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Summary. A Laguerre-Galerkin method is proposed and analyzed for the
Burgers equation and Benjamin-Bona-Mahony (BBM) equation on a semi-
infinite interval. By reformulating these equations with suitable functional
transforms, it is shown that the Laguerre-Galerkin approximations are con-
vergent on a semi-infinite interval with spectral accuracy. An efficient and
accurate algorithm based on the Laguerre-Galerkin approximations to the
transformed equations is developed and implemented. Numerical results in-
dicating the high accuracy and effectiveness of this algorithm are presented.
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1. Introduction

While the Legendre- or Chebyshev-spectral approximations for PDESs in
bounded domains have achieved great success and popularity in recent years
(seee.qg.[11,8,5]), spectral approximations for PDEs in unbounded domains
using Laguerre polynomials have only received limited attention. Pioneer
work on Laguerre approximation was developed in Gottlieb and Orszag,
[11] and Maday, Pernaud-Thomas and Vandeven [15], see also Funaro [10].
In[16,9, 14] are numerical investigations to model linear elliptic equations
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using Laguerre-collocation or Laguerre-tau approximations, where difficul-
ties associated with the extremely ill-conditioned behaviors of the Laguerre-
spectral approximations were reported. Furthermore, there seems to be no
theoretical result available on Laguerre-spectral approximation for nonlin-
ear PDEs. Here, in addition to the numerical difficulties mentioned above,
another serious difficulty lies in the fact that the original formulations of
many nonlinear PDEs of interest, e.g. Burgers equation, BBM equation,
KDV equation and Kuramoto-Sivashinsky equation, are not well-posed in
a weighted (with weight~*) variational formulation on which Laguerre-
spectral approximations are often based. Thus, the key to construct a stable
and convergent Laguerre-spectral approximation for such a nonlinear PDE
is to find a suitable transform such that the weighted variational formulation
of the transformed equation becomes well-posed.

The aim of this paper is to develop and analyze a Laguerre-Galerkin
approximation and to construct an efficient, accurate and stable numerical
algorithm for the Burgers equation and Benjamin-Bona-Mahony (BBM)
equation on a semi-infinite interval.

The Burgers equation can be viewed as an one-dimensional model for
the Navier-Stokes equations. Hence, solving the Burgers equation on a semi-
infinite interval is a first step towards solving the Navier-Stokes equations
in exterior domains which is an extremely challenging numerical task. The
BBM equation was introduced in [4] to model the movement of regularized
long waves. Numerous papers have been devoted to studying the BBM
equation both analytically and numerically (see for instance [6,1,3,7,13]).
However, most of the investigations were concerned with pure initial value
problems or initial-boundary value problems. In many practical cases, e.g.
water waves in a narrow and shallow stream coming from a large water
reservoir or waves originated by a wave maker, we are also interested in
studying the BBM equation on a semi-infinite interval.

For nonlinear PDEs on a semi-infinite interval, it may not be convenient
to use finite-difference method or finite-element method, since we have to
set up an artificial boundary and impose certain artificial boundary condi-
tions which may contaminate the accuracy of approximate solutions. Since
the Laguerre polynomials form an orthogonal system on the half line, it is
natural to approximate nonlinear PDEs on a semi-infinite interval by using
a Laguerre-spectral approximation. The techniques presented in this paper
will be useful for studying other linear and nonlinear PDEs in fluid dynamics,
guantum mechanics and other fields.

The rest of the paper is organized as follows. In Sect. 2, we provide some
basic results on Laguerre approximations. In Sect. 3, we propose a suitable
Laguerre-Galerkin approximation for the BBM equation and present the
stability and error analysis. In Sect. 4, we consider the Burgers equation. In
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Sect. 5, we construct efficient algorithms for the Burgers equation and BBM
equation, and present some numerical results. Some concluding remarks are
given in the final section.

2. Some preliminary results on Laguerre approximation

The Laguerre polynomial of degréés defined by
dl
ne dxl (2

Note that;(x) is thel-th eigenfunction of the singular Sturm-Liouville
problem

Ll(:c)— le™@), 1=0,1,2,....

)+ Xe Fu(z) =0
with the corresponding eigenvalug = [. For anyl > 0, we have
(2.1) |Ly(z)| <e2, zeR,.

