz functions appears to be valid only
for real argument. Thus it is not suitable for problems which
require the Abramowitz functions with complex argument, such
as Stokes’ second problem. Our future work will be to apply our
method for other canonical flows in kinetic theory.
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Appendix A. Properties and approximations of Abramowitz
functions In

In this section we provide a succinct summary of some useful
properties of Abramowitz functions InðxÞ and the approximation
formulas to evaluate InðxÞ, which can be found in the work of
MacLeod [41] and Handbook of Mathematical Functions edited
by Abramowitz and Stegun [66].

Abramowitz functions satisfy the following differential equa-
tion and recurrence relations:

xI000n � ðn� 1ÞI00n þ 2In ¼ 0; ðA:1aÞ

I0nþ1 þ In ¼ 0; ðA:1bÞ

2In ¼ ðn� 1ÞIn�2 þ xIn�3: ðA:1cÞ

The first-order Abramowitz function I1 has the following expansion:

I1ðxÞ ¼
X1
k¼0

ak ln xþ bkð Þxk; ðA:2Þ

with a0 ¼ a1 ¼ 0, a2 ¼ �1, b0 ¼ 1, b1 ¼
ffiffiffiffi
p
p

, b2 ¼ 3ð1� cÞ=2, where c
is Euler’s constant, and for k P 3:

ak ¼ �
2ak�2

kðk� 1Þðk� 2Þ ; bk ¼ �
2bk�2 þ ð3k2 � 6kþ 2Þak

kðk� 1Þðk� 2Þ : ðA:3Þ

In particular, we have

I1ðxÞ ¼
1
2
þ 3

4
ð1� cÞx2 þ 1

188
ð18c� 3Þx4 þ � � �

�
ffiffiffiffi
p
p

x
1
2
� 1

6
x2 þ 1

180
x4 � � � �

� �
� x2

� ln x
1
2
� 1

24
x2 þ 1

1440
x4 � � � �

� �
: ðA:4Þ

Also, In can be approximated by the following asymptotic formulas:

InðxÞ �
pð1�rÞ=2f nðxÞ � pr=2xgnðxÞ þ ð�1ÞnhnðxÞxnþ1 ln x; 0 6 x 6 2;ffiffiffiffiffiffiffiffiffi

p=3
p

m=3ð Þn=2e�mqnðmÞ; x > 2;

(

ðA:5Þ
where m :¼ 2ðx=2Þ2=3, r :¼ jbðnþ 1Þ=2c � bn=2cj and bxc is the inte-
ger part of x, i.e., r ¼ 1 for n ¼ ð2kþ 1Þ, and r ¼ 0 for n ¼ 2k or
n ¼ 0; and f nðxÞ; gnðxÞ; hnðxÞ, and qnðmÞ are analytic functions which
can be accurately given by their Chebyshev expansions [41].

To solve the integral Eq. (1a) or (2a), we need to compute I�1ðxÞ
and I0ðxÞ according to the procedure of MacLeod [41]. First,
I0ðxÞ; I1ðxÞ, and I2ðxÞ are computed by the asymptotic formulas
(A.5). Then I�1ðxÞ is computed in three intervals. In the first interval
0 < x 6 e, we use the following formula:

I�1ðxÞ ¼ I001ðxÞ; ðA:6Þ

which is derived from Eq. (A.1b). For x > e, we use the following
formula:

I�1ðxÞ ¼
2I2ðxÞ � I0ðxÞ

x
; ðA:7Þ

where both I0ðxÞ and I2ðxÞ are given by the first and second asymp-
totic formula in Eq. (A.5) for the second interval e < x 6 2:0 and the
third one x > 2:0, respectively. Finally, I�1ðxÞ is computed with the
following formulas:

I�1ðxÞ �

� 3c
2 þ

ffiffiffiffi
p
p

xþ 54
47 c� 1903

1128

� �
x2 � 1� x2

2

	 

ln x; 0 < x 6 e;ffiffiffi

p
p
½2f 2ðxÞ�f 0ðxÞ�

x � ½2g2ðxÞ � g0ðxÞ�
þ 2x2h2ðxÞ � h0ðxÞ

 �

ln x; e < x 6 2:0;ffiffiffip
3

p
e�m 2m

3 q2ðmÞ � q0ðmÞ

 �

; 2:0 < x;

8>>>>><
>>>>>:

ðA:8Þ

where m :¼ 2ðx=2Þ2=3 and e ¼ 1:5 � 10�8.
Appendix B. Nonexistence of u0ðy;kÞ at the boundaries y ¼%1=2

