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The main objectives of this paper are to adapt an efficient and accurate spectral-
projection method for a wind-driven, double-gyre, mid-latitude, quasi-geostrophic
ocean model, and to study the double-gyre phenomenon from numerical and struc-
tural analysis points of view. A number of numerical simulations are carried out
and their structural stability and structural transition/bifurcation are investi-
gated using a new dynamical systems theory of two-dimensional incompressible
flows. (© 1999 Academic Press
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1. INTRODUCTION

We study in this paper the double-gyre phenomenon of large-scale ocean circula
a typical phenomenon in the northern mid-latitude ocean basins. The double-gyre
nomenon here refers to the two gyre motions (circulations) observed in the ocean bs
one is the sub-polar gyre, and the other is the sub-tropical gyre. These gyres have a ty
horizontal scale of about one thousand kilometers. Several main features of the double
ocean circulation have been identified by analyzing the observational data as well &
numerical simulations; see, for instance, Speich and Ghil [30], #tab[12], and Speich
et al. [29]. First, these gyres are dominant and persistent; second, they represent ty
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seasonal and inter-annual oscillations of the large-scale ocean; third, they transfer pote

energy. Thus, the study of the double-gyre motion will provide a better understanding

the predictability and, possibly, a better long-term prediction on the dynamics of the oce
The main objectives of this paper are:

e tointroduce an efficient spectral-projection scheme for the model to simulate typi
double-gyre phenomena;

e to analyze the structure and the structural bifurcation of the model using a ne\
developed dynamical systems theory for incompressible vector fields; and

e to partially examine the effects of the nonlinearity and wind stress to the double-g
type of circulations.

This study is part of a long-term project, the objectives of which are to document, throu
careful theoretical studies, the presence of regular inter-annual and inter-decade varial
in large-scale ocean basins, to verify the robustness of this variability’s characteris
with respect to changes in model parameters, and to investigate the underlying phy:s
mechanisms of the variability. It has also been observed that flow transport and mix
crossing the central jet and anti-cyclonic anomalies as well as symmetry breaking ap
frequently; they are phenomena with timescale in years and appear to be typically rel:
to the inter-annual variability associated with the double gyres. One possible explana
for the appearance of anti-cyclonic anomalies and symmetry breaking is the Coriolis fc
and the nonlinear nature of the problem. A thorough understanding of this variability
essential in determining the climate system'’s predictability on sub-continental and sme
spatial scales for timescales that equal and exceed a few years.

Although only a simple quasi-geostrophic model is investigated using our numeri
method and the new dynamical systems theory, it is hoped that the methods and i
presented here will be useful in more realistic models as well as in other relevant proble

We briefly describe our approach below:

First, the model we adapt in the study is a two-dimensional wind-driven, double-gy
mid-latitude, beta-plane quasi-geostrophic (QG) ocean circulation model. Many publisl|
results are available on wind-driven ocean circulation; see, among others, Veronis [.
Pedlosky [22], Stommel [31], Charney [5], Haidvogehl.[9], Speich and Ghil [30], Jiang
et al.[12], Speichet al.[29], Chassignet [6, 7, 21], Holland [10], Holland and Rhines [11]
Berloff and Meacham [1, 2], and Meacham and Berloff [20]. They used this model to stu
the formation of the western boundary currents in the North Pacific and the North Atlan
Bryan [3] investigated the nonlinear model of the wind-driven ocean and found that th
were two regimes depending on the Reynolds numbers. His results suggest that bels
critical value between 50 and 100, the flow always converges to a steady-state solu
Above that critical value, instabilities would occur. As in the references mentioned abo
the spatial domain we use is 1000 km (east—west) by 2000 km (north—south), which i
idealized geometry applicable to the Pacific and Atlantic; similar idealized geometries w
also used in all the references mentioned above.