Let us now define some suitable functional spaces for Laguerre approx-
imation. Letw(y) = e~¥ and

LE(Ry) = {o] [[ollrs, < oo}

where
1
(. [o@)Pw(p)dy)?, if1<p< oo,
H”HL{Z, - €ss sup |’U( )| ifp: Q.
yeR 4

In particular,L2 (R ) is a Hilbert space equipped with the following inner
product and norm

(1 0) = /0 Ty @e)dy,  Tulle = (u u)?.

Furthermore, for any non-negative integerwe define

m d*v
H'(Ry) = {v| s LZ(Ry),0 <k <m},

which are associated with the following semi-norm and norm

1
d™v i 2
|V|mw = ”dng”w’ V]l = (Z Iv!i,w>
k=0
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Then for anyr > 0, the space?;(R. ) and its norm|v||,.,, can be defined
by interpolation as in Adams [2]. We denote in particular

HE,(Ry) = {v] v € HL(Ry) and v(0) = 0}.
It is well-known that

(2.2) / Li(x)Lj(x)e”*dx = d;5, Vi,j > 0.
0

In other words, the set of Laguerre polynomials form an orthonormal basis
for L2 (R..), and any function € L2 (R..) can be expanded as

v(z) =) oLi(x) with o, = v(z)Ly(x)e Tdx.
; 141 l /RJr l

Let N be any positive integer, ari®ly be the space of polynomials of
degree at mosV. P}, = Py N Hj (R ). Let Py : L (Ry) — Py be the
L2—orthogonal projector, i.e., for anyc L2 (R,),

(U — Pyw, ¢)w =0, Vo € Py.

For any positive integes, we define the space
T T E T
H, 4(Ry) = {v € Hi(Ry)| z2v € HS(Ry)}

with the normi[v|[, , 5 = [[v(1 + m)g ||rw- As usualw will be omitted from
the notations in case af = 1. Hereafter(C' will denote a generic positive
constant independent of.

Maday, Pernaud-Thomas and Vandeven [12] proved the following im-
portant result (see also [10] and [5]):

Lemma 2.1 Letr > p > 0andg be the largestinteger for whigh < r+1.
Then

[0 = Pvlluw < CNO5[0]0g, W0 € HE 5(R).
We define thed —projectorPy;, : HL(R;) — Py by

d
——(v—Pyv)

(d$ d d’)w‘i‘(U—P]{ﬂ%Qﬁ)w:O, V(z)e]P)]\h UEH‘})(R_F)

"dx
Similarly, we define thetl} ,—projectorPy” : H} ,(Ry) — P by

d
—(v— P]{;Ov),

d
(dac 7¢)w =0, Vope IP)(])\77 vE H(:)L,W(R-l-)'

dzx
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Lemma 2.2

R e e )
||va < 2|U‘1»w’

Proof. For anyz € R,
e‘%2(x) = /z i(e‘yv2( ))d
= o dy y))ay

=2 / e’yv(y)dL@)dy - / e Y3 (y)dy,
0 dy 0
from which we derive
(2.3)

r d
)+ [ i< [T el Dy < 2ol fol
0 0

which implies the first conclusion. Letting— oo, we get the second result.
0

Lemma 2.3 Letr > 1 and be the largest integer for which < r. Then
lo = Pyvlliw < ON2 73 [[0llrws, Vo € H 5(Ry).
Proof. Let
u(z) =v(0) + /Ox Pn_y dqzlg/y) dy.

Thenv —u € Hj (R4 ). Thanks to Lemma 2.1, we find

dv dv
lo = Pyl < o= ullie < Clo = uliw = | = Proa -l
1 ¢ dv 1_r
< CN2"2 ||%||7‘—1,w,ﬁ < CNz 2|l u 8- O

Lemma 2.4 Letr > 1 and 3 be the largest integer for which < r. Then
o = PA%0lliw < CN272 |[vllys 5, Yo € HY,(Ry) N HE 5(Ry).

