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HERMITE SPECTRAL METHODS FOR FRACTIONAL PDEs IN
UNBOUNDED DOMAINS∗

ZHIPING MAO† AND JIE SHEN‡

Abstract. Numerical approximations of fractional PDEs in unbounded domains are considered
in this paper. Since their solutions decay slowly with power laws at infinity, a domain truncation
approach is not effective as no transparent boundary condition is available. We develop efficient
Hermite-collocation and Hermite–Galerkin methods for solving a class of fractional PDEs in un-
bounded domains directly, and derive corresponding error estimates. We apply these methods for
solving fractional advection-diffusion equations and fractional nonlinear Schrödinger equations.
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1. Introduction. Physically motivated space fractional diffusion equations are
mostly set in unbounded domains. However, most of the existing numerical ap-
proaches are based on domain truncation with ad hoc boundary conditions. While a
domain truncation approach can be effective if accurate transparent boundary con-
ditions are available or solutions delay exponentially, it is particularly ineffective for
space-fractional PDEs since their solutions decay slowly with power laws at infinity
and no transparent boundary condition is available. Furthermore, the domain trun-
cation to fractional derivatives also introduces artificial singularities at the truncated
boundary. Therefore, such approaches would not lead to accurate results even with
large truncated domains. Due to the lack of accurate transparent boundary condi-
tions, an alternative approach is to solve fractional PDEs on unbounded domains
directly. Since spectral methods based on orthogonal functions have proven to be
successful for regular PDEs in unbounded domains [5, 19, 17], we aim to construct
efficient and accurate spectral methods to solve space-fractional PDEs directly in
unbounded domains.

Besides the slow decay at infinity, another major difficulty is the nonlocal feature
of fractional derivatives, making it expensive to evaluate the fractional derivatives
and to invert the associated system. In the case of bounded rectangular domains, this
problem has been well addressed by using the fractopolynomials, introduced in [23];
see also the generalized Jacobi functions (GJFs) in [6]. More precisely, a fractional
derivative of fractopolynomials/GJFs is simply another fractopolynomial/GJF with
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a different parameter, therefore, fractional derivatives become a local operator in
the phase space spanned by fractopolynomials/GJFs. This property led to the very
efficient spectral methods for fractional PDEs in bounded domains; see for instance
[23, 24, 13, 6]. However, there is no apparent direct extension to fractional PDEs in
unbounded domains.

In this paper, we consider a special class of fractional PDEs in an unbounded
domain which involves the fractional Laplacian operator (−4)

α
2 defined through the

Fourier transform [15]. While taking the fractional Laplacian under the Fourier trans-
form is a simple and “local” operation, it is, however, very difficult to approximate
the (continuous) Fourier transform. Attempts have been made in using the discrete
Fourier transform on periodic domains (see, for instance, [11]), but it requires an
exceedingly large number of unknowns to achieve a reasonable accuracy. A key obser-
vation for our approach is that the Hermite functions are eigenfunctions of the Fourier
transform. This fact, together with the definition of the fractional Laplacian through
the Fourier transform, makes the fractional Laplacian a local operator in the phase
space expanded by Hermite functions. We shall first develop a Hermite-collocation
method which is extremely simple to implement, followed by a Hermite–Galerkin
method, which is more accurate than the Hermite-collocation method, but still very
efficient.

The rest of the paper is organized as follows. In the next section, we provide
some preliminaries about Hermite functions and their approximation properties. In
section 3, we present the Hermite-collocation method and derive corresponding error
estimates. The Hermite-Galerkin method is considered in section 4. In section 5, we
present numerical results for model elliptic equations and applications to fractional
advection-diffusion equations and fractional nonlinear Schrödinger equations.

2. Preliminaries. We first introduce some definitions and notations which will
be used hereafter.

We shall use bold letters such as x = x = (x1, · · · , xd) and j = (j1, · · · , jd) to
denote multivariables and multi-indices. For any function u(x) ∈ L2(Ω), we denote
its Fourier transform by û(ξ). We denote by |ξ|1, |ξ|2, and |ξ|∞ the l1, l2, and l∞

norm of ξ in Rd, respectively.

Definition 1. Given s > 0, the fractional Laplacian operator (−4)s is defined
by

(2.1) ̂(−4)su(ξ) = |ξ|2s2 û(ξ).

Let ω(x) > 0 (x ∈ Ω) be a weight function; we denote by L2
ω(Ω) the usual

weighted Hilbert space with the inner product and norm defined by

(2.2) (u, v)Ω,ω =
∫

Ω
u(x)v(x)ω(x) dx, ‖u‖Ω,ω = (u, u)

1
2
Ω,ω ∀u, v ∈ L

2
ω(Ω).

When ω ≡ 1, we will drop ω from the above notations. The Plancherel theorem states
that

(2.3) ‖u‖Ω = ‖û‖Ω.

We denote by Hµ(Ω) (with µ ≥ 0) the usual Hilbert spaces with seminorm

(2.4) |u|µ,Ω = ‖|ξ|µ2 û‖Ω
and norm

(2.5) ‖u‖µ,Ω = (‖u‖2Ω + |u|2µ,Ω)1/2 = (‖û‖2Ω + ‖|ξ|µ2 û‖2Ω)1/2.
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Let c be a generic positive constant independent of any functions and of any
discretization parameters. We use the expression A . B (resp., A & B) to mean that
A 6 cB (resp., A > cB), and use the expression A ∼= B to mean that A . B . A.
We will also drop Ω or R from the notations if no confusion arises.

We recall that the orthonormal Hermite polynomials {Hn(x)} are defined by the
three-term recurrence relation

(2.6)
Hn+1(x) = x

√
2

n+ 1
Hn(x)−

√
n

n+ 1
Hn−1(x), n ≥ 1,

H0(x) = π−1/4, H1(x) =
√

2π−1/4x.

They are mutually orthogonal with respect to the weight function ω(x) = e−x
2
, i.e.,

(2.7)
∫ ∞
−∞

Hm(x)Hn(x)ω(x)dx = δmn,

and satisfy

(2.8) H ′n(x) =
√

2nHn−1(x), n ≥ 1.