Second, we present and implement an efficient and accurate numerical scheme fo
wind-driven, double-gyre, quasi-geostrophic model. More specifically, we discretize t
spatial variables by using a spectral-Galerkin method [25, 27] which is fast and significar
more accurate than the traditional finite difference or finite element methods, and we adve
in time by using a second-order projection scheme (cf. [8, 32, 13, 27]) which treats
incompressibility constraint efficiently.
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Third, we apply a new dynamical systems theory for two-dimensional incompress
flows developed recently by Ma and Wang [16, 17] (see also [18]) to analyze the struc
stability and structural transitions/bifurcations of the flow patterns in the QG type of mot
The point of view of this theory is to classify the topological structure and its transitic
of the instantaneouselocity field (i.e., streamlines in the Eulerian coordinates), treatir
the time variable as a parameter. One justification of this viewpoint is that given ini
data, for a residual set (i.e., the intersection of a countable numiogieofand denssgets)
of forcing, the instantaneous velocity field is structurally stable iopen and denseset
of the time interval. Hence, the structural bifurcation can occur only novéhere dense
set of time, and is a well-defined concept. In particular, we will investigate the followi
topics: (i) the structural stability of the flow patterns in various flow regions, (ii) structul
bifurcation of the flow patterns using either the Reynolds number or time as a parameter
(i) quasi-periodicity which appears in the more physically relevant case, demonstra
the presence of regular inter-annual variability in the ocean basins.

The paper is organized as follows. We present the model equations in the next se
followed by a spectral-projection scheme for this model in Section 3. Then, we pre:
in Section 4 numerical simulations and study their structural stabilities for a range
physically relevant parameters. Some concluding remarks are given in Section 5. Fo
readers’ convenience, a geometrical theory of two-dimensional incompressible flow
recapitulated in the Appendix.

2. THE WIND-DRIVEN, DOUBLE-GYRE, QUASI-GEOSTROPHIC MODEL
OF LARGE-SCALE OCEAN CIRCULATION

The model we adapt in our studies is the followifigplane, wind-driven, double-gyre,
quasi-geostrophic model of large-scale ocean circulation,
Jv 1 1 oy
{E—R—eAv+v-Vv+g[ykxv+Vp]:;1:, 2.1)

dive =0,

wherev = (u, w) is the (horizontal) velocity fieldp is the surface pressure, akds the
unit vector in the vertical direction dox v = (—w, u). The spatial coordinate system is
denoted byx, y) with thex-axis in the east—west direction and thaxis in the north—south
direction. The two-dimensional QG model can be derived from a three-dimensional
by integrating in the vertical direction; we refer the readers to [14] for the mathemati
analysis of the issues related to the QG model.

We proceed with the notation used in (2.1).

e The corresponding dimensional form of (2.1) reads

S — AAv+v-Vu+ Bykx v+ Vp = o i, (2.2)
divv = 0.

Herepy represents the first-order Coriolis parameter, Artide effective turbulent viscosity

coefficient. The nondimensional parametgiis introduced here to study the effects of the
wind stress on the dynamics; its value can be allowed to range between 0 and 1.8 (equiy
to taking the wind stress from abnormally low to abnormally high, as in [12]). The te
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T4im/ poh is dictated by the Ekman pumping on the surface Ekman boundary layer, anc
also related to the leading order Coriolis tefgh x v in the quasi-geostrophic asymptotics;
see Pedlosky [23].

e The flow is driven by the wind force, which is given in the dimensional form as
sinusoidal function

Tdim = To(—cogmy/L), 0),

wheretg is the amplitude of the wind force. The nondimensional form of the wind forc
usedin (2.1) i = (—cogny), 0).
e The typical (horizontal) velocity is calculated via the Sverdrup equation as

ToT
U=——,
BLooH

wherelL is the typical horizontal lengthl is the typical depth of the ocean layer, gnd
is the typical surface density.
e The parametersand Re are the Rossby number and the Reynolds number given
U LU
= 7 o> Re: Ul
= B2 A
whereA is the effective turbulent viscosity coefficient. The values of the parameters us
in this work are

L=10°m, H =500 m
fo=5x%x10%s1, B=2x10"m1.s1
70=01N-m32 po = 1000 kg- m~3,

U=102rm- s, e =5x10"*x.
e The dimensional time and velocity are calculated by

tdgim = 1t—108t5 im=U
dlm_SﬂL = . y Udim = U V.

