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The main objectives of this paper are to adapt an efficient and accurate spectral-
projection method for a wind-driven, double-gyre, mid-latitude, quasi-geostrophic
ocean model, and to study the double-gyre phenomenon from numerical and struc-
tural analysis points of view. A number of numerical simulations are carried out
and their structural stability and structural transition/bifurcation are investi-
gated using a new dynamical systems theory of two-dimensional incompressible
flows. c© 1999 Academic Press
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1. INTRODUCTION

We study in this paper the double-gyre phenomenon of large-scale ocean circulation,
a typical phenomenon in the northern mid-latitude ocean basins. The double-gyre phe-
nomenon here refers to the two gyre motions (circulations) observed in the ocean basins:
one is the sub-polar gyre, and the other is the sub-tropical gyre. These gyres have a typical
horizontal scale of about one thousand kilometers. Several main features of the double-gyre
ocean circulation have been identified by analyzing the observational data as well as by
numerical simulations; see, for instance, Speich and Ghil [30], Jianget al.[12], and Speich
et al. [29]. First, these gyres are dominant and persistent; second, they represent typical
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seasonal and inter-annual oscillations of the large-scale ocean; third, they transfer potential
energy. Thus, the study of the double-gyre motion will provide a better understanding of
the predictability and, possibly, a better long-term prediction on the dynamics of the ocean.

The main objectives of this paper are:

• to introduce an efficient spectral-projection scheme for the model to simulate typical
double-gyre phenomena;
• to analyze the structure and the structural bifurcation of the model using a newly

developed dynamical systems theory for incompressible vector fields; and
• to partially examine the effects of the nonlinearity and wind stress to the double-gyre

type of circulations.

This study is part of a long-term project, the objectives of which are to document, through
careful theoretical studies, the presence of regular inter-annual and inter-decade variability
in large-scale ocean basins, to verify the robustness of this variability’s characteristics
with respect to changes in model parameters, and to investigate the underlying physical
mechanisms of the variability. It has also been observed that flow transport and mixing
crossing the central jet and anti-cyclonic anomalies as well as symmetry breaking appear
frequently; they are phenomena with timescale in years and appear to be typically related
to the inter-annual variability associated with the double gyres. One possible explanation
for the appearance of anti-cyclonic anomalies and symmetry breaking is the Coriolis force
and the nonlinear nature of the problem. A thorough understanding of this variability is
essential in determining the climate system’s predictability on sub-continental and smaller
spatial scales for timescales that equal and exceed a few years.

Although only a simple quasi-geostrophic model is investigated using our numerical
method and the new dynamical systems theory, it is hoped that the methods and ideas
presented here will be useful in more realistic models as well as in other relevant problems.

We briefly describe our approach below:
First, the model we adapt in the study is a two-dimensional wind-driven, double-gyre,

mid-latitude, beta-plane quasi-geostrophic (QG) ocean circulation model. Many published
results are available on wind-driven ocean circulation; see, among others, Veronis [33],
Pedlosky [22], Stommel [31], Charney [5], Haidvogelet al.[9], Speich and Ghil [30], Jiang
et al. [12], Speichet al. [29], Chassignet [6, 7, 21], Holland [10], Holland and Rhines [11],
Berloff and Meacham [1, 2], and Meacham and Berloff [20]. They used this model to study
the formation of the western boundary currents in the North Pacific and the North Atlantic.
Bryan [3] investigated the nonlinear model of the wind-driven ocean and found that there
were two regimes depending on the Reynolds numbers. His results suggest that below a
critical value between 50 and 100, the flow always converges to a steady-state solution.
Above that critical value, instabilities would occur. As in the references mentioned above,
the spatial domain we use is 1000 km (east–west) by 2000 km (north–south), which is an
idealized geometry applicable to the Pacific and Atlantic; similar idealized geometries were
also used in all the references mentioned above.

Second, we present and implement an efficient and accurate numerical scheme for the
wind-driven, double-gyre, quasi-geostrophic model. More specifically, we discretize the
spatial variables by using a spectral-Galerkin method [25, 27] which is fast and significantly
more accurate than the traditional finite difference or finite element methods, and we advance
in time by using a second-order projection scheme (cf. [8, 32, 13, 27]) which treats the
incompressibility constraint efficiently.
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Third, we apply a new dynamical systems theory for two-dimensional incompressible
flows developed recently by Ma and Wang [16, 17] (see also [18]) to analyze the structural
stability and structural transitions/bifurcations of the flow patterns in the QG type of model.
The point of view of this theory is to classify the topological structure and its transitions
of the instantaneousvelocity field (i.e., streamlines in the Eulerian coordinates), treating
the time variable as a parameter. One justification of this viewpoint is that given initial
data, for a residual set (i.e., the intersection of a countable number ofopen and densesets)
of forcing, the instantaneous velocity field is structurally stable in anopen and denseset
of the time interval. Hence, the structural bifurcation can occur only on anowhere dense
set of time, and is a well-defined concept. In particular, we will investigate the following
topics: (i) the structural stability of the flow patterns in various flow regions, (ii) structural
bifurcation of the flow patterns using either the Reynolds number or time as a parameter, and
(iii) quasi-periodicity which appears in the more physically relevant case, demonstrating
the presence of regular inter-annual variability in the ocean basins.