We prove that the velocity derivative u0ðy; kÞ does not exist at
the boundaries, i.e.,

lim
y!�1=2

u0ðy; kÞ ! �1: ðB:1Þ

Differentiation of Eq. (1a) leads to the following equation:

u0ðy; kÞ � 1
k
ffiffiffiffi
p
p

Z 1=2

�1=2

d
dy

I�1
jy� sj

k

� �
uðsÞds ¼ 1

2k
ffiffiffiffi
p
p G�1ðy; kÞ: ðB:2Þ

Because

Z 1=2

�1=2
uðsÞ d

dy
I�1

jy� sj
k

� �
ds¼�

Z 1=2

�1=2
uðsÞ d

ds
I�1
jy� sj

k

� �
ds

¼�G�1ðy;kÞuð1=2Þþ
Z 1=2

�1=2
I�1
jy� sj

k

� �
u0ðsÞds;

then Eq. (B.2) becomes

u0ðy;kÞ� 1
k
ffiffiffiffi
p
p

Z 1=2

�1=2
I�1
jy� sj

k

� �
u0ðsÞds¼1�2uð1=2Þ

2k
ffiffiffiffi
p
p G�1ðy;kÞ: ðB:3Þ

With y ¼ 1=2, Eq. (B.3) leads to

u0ð1=2; kÞ ¼ ½1� 2uð1=2Þ�
2k

ffiffiffiffi
p
p ½I�1ð0Þ � I�1ð1=kÞ� þ 1

k
ffiffiffiffi
p
p

�
Z 1=2

�1=2
I�1

1� 2s
2k

� �
u0ðsÞds:

It can be shown that uðy; kÞ < 1=2 for k > 0 and u0ðy; kÞ > 0, there-
fore the above equation leads to the conclusion that u0ð1=2; kÞ does
not exist for k > 0, because I�1ð0Þ does not exist due to its logarith-
mic singularity at x ¼ 0 [cf. Eqs. (A.5) and (A.8)].
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Appendix C. Evaluation of integrals involving I�1 and Tn

To solve the integral Eq. (2a), we need to evaluate the following
integral accurately:

Wjðx; kÞ :¼
Z 1

�1
I�1
jx� sj

2k

� �
½T2jþ1ðsÞ � T2jþ1ðxÞ�ds: ðC:1Þ

With the following collocation points,

x2iþ1 ¼
1; i ¼ 0;
cos hi; i ¼ 1;2; . . . ;N;

�
ðC:2Þ

where hi :¼ ð4i� 1Þp=4N, the integral (C.1) becomes

WijðkÞ :¼
Z p

0
Kijðh; kÞdh; ðC:3Þ

Kijðh; kÞ :¼ I�1
j cos h� cos hij

2k

� �
cosð2jþ 1Þh� cosð2jþ 1Þhi½ � sin h:

ðC:4Þ
The integrand Kijðh; kÞ is highly oscillatory when j	 1 and becomes
singular at collocation points x2iþ1 because I�1ðxÞ has a ln x singular-
ity at x ¼ 0 [cf. Eq. (A.5)]. To address the numerical difficulties
caused by oscillatory and singular behaviors of the integrand, we
divide the interval of integration, ½0;p�, into 2ðjþ 1Þ sub-intervals,
for 1 6 j 6 N, such that two adjacent sub-intervals, excluding two
sub-intervals at two ends, cover exactly one period of cosð2jþ 1Þh
so the integrand in the sub-intervals are slow varying. Also, the sin-
gularity of I�1ðxÞ occurs at cos h ¼ cos hi, which is an end-point of
two sub-intervals. Because the abscissas of the generalized Gauss-
ian quadrature do not include the end points, this mitigates the dif-
ficulty caused by the singularity.

The interval ½0;p� has to be divided in two ways depending on
both i and j. Denote l
 and r as the integer part and the remainder
of ð4i� 1Þð2jþ 1Þ=4N, i.e.,

l
 :¼ ð4i� 1Þð2jþ 1Þ
4N

� �
; r :¼ ð4i� 1Þð2jþ 1Þ

4N
� l
; ðC:5Þ

where i ¼ 1;2; . . . ;N, and j ¼ 0;1; . . . ;N. We further introduce the
following notations:

�r :¼ 1� r; uj :¼ p
2jþ 1

: ðC:6Þ

For even and odd l
, the interval ½0;p� is divided into 2ðjþ 1Þ sub-
intervals as follows:

½0;p� ¼ ½0; ruj� þ
[j�1

l¼0

l1 � �r; l1 þ �r½ � þ l2 � r; l2 þ r½ �f guj

þ ½p� �ruj;p�; l
 even;

½0;p� ¼ ½0;�ruj� þ
[j�1

l¼0

l1 � r; l1 þ r½ � þ l2 � �r; l2 þ �r½ �f guj

þ ½p� ruj;p�; l
 odd;

where l1 :¼ 2lþ 1 and l2 :¼ 2ðlþ 1Þ. The interval l1 � �r; l1 þ �r½ �uj has
the end-points ð2lþ 1� �rÞuj, and l2 � r; l2 þ r½ �uj has the end-points
ð2lþ 2� rÞuj. Clearly, in the above divisions any two adjacent sub-
intervals, excluding two sub-intervals at two ends, cover
2uj ¼ 2p=ð2jþ 1Þ for 0 6 j 6 N, which is exactly one period of
cosð2jþ 1Þh for h 2 ½0;2p�.

