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Efficient Spectral-Galerkin Method I. Direct Solvers for the

Second and Fourth Order Equations Using Legendre Polynomials∗
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Abstract. We present some efficient algorithms based on the Legendre-Galerkin approxima-

tions for the direct solution of the second and fourth order elliptic equations. The key to the efficiency

of our algorithms is to construct appropriate base functions, which lead to systems with sparse matri-

ces for the discrete variational formulations. The complexities of the algorithms are a small multiple

of Nd+1 operations for a d dimensional domain with (N−1)d unknowns, while the convergence rates

of the algorithms are exponential for problems with smooth solutions. In addition, the algorithms can

be effectively parallelized since the bottlenecks of the algorithms are matrix-matrix multiplications.
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1. Introduction. This article is the first in a series for developing efficient
spectral Galerkin algorithms for elliptic problems. The spectral method employs global
polynomials as the trial functions for the discretization of partial differential equations.
It provides very accurate approximations with a relatively small number of unknowns.
Consequently it has gained increasing popularity in the last two decades, especially in
the field of computational fluid dynamics (see [11], [8] and the references therein).

The use of different test functions in a variational formulation leads to three most
commonly used spectral schemes, namely, the Galerkin, tau and collocation versions.
In the collocation method, we work in the physical space – a set of collocation points;
while in the Galerkin and tau methods, we work in the spectral space – the coefficients
of the polynomial series. The Galerkin and collocation methods usually lead to optimal
error estimates; while the tau method, being a modification of the Galerkin method,
leads to non symmetric variational formulations and only sub-optimal error estimates
are available (see for instance [19] and [20]). Gottlieb and Orszag in their pioneer book
[11] presented an efficient Chebyshev-tau method; on the other hand, they presented
a basis for the Galerkin method which leads to full matrices and its application in
practice is prohibited. It is surprising that virtually no effort has been made on
constructing appropriate bases (other than the Lagrangian interpolant basis) for the
spectral-Galerkin method. Consequently the tau method along with the collocation
method (the later being more natural for problems with variable coefficients) have
been the focus of a great number of research papers (see [8] and the reference therein),
while the Galerkin method, being more authentic and more accurate than the tau
method, has draw less attention. We should point out that the spectral element
method, developed by Patera and his group, is in fact a spectral-Galerkin method
(see the survey paper [13]). However, the spectral element method, in the case of a
single domain, differs from the spectral-Galerkin method to be presented in this work
in two aspects: (i) a Gaussian quadrature formula is used instead of exact integration;
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1490 jie shen

(ii) a Lagrangian interpolant basis is used instead of the basis by simple combinations
of Legendre polynomials.

We shall present in this article appropriate bases for the Legendre Galerkin
method applied to second order and fourth order elliptic equations with various bound-
ary conditions. The resulting discrete systems have sparse matrices similar to the ones
by finite difference discretizations. We shall develop efficient direct solution techniques
for solving these discrete systems.

For the second order equations, the complexity of our algorithm is a small mul-
tiple of Nd+1 operations for a d dimensional domain with (N − 1)d unknowns. Since
its pre-processing time is negligible, it is definitely the method of choice among the
existing spectral algorithms for solving one particular equations. For solving equa-
tions with multiple right-hand sides, it is as efficient as and more accurate than
the Legendre-tau method; and it is also very competitive to the Chebyshev-tau and
Chebyshev-collocation methods. Furthermore, the roundoff errors in the Legendre-
Galerkin approximation are considerably less appreciable than that in other spectral
approximations.

Although the solution techniques for fourth order equations by finite difference
methods are well developed (see [5] for a direct solver and [3] for a more efficient
iterative solver), there are not many results available for the fourth order equations
by spectral methods, which are more difficult to analyze and to solve numerically.
We mention here the theoretical work in [10] and [2] for one dimensional fourth order
equations, and in [1] for two dimensional fourth order equations. However how to
efficiently solve the resulting discrete systems is not clear, and only sub-optimal error
estimates are available for the collocation methods presented in [1].

We shall develop an efficient direct solver for the fourth order equations based
on the Legendre-Galerkin method. In the two dimensional case, it has a complexity
of a small multiple of O(N 3) operations. In other words, we can solve fourth order
equations with an amount of work comparable to that of solving second order equa-
tions. Hence, our algorithm should be clearly more efficient than the existing spectral
methods for fourth order equations (see for instance [24], [1]). Furthermore, it is
clear that the Legendre-Galerkin approximation to the fourth order equations leads
to optimal error estimates. One of the application of this algorithm is for solving the
two dimensional Stokes equations, since the stream function formulation of the 2-D
Stokes equations is the 2-D biharmonic equation with Dirichlet boundary conditions.
Let us mention that the bases we developed here are also suitable for decomposing
the solution into a high frequency part and a low frequency part as is required in the
implementation of the Nonlinear Galerkin Method [22].

A drawback of using Legendre polynomials is of course the lack of a fast transform
between the physical space and the spectral space. Hence, in the second part of
the series [21], we shall study the spectral-Galerkin method by using the Chebyshev
polynomials, for which the Fast Fourier Transform (FFT) is applicable. Let us mention
that it is hopeful that an efficient transform method for the Legendre polynomials can
be eventually developed, at least for N sufficiently large, by using the ideas presented
in [17] and [4].