The paper is organized as follows. We present the model equations in the next section,
followed by a spectral-projection scheme for this model in Section 3. Then, we present
in Section 4 numerical simulations and study their structural stabilities for a range of
physically relevant parameters. Some concluding remarks are given in Section 5. For the
readers’ convenience, a geometrical theory of two-dimensional incompressible flows is
recapitulated in the Appendix.

2. THE WIND-DRIVEN, DOUBLE-GYRE, QUASI-GEOSTROPHIC MODEL

OF LARGE-SCALE OCEAN CIRCULATION

The model we adapt in our studies is the followingβ-plane, wind-driven, double-gyre,
quasi-geostrophic model of large-scale ocean circulation,{

∂v
∂t − 1

Re1v + v · ∇v + 1
ε
[yk× v +∇ p] = αr

επ
τ,

div v = 0,
(2.1)

wherev= (u, w) is the (horizontal) velocity field,p is the surface pressure, andk is the
unit vector in the vertical direction sok× v= (−w, u). The spatial coordinate system is
denoted by(x, y)with thex-axis in the east–west direction and they-axis in the north–south
direction. The two-dimensional QG model can be derived from a three-dimensional one
by integrating in the vertical direction; we refer the readers to [14] for the mathematical
analysis of the issues related to the QG model.

We proceed with the notation used in (2.1).

• The corresponding dimensional form of (2.1) reads{
∂v
∂t − A1v + v · ∇v + βyk× v +∇ p = αr

τdim
ρ0h ,

div v = 0.
(2.2)

Hereβy represents the first-order Coriolis parameter, andA the effective turbulent viscosity
coefficient. The nondimensional parameterαr is introduced here to study the effects of the
wind stress on the dynamics; its value can be allowed to range between 0 and 1.8 (equivalent
to taking the wind stress from abnormally low to abnormally high, as in [12]). The term
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τdim/ρ0h is dictated by the Ekman pumping on the surface Ekman boundary layer, and is
also related to the leading order Coriolis termf0k× v in the quasi-geostrophic asymptotics;
see Pedlosky [23].
• The flow is driven by the wind force, which is given in the dimensional form as a

sinusoidal function

τdim = τ0(−cos(πy/L), 0),

whereτ0 is the amplitude of the wind force. The nondimensional form of the wind force
used in (2.1) isτ = (−cos(πy), 0).
• The typical (horizontal) velocityU is calculated via the Sverdrup equation as

U = τ0π

βLρ0H
,

whereL is the typical horizontal length,H is the typical depth of the ocean layer, andρ0

is the typical surface density.
• The parametersε and Re are the Rossby number and the Reynolds number given by

ε = U

βL2
, Re= LU

A
,

whereA is the effective turbulent viscosity coefficient. The values of the parameters used
in this work are

L = 106 m, H = 500 m,

f0 = 5× 10−5 s−1, β = 2× 10−11 m−1 · s−1,

τ0 = 0.1 N ·m−2, ρ0 = 1000 kg·m−3,

U = 10−2π m · s−1, ε = 5× 10−4π.

• The dimensional time and velocity are calculated by

tdim = 1

εβL
t = 108

π
t s, vdim = Uv.

We take the nondimensional spatial domainM and the nondimensional depthh of the
ocean to be

M = (0, 1)× (0, 2) ⊂ R2, h = 1. (2.3)

The nondimensional form of the boundary conditions and the initial conditions is{
v · n = 0, ∂(v·τ)

∂n = 0 on∂M,

v|t=0 = 0 on M.
(2.4)

3. A SPECTRAL-PROJECTION METHOD

3.1. Time Discretization—A Second-Order Projection Scheme

One of the main difficulties in the numerical simulation of Eqs. (2.1)–(2.4), or more
generally, equations describing any incompressible viscous flows, is associated with the
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incompressibility constraint. The projection method, initially proposed by Chorin [8] and
Temam [32], was designed to overcome this difficulty. We propose to use the following
scheme which is a second-order variant (cf. [27]) of the original projection method,

3v̂m+1− 4vm+ vm−1

21t − 1
Re1v̂

m+1+ f m+1k× v̂m+1 = Fm+1−∇ pm−{2NLTm−NLTm−1},

v̂m+1 · n= 0, ∂(v̂m+1·τ)
∂n = 0 on∂M,

(3.1)

and 
3(vm+1− v̂m+1)

21t +∇(pm+1− pm) = 0,

div vm+1 = 0,

vm+1 · n = 0 on∂M,

(3.2)

whereNLT= (v·∇)v, and for the sake of generality, we have replaced(1/ε)y and(ατ /επ)τ ,
respectively, by generic functionsf andF .