Moreover, Hn(x) is an odd (resp., even) function for n odd (resp., even), that is,

(2.9) Hn(−x) = (−1)nHn(x).

In practice, it is advised to use a problem dependent scaling factor λ to redistribute
the Hermite–Gauss collocation points (cf. [21, 17]). We define a sequence of Hermite
functions with a scaling parameter λ:

(2.10) ψn(x;λ) =
√
λe−(λx)2/2Hn(λx),

and denote in particular ψn(x) = ψn(x; 1). It follows from (2.7) that the Hermite
functions form an orthonormal basis in L2(R), i.e.,

(2.11)
∫ ∞
−∞

ψm(x;λ)ψn(x;λ)dx = δmn.

We can also derive from (2.6) a three-term recurrence relation for ψm(x;λ):

(2.12)
ψn+1(x;λ) = λx

√
2

n+ 1
ψn(x;λ)−

√
n

n+ 1
ψn−1(x;λ), n ≥ 1,

ψ0(x;λ) =
√
λπ−1/4e−(λx)2/2, ψ1(x;λ) = λ

3
2
√

2π−1/4xe−(λx)2/2.

Obviously, ψn(x;λ) is also an odd (resp., even) function for n odd (resp., even).
The following result (see, for instance, [7, 10]) plays a key role in our algorithm

development.

Lemma 1. The Hermite function ψn(x), n = 0, 1, . . ., are the eigenfunctions of
the Fourier transform operator with eigenvalues (−i)n, n = 0, 1, . . ., i.e.,

(2.13) ̂(ψn(x))(ξ) =
1√
2π

∫ ∞
−∞

ψn(x; 1)e−iξxdx = (−i)nψn(ξ),

where i =
√
−1.



SPECTRAL METHODS FOR FPDEs IN UNBOUNDED DOMAINS A1931

We easily derive from the above and

(2.14) ̂(f(ax))(ξ) =
1√
2π

∫ ∞
−∞

f(ax)e−iξxdx =
1
|a|
f̂

(
ξ

a

)
the following.

Lemma 2.

(2.15) ̂(ψn(x;λ))(ξ) = (−i)nψn

(
ξ;

1
λ

)
.

To simplify the presentation, we shall omit the scaling factor λ in the analysis,
but we will use different scaling factors in our numerical experiments.

Let PN be the space of polynomials of degree less than or equal to N , and denote
XN = {v : v = e−x

2/2w, ∀w ∈ PN}. Let {ηj}0≤j≤N be the Hermite–Gauss points,
i.e., HN+1(ηj) = 0, 0 ≤ j ≤ N , and {ωj}0≤j≤N be the corresponding weights such
that the following Hermite–Gauss quadrature holds [17]:

(2.16)
∫

R
p(η)q(η)dη =

N∑
j=0

p(ηj)q(ηj)ωj ,

where p · q ∈ X2N+1. For d-dimensional cases, we set

j = (j1, · · · , jd), ηj = (ηj1 · · · , ηjd), ω̂j = Πd
k=1ωjk ,

ψj(η) = Πd
k=1ψjk(ηk), XN := Xd

N .

Then, the d-dimensional Hermite–Gauss quadrature reads

(2.17)
∫

Rd
p(η)q(η)dη =

N∑
|j|∞=0

p(ηj)q(ηj)ω̂j ,

where p · q ∈ X2N+1. We denote by IN the Hermite–Gauss interpolation operator
from C(Rd) to XN based on the Hermite–Gauss points. We shall use xj = ηj and
ξj = ηj to denote the Hermite–Gauss points in the physical space and phase space,
respectively. For the sake of simplicity, we use XN to denote the subspaces in both
the (real) physical space and (complex) phase space.

2.1. Multivariate Hermite approximations. We denote 1 = {1, 1, · · · , 1} ∈
Nd, and use the following conventions:

(2.18) α ≥ k ⇐⇒ ∀1 ≤ j ≤ d, αj ≥ kj .

For a given multivariate function u(x), we denote the |k|1th (mixed) partial derivative
by

(2.19) ∂k
x =

∂|k|1u

∂k1x1 · · · ∂kdxd
= ∂k1x1

· · · ∂kdxdu.

In particular, we denote ∂sxu := ∂
(s,s,...,s)
x u.

Note that, using (2.8) repeatedly, we have

(2.20) ∂kxHn(x) = dn,kHn−k(x), n ≥ k ≥ 0,
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where

(2.21) dn,k =

√
2kn!

(n− k)!
, n ≥ k ≥ 0.

For the sake of notational convenience, we extend the definition of dn,k to 0 ≤ n < k
by defining

(2.22) dn,k = 0, 0 ≤ n < k.

Equation (2.20) implies that {∂kxHn} are orthogonal with respect to the weighted
inner product. More precisely,

(2.23) ‖∂kxHn(x)‖2ω = hn,k with hn,k = d2
n,k,

where γn−k is given in (2.7).
Define the d -dimensional tensorial Hermite polynomial and Hermite weight func-

tion as

(2.24) Hn(x) =
d∏
j=1

Hnj (xj), ω(x) =
d∏
j=1

ω(xj), x ∈ Rd.

We derive from (2.20) and (2.23) that

(2.25) ∂k
xHn(x) = dn,kHn−k(x) with dn,k =

d∏
j=1

dnj ,kj ,

and

(2.26)
∫

Rd
∂k

xHn(x)∂k
xHm(x)ω(x)dx = hn,kδnm,

where n,k ≥ 0, hn,k =
∏d
j=1 hnj ,kj , and δnm =

∏d
j=1 δnjmj .

For u(x) ∈ L2
ω(Rd), we write

(2.27) u(x) =
∑
n≥0

ûnHn(x) with ûn =
∫

Rd
u(x)Hn(x)ω(x)dx.