Proof. By Lemma 2.2 and the definition d?,;",

d d
lo = Py"vl}, < Clo = Py, = C(—(v = Py"v), ——(v = 6))u

< Ollv = Py vliwlv = ¢liw, Vo € PR
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Thus
|lv — P]{;OvHLw <C inf |v— |14
$EPY

Then, the desired result can be proved as in Lemma 2.3 by taking—

Iy Pn—a %dy in the above inequality. O

3. Laguerre-Galerkin method for the BBM equation

The BBM equation (see [4]) on a semi-infinite interval reads:

(3.2)
1
v + 50yv* — 00 5v =h, y€ERy, tE(0,T),

U(yv 0) - UU(?/)? yE R-l—a
v(0,t) = g(t), yll)lgo v(y,t) = ylggo Oyv(y,t) =0, te (0,17,

whereT" > 0, § is a positive constant,(y, t) andg(t) are respectively the
source term and the boundary valueyat 0, vy(y) is the initial value. We
assume that the compatibility conditiof(0) = ¢(0) holds and thak(y, t)
anduvy(y) decay fast enough when— oo. The well-posedness of (3.1) in
the classical sense can be found in [6,7].

We shall consider the Laguerre-Galerkin approximation of (3.1). Without
loss of generality, we assumgét) = 0. In order to take advantage of the
orthogonality of the Laguerre polynomials, it seems natural to consider the
following weak formulation for (3.1):

FindveL>(0,T; Hj (R )) such that

(3.2)
{@u 8o+ 5 (00 0o+ 5(010,0,0,(6) = (b, 6)os VOCH ()
ol(,0) = ().

Unfortunately, this formulation is not suitable for the reasons specified be-
low. In fact, takingy = v in (3.2) and integrating by parts, we obtain

1d
2dt

1
0115 + 8lvfe} = 0(Byv, v) = =50y (v*), V) + (V)
Notice that the last term on the left-hand side may not be positive and
can not be properly controlled. Furthermore, as explained in Sect. 2, even
in the absence of the nonlinear term, the above formulation will not lead to

satisfactory approximation farlarge. Thus, we shall consider an alternative
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formulation of (3.1). We first make a change of variable= @x and let
w(z,t) = v(y,t), h(zx,t) = h(y,t). Then, (3.1) becomes

1 -
Oyw + %az(w% — 40,02w = h.
Setting
z z )
u(x,t) = ezw(x,t) = e2v(7x, t),
1 1 <
Fat) = Sethta,t) = Lein(Lan),
the BBM equation (3.1) witly(¢) = 0 becomes
(3.3)
4\1/862835@_:”112) b 00— 00%u=f, TER,, te (0,7,

u(z,0) = up(z) = egvo(\ég:v),

w(0,t) =0, t € (0, 7).

Let us denote

a(u,v) = T dudy e “dx,
(3.4) 0 dx dx
b(u, z,v) = by (u, z,v) + ba(u, z,v),
with
by (u, z,v) = —i/ e_%u(:c)z(x)j—vdx,
x
ba(u, z,v) = 8/ e 2u(x)z(x)v(x)d.
0

The key property which imply the suitability of (3.3) is
Lemma 3.1
b(u,u,u) =0, Vu € H&W(RJF).

Proof. The result follows from the definition and by integration by parts,
since

1 [ _s: od 1 [ _se
bi(u, u,u) = —4/0 e u2d—udm = —E e % du
1 o0
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Hence, we shall consider the following variational formulation of (3.3):
findu € L>(0,T; Hj ,(Ry)) such that

1
%b(u(t), u(t), ) + a(Owu(t), ¢) = (f(1), d)w

(3.6) Vo € Hi(Ry), 1 € (0,7),

u(0) = up.

The Laguerre-Galerkin approximation for (3.6) is:
finduy(t) € P forall0 <t < T, such that

\%b(w( ) un(t), ) + a(@un(t), ) = (f, ).,

Vo € PY, t € (0,7),

1,0
UN(O) = UN,0 = PN7 UuQ.

(3.7)

Let us first establish the following result:

Lemma3.2 Let f € L*(0,T;L2(Ry)) andug € Hj (R, ). Letu and
un be respectively the solution (8.6)and(3.7). Then

[[u(t)
Proof. Take¢ = u(t) in (3.6), thanks to Lemmas 3.1 and 2.2, we find

w), te(0,T].

Jun (1w < CUFllL20,7:22®,))

%IU(t)\?,w =2(f(1), u()w < 2[f(O)llollu®)llo < CNF@)lwlu(®)]10-

Applying the Gronwall lemma to the above inequality, we obtain the desired
result foru(t). The result foruy (t) can be proved similarly. O

Hereafter, we us€’; to denote a generic positive constant which may
depend on the data (i.eq, f, r), butis independent aV. We now analyze
the stability of (3.7) in the sense of Guo [12,13] and Stetter [19].