We note that the algorithms presented here are mostly appropriate for simple
geometries and for constant coefficient problems. We shall briefly address how to treat
the variable coefficient case and leave the extension to more complex geometries to a
future investigation. We should mention that the complexities of our algorithms are
not optimal with respect to the number of unknowns. However thanks to the spectral
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accuracy and the very small constants in front of the O(N d+1) operation counts, our
algorithms should be very competitive, at least for smooth functions or N not too
large, to the high-precision algorithms with optimal or near-optimal complexity (cf.
[18], [15], [16]).

The remainder of the article is organized as follows: In the next section, we
consider the second order equations. In Section 3, we study the fourth order equations.
In Section 4, we point out some immediate extensions. Finally in Section 5, we present
and compare some numerical results.

2. Second order equations. In this section, we are interested in solving the
Helmholtz equation

(2.1) αu−∆u = f in Ω = Id, u|∂Ω = 0,

where I = (−1, 1) and d = 1, 2 or 3, by using the Legendre Galerkin method. The
extension to more general problems will be discussed in Section 4.

Let us first introduce some basic notations which will be used in the sequel. We
denote by Ln(x) the nth degree Legendre polynomial, and we set

SN = span{L0(x), L1(x), . . . , LN (x)}, VN = {v ∈ SN : v(±1) = 0}.
Then the standard Legendre-Galerkin approximation to (2.1) is:
Find u

N
∈ V d

N such that

(2.2) α(u
N
, v) + (∇u

N
,∇v) = (f, v), ∀ v ∈ V d

N ,

where (u, v) =
∫

Ω
uvdx is the scalar product in L2(Ω), and its norm will be denoted

by ‖ · ‖. The approximation property of (2.2) is best described by using the Sobolev
spaces. Let us denote Hs(Ω) to be the usual Sobolev spaces with the norm ‖v‖s. It is
well known (cf. [8]) that for α ≥ 0, s ≥ 1 and u ∈ Hs(Ω), the following optimal error
estimates holds:

(2.3) ‖u− u
N
‖+N‖u− u

N
‖1 ≤ C(s)N−s‖u‖s.

Although the approximation (2.2) is highly accurate, its practical value depends
on the choice of a basis for V d

N .

2.1. One dimensional case. The crucial task is to choose an appropriate basis
for VN such that the linear system resulting from (2.2) is as simple as possible. Let us
mention that the Lagrangian interpolant (or nodal) basis used in the collocation and
spectral element formulations, and the basis

VN = span{φ2(x), φ3(x), · · · , φN (x)}
with

φk(x) =

{

Lk(x)− L0(x), k even

Lk(x)− L1(x), k odd
; or φk(x) = (1− x2)Lk−2(x)

all lead to linear systems with full matrices even in the simplest case α = 0. However
a clever choice of the basis would lead to a linear system with a sparse matrix.

We recall that the {Ln(x)} satisfy the orthogonality relation

(2.4) (Lk(x), Lj(x)) =
2

2k + 1
δij , ∀ k, j ≥ 0,

and the recurrence relation

(2.5) (2k + 1)Lk(x) = L′k+1(x)− L′k−1(x).
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We recall also that Ln(x) is a polynomial of degree n and therefore L′′n(x) ∈ Sn−2,
more precisely

(2.6) L′′n(x) =

n−2
∑

k=0
k+n even

(k +
1

2
)[n(n+ 1)− k(k + 1)]Lk(x).

The following lemma is the key to the efficiency of our algorithms.
Lemma 2.1. Let us denote

(2.7) ck =
1√

4k + 6
, φk(x) = ck(Lk(x)− Lk+2(x)),

ajk = (φ′k(x), φ
′
j(x)), bjk = (φk(x), φj(x)),

then

(2.8) ajk =

{

1, k = j

0, k 6= j
, bjk = bkj =











ckcj(
2

2j+1 +
2

2j+5 ), k = j

−ckcj 2
2k+1 , k = j + 2

0, Otherwise

,

and
VN = span{φ0(x), φ1(x), · · · , φN−2(x)}.

Proof. Since Lk(±1) = (±1)k, it follows that φk(x) ∈ VN for k = 0, 1, · · · , N − 2. On
the other hand, it is clear that {φk(x)} are linear independent and that dim(VN ) =
N − 1. Hence,

VN = span{φ0(x), φ1(x), · · · , φN−2(x)}.
Notice that

ajk = (φ′k(x), φ
′
j(x)) = −(φ′′k(x), φj(x)) = −(φk(x), φ′′j (x)),

by using (2.4)- (2.5), one can easily derive (2.8).
Remark 2.1. It is transparent that base functions similar to that in(2.7) can

be constructed by using Chebyshev or other Jacoby polynomials. However, whether
they would also lead to efficient algorithms needs more investigations due to the non-
uniform weight in their orthogonal relations(see [21]).

In the following, we shall use capital letters to denote matrices or two dimensional
arrays, and bold face letters to denote column vectors.

It is now clear that (2.2) (with d = 1) is equivalent to

(2.9) α(u
N
, φk(x)) + (u′

N
, φ′k(x)) = (f, φk(x)), k = 0, 1, · · · , N − 2.