Taking the divergence of the first equation in (3.2), we find that (3.2) is equivalent to
−1(pm+1− pm) = − 3

21t div v̂m+1

∂(pm+1−pm)

∂n = 0 on∂M,

vm+1 = v̂m+1− 21t
3 ∇(pm+1− pm).

(3.3)

We can write the above equations in components form as follows: Settingv= (u, w), v̂=
(û, ŵ),NLT= (NLT1, NLT2), F = (Fu, Fw), and

α = 3Re

81t
, β = 1

4
, γ = Re

4
, σ = 3

81t
, α1 = Re

81t
,

multiplying (3.1) byγ and (3.2) by1
4, then, after mapping the domainM = (0, 1)× (0, 2)

to the computational domainD= (−1, 1)× (−1, 1), we obtain
αûm+1− ûm+1

xx − βûm+1
yy − γ f m+1ŵm+1

= α1(4um − um−1)+ γ{Fm+1
u − 2pm

x −
(
2NLTm

1 − NLTm−1
1

)}
, in D,

ûm+1 = 0 atx = ±1, (ûm+1)y = 0 at y± 1;
(3.4)


αŵm+1− ŵm+1

xx − βŵm+1
yy + γ f m+1ûm+1

= α1(4wm − wm−1)+ γ{Fm+1
w − pm

y −
(
2NLTm

2 − NLTm−1
2

)}
, in D,

ŵm+1
x = 0 atx = ±1, ŵm+1 = 0 at y± 1;

(3.5)

−(p
m+1− pm)xx− β(pm+1− pm)yy = −σ

(
2ûm+1

x + ŵm+1
y

)
, in D,

∂(pm+1−pm)

∂n = 0 on∂D;
(3.6)

and {
um+1 = ûm+1− 41t

3 (p
m+1− pm)x,

wm+1 = ŵm+1− 21t
3 (p

m+1− pm)y.
(3.7)
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The main advantage of this approach is that we only need to solve a coupled elliptic system
(3.4)–(3.5) for the velocity components and a Poisson equation (3.6) at each time step,
whereas a direct discretization of (2.1)–(2.4) would require us to solve a coupled, non-
positive-definite system for(u, w, p). Furthermore, the above scheme can be extended to
three-dimensional cases in a straightforward manner.

Remark 3.1. The two velocity components (ûm+1, ŵm+1) are coupled together by the
Coliolis force. Although the coupled system (3.4)–(3.5) is elliptic so it can be solved by
using standard direct or iterative procedures, the presence of nonconstant coefficientf
prevents us from using existing fast solvers for Poisson-type equations. An alternative is
to treat the Coliolis force explicitly in (3.4)–(3.5), leading to two decoupled Poisson-type
equations with constant coefficients forûm+1 andŵm+1 which can then be solved by existing
fast solvers. The disadvantage of treating the Coliolis force explicitly is that it may lead
to a more rigid time step constraint which may offset the savings realized by using fast
solvers at each time step. Hence, whether to treat the Coliolis force explicitly or implicitly
depends on many factors related to the choice of spatial discretizations and availablity of
fast solvers.

3.2. Space Discretization—Spectral-Galerkin Method

Although we can solve Eqs. (3.4), (3.5), and (3.6) by using a finite difference method
(see, for instance, [28]), to fully take advantage of the simple geometry in hand, we propose
to use a spectral method which is capable of providing much more accurate results using
a relatively smaller number of unknowns. Since the spectral-Galerkin method developed
in [25, 26] is extremely efficient for elliptic equations with constant coefficients, we chose
to treat the Coliolis force explicitly in (3.4)–(3.5) so that we can use the fast spectral-
Galerkin method. To fix the idea, let us present in some detail the Legendre–Galerkin for
the equation

{
αu− uxx− βuyy = f, in D,

u|x=±1 = 0, uy|y=±1 = 0,
(3.8)

which corresponds to (3.4) with ˆwm+1 treated explicitly. The other two equations can be
solved similarly.

Let PK be the space of all polynomials of degree less than or equal toK . We set

XN = {w ∈ PN : w(±1) = 0},
YM = {w ∈ PM : wy(±1) = 0}, (3.9)

ZNM = XN × YM .

Then, our spectral-Galerkin method is to look foruNM∈ ZNM such that

α(uNM, v)+ (∂xuNM, ∂xv)+ β(∂yuNM, ∂yv) = ( f, v), ∀v ∈ ZNM, (3.10)

where(u, v)= ∫D uv dx dy.
The efficiency of the method depends on the choice of basis function forXN andYM . It

is easy to verify that for
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φi (x) = 1√
4i + 6

(Li (x)− Li+2(x)),

(3.11)

ρ j (y) =
√

( j + 2)( j + 3)

j ( j + 1)(4 j + 6)

(
L j (y)− j ( j + 1)

( j + 2)( j + 3)
L j+2(y)

)
,

whereLl (s) is thel th-degree Legendre polynomial, we have

XN = span{φi (x) : i = 0, 1, . . . , N − 2}, YM = span{ρ j (y) : j = 0, 1, . . . ,M − 2},

and ∫ 1

−1
φ′i (x)φ

′
j (x) dx = δi j ,

∫ 1

−1
ρ ′i (y)ρ

′
j (y) dy= δi j .