Formally, we have ∂k
xu =

∑
n≥k ûn∂

k
xHn(x), and by the orthogonality (2.26), we get

(2.28) ‖∂k
xu‖2ω =

∑
n≥k

hn,k|ûn|2 =
∑

n∈Nd
hn,k|ûn|2.

Note that the second equality is a consequence of (2.22).
Let P dN be the d-dimensional tensor of PN . Consider the orthogonal projection

ΠN : L2
ω(Rd)→ P dN , defined by

(2.29)
∫

Rd
(ΠNu− u)vNω(x)dx = 0 ∀ vN ∈ P dN .

We define the d-dimensional weighted Sobolev spaces

(2.30) Bmω (Rd) :=
{
u : ∂k

xu ∈ L2
ω(Rd), 0 ≤ |k|1 ≤ m

}
∀m ∈ N,
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equipped with the norm and seminorm

(2.31) ‖u‖Bmω (Rd) =
( ∑

0≤|k|1≤m

‖∂k
xu‖2ω

) 1
2
, |u|Bmω (Rd) =

( d∑
j=1

‖∂mxju‖
2
ω

) 1
2
.

In particular, we denote Hm(Rd) = Bmω (Rd) with ω = 0 and ‖ · ‖ = ‖ · ‖L2(Rd).
The following results are established in [22].1

Theorem 1. For any u ∈ Bmω (Rd) and 0 ≤ l ≤ m, we have

(2.32) ‖ΠNu− u‖Blω(Rd) . N (l−m)/2|u|Bmω (Rd);

and if additionally m ≥ d, we also have

(2.33) ‖INu− u‖Blω(Rd) . Nd/6+(l−m)/2|u|Bmω (Rd).

Next, we consider approximations by multivariate Hermite functions. Note that
for any u ∈ L2(Rd), we have uω−1/2 ∈ L2

ω(Rd). Define

(2.34) Π̂Nu := ω1/2ΠN (uω−1/2) ∈ XN .

Then for u ∈ L2(Rd), we derive immediately from (2.29) that

(2.35)
∫

Rd
(Π̂Nu− u)vNdx = 0 ∀ vN ∈ XN .

Introduce the operator ∂̂xj = ∂xj + xj which also satisfies

ω−1/2(xj)∂̂xju(xj) = ∂xj
[
ω−1/2(xj)u(xj)

]
,

and denote ∂̂x :=
∏d
j=1 ∂̂xj , ∂̂

k
x :=

∏d
j=1 ∂̂

kj
xj , and define

(2.36) B̂m(Rd) :=
{
u : ∂̂k

xu ∈ L2(Rd), 0 ≤ |k|1 ≤ m
}
∀m ∈ N,

equipped with the norm and seminorm

(2.37) ‖u‖B̂m(Rd) =
( ∑

0≤|k|1≤m

‖∂̂k
xu‖2

) 1
2
, |u|B̂m(Rd) =

( d∑
j=1

‖∂̂mxju‖
2
) 1

2
.

We derive below approximation results for the errors measured in the usual Hilbert
space.

Theorem 2. For any u ∈ B̂m(Rd) with m ≥ 1, we have

(2.38) ‖Π̂Nu− u‖Hµ(Rd) . N (µ−m)/2|u|B̂m(Rd), 0 ≤ µ ≤ m;

and if additionally m ≥ d, we also have

(2.39) ‖INu− u‖Hµ(Rd) . Nd/6+(µ−m)/2|u|B̂m(Rd), 0 ≤ µ ≤ 1.

1Note that the result proved in [22] was with d/6 replaced by d/3 in (2.33). It can be improved
to d/6 by using the improved one-dimensional result in [2].
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Proof. We start with the proof of (2.38).
The case µ = 0 is a direct consequence of (2.32) with l = 0.
For any 1 ≤ j ≤ d,

∂xj (Π̂Nu−u) = ω1/2∂xj
(
ΠN (uω−1/2)−(uω−1/2)

)
−xjω1/2(ΠN (uω−1/2)−(uω−1/2)

)
.

We recall (cf. Lemma B.6 in [17]) that

(2.40) ‖xju‖2ω ≤ ‖u‖2ω + ‖∂xju‖2ω, 1 ≤ j ≤ d, ∀u ∈ H1(Rd).

Therefore, thanks to (2.40), we obtain

‖∂xj (Π̂Nu− u)‖2 ≤2‖∂xj
(
ΠN (uω−1/2)− (uω−1/2)

)
‖2ω

+ 2‖xj
(
ΠN (uω−1/2)− (uω−1/2)

)
‖2ω

≤ 2‖ΠN (uω−1/2)− (uω−1/2)‖2ω
+ 4‖∂xj

(
ΠN (uω−1/2)− (uω−1/2)

)
‖2ω

. N1−m|uω−1/2|2Bmω (Rd) . N1−m|u|2Hm(Rd).

Summing up the above for 1 ≤ j ≤ d, we obtain (2.38) with µ = 1. By recursively
applying the above argument, we can prove (2.38) for all positive integer µ ≤ m.
Finally, (2.38) for 0 ≤ µ ≤ m can be obtained by a standard space interpolation [1].

Similarly, we can prove (2.39) from (2.33).

2.2. A model problem. In the next two sections, we shall consider, as a model
problem, the following fractional PDE:

(2.41) ρu(x) + (−4)α/2u(x) = f(x) in Ω = Rd; lim
|x|→∞

u(x) = 0,

where ρ ≥ 0, α > 0.
We start by deriving a suitable weak formulation for (2.41).

Lemma 3. Let µ > 0, then for any u, v ∈ Hµ(Ω), we have

(2.42)
(
(−4)µu, v

)
=
(
(−4)

µ
2 u, (−4)

µ
2 v
)
,

where v is the complex conjugate of v.

Proof. First, let us recall a useful property of the Fourier transform, namely, for
φ, ϕ ∈ L2(Ω), we have

(2.43)
∫

Ω
φϕdx =

∫
Ω
φ̂ ϕ̂ dξ.