Let us denote
fk = (f, φk(x)), f = (f0, f1, · · · , fN−2)T ;

(2.10) u
N
=

N−2
∑

n=0

vnφn(x), v = (v0, v1, · · · , vN−2)T , and B = (bkj)0≤k,j≤N−2 .

Then (2.9) is equivalent to the following matrix equation:

(2.11) (αB + I)v = f .

Since bkj = 0 for k 6= j and k 6= j ± 2, we observe that B (resp. The system (2.11)
with α 6= 0) can be decoupled into two tridiagonal submatrices (resp. two tridiagonal
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subsystems for the odd and even components of v). Notice also that the system (2.11)
reduces to a diagonal system for α = 0.

Remark 2.2. The equation

(2.12) αu+ βux − uxx = f, u(±1) = 0

can be easily handled as well. In fact let cjk = (Dxφk(x), φj(x)) and C = (ckj). A
simple computation leads to

(2.13) cjk = −ckj =
{

2ckcj , k = j + 1

0, Otherwise
.

Hence, the discrete system corresponding to(2.12) is:

(αB + βC + I)v = f ,

which is simply a pentadiagonal system.

2.2. Two dimensional case. It is clear that

V 2N = span{φi(x)φj(y) : i, j = 0, 1, · · · , N − 2}.
Let us denote

u
N
=

N−2
∑

k,j=0

ukjφk(x)φj(y), fkj = (f, φk(x)φj(y)),

and
U = (ukj)k,j=0,1,··· ,N−2, F = (fkj)k,j=0,1,··· ,N−2.

Taking v = φl(x)φm(y) in (2.2) for l,m = 0, 1 · · · , N−2, we find that (2.2) is equivalent
to the following matrix equation:

(2.14) αBUB + UB +BU = F,

where B are the matrices defined in (2.10).
This equation can be solved in particular by the matrix decomposition method

described in [7], which is better known in the field of spectral methods as the matrix
diagonalization method [12]. To this end, let Λ be the diagonal matrix whose diagonal
entries {λp} are the eigenvalues of B, and let E be the orthonormal matrix formed by
the eigenvectors of B (since B is symmetric), i.e. ETBE = Λ. Now setting U = EV ,
the equation (2.14) becomes

αEΛV B + EV B + EΛV = F.

Multiply ET to the above equation, we arrive to

αΛV B + V B + ΛV = ETF ≡ G.

The transpose of the above equation reads

(2.15) αBV TΛ +BV T + V TΛ = GT .

Let vp = (vp0, vp1, · · · , vpN−2)T and gp = (gp0, gp1, · · · , gpN−2)T for p = 0, 1, · · · , N −
2. Then the pth column of the equation (2.15) can be written as:

(2.16) ((αλp + 1)B + λpI)vp = gp, p = 0, 1, · · · , N − 2,

which is equivalent to N − 1 one dimensional equations of the form (2.11).
In summary, the solution of (2.14) consists of the following steps:
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(0) Pre-processing: compute the eigenvalues and eigenvectors of B;
(1) Compute G = ETF ;
(2) Obtain V by solving (2.16);
(3) Set U = EV .

since B can be split into two symmetric tridiagonal submatrices, the eigenvalues
and eigenvectors of B can be easily computed in O(N 2) operations. The step 2
consists of solving N − 1 tridiagonal systems of order N − 1. From the structure of
B, we realize that ekj = 0 for k + j odd. Hence the amount of work for the matrix
multiplications can be reduced by a factor of 2. Consequently the steps 1 and 3 take
a total of 2(N − 1)3 arithmetic operations. Therefore, for each right-hand side, the
system (2.14) can be solved in about 2N 3 operations.

We remark that for each particular solution of (2.1), the Legendre Galerkin
method described above takes at most the same amount of operations as the Legendre-
tau method. However thanks to the symmetry of the Galerkin procedure, the com-
plexity of the pre-processing stage in the Galerkin case is an order of magnitude less
(in terms of N) than in the tau (and the collocation) case. Furthermore the error
estimates of the Galerkin approximation is optimal (see (2.3)) while that of the tau
approximation is not (see for instance [20] and [19]).

Remark 2.3. As in Remark 2.2, the equation(2.1) with a first order term βuy
can be efficiently treated. In this case, the discrete equation(2.14) should be replaced
by

αBUB + βBUC + UB +BU = F,

which can still be solved by the matrix diagonalization method. By the same token, we
can treat the equation(2.1) with a first order term βux.

Remark 2.4. We note that the bottleneck of the algorithm is the two matrix-
matrix multiplications in steps 1 and 3, which can be effectively parallelized and its
complexity can be improved to O(Nd+1/p) with p parallel processors. The same remark
holds for other algorithms to be presented later in this paper.