Hence, setting

uNM =
N−2∑
i=0

M−2∑
j=0

ui j φi (x)ρ j (y),

ai j =
∫ 1

−1
φ j (x)φi (x) dx,

bi j =
∫ 1

−1
ρ j (y)ρi (y) dy, fi j =

∫
D

f φi (x)ρ j (y) dx dy,

and lettingA, B, F , andU be the corresponding matrices with entries given above, then
(3.10) is equivalent to the following matrix system:

αAU B+U B+ βAU = F. (3.12)

Note that the matricesA and B are symmetric and have only three nonzero diagonals.
Hence, (3.12) can be efficiently solved by using the matrix decomposition method [15, 27]
at a cost of 4N M min(N,M)+O(N M) operations.

Remark 3.2. It is also possible to solve (3.8) by using the Chebyshev–Galerkin method
[26], which allows the use of the fast Fourier transform, or the Chebyshev–Legendre–
Galerkin method [27], which takes advantage of both the Chebyshev and the Legendre
polynomials. Thus, the spectral-Galerkin method is capable of solving Eqs. (3.4)–(3.6)
at a cost comparable to the traditional finite difference method with the same number of
unknowns. Thus, thanks to the superior accuracy of the spectral discretization [4], the use
of the spectral-Galerkin method would reduce the degree of freedom needed for a particular
problem and hence result in a significant savings in CPU time.

4. NUMERICAL RESULTS AND STRUCTURAL ANALYSIS

OF THE DOUBLE-GYRE OCEAN CIRCULATION

4.1. Numerical Results

In our numerical experiments, we useαr = 0.95 with Reynolds numbers 5, 10, 20, and
30, respectively.
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FIG. 4.1. Snapshots of streamlines for Re= 5 at timet = 0.01 year and at the steady state.

All computations are carried out using a grid size of 49× 65, and a (nondimensional)
time step1t = 10−4, which corresponds to the dimensional time step1tdim= 10,000/π s≈
53.05 min. Note that the maximum allowable (nondimensional) time step is about 10−3 for
Re= 5 to 1.5× 10−4 for Re= 30.

Figures 4.1–4.3 show respectively the snapshots of streamliness at Re= 5, 10, and 20.
As evidenced by Fig. 4.4, the flows at these Reynolds numbers converge to steady-state
solutions. Figures 4.1–4.3 indicate that the steady states are characterized by two gyres;
one is cyclonic in the northern part of the basin and another is anti-cyclonic in the southern
part. The two gyres are separated by a meandering jet; see also [3].

For Re= 30, the flow never settled down to a steady state as indicated by Fig. 4.5.
The phase portrait and spectral density of the kinetic energy history in Fig. 4.6 indicate
that the flow becomes essentially quasi-periodic with a few incommensurate frequencies.
Figures 4.7–4.10 are snapshots of the streamlines at various times.

FIG. 4.2. Snapshots of streamlines for Re= 10 at timet = 0.01 year and at the steady state.
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FIG. 4.3. Snapshots of streamlines for Re= 20 at timet = 0.01 year and at the steady state.

FIG. 4.4. Convergence histories of kinetic energy for Re= 5, 10, 20.
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FIG. 4.5. Convergence history of kinetic energy, Re= 30.

FIG. 4.6. Phase portrait and spectral density of the kinetic energy at Re= 30.



QUASI-GEOSTROPHIC OCEAN MODEL 397

FIG. 4.7. Snapshots of streamlines for Re= 30, at timet = 0.005,t = 0.11, t = 0.20, t = 0.44, t = 0.63, and
t = 0.87 year.

4.2. Structure Analysis of the Double-Gyre Ocean Circulation

One of the main objectives of this paper is to apply the newly developed dynamical
systems theory for incompressible flows to analyze the structure and bifurcation of the
double-gyre phenomenon of the mid-latitude ocean basins. The point of view of this theory
is to classify the topological structure and its transitions of theinstantaneousvelocity field
(i.e., streamlines in the Eulerian coordinates), treating the time variable as a parameter. One
justification of this viewpoint is that given initial data, for a residual set (i.e., the intersection
of a countable number ofopen and densesets) of forcing, the instantaneous velocity field
is structurally stable in anopen and denseset of the time interval. Hence, the structural
bifurcation can occur only on anowhere denseset of time, and structural bifurcation is
therefore a well-defined concept. We summarize this theory below and refer to the Appendix
or [16–18] for more details.