We take the nondimensional spatial domdnand the nondimensional depthof the
ocean to be

M=(0,1)x (0,2 cR? h=1 (2.3)

The nondimensional form of the boundary conditions and the initial conditions is

an (2.4)

v-n=0, Wr) — 0  ongM,
V]t=o =0 onM.

3. ASPECTRAL-PROJECTION METHOD

3.1. Time Discretization—A Second-Order Projection Scheme

One of the main difficulties in the numerical simulation of Egs. (2.1)—(2.4), or motr
generally, equations describing any incompressible viscous flows, is associated with
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incompressibility constraint. The projection method, initially proposed by Chorin [8] a
Temam [32], was designed to overcome this difficulty. We propose to use the follow
scheme which is a second-order variant (cf. [27]) of the original projection method,

W — AR 4 Ml Ml = FMHL_ g pm (ONLT™ — NLT™1,

~ 9(pm+1.
pmton=0, 2D 0  ongM,

(3.1)

and

m+1l _ Aam+1
3 +2Atv +1) + V(pm+1 _ pm) — O’

div o™ =0, (3.2)
v™l.n=0 onaM,
whereNLT = (v-V)v, and for the sake of generality, we have repladed)y and(«, /em) T,

respectively, by generic functiorfsandF.
Taking the divergence of the first equation in (3.2), we find that (3.2) is equivalent to

_A(pm+1 _ pm) — _% div f)m-f-l
M o ongw, (3.3)
m+l _

v pm+l Létv(pmel _ pm)

We can write the above equations in components form as follows: Settin@l, w), o =
(0, w), NLT= (NLTy, NLTy), F =(F, F,), and

3Re 1 Re 3 Re

0‘:@1 ﬂzz, J/=Z1 U=@7 051=@,

multiplying (3.1) byy and (3.2) by%l, then, after mapping the domalvi = (0, 1) x (0, 2)
to the computational domaib = (—1, 1) x (—1, 1), we obtain

Otam-&-l _ 0)!2(4—1 _ ﬁagﬂ;-l _ )/f m+1&)m+1

= a1(4uM —u™h) 4+ y{Flﬂ“+1 —2p7 — (2NLT£n — NLTT_l) }, inD, (3.4)
oMl =0 atx = +1, @, =0 aty + 1;

a@m-&-l _ ﬁ))r&-&-l _ Igﬁ){);-rl + J/f m+10m+1
= a1 (4w™ — w™ ) + p {1 — pl' — (2NLTP —NLT3" )}, inD, (3.5)
oMl =0 atx=41, dM™'=0 aty+1;

_(pm+1 _ pm)xx _ ,B(pm+1 _ pm)yy - o (2021—5—1 + &);n-kl)’ in D, (3 6)
P — 0 onaD; .
and
um+l — gm+l Lét(perl _ pm)x’ (3 7)
wm+1 — &)m+1 _ %(pm+1 _ pm)y_ .
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The main advantage of this approach is that we only need to solve a coupled elliptic sys
(3.4)—(3.5) for the velocity components and a Poisson equation (3.6) at each time s
whereas a direct discretization of (2.1)—(2.4) would require us to solve a coupled, n
positive-definite system fou, w, p). Furthermore, the above scheme can be extended
three-dimensional cases in a straightforward manner.

Remark 3.1. The two velocity componentsi{!, #™*1) are coupled together by the
Coliolis force. Although the coupled system (3.4)—(3.5) is elliptic so it can be solved |
using standard direct or iterative procedures, the presence of nonconstant coefficie
prevents us from using existing fast solvers for Poisson-type equations. An alternativ
to treat the Coliolis force explicitly in (3.4)—(3.5), leading to two decoupled Poisson-tyj
equations with constant coefficients i+ andw™+* which can then be solved by existing
fast solvers. The disadvantage of treating the Coliolis force explicitly is that it may le:
to a more rigid time step constraint which may offset the savings realized by using f
solvers at each time step. Hence, whether to treat the Coliolis force explicitly or implici
depends on many factors related to the choice of spatial discretizations and availablit
fast solvers.