2.3. Three dimensional case. The three dimensional Helmholtz equation can
also be efficiently solved by the above matrix diagonalization method. However, the
formulation of the algorithm requires a little extra care. Let us denote

u
N
=

N−2
∑

n,m,l=0

unmlφn(x)φm(y)φl(z), fijk = (f, φi(x)φj(y)φk(z)).

since

V 3N = span{φi(x)φj(y)φk(z) : i, j, k = 0, 1, · · · , N − 2},

taking v = φi(x)φj(y)φk(z) in (2.2) for i, j, k = 0, 1 · · · , N − 2, we find that (2.2) with
d = 3 is equivalent to the following equation:
(2.17)
αbinunmlbjmbkl+uimlbjmbkl+binunjlbkl+binunmkbjm = fijk, i, j, k = 0, 1, · · · , N−2,

where we have used the conventional notation such that a pair of repeated index imply
a summation of the index from 0 to N − 2. Hence, by the definition of E and Λ in
Section 2.2, we have

binenq = λqeiq, eiqeip = δqp.



efficient spectral-galerkin method 1495

Set unml = enqvqml and use the above relation, we can rewrite the equation (2.17) as

αλqeiqvqmlbjmbkl + eiqvqmlbjmbkl + λqeiqvqjlbkl + λqeiqvnmkbjm = fijk,

i, j, k = 0, 1, · · · , N − 2.

Multiply eip to the above equation, we obtain

(αλp+1)vpmlbjmbkl+λp(vpjlbkl+vpmkbjm) = eipfijk ≡ gpjk, p, j, k = 0, 1, · · · , N −2.

Now set V p = (vpml)0≤m,l≤N−2 and G
p = (gpml)0≤m,l≤N−2, we can rewrite the above

equation as

(2.18) (αλp + 1)BV pB + λp(V
pB +BV p) = Gp, p = 0, 1, · · · , N − 2.

For each p, the above equation corresponds to a two dimensional equation of the form
(2.14).

In summary, the solution of (2.17) consists of the following steps:
(0) Pre-processing: compute the eigenvalues and eigenvectors of B;
(1) Compute gpjk = eipfijk for p, j, k = 0, 1, · · · , N − 2;
(2) Obtain V p by solving (2.18) for p = 0, 1, · · · , N − 2;
(3) Set unml = enqvqml for n,m, l = 0, 1, · · · , N − 2.

The step 2 consists of solving N−1 two-dimensional equations of the form (2.14).
Hence, it takes about 2N4 operations. The steps 1 and 3 take 2N 4 operations. There-
fore, The system (2.17) can be solved in about 4N 4 operations.

3. Fourth order equations. In this section, we consider the fourth order
equation

(3.1) αu− β∆u+∆2u = f in Ω = Id, u|∂Ω =
∂u

∂n
|∂Ω = 0,

where n is the normal vector to ∂Ω.
Let

WN = {v ∈ SN : v(±1) = vx(±1) = 0}.
Then the Legendre-Galerkin approximation of (3.1) consists of finding u

N
∈W d

N such
that

(3.2) α(u
N
, v) + β(∇u

N
,∇v) + (∆u

N
,∆v) = (f, v), ∀ v ∈W d

N .

It can be shown that for α, β > 0 and u ∈ Hs(Ω)∩H2
0 (Ω) for s ≥ 2, then the following

optimal error estimate holds:

(3.3) ‖u− u
N
‖+N‖u− u

N
‖1 +N2‖u− u

N
‖2 ≤ C(s)N−s‖u‖s.

3.1. One dimensional case. The equation (3.1) in the one dimensional case
can serve as a model for the clamped rod problem. It can also serve as a model
for the 2-D Stokes equations in the primitive variable formulation or in the stream
function formulation, subject to the periodic boundary condition in the y direction and
Dirichlet boundary condition in the x direction. A semi-implicit time discretization
of the important Kuramoto-Sivashinsky equation modeling a flame propagation ([23])
is also of the form (3.1) with d = 1.

Lemma 3.1. Let dk =
1

√

2(2k + 3)2(2k + 5)
and

(3.4) ψk(x) = dk(Lk(x)−
2(2k + 5)

2k + 7
Lk+2(x) +

2k + 3

2k + 7
Lk+4(x)), k = 0, 1, · · · , N − 4.
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Then

WN = span{ψ0(x), ψ1(x), · · · , ψN−4(x)}.

Furthermore, we have

(3.5) akj = (ψ′′j (x), ψ
′′
k (x)) =

{

1, k = j

0, k 6= j
,

and the only non zero elements of bkj = (ψj(x), ψk(x)), ckj = (ψ′j(x), ψ
′
k(x)) are:

(3.6)

bkk =d2k(ek + h2kek+2 + g2kek+4)

bkk+2 =bk+2k = dkdk+2(hkek+2 + gkhk+2ek+4)

bkk+4 =bk+4k = dkdk+4gkek+4

ckk =− 2(2k + 3)d2khk

ckk+2 =ck+2k = −2(2k + 3)dkdk+2

,

where

ek =
2

2k + 1
, gk =

2k + 3

2k + 7
, hk = −(1 + gk).

Proof. Since Lk(±1) = (±1)k and L′k(±1) = 1
2 (±1)k−1k(k + 1), we can readily check

that ψk(x) ∈ WN . On the other hand it is clear that {ψi(x)} are linear independent
and the dimension of WN is N − 3. Hence

WN = span{ψ0(x), ψ1(x), · · · , ψN−4(x)}.

(3.5) and (3.6) can be derived by direct computations using (2.4)-(2.6) and integration
by part.

To simplify the notation, we denote hereafter q = N − 4. Let us denote now

B = (bkj)0≤k,j≤q , C = (ckj)0≤k,j≤q ,

fk = (f, ψk(x)), f = (f0, f1, · · · , fq)T ;

u
N
=

q
∑

n=0

vnψn(x), v = (v0, v1, · · · , vq)T ,

we find that (3.2) with d = 1 is equivalent to the following matrix equation:

(3.7) (αB + βC + I)v = f .