• Classification of singularities: Thanks to the divergence-free condition of the ve-
locity field, a nondegenerate interior singular point must be either a saddle or a center, and
a boundary singular point must be a saddle. In the oceanic setting, a center corresponds to
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FIG. 4.8. Snapshots of streamlines for Re= 30, at timet = 1.04, t = 1.23, t = 1.52, t = 2.02, t = 2.26, and
t = 2.64 years.

a circulation center of the flow; a saddle corresponds to the intersection of two jets moving
toward each other; and a boundary saddle is due to a jet moving toward or leaving the
boundary. The index formula (A.4) in the Appendix links the number of centersC, the
number of interior saddlesS, and the number of boundary saddlesB with the number of
islandsk in the basin. In particular, for the double-gyre problem we address in this paper we
havek= 0, and (4.1) below holds true. As we can see from the numerical results presented,
centers and boundary saddles are observable. Therefore, the number of interior saddles is
determined easily by (A.4), so is the phase structure.
• Structural classification: The topological set of orbits of a regular divergence-free

velocity field consists of a finite number of connected components of circle cells, circle
bands, and saddle connections. Each circle cell is the largest circulation region around a
center. The boundary of a circle cell consists of saddle connections. A circle band is a band
of invariant flow region, where the flow lines are periodic and the flow meanders in the band.
• Topological classification: The global topological structure of the flow orbits of a

regular divergence-free vector field is completely determined by its saddle connection set.
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FIG. 4.9. Snapshots of streamlines for Re= 30 at timet = 3.03, t = 3.51, t = 4.08, t = 4.81, t = 5.85, and
t = 7.30 years.

• Structural stability : Notice that the divergence-free condition changes completely
the general features of structurally stable fields as compared to the situation when this con-
dition is not present. The latter case was studied in a classical paper of Peixoto [24]. The
conditions for structural stability and genericity in Peixoto’s theorem are: (i) the field can
have only a finite number of singularities and closed orbits (critical elements) which must
be hyperbolic; (ii) there are no saddle connections; and (iii) the nonwandering set consists
of singular points and closed orbits.

The structural stability theorem developed by Ma and Wang states that a divergence-free
vector fieldv is structurally stable with respect to divergence-free vector field perturbations
if and only if (1) v is regular, (2) all interior saddle points ofv are self-connected, and
(3) each boundary saddle point is connected to boundary saddles on the same connected
component of the boundary.

The first condition here requires only regularity of the field and so it does not exclude
centers which are not hyperbolic and excluded by (i) above. The second condition is of a
completely different nature from the corresponding one in the Peixoto theorem. Namely,
condition (ii) above excludes the possibility of saddle connections. In contrast, (2) amounts
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FIG. 4.10. Snapshots of streamlines for Re= 30 at timet = 70.4, t = 70.56, t = 71.04, t = 71.23, t = 71.41,
andt = 71.60 years.

to saying that all interior saddles are self-connected! Namely, the interior saddles occur in
graphs whose topological form is that of the number 8, the singularities themselves being
hyperbolic. Condition (3) deals with singularities on the boundary.
• Genericity of solutions of fluid equations: Ma and Wang proved in [19] that for

an open and dense sub-set of forcing in proper function space, all steady-state solutions
of the two-dimensional Navier–Stokes equations as well as (2.1) studied in this paper are
structurally stable. Moreover, given initial data, for a residual set (i.e., the intersection of
a countable number ofopen and densesets) of forcing, the instantaneous velocity field
is structurally stable in anopen and denseset of the time interval. Hence, the structural
bifurcation can occur only on anowhere denseset of time, and is a well-defined concept.

Hereafter, we shall combine the numerical simulations and the aforementioned dynamical
systems theory to analyze the structure and its bifurcation of the double-gyre wind-driven
ocean circulation.

General consideration. Consider a mid-latitude ocean basin which occupies a simply
connected physical domain as a two-dimensional diskM ⊂R2. Let v ∈ Dr (TM) (r ≥ 1) be
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regular. In this case,k in (A.4) is zero. Therefore, (A.4) amounts to saying that

C − S− 1
2 B = 1, (4.1)

whereC, S, and B are respectively the number of centers, saddle points, and boundary
saddle points in the domain.

Consider the large-scale motion of the mid-latitude ocean basins with a strong zonal jet.
Because of this jet, there exist two saddle points on the boundary for a nondegenerate surface
velocity field: one is on the eastern boundary and the other is on the western boundary. In this
case, Formula (4.1) shows that the number of centers equals the number of interior saddle
points plus 2. Therefore, the flow with the least singular points contains two centers and no
saddle points in the interior. In this case, by the structural stability criterion, Theorem A.3,
this flow pattern is structurally stable. In other words, this structure will persist when the
time t (or the Reynolds number) changes. The results stated in Section A.7 clearly show
that the solution will be structurally stable in an open and dense set of time intervals, and
structural bifurcation (witht as a parameter) will occur only at a nowhere dense set of time
instants. This justifies the study of the structural analysis of the flow in this paper.

We now analyze below in more detail the structural stability and bifurcation for each of
our simulations.

CaseRe= 5. As we can see in Fig. 4.1, the flow, driven by the wind stress, generates
two circular gyres at timet = 0.01 year. This flow is structurally stable. The flow quickly
approaches a steady state of the QG equations. This steady state has the same topological
structure as the two circular gyre patterns att = 0.01 year, and there is no structural bifur-
cation present aftert = 0.01 year with respect to the time variable. In view of the structure
classification, the phase structure of this pattern consists of two circle cells (two gyres) and
the saddle connections.