Theorem 3.1 Letuy andiy be respectively the solutions(@t 7)with data
(f,unp) and(f,uNo) We denotg’ = f — f anday = an — un. Then

t ~
(D < Cullavolls + [ IFIE). vie ©.7)
Proof. By definition in (3.4-3.5), we have
(3.8) b(u,v,9) = b(v,u,¢), Vu,v,¢ € Hy,(Ry).
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Hence,u satisfies the following equation:

. \}gbwzv(t), an(t),6) + jgbww, un(t), 6)
(3.9) T a(@iin (), 6) = (F(1), 6)u, Vo € Y,
fLN(O) = UN,-

By taking¢ = 2u, in (3.9), it follows from Lemma 3.1 that

%Iﬂw(t)liw + jgb(ﬂzv(t),w(t), an () < 2 F@ONZ + lan(@)I3 .-

Thanks to Lemma 2.2, we find

Alby (v (), un (£), v (8)] < lle™ 2un (8) ]| oo lan () ol (£)] 1.0
< Chllan () ||lw|in ()10 < Crlan ()[3 -
Similarly, we have
Alby (i (t), un (t), an (1) < Chllan (8)]12 < Cilan (8)]F -
Thanks to the above estimates, we find that

d . = .
(3.10) Zlin @i, < CFOIE + lan @)
We conclude by applying the Gronwall lemma to the above inequality.
We now consider the error analysis for (3.7). ket = Py u. Then it
follows from (3.6) that

(3.11)
1

%b(ww(t) s wN(t), @) + a(Gywn (), @)
+e(ut), wn(t),¢) = (f(t),d)ws Vo € PR,
wy (0) = P]if’O’LL(]
where

e(u(t), wn(t), ¢) = b(u(t), u(t), §) — b(wn (t), wn (), §)-
Let us denoteiy (t) = un(t) — wy(t) and subtract (3.11) from (3.7), we
obtain that

(3.12)
\}gb(ﬂN( ), i (t), 6) + %b(w( ) wn(t), 9)
+a(@uin (1), 6) = e(u(t), wy (), 6),Y6 € PY,

in(0) = iy = 0.
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Theorem 3.2 Letu anduy be respectively the solution (8.3)and (3.7).
Letr > 1 and g be the largest integer for which < r. Then

i1_r
Jun(t) = u(®)]1w < C1N272([luo|lrw,s + HUHLQ(O,T;H(:’B(R”)):
vVt € [0,T].
Proof. Letting ¢ = 2ux(¢) in (3.12), thanks to Lemma 3.1, we find

SN L = 2e(u(t)x (), v (1) = 7=b(an(e), wn (D), a(0).

In virtue of Lemmas 2.2 and 3.2, we have

[4b(iy (1), wn (), an (1)) < Crlan (8)]F

and

[b1(u(t), u(t),an (t)) = bi(wn (t), wn (t), un (1))]

/ooo e (u(t) + wn(£) (u(t) — wy (1)) (t)da

() + wn (8) 3 ]u(t) + wy (B)]7.,
u(t) — wy (1) ol (D)1

Jan ()2 + V20ult) + wn (O Lllult) —wn ()]

1

< clan @i, + ONT @) L)1, 6-
Similarly, we can estimate the term

b2 (u(t), u(t), un () — ba(wn (1), wi (t), an (£))]-

The theorem is then a consequence of the above inequalities and Gronwall
lemma. O

We can now derive an error estimate for the approximation of the original
BBM equation (3.1).

Theorem 3.3 Let vy (y,t) = e_%uN(%,t) be the approximation of
v(y, t), the original solution o{3.1). Then

1_r
[on(t) = o)1 < C1N2™2 "v“LOO(O,T;HE(R+))7 vt € [0,7].
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Proof. Since(v — vy) = e~ %/?(u — uy), we find

9y(v — on) = —=e~"12(By (4 — uy) — ~(u— un)).

NZ) 2
Hence

1_r
(v =on) (@)L < Cllu —un(®)]10 < ON2Z7Z|u(@),, 5-

We conclude from the above and the fact thatt)||,. 3 < C|v(?)|s
which can be proved straightforwardlyD

Remark 3.1The above result indicates that the Laguerre-Galerkin approx-
imation may converge exponentially, evervipbnly delays algebraicly at
infinity, as long a$|v||Loo(07T;HE(R+)) are finite for all- > 0 (see numerical

results in Sect. 5).