3.2. Space Discretization—Spectral-Galerkin Method

Although we can solve Egs. (3.4), (3.5), and (3.6) by using a finite difference meth
(see, for instance, [28]), to fully take advantage of the simple geometry in hand, we prop
to use a spectral method which is capable of providing much more accurate results u
a relatively smaller number of unknowns. Since the spectral-Galerkin method develo
in [25, 26] is extremely efficient for elliptic equations with constant coefficients, we cho:
to treat the Coliolis force explicitly in (3.4)—(3.5) so that we can use the fast spectr
Galerkin method. To fix the idea, let us present in some detail the Legendre—Galerkin
the equation

{au_uXX_ﬂUyy: f, |n D,

(3.8)
U|x:i1 = 0’ Uy|y:il = 0,

which corresponds to (3.4) with™! treated explicitly. The other two equations can be
solved similarly.
Let Pk be the space of all polynomials of degree less than or equdél e set
XN ={w € Py : w(£l) =0},
Ym = {w € Py : wy(£1) =0}, (3.9)

Znv = Xn X Y.
Then, our spectral-Galerkin method is to look €pjy € Znw such that
a(Unm, V) + (dxUnm, 9xv) + B(dyUnm, dyv) = (F, v), Yv € Znw, (3.10)
where(u, v) = [, uvdxdy.

The efficiency of the method depends on the choice of basis functiodfandy),. It
is easy to verify that for
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1
¢i (X) = \/4“:_}_6“4()() — Liy2(x)),

(+2(+3 iG+1
. — L. _ L.
pi(y) \/j(j+1)(4j+6)( iy (i+2(+3 J+2(y)>,

(3.11)

whereL, (s) is thelth-degree Legendre polynomial, we have
Xn =sparf¢i(x) :i =0,1,..., N =2}, Yu =sparfpj(y):j=0,1...,M =2},

and
1 1
/1¢{(x>¢;<x>dx= b, /1p{<y>p;<y>dy=aij.

Hence, setting

N-2M-2

Unm = Z Z Uij ¢ (X) pj (Y),

i=0 j=0

1
a = /1¢j<x>¢i(x>dx,

1
by :/lp,-(ym(y)dy, f :/Df¢>i<x>p,-<y)dxdy

and lettingA, B, F, andU be the corresponding matrices with entries given above, th
(3.10) is equivalent to the following matrix system:

«AUB+UB + BAU = F. (3.12)

Note that the matrice&\ and B are symmetric and have only three nonzero diagona
Hence, (3.12) can be efficiently solved by using the matrix decomposition method [15,
at a cost of N M min(N, M) + O(N M) operations.

Remark 3.2. Itis also possible to solve (3.8) by using the Chebyshev—Galerkin mett
[26], which allows the use of the fast Fourier transform, or the Chebyshev—-Legenc
Galerkin method [27], which takes advantage of both the Chebyshev and the Lege
polynomials. Thus, the spectral-Galerkin method is capable of solving Eqgs. (3.4)—(
at a cost comparable to the traditional finite difference method with the same numbe
unknowns. Thus, thanks to the superior accuracy of the spectral discretization [4], the
of the spectral-Galerkin method would reduce the degree of freedom needed for a parti
problem and hence result in a significant savings in CPU time.

4. NUMERICAL RESULTS AND STRUCTURAL ANALYSIS
OF THE DOUBLE-GYRE OCEAN CIRCULATION

4.1. Numerical Results

In our numerical experiments, we uge= 0.95 with Reynolds numbers 5, 10, 20, anc
30, respectively.
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FIG. 4.1. Snapshots of streamlines for R at timet = 0.01 year and at the steady state.

All computations are carried out using a grid size ofxd65, and a (nondimensional)
time stepAt = 10~4, which corresponds to the dimensional time stég, = 10,0007 s~
53.05 min. Note that the maximum allowable (nondimensional) time step is abotfdr0
Re=5t0 1.5x 1074 for Re= 30.

Figures 4.1-4.3 show respectively the snapshots of streamliness=a%,R), and 20.
As evidenced by Fig. 4.4, the flows at these Reynolds numbers converge to steady-
solutions. Figures 4.1-4.3 indicate that the steady states are characterized by two ¢
one is cyclonic in the northern part of the basin and another is anti-cyclonic in the south
part. The two gyres are separated by a meandering jet; see also [3].