It is obvious that B and C are symmetric positive definite matrices. Furthermore, B
can be split into two pentadiagonal submatrices and C can be split into two tridiagonal
submatrices. Hence, the system can be efficiently solved.

3.2. Two dimensional case. The equation (3.1) in the two dimensional case
with α = β = 0 is the well-known biharmonic equation. It has many important
applications. In particular, it is known as a model for the plate problem; also the
steam-function of a flow governed by two dimensional Stokes equations is a solution
of the equation (3.1). The case with α 6= 0 is also important for time dependent
problems.

It is obvious that

W 2
N = span{ψi(x)ψj(y) : i, j = 0, 1, · · · , q}.
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Using the same notations as in Section 2.2 (with φk(x) replaced by ψk(x), and N − 2
replaced by q), taking v = ψl(x)ψm(y) in (3.2) for l,m = 0, 1, · · · , q, we find that (3.2)
is equivalent to the following matrix equation:

(3.8) αBUB + β(CUB +BUC) +BU + 2CUC + UB = F.

We can also rewrite the above equation in the following form using the tensor product
notation:

(3.9) Du ≡ (αB ⊗B + β(C ⊗B +B ⊗ C) +B ⊗ I + 2C ⊗ C + I ⊗B)u = f ,

where f and u are F and U written in the form of a column vector, i.e.

(3.10) f = (f00, f10, · · · , fq0; f01 · · · , fq1; · · · ; f0q, · · · , fqq)T ,
and ⊗ denotes the tensor product of matrices, i.e. A⊗B = (Abij)i,j=0,1,··· ,q.

Let us first remark that if BC = CB, then the equation (3.8) can be efficiently
solved by using the matrix diagonalization method (see below). But unfortunately
due to the fact that the equation (3.1) is not separable, we have BC 6= CB. However
BC−CB only has eight non zero entries at positions (0, 2), (1, 3), (q−3, q−1), (q−2, q)
and their symmetric counterpart (2, 0), (3, 1), (q − 1, q − 3), (q, q − 2). These non zero
entries can be eliminated by modifying the following four entries of the matrix B:

b00 −→ b̃00 = (c00b02 + c02b22 − b02c22 − b04c42)/c02;
b11 −→ b̃11 = (c11b13 + c13b33 − b13c33 − b15c53)/c13;

bq−1q−1 −→ b̃q−1q−1 = (cq−1q−1bq−1q−3 + cq−1q−3bq−3q−3

− bq−1q−3cq−3q−3 − bq−1N−9cN−9q−3)/cq−1q−3;
bqq −→ b̃qq = (cqqbqq−2 + cqq−2bq−2q−2 − bqq−2cq−2q−2 − bqq−4cq−4q−2)/cqq−2.

Setting B̃ = (b̃ij) with b̃ij = bij for (i, j) 6= (0, 0), (1, 1), (q − 1, q − 1), (q, q), we have

B̃C = CB̃.

Now let us explain how to efficiently solve the equation:

(3.11) αB̃UB + β(CUB + B̃UC) + B̃U + 2CUC + UB = F.

Since B̃ and C are symmetric and B̃C = CB̃, it is well known that there exists an
orthonormal matrix E such that

(3.12) B̃E = EΛ, CE = EΣ,

and Λ and Σ are real diagonal matrices. The matrix E is the set of eigenvectors of B̃
and C, the diagonal entries {λp} and {σp} of Λ and Σ are respectively eigenvalues of

B̃ and C. Hence, setting U = EV in (3.8), using (3.12), we obtain:

αEΛV B + βE(ΣV B + ΛV C) + EΛV + 2EΣV C + EV B = F.

Multiplying ET to the above equation, we get

(3.13) αΛV B + β(ΣV B + ΛV C) + ΛV + 2ΣV C + V B = ETF ≡ G.

As in Section 2.2, let vp = (vp0, vp1, · · · , vpq)T and gp = (gp0, gp1, · · · , gpq)T for p =
0, 1, · · · , q. Then the pth row of the equation (3.13) is:

(3.14) {(αλp + βσp + 1)B + (βλp + 2σp)C + λpI}vp = gp, p = 0, 1, · · · , q.
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For each p, the above equation is simply an one dimensional equation of the form
(3.7).

In summary, the solution of (3.11) consists of the following steps:

(0) Pre-processing: compute the eigenvalues and eigenvectors Λ, Σ, E of B̃ and C;
(1) Compute G = ETF ;
(2) Obtain vp by solving (3.14);
(3) Set U = EV .

By a classical result on tridiagonal matrices (see Section 3.7 of [14]), we derive that
the eigenvalues of C are all distinct. Consequently an eigenvector of C is automatically
an eigenvector of B̃. Therefore for the pre-processing stage, we only have to compute
the eigenvalues and the eigenvectors Σ and E of C, Λ can then be determined by
the relation B̃E = EΛ. Since C can be split into two tridiagonal submatrices, the
preprocessing stage only takes O(N 2) operations. As before the steps 1 through 3
take about 2N3 operations.