For even l
, the integrals on the sub-intervals are:Z ruj

0
Kijðh; kÞdh ¼ ruj

Z 1

�1
I�1

1
k

sin
ð1þ sÞruj

4
þ hi

2

� �����
�

sin
ð1þ sÞruj

4
� hi

2

� �����
�

sin
ð3þ sÞrp

4
sin
ð1� sÞrp

4

sin
ð1þ sÞruj

2

� �
ds; ðC:7aÞ
Z ðl1þ�rÞuj

ðl1��rÞuj

Kijðh;kÞdh¼�2�ruj

Z 1

�1
I�1

1
k

sin
l1þ�rsð Þuj

2
þhi

2

� �����
�

sin
l1þ�rsð Þuj

2
�hi

2

� �����
�

sin
ð1þ sÞ�rp

2
sin
ð1� sÞ�rp

2
sin½ðl1þ�rsÞuj�ds; ðC:7bÞ

Z ðl2þrÞuj

ðl2�rÞuj

Kijðh;kÞdh¼2ruj

Z 1

�1
I�1

1
k

sin
l2þ rsð Þuj

2
þhi

2

� �����
�

sin
l2þ rsð Þuj

2
�hi

2

� �����
�

sin
ð1þ sÞrp

2
sin
ð1� sÞrp

2

sin ðl2þ rsÞuj

h i
ds; ðC:7cÞ

Z p

p��ruj

Kijðh; kÞdh ¼ ��ruj

Z 1

�1
I�1

1
k

cos
ð1� sÞ�ruj

4
þ hi

2

� �����
�

cos
ð1� sÞ�ruj

4
� hi

2

� �����
�

sin
ð1þ sÞ�rp

4
sin
ð3� sÞ�rp

4

sin
ð1� sÞ�ruj

2
ds: ðC:7dÞ

Similarly, for odd l
, the integrals on the sub-intervals are:Z �ruj

0
Kijðh; kÞdh ¼ �ruj

Z 1

�1
I�1

1
k

sin
ð1þ sÞ�ruj

4
þ hi

2

� �
sin

ð1þ sÞ�ruj

4
� hi

2

� �����
����

� �

sin
ð3þ sÞ�rp

4
sin
ð1� sÞ�rp

4
sin
ð1þ sÞ�ruj

2
ds; ðC:8aÞ

Z ðl1þrÞuj

ðl1�rÞuj

Kijðh; kÞdh ¼ �2ruj

Z 1

�1
I�1

1
k

sin
ðl1 þ rsÞuj

2
þ hi

2

� �����
�

sin
ðl1 þ rsÞuj

2
� hi

2

� �����
�

sin
ð1þ sÞrp

2
sin
ð1� sÞrp

2

sin ðl1 þ rsÞuj

h i
ds; ðC:8bÞ

Z ðl2þ�rÞuj

ðl2��rÞuj

Kijðh; kÞdh ¼ 2�ruj

Z 1

�1
I�1

1
k

sin
ðl2 þ �rsÞuj

2
þ hi

2

� �����
�

sin
ðl2 þ �rsÞuj

2
� hi

2

� �����
�

sin
ð1þ sÞ�rp

2
sin
ð1� sÞ�rp

2

sin ðl2 þ �rsÞuj

h i
ds; ðC:8cÞ

Z p

p�ruj

Kijðh; kÞdh ¼ �ruj

Z 1

�1
I�1

1
k

cos
ð1� sÞruj

4
þ hi

2

� �����
�

cos
ð1� sÞruj

4
� hi

2

� �����
�

sin
ð1þ sÞrp

4

sin
ð3� sÞrp

4
sin
ð1� sÞruj

2
ds: ðC:8dÞ

The integrals given by Eqs. (C.7) and (C.8) are evaluated by
using adaptive quadrature [47] with a specified absolute tolerance
�. In particular, we use the generalized Gaussian quadrature for
products of a polynomial and logarithmic function [47]. The gener-
alized Gaussian quadrature [47] with 40 abscissas and a tolerance
� ¼ 10�15 can maintain the error in the integral in Eq. (4b) at
Oð10�11Þ or smaller for 0:003 6 k 6 10:0.
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