4. Laguerre-Galerkin method for the Burgers equation

The Burgers equation on a semi-infinite interval reads:

1
o + §8yv2 — yagv =h, yeRy, te(0,7T],
(41) U(yv 0) = UO(y)a ye R+’
v(0,t) =0, yll)rglo v(y,t) = ylgglo Oyv(y,t) =0, te (0,77,

wherev is a positive constant. We assume a homogeneous boundary con-
dition without loss of generality. As for the BBM equation, the original
Burgers equation is not suitable for the Laguerre approximation. Hence,
similarly as in the previous section, we set
u(z,t) = e3v(,t), fz,t) = eFh(z,1).
Therefore, (4.1) becomes
1 1 =

Opu — v(02u — Opu + Zu) + iefax(e*:”uQ) = f,
(4.2) reRy, te (O,T],

u(x,0) = up(z) = e%vo(aj),

u(0,t) =0, t € (0,T].

Let us denote

(4.3)
b(u, z,v) = 2(b1(u, z,v) + ba(u, z,v)),
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whereb; andbs are defined in (3.5). We recall from Lemma 3.1 that
(4.4) b(u,u,u) =0, Vu € Hg,(Ry).

We also derive from Lemma 2.2 that

@5)  a(w,w) =, — gl >0, Vue Hy(R,).

A variational formulation for (4.2) is:
findu € L>(0,T; Hj ,(Ry)) such that

(8{&(75), ¢)w + l/a(u(t)7 ¢)
+ b(u(t), u(t), @) = (f(t), ¢)w:
(40 Vo € Hi(R:), t e (0.7,
u(0) = uyp.

Its Laguerre-Galerkin approximation is:
find un (t) € P forall 0 < ¢ < T, such that

(815“]\7 (t)v ¢)w + VCL(UN (t)a ¢)
+ b(uN (t)v UN (t)7 (Z)) = (f(t)v ¢)w7
Vo e PY;, t € (0,T],

U,N(O) = UN,0 = PNUO.

4.7

Lemma 4.1 Letf € L?(0,T; L2 (R4)) anduy € LE(R4). Letu anduy
be respectively the solution ¢f.6)and(4.7). Then

(), llun®)lle < CUSf L2022 @) + luollw), T € (0,T].

Proof. Take¢ = 2u in (4.6), thanks to (4.3—4.4), we find

(4.8) %HU(t)Hi < 2(£(8), u(®))w < IFONZ + lu@®)]12-

Applying the Gronwall lemma to the above inequality, we obtain the desired
result foru(t). The result foruy (t) can be proved similarly. O

Theorem 4.1 Letuy andiy be respectively the solutions(@t 7)with data
(f,unyp)and(f,un,). We denotef = f — fanday = ay — uy. Then

t ~
MMM%SCMWWM+A!ﬂMWM,WE@JL
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Proof. Thanks to (3.8), we find that, satisfies the following equation:

(4.9)
(Opun (t), ¢) +va(un(t), ¢) + b(un(t), un (1), P)
+2b(an (8), un (1), ¢) = (f(1), 9)w, Vo € BY,,
an(0) = .
By taking¢ = 2uy in (4.9), it follows from (4.4) that

d i 1,
Zlan@E + 2 (lan®) i, - Zlav®I2)

+4b(an (8), un (t), an(8)) < IFOIZ + lan 013

Thanks to Lemmas 2.2, 4.1 and Young’s inequality, we have

Alby (A (£), un (), iy (8)] < Clle™ 2un (8) | oo @y 1 (E) o | v () 1.0
1 3
< Gillan ()3 |an ()3,
vV, _ ~
< 5quv(t)liw + Crllan (8)]]3-
Similarly, we have
_ ~ v, . ~
Alba(un (t), un(t), un(t))] < gluzv(t)liw + Cllan (1)]12-

Thanks to the above estimates, we find that

d . 5 -
Zlan S +vlav @, < ClllFOIL + I @IL).
We conclude by applying the Gronwall lemma to the above inequality.