Then (
(−4)µu, v

)
=
( ̂(−4)µu, v̂

)
=
(
|ξ|2µ2 û, v̂

)
=
(
|ξ|µ2 û, |ξ|

µ
2 v̂
)

=
( ̂(−4)

µ
2 u, ̂(−4)

µ
2 v
)

=
(
(−4)

µ
2 u, (−4)

µ
2 v
)
.

In this paper, we only focus on real-valued functions. To simplify the notation,
we denote s = α

2 , and define

(2.44) A(u, v) = ρ
(
u, v
)

+
(
(−4)

s
2u, (−4)

s
2 v
)
.
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By the definition in (2.4), we immediately obtain that A(·, ·) is continuous and coercive
in Hs(Ω)×Hs(Ω).

Then by Lemma 3, a weak formulation for (2.41) is find u ∈ Hs(Ω), such that

(2.45) A(u, v) = (f, v) ∀ v ∈ Hs(Ω).

Thanks to the Lax–Milgram lemma, the above problem admits a unique solution
u ∈ Hs(Ω) satisfying

(2.46) ‖u‖Hs . ‖f‖(Hs)′ ,

where (Hs)′ is the dual space of Hs.

3. Hermite-collocation method. In this section, we present a Hermite-
collocation method for (2.41) and derive corresponding error estimates.

3.1. Formulation of the method. Applying the Fourier transform on both
sides of problem (2.41), we derive an equivalent formulation in frequency space:

(3.1) ρû(ξ) + |ξ|α2 û(ξ) = f̂(ξ),

which implies that

(3.2) û(ξ) =
f̂(ξ)

ρ+ |ξ|α2
.

Hence, the Fourier transform of the solution can be expressed directly by using the
Fourier transform of f . However, we need a numerical procedure to compute an
approximation of (continuous) Fourier transforms, and to compute function values in
physical space from its approximation of the (continuous) Fourier transform.

We propose the following Hermite-collocation method: Find uN ∈ XN such that

(3.3) ûN (ηj) =
ÎNf(ηj)
ρ+ |ηj |α2

∀0 ≤ |j|1 ≤ N,

where INf is the interpolation in XN of f at the Hermite–Gauss points.
Denoting ψn(x) = Πnd

n=n1
ψn(xn), we describe below the detailed algorithm for

(3.3).
Step 1. From the values of f(ηj) with 0 ≤ |j|1 ≤ N , perform a forward discrete

Hermite transform to obtain f̃k such that

INf(x) =
∑

0≤|k|1≤N

f̃kψk(x).

Step 2. Take the Fourier transform of the above; thanks to (2.13), we obtain

ÎNf(ξ) =
∑

0≤|k|1≤N

f̃k(−i)|k|1ψk(ξ).

Then, compute ÎNf(ηj) (0 ≤ |j|1 ≤ N) from the above with a backward
discrete Hermite transform.

Step 3. Compute ûN (ηj) from (3.3), and perform a forward Hermite transform to
obtain ṽk such that

ûN (ξ) =
∑

0≤|k|1≤N

ṽkψk(ξ).
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Step 4. Take the inverse Fourier transform of the above to obtain

uN (x) =
∑

0≤|k|1≤N

ṽki|k|1ψk(x).

Finally, we obtain uN (ηj) for 0 ≤ |j|1 ≤ N from the above by performing a
backward Hermite transform.

Remark 1. We observe that the main cost of the above algorithm is one discrete
Hermite transform at each step, the cost of which is O(Nd+1) for the d-dimensional
problem.

3.2. Error estimate. By using the exactness of the Hermite–Gauss quadrature,
we rewrite the scheme (3.3) in the following variational form:

(3.4) ρ(ûN , v̂N ) + (|ξ|α2 ûN , v̂N )N = (ÎNf, v̂N ) ∀v̂N ∈ XN ,

where

(3.5) (u, v)N ≡
∑

0≤|j|∞≤N

u(ηj)v(ηj)ω̂j

is the multidimensional discrete inner product defined by the Hermite–Gauss quad-
rature in (2.17).

We also derive from (3.1) that

(3.6) ρ(û, v̂N ) + (|ξ|α2 û, v̂N )N = (f̂ , v̂N ) + (IN (|ξ|α2 û)− |ξ|α2 û, v̂N ) ∀v̂N ∈ XN .

Let us define the bilinear form

(3.7) aN (û, v̂) = ρ(û, v̂) + (|ξ|α2 û, v̂)N ∀û, v̂ ∈ XN ,

and the discrete norm

(3.8) ‖v̂‖N,α ≡
√
aN (v̂, v̂).

By definition, we have

(3.9) ‖v̂‖2 . aN (v̂, v̂) = ‖v̂‖2N,α, aN (û, v̂) . ‖û‖N,α‖v̂‖N,α.

Hence, applying the first Strang lemma [20] to (3.6) and (3.4), we obtain immediately

(3.10) ‖û− ûN‖N,α . inf
v̂N∈XN

‖û− v̂N‖N,α + ‖f̂ − ÎNf‖+ ‖IN (|ξ|α2 û)− |ξ|α2 û‖.

Since

inf
v̂N∈XN

‖û− v̂N‖N,α ≤ ‖û− IN û‖N,α =
√
ρ‖û− IN û‖,

‖f̂ − ÎNf‖ = ‖f − INf‖

and

IN (|ξ|α2 û)− |ξ|α2 û = IN (ρû+ |ξ|α2 û)− (ρû+ |ξ|α2 û) + ρ(û− IN û)

= IN f̂ − f̂ + ρ(û− IN û),

we derive from the above and the error estimate (2.39) the following.
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Theorem 3. Let û and ûN be the solutions to (3.2) and (3.3), respectively. As-
suming that û ∈ B̂m1(Rd), f ∈ B̂m2(Rd), and f̂ ∈ B̂m3(Rd) with m1, m2, m3 ≥ d,
we have

‖u− uN‖ . ‖û− ûN‖N,α . Nd/6−m1/2|û|B̂m1 (Rd)

+Nd/6−m2/2|f |B̂m2 (Rd) +Nd/6−m3/2|f̂ |B̂m3 (Rd).