CaseRe= 10. The structure of the flow at Re= 10 behaves similarly to the flow at
Re= 5.

CaseRe= 20. There is a structural bifurcation in the time interval (0.01, 2.03). The
flow also approaches a steady state as indicated by the energy history in Fig. 4.4. However,
the steady state in this case is topologically equivalent to the schematic pattern in Fig. 4.11b.
The flow pattern has six centers, four interior saddles, and two boundary saddles, and the
index formula holds true in this case. It is easy to see that the flow pattern is structurally
stable by the structural stability theorem.

When the Reynolds number is small, the flow converges quickly to a unique steady state,
which is structurally stable. Meanwhile, as the Reynolds number changes but remains small,
the structural bifurcation would take place. For example, there is one bifurcation value of
the Reynolds number between 5 and 20.

CaseRe= 30. The energy history in Fig. 4.5 shows a quasi-periodic motion; the cor-
responding dominant frequencies indicate inter-seasonal and inter-annual changes of the
double-gyre phenomenon. The energy spectrum and the phase portrait, shown in Fig. 4.6,
also suggest that the flow is quasi-periodic, although the dominant frequencies are super-
imposed with turbulent small-scale motions.

From the point of view of structural analysis, the flow patterns in the first 0.87 year given
in Fig. 4.7 indicate several structural transitions/bifurcations between structurally stable
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FIG. 4.11. Schematic topological structures.

patterns, and a symmetry breaking of the structure between the sub-polar and sub-tropical
cells. Consider now the flow pattern in Figs. 4.8–4.10. The time is sufficiently long to
generate typical flow patterns related to long-term dynamics. We can observe from these
snapshots the following typical features:

• patterns which are topologically equivalent to those shown in Fig. 4.11 appear
frequently, representing the typical gyre circulation;
• several structural transitions/bifurcations between structurally stable patterns appear

during this time interval as well as in the beginning period;
• there is a symmetry breaking of the structure between the sub-polar and sub-tropical

cells;
• the mixing phenomenon is a typical feature; and
• as the mixing forces sub-gyre circulation detachment, the anti-cyclonic anomalies

appear in both the sub-polar and the sub-tropical circulations.

5. CONCLUDING REMARKS

To understand the mechanism of the double-gyre phenomenon, a wind-driven, double-
gyre, mid-latitude,f -plane, quasi-geostrophic ocean model is studied. First, we adapted
an efficient and accurate spectral-projection method for this model. The method was based
on a spectral-Galerkin approximation (cf. [25] for the spatial variables and a second-order
projection scheme (cf. [13, 27]) for time marching. We implemented this method to sim-
ulate the wind-driven double-gyre ocean flow for a range of physically relevant parame-
ters.

We used a new dynamical systems theory for two-dimensional incompressible flows
[16, 17] (see also [18]) to analyze the structural stability and transition of the flow patterns
in our numerical simulations. Our analysis led to the following observations:

1. When the Reynolds number is small, the flow converges quickly to a unique steady
state, which is structurally stable. Meanwhile, as the Reynolds number changes but remains
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small, the structural bifurcation would take place. For example, there is one bifurcation
value of the Reynolds number between 5 and 20.

2. For Re= 30 which is more physically relevant to the double-gyre phenomenon,
the flow pattern seems to be quasi-periodic with a few dominant frequencies superimposed
with turbulent small-scale motions; the corresponding dominant frequencies indicate inter-
seasonal and inter-annual changes of the double-gyre phenomenon. It is also observed that
(i) several structural transitions/bifurcations between structurally stable patterns appear
during this time interval as well as in the beginning period; (ii) there is a symmetry breaking
of the structure between the sub-polar and sub-tropical cells; (iii) the mixing phenomenon
is a typical feature; and (iv) as the mixing forces the detachment of sub-gyre circulation,
the anti-cyclonic anomalies appear in both the sub-polar and the sub-tropical circulations.

The anti-cyclonic anomalies and symmetry breaking seem to be generated by the Coriolis
force and the nonlinear interaction of the flow.

In summary, our numerical results and their structural analysis demonstrated the presence
of regular inter-annual variability in the ocean basins. Anti-cyclonic anomalies appear
frequently with timescale in years, and they appear to be typically related to the inter-
annual variability associated with the double gyres. The new dynamical systems theory
demonstrates among other things the following features of the problem:

1. Structural bifurcation does occur with Reynolds as a parameter when the steady
state is unique.

2. With timet as a parameter and for generic forcing, the time-dependent solution is
structurally stable fort in an open and dense set of the entire time interval. This justifies
the notion of the structural bifurcation, which appears only for time in a nowhere dense set
of the time interval.

3. The flow patterns are structurally classified, providing theoretical possible guidance
to both numerical and physical considerations of the problem.

As we mentioned in the Introduction, a simple quasi-geostrophic model is studied in
this article with the hope that the methods and ideas presented here will be useful in more
realistic models as well as in other relevant problems.