Theorem 4.2 Letu anduy be respectively the solution ¢f.2) and (4.7).
Lets, »r > 1, a and 3, be the largest integers for whiech < s and3 < r.
Then,

1_s
lun (t) = w@®)lhw < C1 (N3 5l g o115, 20
1_r
+N=72 ||ut||L2(O,T;H;7B(R+))> , vt € (0,T].
Proof. Letwy = Px"u and we denote
ey =u—uy = (u—wy)+ (wy —un) =N + 7N
From Lemmas 2.2 and 2.4, we have

(4.10) lenllw < 2lén]1w < CNZ73 |yl

S, W,
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Subtracting (4.7) from (4.6), we get

(4.11)
(8t€N> v)w + I/CL(@N, ’U) = b(uN> Un, U) - b(u7 u, U)a

= —b(uy,en,v) — blen,u,v), Yo € PY.
Takingv = iy in the above relation, we obtain

(4.12)

1d

5&”UNH?J + (N

1
%,w - ZHUNHL%) = _(815&\7777]\7)0«’ - Va(‘SN>77N)

—b(UN76’N777N) —b(eN,U,T]N)-

The terms on the right-hand side of (4.12) can be bounded as follows:

1
~ (@&, o < 510N 15 + lInnIIE);

—a(én,nN) < K‘fN

%,w + CHnNH%,w
Using Lemmas 2.2, 4.1 and Young's inequality repeatedly, we have

(4.13)
bi(un,en,nn) < Clle”2en| ooy N ]1wllun]|w

1 1
< CillenllZlen'? olnn 1w
1 1 1 1
< Ci(énlls + lInnll&) (€N o + Inn 1T L) vl
14
< §|77N|iw + Ci(llnw 12 + lEn 117 )-

The termss(un, en, ny) andb(en, u, ny) can be bounded similarly and
relatively easily. Combining all the above inequalities, we arrive at

d
4.14)  —lnnlE +vinnlie < CrllanlE + llEvliTe + 19En2).
Therefore, we derive by applying Gronwall lemma that fortadl (0, 77,
2 ’ 2
v OI +v [ v(s) s

< Ci(llnv ()% +/0 (lEn ()1 o + 10sEn (5)115)ds).
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Hence, we derive from the above and (4.10) that fot all(0, 77,

t
lu = un(®)]2 + v / o — un ()], ds
0
< C1(IEn )12 + llEn () 112,
t
+ / (en ()12, + 10:Ex ()12 )ds)
1_s
<C <N2 2 ||UHL°°(0,T;H57Q(R+))
1_r
+N?2 2||utHL2(O,T;H‘Zﬁ(R+)))‘ a

Now, letvy = e*%uN be the approximation aof, the solution of the
original Burgers equation (4.1). Similarly to the proof of Theorem 3.3, we
can establish the following result:

Theorem 4.3 Lets, » > 1, o and 3, are the largest integers for which
a < sandpg < r. Then, for allt € (0,77,

Jon (t) = v(®)[lx
1_s 1l_r
(4.15) < 4 (N2 2[|vll poo (0,11 (e y) T V22 HUtHLZ(o,T;Hg(M))) :

Remark 4.1The result in Theorem 4.3 indicates that the Laguerre-Galerkin
approximation may converge exponentially, evandfly delays algebraicly

at infinity, as long as the norms on the right-hand side of (4.15) are bounded
forall s, r > 0.

5. Efficient implementations and numerical results

We consider first the Laguerre-approximation of the transformed Burgers
equation (4.7). After discretizing it in time by using a semi-implicit scheme,
i.e. the linear term is treated implicitly while the nonlinear term is treated
explicitly, we need to solve, at each time step, a linear system of the form:
find wy € PY such that
61 ™Y W) 4 e = (.00 0P
Asin [17,18], the efficiency of the spectral-Galerkin method depends heav-
ily on the choice of a suitable basis. We present an efficient implementation
for (5.1) below.

Let ¢;(x) = Li(x) — Liyi(x). SinceL;(0) = 1 for all i, we have
¢:(0) = 0 which implies that

P?V = Spar{(ﬁ(), ¢i7 KRR ¢N—1}~
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Furthermore, let/(z) = % (). We have

(5.2) ¢i(z) = Li(w) — Lij (2) = Li(x).
Therefore,

(5.3) a(gi, #5) = (¢, 83w = (Lj, L) = dij.