Remark 2. We are unable to obtain an optimal error estimate in the energy norm
‖ · ‖Hα/2 due to the unboundedness of the coefficient |ξ|α2 .

4. Hermite–Galerkin method. While the Hermite-collocation method pre-
sented above is very easy to implement, its error estimate is not quite optimal as the
discrete norm in Theorem 3 is only an approximation to the energy norm ‖ · ‖Hα/2 .
Below, we present a Hermite–Galerkin method which enjoys optimal error estimates
in the energy norm.

4.1. The method and error estimates. The Hermite–Galerkin approxima-
tion for (2.45) is find uN ∈ XN such that

(4.1) A(uN , vN ) = (INf, vN ) ∀ vN ∈ XN .

Since XN ⊂ Hs(Ω) for any s ≥ 0, it is clear that the problem (4.1) admits a unique
solution. We derive from (2.45) and (4.1) that

A(u− uN , vN ) = (f − INf, vN ) ∀ vN ∈ XN .

We then derive from a standard argument that

(4.2) ‖u− uN‖Hs . inf
vN∈XN

‖u− vN‖Hs + ‖f − INf‖.

Hence, taking vN = Π̂Nu in the above and using Theorem 2, we obtain the following
result.

Theorem 4. Let u and and uN be the solutions to (2.45) and (4.1) respectively.
Assuming that u ∈ Bm̂1(Rd) and f ∈ Bm̂2(Rd) with m1 ≥ s, m2 ≥ d, we have

‖u− uN‖Hs . N (s−m1)/2|u|B̂m1 (Rd) +Nd/6−m2/2|f |B̂m2 (Rd).

Remark 3. The error estimate for the Hermite–Galerkin method is better than
that for the Hermite-collocation method in the following two aspects: (i) The error
estimate in the Galerkin case is in the energy norm while it only implies an estimate
in the L2-norm in the collocation case; (ii) it only depends on the smoothness of u
and f , while in the collocation case it depends on the smoothness of û, f , and f̂ .

Remark 4. Since the usual duality argument cannot be applied to the fractional
differential equations due to the lack of a regularity result, it is not clear how to derive
an improved error estimate in the L2 norm.

4.2. Implementation in one dimension. To implement (4.1), we need to com-
pute the mass matrixMkj = (φj , φk) and stiffness matrix Skj =

(
(−4)

s
2φj , (−4)

s
2φk

)
,

where {φk} are the basis functions of XN .
Begin with the one-dimensional case. Since XN = span{ψk(x) : 0 ≤ k ≤ N}, we

have Mkj = (ψj , ψk) = δkj , so we only need to compute Skj . By Lemma 3 and (2.13),
we have

(4.3) Skj =
(
(−4)

s
2ψj , (−4)

s
2ψk

)
= (−i)j · ik

∫ ∞
−∞
|ξ|αψj(ξ)ψk(ξ)dξ.
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To simplify the presentation, we denote Skj := (−i)j · ikskj , and will compute skj .
We have from (2.11) that

skj =
∫ ∞
−∞
|ξ|α exp(−ξ2)Hj(ξ)Hk(ξ)dξ.

For 0 ≤ j, k ≤ N , the above integral can be computed by deriving an analytical
recurrence formula for the quantities. Let {H̃j}∞j=0 denote the generalized Hermite
polynomial family orthonormal with respect to the weight function |ξ|α exp(−ξ2) sat-
isfying the following three-term recurrence (see [8, Table 1.1, p. 29]):√

bk+1H̃k+1(x) = xH̃k(x) +
√
bkH̃k−1(x), k ≥ 1,

H̃0(x) = 1/Γ(
α+ 1

2
), H̃1(x) = x/Γ(

α+ 1
2

),

where bk = k/2 for k is even while bk = k/2 + α/2 for k is odd. Then there are
connection coefficients cn,j so that

Hn(x) =
n∑
j=0

cn,jH̃j(x).

Therefore, there is an explicit recurrence formula that translates these connection
coefficients into cn,j (see [14, (12) and Theorem 1]). Collect these coefficients into the
(N +1)× (N +1) matrix C with (C)j,k = cj,k (using 0-based indexing, 0 ≤ j, k ≤ N).
Then the desired matrix is Ŝ = CCT , where Ŝ = {skj}Nk,j=0.

4.3. Implementation in multidimensions. In the one-dimensional case, we
developed above an efficient algorithm to compute the stiffness matrix. However, in
the multidimensional case, the term |ξ|α2 = (ξ2

1 + · · ·+ ξ2
d)

α
2 in (3.1) is nonseparable,

making it very expensive to compute the stiffness matrix explicitly and to solve the
resulting linear system by a direct method. Hence, we shall use an iterative approach
for (4.1) with a suitable separable problem as a preconditioner. To simplify the
presentation, we shall only consider the two-dimensional case, although the method
can be directly applied to the multidimensional case.

Unlike in the integer PDE case, the multidimensional fractional PDE (2.41) is no
longer separable. This can be easily see from its equivalent formulation in frequency
space (3.1) which, in the two-dimensional case, can be written as

(4.4) ρû(ξ) + (|ξ1|2 + |ξ2|2)α/2û(ξ) = f̂(ξ),

whose Hermite–Galerkin approximation, an equivalent formulation to (4.4), is to find
uN ∈ XN such that

(4.5) ρ(ûN , v̂N ) + ((|ξ1|2 + |ξ2|2)α/2ûN , v̂N ) = (ÎNf, v̂N ) ∀v̂N ∈ XN .