APPENDIX

Recapitulation of the Geometrical Theory of Two-Dimensional
Incompressible Flows

A.1. General Approach

Fluid motion and states are normally described by either the Eulerian approach or the
Lagrangian approach. For the Eulerian method, one solves the Navier–Stokes type of par-
tial differential equations governing the motion and states of the fluid. The Lagrangian
representation of a fluid flow, on the other hand, amounts to studying the dynamics and
trajectories in the two- or three-dimensional physical space that the fluid occupies. Namely,
one studies the dynamics of the ordinary differential equations in the physical space:{

dx
dt = v(x, t),
x|t=0 = x0.

(A.1)
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Herev is the velocity field of the fluid, satisfying the Navier–Stokes equations or the quasi-
geostrophic equations in the context of this paper,x is the physical location of the fluid
parcel, andt is the time.

The point of view of our theory is to classify the topological structure and its transitions
of the instantaneousvelocity field (i.e., streamlines in the Eulerian coordinates), treating
the time variable as a parameter. Following the above viewpoint, Ma and Wang [16–18]
developed a systematic geometrical theory of the velocity fields of two-dimensional incom-
pressible flows, which is summarized as follows. One justification of this viewpoint is that
(see below) given initial data, for a residual set (i.e., the intersection of a countable number
of open and densesets) of forcing, the instantaneous velocity field is structurally stable in
anopen and denseset of the time interval. Hence, the structural bifurcation can occur only
on anowhere denseset of time, and is a well-defined concept.

A.2. Classification of Singularities of Divergence-Free Vector Fields

Let M ⊂R2 (or M ⊂ S2) be a two-dimensional manifold with boundary, andx= 0∈M .
For simplicity, we set

Dr (TM) = {v ∈ Cr (TM) | div v = 0} (A.2)

for r ≥ 1. HereTM is the tangent bundle ofM , and in the case whereM ⊂R2,Cr (TM)=
(Cr (M))2 containing allCr vector fields onM .

We consider a divergence-free vector fieldv ∈ Dr (TM) (r ≥ 1), andx= 0 a nondegen-
erate singular point ofv; i.e., the JacobianJ(v(0)) of v at x= 0 is nonsingular. In a
neighborhood ofx= 0, v can be expressed by

v(x) = Ax+ g(x), (A.3)

where

A =
(

a11 a12

a21 a22

)
, g(x) = o(‖x‖).

Sincev is divergence-free, it is proved (see Proposition 2.1 in [16]) that an interior
nondegenerate singular point must be either a center or a saddle point, and a nondegenerate
singular point on the boundary must be a saddle point. The indices and physical meanings
of these singular points are as follows:

1. When the eigenvalues of the matrixA are purely imaginary numbers, the interior
singularityx= 0 is a center of the vector field (A.3) with index 1:

ind(v, 0) = 1.

In fluid mechanics,x= 0 corresponds to the center of a local circulation.
2. When the eigenvaluesλ1 andλ2 of A are real numbers, we haveλ1=−λ2> 0. In

this case,x= 0 is a saddle point with index−1:

ind(v, 0) = −1.
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FIG. A.1. Saddle points on the boundary.

3. Whenx= 0∈ ∂M , it has to be a saddle point of the vector fieldv as shown in
Fig. A.1. In this case, using the reflection principle we can extend the vector field across the
boundary nearx= 0, and then define its index to be half of the extended field. Namely, the
index is−1/2:

ind(v, 0) = − 1
2.

In the large-scale oceanic motion (resp. a general fluid motion), saddle points on the bound-
ary are normally caused by a jet flowing toward or away from the coastal line or the boundary;
see Fig. A.2.

A.3. An Index Formula for Divergence-Free Vector Fields

Let M ⊂R2 (or M ⊂ S2) be a compacted manifold with boundary withk holes (see
Fig. A.3). For the oceanic motion, thek genus representsk islands, and for the atmospheric
motion, they represent the horizontal sections ofk mountains.

Let v ∈ Dr (TM) (r ≥ 1) be regular; i.e., all singular points are nondegenerate. Set

C = the number of centers ofv,
S= the number of interior saddle points ofv,
B = the number of boundary saddle points ofv.

Then we have the following index formula [17]

C − S− 1
2 B = 1− k. (A.4)

FIG. A.2. Flow passing through an island.
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FIG. A.3. DomainM with k islands.

A.4. Global Structural Classification of Divergence-Free Vector Fields

DEFINITION A.1.

1. Let p∈M be a center ofv. The largest neighborhoodC of p containing closed
orbits is called a circle cell of the centerp.

2. Given a closed orbitγ , let B be the largest neighborhood ofγ containing only
closed orbits. If any connected component of∂B is not a single point, thenB is called a
circle band.

3. An orbit with its end points is called a saddle connection if its two end points are
saddle points.

Then we have

THEOREM A.1 (Global Structural Classification [16]).Let v ∈ Dr (TM) be a regular
vector field. Then the topological set of orbits ofv consists of a finite number of connected
components of circle cells, circle bands, and saddle connections.