In other words {¢;}i—o1,... n—1 form an orthonormal basis d?‘}v with
respect to the inner produet-, -). We can then look foty in the form of
un = N hvigi. Let us denote

h = (hno, hna,--- hyN-1)T,
(54) 9i = (ga¢i)W7 g = (907g1>"'7gN—1)Ta
cij = (¢4, 9:1), C = (cij)ij=01,. .N-1-
Then, (5.1) is reduced to the following linear system:
(5.5) (a1l + asC)h = g.
Thanks to (2.2) and (5.2), we find
2, 1=
(5.6) cij=R-1, i=j—1,5+1.
0, otherwise

Hence (5.5) is a linear symmetric tridiagonal system which can be easily
solved. Note that the Laguerre-Galerkin method above does not suffer from
the ill-conditioning usually related to Laguerre-collocation/tau methods.

We now consider the Laguerre-Galerkin approximation for the trans-
formed BBM equation (3.7). Using the same notations as above, and denot-
ing additionally

(5.7)
N-1
t) = Z hi(t)di(x)
=0
HN( ) = hN,g(t), hN71<t), ceey hN7N_1(t))T,
N-1
P]{;Ouo(x) = h]\m@( )s HN = (hN 0 hN717 = '7h9\7,N—1)T7
=0
and
(58) Gl( ) (fa ¢z)w (uNauN7¢Z)

G(Hy,t) = (Go(Hp,t),G1(Hn,t),...,Gn_1(Hy,t)7T,
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Fig. 1. Exact and approximation solutions: Example 1 witk= 2 andh = 3.5 is on the
left, Example 2 is on the right

we find that, thanks to (5.3), (3.7) becomes the following system of ordinary
differential equations:

(5.9) G Hy(t) = Gy, 1), Hy(0) = Y.

We can then apply a standaedplicit Runge-Kutta method to the above
system without suffering from stringent time step constraint.

We now present some numerical results. We discretize the transformed
Burgers equation (4.2) by a third-order BDF scheme for the linear terms and
third-order Adams-Bashforth scheme for the nonlinear term,; for the trans-
formed BBM equation (3.3), a standard forth-order Runge-Kutta method is
used for (5.9). To illustrate the spectral accuracy, the time step is chosen to be
sufficiently small so that the error is dominated by the spatial discretization
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Burgers equation
* : Example 1 with k=2, h=5.0

o : Example 1 with k=2, h=3.5

log10(error)
L

L L L L
10 20 30 40 50 60 70 80
N: number of modes

BBM equation

* : Example 1 with k=2, h=5.0
o : Example 1 with k=2, h=3.5
+ : Example 2

log10(error)
h

-9

0 2‘0 4‘0 60 8‘0 1[;0 120
N: number of modes
Fig. 2. Maximum Error att = 1 of the Laguerre-Galerkin approximation for the Burgers

and BBM equations

error. We consider the following two examples where one solution decays
algebraicly at infinity while the other decays exponentially at infinity.

Example 1.The exact solution of the original Burgers equation (4.1) and

BBM equation (3.1) being(z,t) = (iiff)th. (algebraic decay at infinity)

Example 2The exact solution of the original BBM equation (3.1) being a
solitary wavev(z, t) = secR(azx — bt — ¢) witha = .3, b = .5 andc = 3.
(exponential decay at infinity)

In Fig. 1, we plot the exact and approximate solutions for the original
Burgers and BBM equations obtained with= 64 inthe space-time domain
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[0,10] x [0, 10].The exact and approximate solutions are indistinguishable
in both cases.

To illustrate the quantitative behaviors of the Laguerre-Galerkin approx-
imations, we plot in Fig. dogyo([lvn — v|[peo(r,)) VS. N att = 1 for
the original Burgers and BBM equations. Note that exponentially conver-
gence for the original Burgers and BBM equations is achieved in all cases
regardless whether the exact solution decays exponentially or algebraicly at
infinity.

6. Concluding remarks

We have presented an efficient and accurate Laguerre-Galerkin method for
the Burgers and BBM equations on a semi-infinite interval. We used a suit-
able functional transform which not only removes growing numerical er-
rors forz large but also makes the transformed equations well-posed with
a weighted variational formulation. Our theoretical and numerical results
shown that the Laguerre-Galerkin approximations are stable and conver-
gent on a semi-infinite interval with spectral accuracy. Furthermore, the
Laguerre-Galerkin approximation may converge exponentially, even if the
solutionv only delays algebraicly at infinity, as long gs(t)||,. g are finite
forallr > 0.
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