Now let us describe how to use the fast solver for (3.11) to solve the original
system (3.8) or equivalently (3.9). To this end, we rewrite (3.11) by using the tensor
product notation:

(3.15) D̃u ≡
(

αB̃ ⊗B + β(C ⊗B + B̃ ⊗ C) + B̃ ⊗ I + 2C ⊗ C + I ⊗B
)

u = f .

it is easy to see that D and D̃ differ at only 4(q + 1) rows, more precisely they differ
at the rows: (i − 1) ∗ q + 1, (i − 1) ∗ q + 2, i ∗ q − 1, i ∗ q for i = 1, 2 · · · q. Following
the idea in [6], we can use the fast solver for (3.15) to solve the equation (3.9) by the
method of capacitance matrix. For the readers’ convenience, we briefly describe the
method of capacitance matrix below:

Without loss of generality, we assume that the first p rows of D are changed to
obtain D̃. Although this is not the case here, but the same result can be achieved by
using an implicit indexing scheme. Partition D, D̃ and f in the form

D =

(

D1
D2

)

, D̃ =

(

D̃1
D2

)

, f =

(

f1
f2

)

,

where D1 and D̃1 are p × r matrices with r = (q + 1)2 to be the order of the matrix
D, and f1 is a vector of length p. Then the equation (3.9) can be solved as follows:
(0) Pre-processing: compute the p× p capacitance matrix

(3.16) P = D1D̃
−1

(

I
0

)

,

where I is the p× p identity matrix; factor P into a LU form;
(1) Compute v1 = D1D̃

−1f ;
(2) Solve Pw1 = f1 − v1;

(3) Solve D̃u = f +

(

w1

0

)

.

One can check that u is in fact the solution of the equation Du = f .
It is clear that the steps 1 through 3 can be performed in 4N 3+O(N2) operations.

The pre-processing stage, i.e. the computation of the capacitance matrix is however
a little tricky. As explained in [5], one should take advantage of the sparseness of

D1 and

(

I
0

)

in the construction of P so that the preprocessing stage can be done

in O(pr + p3) = O(N3) operations. We refer to [5] for more details in this aspect.
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However, unlike in the finite difference case [5], the capacitance matrix is no longer

symmetric positive definite. For we can write D = D̃ +∆ with

∆ =









E, 0, · · · , 0
0, E, · · · , 0

...
...

0, · · · , 0, E









where E is a diagonal matrix of order q with four nonzero entries at positions (1, 1),

(2, 2), (q − 1, q − 1) and (q, q). Hence, D̃−1D = I + D̃−1∆ and

(3.17) P = I + ∆̄D̄,

where ∆̄ is the diagonal matrix with the nonzero entries of ∆ and D̄ is the part of
D̃−1 corresponding to the entries in positions: (i, j) : j = 0, 1, · · · , q; i = 0, 1, q − 1, q.

D̃ is symmetric positive definite so is D̄. It turns out that all the nonzero entries in
∆ are positive. Hence P is not symmetric but it is similar to the symmetric positive
definite matrix ∆̄−

1
2 +∆̄

1
2 D̄∆̄

1
2 . Furthermore, we note that D and D̃ have alternating

zero and nonzero elements, hence the system (3.9) (resp. the capacitance matrix P )
can be decoupled into four subsystems (resp. four submatrices of order q or q + 1).
This would reduce the cost of pre-processing by a factor of 16.

Finally, let us mention that three dimensional fourth order equations can also be
treated by the above procedure.

4. Miscellaneous extensions. The Legendre Galerkin method described above
can be applied to more general problems. In this section, we describe several imme-
diately extensions.

4.1. Robin type boundary conditions. When other boundary conditions are
prescribed, it is necessary to construct a basis incorporating the boundary conditions.
For the sake of simplicity, we only consider the one dimensional equation

αu− uxx = f, in I,

with the Robin type boundary condition

a±u(±1) + b±ux(±1) = 0.

Let WN = {v ∈ SN : a±v(±1)+ b±vx(±1) = 0}, then the standard Legendre Galerkin
approximation to the above equation is:
Find u

N
∈WN such that

(4.1) α(u
N
, v) + (DxuN

, Dxv) = (f, v), ∀ v ∈WN .

As before, we can find an appropriate basis for WN by setting

φk(x) = Lk(x) + akLk+1(x) + bkLk+2(x),

where ak and bk are the unique constants such that φk(x) ∈WN . Therefore

WN = span{φ0(x), φ1(x), · · · , φN−2(x)}.

Taking v = φk(x) in (4.1) for k = 0, 1, · · · , N − 2, it can be readily checked that
the matrix corresponding to the discrete system (4.1) is a symmetric pentadiagonal
matrix.
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In the special case where a± = 0 and b± = 1 (i.e. the homogeneous Neumann

boundary condition), we have in particular ak = 0 and bk = − k(k+1)
(k+2)(k+3) . In this

particular case the matrix can be decoupled into two tridiagonal submatrices.
Let us mention that we can also construct special basis for the fourth order

problems with the condition u|∂Ω = ∆u|∂Ω = 0.

4.2. Non homogeneous boundary conditions. We can always modify the
right-hand side to take care of the non homogeneous boundary conditions. Let us
consider for instance the two dimensional Helmholtz equation (2.1). Non homogeneous
boundary conditions for fourth order equations can be treated similarly.