A.5. Topological Classification

Two vector fieldsv1, v2∈ Dr (TM) are called topologically equivalent if there exists
a homeomorphismφ: M→M , which maps orbits ofv1 to orbits of v2 preserving the
orientation.

THEOREM A.2 [16]. Let v1, v2∈ Dr (TM) be two regular divergence-free vector fields,

and01, 02 are the collections of saddle connections ofv1 andv2, respectively. Thenv1 and
v2 are topologically equivalent if and only if01 and02 have the same topological structure.

This theorem tells us that the global topological structure of the flow orbits of a regular
divergence-free vector fieldv is completely determined by its saddle connection set.

A.6. Global Structural Stability

A divergence-free vector fieldv is called incompressibly structurally stable if there exists
a neighborhoodO⊂ Dr (TM) of v such that anyu∈O is topologically equivalent tov.
Then we have

THEOREMA.3 (Global Structural Stability [16, 18]).A divergence-free vector fieldv ∈
Dr (TM) (r ≥ 1) is (globally) incompressibly structurally stable(or for simplicity, struc-
turally stable) if and only if
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FIG. A.4. C1, C2, andC3 are circle cells,B is a circle band, and the orbits connected top or q are saddle
connections.

1. v is regular,
2. all interior saddle points ofv are self-connected, and
3. each boundary saddle point is connected to boundary saddles on the same connected

component of the boundary.

Moreover, the set of all structurally stable vector fields is open and dense in Dr (TM) (r ≥ 1).

Here we make a comparison with the classical structural stability theorem by Peixoto
[24] for general vector fields (not necessarily divergence free). The conditions for structural
stability and genericity in Peixoto’s theorem are: (i) the field can have only a finite number
of singularities and closed orbits (critical elements) which must be hyperbolic; (ii) there are
no saddle connections; and (iii) the nonwandering set consists of singular points and closed
orbits.

In Theorem A.3, the first condition here requires only regularity of the field and so it does
not exclude centers which are not hyperbolic and excluded by (i) above. The second condi-
tion is of a completely different nature from the corresponding one in the Peixoto theorem.
Namely, condition (ii) above excludes the possibility of saddle connections. In contrast,
(2) amounts to saying that all interior saddles are self-connected! Namely, the interior
saddles occur in graphs whose topological form is that of the number 8, the singularities
themselves being hyperbolic. Condition (3) deals with singularities on the boundary. By
this theorem it is easy to see that the flow pattern given in Fig. A.4 is NOT structurally stable
since two saddle pointsp andq are connected, while both the flow patterns illustrated in
Fig. 4.11 are structurally stable.

A.7. Genericity of Structurally Stable Steady States of the 2D Navier–Stokes Equations

Consider the following Navier–Stokes equations on a two-dimensional closed bounded
domainM :

−µ1u+ (u · ∇)u+∇ p = f, in M
a ⊂ R2, (A.5)

div u = 0, in M
a
, (A.6)

un = 0,
∂uτ
∂n

∣∣∣∣
∂M

= 0, on ∂M. (A.7)

HereM
a

stands for the interior ofM .
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Set

Br (TM) =
{
v ∈ Dr (TM)

∣∣∣∣∂vτ∂n

∣∣∣∣
∂M

= 0

}
, (A.8)

wherevn= v · n, vτ = v · τ , andn andτ are the unit normal and tangent vectors on∂M ,
respectively. Ifr = k+α with k≥ 0 an integer and 0<α<1, thenv ∈Cr (TM)means that
v ∈Ck(TM) and all derivatives ofv up to orderk areα-Hölder continuous. By definition,
vector fields inBr (TM) satisfy the following free boundary conditions:

vn|∂M = 0,
∂vτ

∂n

∣∣∣∣
∂M

= 0. (A.9)

Then we have (see [19]).

THEOREMA.4. For anyµ>0, there is an open and dense setF ⊂Cα(TM) (0<α<1)
such that for each f∈F, the steady-state solutions u∈ X= B2+α(TM) of (A.5)–(A.7) are
structurally stable in X.

Moreover, we can prove that for any given initial data and a residual set (i.e., the intersec-
tion of a countable number ofopen and densesets) of forcing, the instantaneous velocity
field is structurally stable in anopen and denseset of the time interval. Therefore, gener-
ically, the structural bifurcation occurs only at a nowhere dense set of the time interval;
therefore this fact justifies the structural bifurcation concept.

A.8. A Remark on Applications

We remark that the interior centers correspond to circulations, which are observable;
boundary saddles correspond to jets moving toward or away from the boundary, which are
also observable. By the index formula, the number of interior saddles can be easily deter-
mined. The structural classification theorem and the global structural theorem ensure that
the global structure of the flow pattern is then uniquely determined by saddle connections.
Moreover, given a divergence-free vector field, it is easy to verify the structural stability
conditions in the structural stability theorem, which can be directly used in verifying the
structural stability of the flow pattern.
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