However, it is convenient to use the following separable form

(4.6) ρû(ξ) + |ξ1|αû(ξ) + |ξ2|αû(ξ) = f̂(ξ)

to build a preconditioner. Indeed, a Hermite–Galerkin method for (4.6) is to find
uN ∈ XN such that

(4.7) ρ(ûN , v̂N ) + (|ξ1|αûN , v̂N ) + (|ξ2|αûN , v̂N ) = (ÎNf, v̂N ) ∀v̂N ∈ XN .
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Letting uN =
∑N
k,j=0 ũkjψk(x1;λ)ψj(x2;λ) ∈ XN be the solution of (4.7), and

setting Ū = (ũkj)0≤k,j≤N and F̄ = (f̃kj)0≤k,j≤N with f̃kj = (INf, ψk(x1;λ)ψj(x2;λ)),
the problem (4.7) is reduced to

(4.8) ρŪ + SŪ + ŪS = F̄ ,

where S is the one-dimensional stiffness matrix computed above.
Thus, the above linear system can be efficiently solved by using the matrix diag-

onalization method [12, 9, 18] in a small multiple of N3 operations (a small multiple
of Nd+1 operations for d-dimensional problems).

The next lemma shows that (4.7) provides an optimal preconditioner for
equation (4.5).

Lemma 4. For 0 < α ≤ 2, we have

dα/2−1
d∑
j=1

|ξj |α ≤

 d∑
j=1

|ξj |2
α/2

≤
d∑
j=1

|ξj |α ∀ξ1, . . . , ξd ∈ R.

For α > 2, we have

d∑
j=1

|ξj |α ≤

 d∑
j=1

|ξj |2
α/2

≤ d1−2/α
d∑
j=1

|ξj |α ∀ξ1, . . . , ξd ∈ R.

Proof. It is obvious that the result holds for α = 2.
Since f(x) = −xα/2 is convex for x > 0 with α ∈ (0, 2), we have

f

(∑d
j=1 |ξj |2

d

)
≤ 1
d

d∑
j=1

f(|ξj |2),

which implies  d∑
j=1

|ξj |2
α/2

≥ dα/2−1
d∑
j=1

|ξj |α.

On the other hand, we have

d∑
j=1

aj ≤

 d∑
j=1

aνj

1/ν

∀{aj ≥ 0}, 0 ≤ µ ≤ 1.

Then letting aj = |ξj |2 and ν = α/2 for α ∈ (0, 2) in the above, we obtain

d∑
j=1

|ξj |2 ≤

 d∑
j=1

|ξj |α
2/α

.

We obtain immediately from the above that d∑
j=1

|ξj |2
α/2

≤
d∑
j=1

|ξj |α.

The case with α > 2 can be obtained by using a similar argument.
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Table 1
Number of iterations for solving (4.4).

# of iteration
α = 1.2 α = 1.5 α = 1.8

N λ = 1 λ = 0.7 λ = 1 λ = 0.7 λ = 1 λ = 0.7
60 7 8 6 7 5 6
80 7 8 6 7 5 6
100 7 8 6 7 5 6
120 7 8 6 7 5 6
140 7 8 6 7 5 6
160 7 8 6 7 5 6

Let the linear systems for the original Hermite–Galerkin approximation (4.5) and
for the preconditioner (4.7) be Aū = f̄ and Bū = f̄ , respectively. Then, the above
lemma shows that the condition number of B−1A is uniformly bounded. Since the
preconditioner system Bū = f̄ can be efficiently solved, and the matrix-vector product
Aū can be efficiently performed in the frequency space, the linear system Aū = f̄ can
then be solved efficiently by using the preconditioned conjugate gradient method.

We now present a numerical example to show the effectiveness of this precondi-
tioner. We consider the problem (2.41) with a random function f and let ρ ≡ 1. We
set the threshold ε = 10−8 and list in Table 1 the iteration numbers of the CG method
for solving (4.1) with preconditioner (4.6). We observe that the iteration numbers are
bounded independent of N .

5. Numerical results and applications.

5.1. Accuracy tests. In the following, we present a few numerical results to
test the accuracy and validate our algorithm. In the first three examples, we shall use
the Hermite–Galerkin method, and in Example 5, we shall compare the accuracy of
the Hermite–Galerkin method and Hermite-collocation method.

Example 1 (problem with exponential decay solution). Let ρ ≡ 1, and the exact
solution be u(x) = e−x

2
. Here we take the scaling parameter λ = 1.

The L2 and max errors in semilog scale are showed in Figure 1 for α = 1.2, 1.8.
We observe an exponential convergence as expected.

Example 2 (problem with smooth and exponential decay forcing function). Let-
ting ρ ≡ 1, we take f(x) = e−x

2/2(1 + x). Since no exact solution is available, we use
the numerical solution with N = 512 as the reference solution. We choose λ = 0.4.
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Fig. 1. Convergence rates for u(x) = e−x2
; left: α = 1.2, right: α = 1.8.
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Fig. 2. Solution u(x), x ∈ (25, 37), for different values of α with f(x) = e−x2/2(1 + x).

According to Theorem 4, the convergence rate will be essentially depending on
the decay rate of the solution at infinity. Hence, we plot in Figure 2 the numerical
solution in the interval x ∈ (25, 37) in log-log scale in order to study the asymptotic
behavior of the solution when |x| → ∞. We observe that the solutions have algebraic
decay for all noninteger values of α. The asymptotic decay rates for different values of
α are also shown in Figure 2, which indicate that the solution behaves like |x|−α−1 for
large |x|. Note that when α = 2, the solution does converge exponentially at infinity.

The convergent results in log-log scale are presented in Figure 3. We observe that
both L2-error andH

α
2 -error have algebraic convergence. As expected, the convergence

rate improves as α increases. We also list the convergence rates in Tables 2 and 3 for
α = 1.2 and 1.8, respectively. These numerical results in L2 indicate a convergence
rate of about α+1

2 , consistent with the decay rate at infinity.

Example 3 (problem with nonexponential decay forcing function). Letting ρ ≡ 1,
we take f(x) = 1

(1+x2)2 . We use the numerical solution with N = 512 as the reference
solution, and choose λ = 0.7.

The L2-error and H
α
2 -error convergences for α = 1.2, 1.8, 2.2, 2.8 are plotted in

Figures 4 and 5. We observe a similar convergence behavior to the last example.