If the solution u of (2.1) is subject to the non homogeneous Dirichlet boundary
condition:

u(±1, y) = a±(y), u(x,±1) = b±(x),

we proceed as follows:
Setting

u1(x, y) =
b+(x)− b−(x)

2
y +

b+(x) + b−(x)

2
, ã±(y) = a±(y)− u1(±1, y).

By construction, we have ã±(±1) = 0.
Then setting

u2(x, y) =
ã+(y)− ã−(y)

2
x+

ã+(y) + ã−(y)

2
, ũ = u− u1 − u2.

One can readily check that

ũ(±1, y) = ũ(x,±1) = 0.

Hence it suffices to solve the following modified Helmholtz equation:

αũ−∆ũ = f − α(u1 + u2) + ∆(u1 + u2) in Ω = I × I, ũ|∂Ω = 0.

We note that the extra term ∆(u1+u2) on the right hind side can be obtained in only
O(N) operations by using the recursive relation (2.5).

4.3. Non separable elliptic equations. For non separable equations of the
form

(4.2)
Lu ≡ −∇ · [a(x, y)∇u] + b(x, y)u = f(x, y), in Ω = I × I,

u|∂Ω = g(x, y),

or more generally for problems with variable coefficients, the Legendre-Galerkin meth-
ods lead to systems with dense matrices, and can not be efficiently solved by a direct
method. However the fast direct methods for constant coefficient problems developed
in the previous sections can be used to efficiently solve the equation (4.2) by using an
iterative procedure proposed in [9]. The heart of this iterative procedure is the utiliza-
tion of the fast solver for the Helmholtz equation, regardless the type of discretization
employed. It is shown in [9] that the rate of the convergence of the iterative procedure
is independent of the number of modes used in each direction. Therefore an equation
of the form (4.2) can be solved in O(N 3) operations.

5. Numerical results. We report in this section several numerical examples by
using the algorithms presented in the previous sections.

Let us remark that the pure spectral-Galerkin method is rarely used in practice,
since for a general right-hand side function f we are not able to compute exactly
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its representation by Legendre polynomials. Instead, the so called pseudo-spectral
method is used to treat the right-hand side (or the product of two functions), i.e. we
replace f by INf in the computation, where INf being the interpolation of f over
the set of Gauss-Lobatto points. This would introduce an extra error term of order
C(σ)N−σ‖f‖σ for f ∈ Hσ(Ω) (see [8]) in the estimates (2.3) and (3.3). Hence, the
spectral accuracy is still retained.

Unfortunately in the Legendre case, we can not use FFT to transform from the
physical space to the spectral space and vice versa. Instead we shall use direct matrix
multiplication, which takes 2dNd+1 operations for each transformation in a d dimen-
sional domain. Hence for each particular solution of the Helmholtz equation and the
biharmonic equation, 2dNd+1 additional operations are needed to transform INf to
the spectral space and to transform the solution uN to the physical space. However
let us remark that this additional amount of operations can be eventually reduced, at
least for N sufficiently large, by using the fast transform developed by Orszag [17],
to O(Nd(log2N)2) operations, or by the fast multipole method presented in [4], to
O(Nd log2N) operations. We note also that this additional amount of work is not
needed if one is content with the solution in spectral space for right-hand side given
in spectral space.

We consider first the two examples considered in [12].
Example 1. The Poisson equation

−∆u = 32 sin(4πx) sin(4πy), in Ω = I × I, u|∂Ω = 0,

with a smooth exact solution u(x, y) = sin(4πx) sin(4πy).
Example 2. The Poisson equation

−∆u = 1, in Ω = I × I, u|∂Ω = 0,

with an exact solution

u(x, y) = − 64

π4

∞
∑

n,m=1
n,m odd

(−1)n+m
2

cos(nπx2 ) cos(mπy
2 )

nm(n2 +m2)
,

which has singularities at the four corners.
We shall compare the Legendre-Galerkin method (LGM) with the Chebyshev-tau

(CTM) and Chebyshev-collocation (CCM) methods.
In Table I, we list the maximum pointwise error of u− u

N
by LGM, CTM, CCM

and the second and fourth order finite difference (FD2 and FD4) methods.
Table I. Maximum pointwise error of u− u

N
for examples 1 and 2.

Example N LGM CTM CCM FD4 FD2

1 16 2.93E-3 3.33E-2 5.25E-3 2.81E-2 2.34E-1

1 32 3.44E-13 4.77E-11 2.12E-12 1.62E-3 5.30E-2

1 64 5.55E-15 8.67E-13 1.55E-13 9.97E-5 1.30E-2

1 128 6.88E-15 2.00E-12 1.56E-13 6.21E-6 3.22E-3

2 16 1.42E-6 3.52E-5 7.47E-7 7.17E-6 9.02E-4

2 32 7.48E-8 2.23E-6 5.51E-8 1.79E-6 2.26E-4

We notice that for the first example, all three spectral methods converge ex-
ponentially but the LGM is considerably more accurate than the CTM and CCM.
For the second example which has corner singularities, the LGM is as accurate as
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the CCM and is still clearly more accurate than the CTM. We note that the main
source of roundoff errors comes from the matrix decomposition. Since decomposing
a symmetric tridiagonal matrix in LGM is much less affected by roundoff errors than
decomposing a full matrix in CTM and CCM, the roundoff errors in LGM are much
less pronounced than that of CTM and CCM. This is confirmed by the numerical
results in Table I.

In Table II, we list the execution time in seconds on Sun-Sparc2 for the first
example by the three spectral methods. The approximate pre-processing times are
given in parentheses. The programs were written in Fortran and compiled with the
option −O. LAPACK routines were used for matrix-matrix multiplications and for
solving the eigenvalue problems.

Table II. Execution time and pre-processing time for example 1.

Example N LGM CTM CCM

1 32 0.10 (0.03) 0.09 (0.13) 0.05 (0.27)

1 64 0.64 (0.12) 0.44 (0.54) 0.43 (2.44)

1 128 6.96 (1.01) 3.36 (5.20) 4.66 (19.58)

We note that for a particular solution of the Helmholtz equation, LGM is clearly
the method of choice since its pre-processing time is negligible. For multiple solutions,
the LGM is still competitive to CTM and CCM for N up to the range of 48 to 64.1

We remark also that it is not very appropriate to compare the execution time of the
collocation method which provides only the physical representation, to that of the
Galerkin and tau methods which provide both the physical and spectral representa-
tions, since derivatives of functions, which are often needed for nonlinear problems,
can be efficiently evaluated in spectral representations. We note that most of the com-
puting time in LGM is used for transforming from physical representation to spectral
representation and vice versa. Hence the CPU in LGM can be greatly reduced if one
only needs the spectral representation.
Example 3. The 2-D biharmonic equation in Ω = I × I:

∆2u = 128π4(cos(4πx) cos(4πy)− cos(4πx) sin(2πy)2 − cos(4πy) sin(2πx)2)

u|∂Ω =
∂u

∂n
|∂Ω = 0,

with a smooth exact solution u(x, y) = (sin(2πx) sin(2πy))
2
.

In Table III, we list in the second row the maximum pointwise error of u − u
N
;

in the third row, we list the execution time for Example 3 with approximate pre-
processing time in parentheses; in the last row, we list the condition number of the
capacitance matrix P .

Table III. Results for example 3.

N 16 32 64 128

L∞ error 1.48E-2 7.45E-12 2.04E-14 2.81E-14

CPU (Pre-P) 0.02 (0.08) 0.12 (0.60) 0.82 (5.15) 8.28 (45.03)

Cond. no. of P 115.524 1608.96 24772.8 393214

1 This range may be increased for highly parallel computers or when a fast transform method

is employed.



efficient spectral-galerkin method 1503

It is obvious that the approximate solutions converge exponentially to the exact
solution. We note that the condition numbers of P grow like O(N 4). Hence the
inversion of P is probably the main source of roundoff errors observed for N large. It
is worth noting that the execution time for solving a 2-D biharmonic equation is only
about 20% more than that for solving a 2-D Poisson equation.

The last example we consider is the non separable equation (4.2) with

a(x, y) = [1 +
1

4
((x+ 1)4 + (y + 1)4)]2, u(x, y) = sin(πx) sin(πy).

For the details of the iterative scheme, we refer to [9]. Note however that we used the

shifting factor K ≈ ‖∆
√
a(x,y)√
a(x,y)

‖L2(Ω), which seemed to give a slightly better conver-

gence rate, instead of K ≈ 1
2 (min

∆
√
a(x,y)√
a(x,y)

+ max
∆
√
a(x,y)√
a(x,y)

) suggested in [9]. Note

also that the preconditioned conjugate gradient method, as opposed to the simple
Richardson iteration proposed in [9], can be used to accelerate the convergence rate.
Various iterative methods along with treatments for more general variable coefficient
problems will be investigated in a future work.

Table IV. Results for the non separable equation.

N 16 32 64 128

max(u7
N
− u6

N
) 2.93E-7 4.87E-7 6.15E-7 6.83E-7

max(u7
N
− u) 2.47E-8 4.65E-8 6.16E-8 6.98E-8

CPU 0.09 0.62 4.51 45.06

We have summarized In Table IV the results after 7 Richardson iterations with the
initial guess u0

N
≡ 0. The results clearly demonstrate that the convergence rate of the

scheme is independent of N . Note however that due to the expensive transformations
required by the Galerkin method, a collocation method is probably preferable for this
problem, especially when N is large.

Concluding remarks. We have presented in this paper a systematic way to
construct appropriate bases for the Legendre-Galerkin method applied to constant
coefficient elliptic problems. We have also developed efficient direct solvers whose
complexities are a small multiple of N d+1 operations in a d dimensional domain with
(N − 1)d unknowns. Furthermore, the algorithms can be effectively parallelized. Tak-
ing into account the fact that the convergence rate of the Legendre-Galerkin method
is exponential, we conclude that our algorithms are very valuable for the specific prob-
lems considered in this article. To the best of the author’s knowledge, our algorithm
for the fourth order equations is the first fast direct solver with spectral discretiza-
tion. Our direct solver for one particular second order equations is probably the most
efficient among the existing spectral methods. Our direct solver for the second order
equations with multiple right-hand sides is also very competitive to the direct solvers
by Chebyshev-tau, Chebyshev-collocation and spectral element methods (see [12], [8],
[18]).

We note that similar techniques can be applied to Galerkin method using Cheby-
shev polynomials (cf. [21]) or other Jacoby polynomials.
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