Example 4. In this test, we compare the accuracy of the Hermite–Galerkin method
with the Hermite-collocation method. Letting ρ ≡ 1, we consider two cases: (i)
f(x) = e−x

2/2(1 + x) and (ii) f(x) = e−x
2
1/2−x

2
2/2(1 + x1)(1 + x2), and examine the

maximum errors by the collocation and Galerkin methods for different α. The scaling
parameter λ is fixed to be 0.4, and the numerical solution with N = 512 is used as
reference solution.

From Figures 6–7, we observe that the Galerkin method leads to a higher accuracy
than the collocation method. However, the Galerkin method is more expensive than
the collocation method, particularly in the multidimensional case. We list the CPU
time in Table 4 with the Galerkin and the collocation methods. For the Galerkin
method, two different values of threshold ε = 10−8 and 10−12 are used. The table
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Fig. 3. Convergence rates for f(x) = e−x2/2(1 + x); left: α = 1.2, right: α = 1.8.

Table 2
Convergence rates of the L2 and H

α
2 errors for f(x) = e−x2/2(1 + x), α = 1.2.

N L2 − error Order H
α
2 − error Order

80 2.77e-004 4.44e-004
100 2.21e-004 -1.01 3.62e-004 -0.92
120 1.84e-004 -1.02 3.06e-004 -0.92
140 1.57e-004 -1.03 2.65e-004 -0.93
160 1.36e-004 -1.03 2.34e-004 -0.93
180 1.21e-004 -1.04 2.10e-004 -0.94
200 1.08e-004 -1.04 1.90e-004 -0.94
220 9.79e-005 -1.05 1.74e-004 -0.95
240 8.93e-005 -1.06 1.60e-004 -0.95

Table 3
Convergence rates of the L2 and H

α
2 errors for f(x) = e−x2/2(1 + x), α = 1.8.

N L2 − error Order H
α
2 − error Order

80 2.06e-005 4.29e-005
100 1.53e-005 -1.32 3.34e-005 -1.13
120 1.20e-005 -1.33 2.72e-005 -1.12
140 9.80e-006 -1.33 2.28e-005 -1.13
160 8.20e-006 -1.34 1.96e-005 -1.13
180 7.00e-006 -1.34 1.72e-005 -1.13
200 6.08e-006 -1.34 1.52e-005 -1.14
220 5.35e-006 -1.34 1.37e-005 -1.14
240 4.76e-006 -1.35 1.24e-005 -1.14

lists the total CPU time by solving the two-dimensional problem 10 times and using
Matlab 2016 on a Lenovo Thinkpad laptop with Intel Core i7-6600 CPU. We observe
that the collocation method is much faster than the Galerkin method with the same
number of unknowns, while the accuracy improvement of the Galerkin method is
problem dependent. It appears that for most problems, the collocation method would
be more efficient than the Galerkin method. However, for more general problems with
variable coefficients, the efficiency of the collocation method will be lost.

5.2. Application to fractional advection-dispersion equation. We con-
sider the following fractional advection-dispersion equation [4, 3, 16]:

(5.1)
∂u(x, t)
∂t

+ v
∂u(x, t)
∂x

+D(−4)
α
2 u(x, t) = 0, x ∈ R, t ∈ [0, T ]



SPECTRAL METHODS FOR FPDEs IN UNBOUNDED DOMAINS A1943

80 120 160 200 240

N in logscale

10-4

10-3

er
ro

r 
in

 lo
gs

ca
le

f(x)=1/(1+x2)2, =1.2

L2-error

H /2

80 120 160 200 240

N in logscale

10-5

10-4

er
ro

r 
in

 lo
gs

ca
le

f(x)=1/(1+x2)2, =1.8

L2-error

H /2

Fig. 4. Convergence rates for f(x) = 1
(1+x2)2 ; left: α = 1.2, right: α = 1.8.
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Fig. 5. Convergence rates for f(x) = 1
(1+x2)2 ; left: α = 2.2, right: α = 2.8.
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Fig. 6. Maximum error with spectral collocation and spectral Galerkin method the one-
dimensional case, f(x) = e−x2/2(1 + x); left: α = 1.2, right: α = 1.8.

with the initial condition

(5.2) u(x, 0) = δ(x),

where v is a given constant mean velocity, D is a diffusion coefficient, and δ(x) is the
Dirac mass.
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Fig. 7. Maximum error with spectral collocation and spectral Galerkin method for the two-
dimensional case, f(x) = e−x2

1/2−x2
2/2(1 + x1)(1 + x2); left: α = 1.2, right: α = 1.8.

Table 4
Total CPU time (in seconds) by solving the two-dimensional problem 10 times with the Galerkin

or collocation method (G—Galerkin, C—Collocation), λ = 0.4.

α = 1.2 α = 1.8
N G, ε = 10−8 G, ε = 10−12 C G, ε = 10−8 G, ε = 10−12 C

200 5.08 7.02 0.241 3.94 5.13 0.225
300 23.1 31.0 0.663 17.8 23.5 0.660

Set

uN (x, t) =
N∑
m=0

ũm(t)ψm(x),(5.3)

UN (t) = (ũ0(t), ũ1(t), . . . , ũN (t))T .(5.4)

Apply the same procedure as we did before, and note that δ̂(ξ) = 1√
2π

, then we have
the semidiscretized system

(5.5)
d

dt
UN (t) + (vC +DS)UN (t) = 0,

UN (0) = U0
N ,

where S is given in (4.3) and

C = (ckj)Nk,j=0, ckj =
∫ ∞
−∞

ψ′j(ξ)ψk(ξ)dξ,(5.6)

U0
N = (ũ0

0, ũ
0
1, . . . , ũ

0
N )T , ũ0

j =
ij√
2π

∫ ∞
−∞

ψj(ξ)dξ.(5.7)

For the time discretization of (5.5), we use a second order backward Euler scheme,
which is

(5.8)
3Un+1

N − 4UnN + Un−1
N

2∆t
+ (vC +DS)Un+1

N = 0, 1 ≤ n ≤M − 1,

where ∆t = T
M is the time step, UnN is the discretized vector solution of UN (t) at time

t = tn = n∆t. The backward Euler scheme was used to obtain U1. It is clear that
this scheme is unconditionally stable and the convergence rate is O(∆t2).
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We first consider problem (5.1) without the advection term, i.e., v = 0. The other
parameters are set as follow: D = 1, degree of space approximation is N = 200, time
step ∆t = 10−3. The solutions at time T = 2 for α = 1.2, 1.5, 1.8 are plotted in
Figure 8.

To study the asymptotic behavior of the fractional diffusion equation (5.1) (v =
0) when |x| → ∞, we also plot in Figure 9 the numerical solution in interval x ∈ [5, 11]
in log-log scale at time T = 2. We observe that the solutions have algebraic decay for
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Fig. 8. Solution u(x, t) at time T = 2 for different values of α.
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Fig. 9. Numerical solution u(x, t) on x ∈ [5, 11] in log-log scale for different values of α, T = 2.
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Fig. 10. Solution u(x, t) at different times with α = 1.5.

all values of α except in the case α = 2 (standard diffusion) where the solution decays
exponentially.

Next, we set v = 1 in (5.1). Other parameters are D = 0.2, N = 200, time step
∆t = 10−3.

The solutions with α = 1.5 at different times are plotted in Figure 10. As ex-
pected, the velocity v = 1 pushes the solution to the right.

5.3. Application to a fractional nonlinear Schrödinger equation. We
consider the following two-dimensional fractional nonlinear Schrödinger equation
(fNLS) [11]:

(5.9)
i∂tu(x, t) =

1
2

(−4)
α
2 u(x, t) + γ|u|2pu(x, t), x ∈ R, t ∈ (0, T ],

u(x, 0) = u0(x),

where i2 = −1 and p > 0, u(x, t) is a complex-valued wave function. Let f(u) =
γ|u|2pu, applying the Fourier transform on both sides of (5.9), we get

(5.10)
i∂tû(ξ, t) =

1
2
|ξ|αû(ξ, t) + f̂(u)(ξ, t), ξ ∈ R, t ∈ (0, T ],

û(ξ, 0) = û0(ξ).

In order to solve the above equation, we use the Hermite-collocation method for
the space discretization and use a semi-implicit second order backward Euler method
for time discretization. More precisely, the full discretization scheme in the phase
space reads

(5.11) i
3ûn+1

kl − 4ûnkl + ûn−1
kl

2∆t
=

1
2
|ξkl|αûn+1

kl + f̂kl(un), k, l = 0, 1, . . . , N,

with
û0
kl = û0(ξkl), k, l = 0, 1, . . . , N,
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where ∆t = T/M is the time step, ûnkl, k, l = 0, 1, . . . , N, n = 0, 1, . . . ,M represent
the point values of û(ξ, t) at ξ = ξkl := ((ξ1)k, (ξ2)l) and time level tn = n∆t, f̂kl(un)
represent the point values of f̂(un)(ξ) at ξ = ξkl and time level tn. Again, û1

kl are
computed with the backward Euler method.

Once we have ûnkl, k, l = 0, 1, . . . , N , we can obtain the values at the Hermite–
Gauss collocation points with a Hermite–Gauss transform. At each time step, the
nonlinear terms f̂kl(un) are computed with the usual pseudospectral approach.

We take the initial condition to be

(5.12) u0(x) = ηsech(x1)sech(x2),

where η is a positive constant, and focus on the quintic case, i.e., p = 2. The other
parameters are set to be η = 1.0, N = 200, ∆t = 10−3, λ = 0.6.

We first consider the defocusing case with γ = 1. The modulus squared of the
numerical solution at times T = 1 and T = 2 for different values of fractional order
α = 1.1, 1.6 are given in Figures 11–12. We observe that the solution diffuses as
expected.

Fig. 11. Defocusing case: modulus squared of the solution to the fNLS at time T = 1 with
initial condition sech(x1)sech(x2); left: α = 1.1, right: α = 1.6.

Fig. 12. Modulus squared of the solution to the fNLS at time T = 2 with initial condition
sech(x1)sech(x2); left: α = 1.1, right: α = 1.6.
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Fig. 13. Focusing case: modulus squared of the solution to the fNLS at time T = 1 with initial
condition sech(x1)sech(x2); left: α = 1.1, right: α = 1.6.
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Fig. 14. Evolution of the L∞ norm of the modulus squared of the solution to the fNLS for the
focusing case; initial condition sech(x1)sech(x2).

Next we consider the focusing case with γ = −1. In this case, the solution will
eventually blow up. We plot the modulus squared of the numerical solution at time
T = 1 for different values of fractional order α = 1.1, 1.6 in Figure 13. The numerical
results indicate that the maximum of the solution increases faster with smaller α,
which is consistent with the observation in [11] where the one-dimensional fNLS is
solved with up to N = 217 points using a Fourier spectral method. We also show
the L∞ norm of the modulus squared of the numerical solution in Figure 14. The
modulus squared of the numerical solution quickly increases as time increases and
eventually blows up.

6. Concluding remarks. Fractional diffusion equations are naturally derived
on unbounded domains. Their solutions usually decay very slowly at infinity and it is
not clear how to derive transparent boundary conditions at truncated boundaries. The
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main purpose of this paper was to derive efficient spectral methods for fractional PDEs
on unbounded domains directly to avoid errors introduced by domain truncations.

By using the key fact that Hermite functions are eigenfunctions of the Fourier
transform, we developed efficient Hermite-collocation and Hermite–Galerkin methods
for solving a class of fractional PDEs defined through Fourier transforms, and derived
corresponding error estimates. In particular, the cost of our spectral methods for
solving fractional PDEs on unbounded domains is of the same order as that for regular
PDEs.

We applied these methods for solving fractional advection-diffusion equations and
fNLS. The analysis and numerical results presented in this paper indicate that the pro-
posed Hermite-collocation and Hermite–Galerkin methods are an effective approach
to deal with fractional PDEs on unbounded domains directly.
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