For Re=30, the flow never settled down to a steady state as indicated by Fig. 4
The phase portrait and spectral density of the kinetic energy history in Fig. 4.6 indic
that the flow becomes essentially quasi-periodic with a few incommensurate frequenc
Figures 4.7—4.10 are snapshots of the streamlines at various times.

0 0.2 04 0.6 0.8 1 o 02 04 0.6 0.8 1

FIG. 4.2. Snapshots of streamlines for Rel0 at timet = 0.01 year and at the steady state.
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FIG. 4.7. Snapshots of streamlines for R0, at timet =0.005,t =0.11,t =0.20,t =0.44,t = 0.63, and
t=0.87 year.

4.2. Structure Analysis of the Double-Gyre Ocean Circulation

One of the main objectives of this paper is to apply the newly developed dynam
systems theory for incompressible flows to analyze the structure and bifurcation of
double-gyre phenomenon of the mid-latitude ocean basins. The point of view of this the
is to classify the topological structure and its transitions ofitiseantaneouselocity field
(i.e., streamlines in the Eulerian coordinates), treating the time variable as a parameter
justification of this viewpoint is that given initial data, for a residual set (i.e., the intersect
of a countable number apen and densgets) of forcing, the instantaneous velocity fielc
is structurally stable in anpen and denseset of the time interval. Hence, the structura
bifurcation can occur only on aowhere denseset of time, and structural bifurcation is
therefore awell-defined concept. We summarize this theory below and refer to the Appe
or [16—18] for more details.

e Classification of singularities Thanks to the divergence-free condition of the ve
locity field, a nondegenerate interior singular point must be either a saddle or a center
a boundary singular point must be a saddle. In the oceanic setting, a center correspol
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FIG. 4.8. Snapshots of streamlines for R0, at timet =1.04,t =1.23, t =1.52, t =2.02,t =2.26, and
t =2.64 years.

a circulation center of the flow; a saddle corresponds to the intersection of two jets mov
toward each other; and a boundary saddle is due to a jet moving toward or leaving
boundary. The index formula (A.4) in the Appendix links the number of cer@erhe
number of interior saddleS, and the number of boundary saddRsvith the number of
islandsk in the basin. In particular, for the double-gyre problem we address in this paper
havek =0, and (4.1) below holds true. As we can see from the numerical results presen
centers and boundary saddles are observable. Therefore, the number of interior sadd
determined easily by (A.4), so is the phase structure.

e Structural classification: The topological set of orbits of a regular divergence-free
velocity field consists of a finite number of connected components of circle cells, circ
bands, and saddle connections. Each circle cell is the largest circulation region arou
center. The boundary of a circle cell consists of saddle connections. A circle bandis ak
of invariant flow region, where the flow lines are periodic and the flow meanders in the ba

e Topological classification The global topological structure of the flow orbits of a
regular divergence-free vector field is completely determined by its saddle connection
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FIG. 4.9. Snapshots of streamlines for R0 at timet =3.03,t =3.51,t =4.08,t =4.81,t =5.85, and
t=7.30 years.

e Structural stability : Notice that the divergence-free condition changes complete
the general features of structurally stable fields as compared to the situation when this
dition is not present. The latter case was studied in a classical paper of Peixoto [24].
conditions for structural stability and genericity in Peixoto’s theorem are: (i) the field ¢
have only a finite number of singularities and closed orbits (critical elements) which n
be hyperbolic; (ii) there are no saddle connections; and (iii) the nonwandering set con
of singular points and closed orbits.

The structural stability theorem developed by Ma and Wang states that a divergence
vector fieldv is structurally stable with respect to divergence-free vector field perturbatic
if and only if (1) v is regular, (2) all interior saddle points ofare self-connected, and
(3) each boundary saddle point is connected to boundary saddles on the same conr
component of the boundary.

The first condition here requires only regularity of the field and so it does not exclt
centers which are not hyperbolic and excluded by (i) above. The second condition is
completely different nature from the corresponding one in the Peixoto theorem. Nar
condition (ii) above excludes the possibility of saddle connections. In contrast, (2) amo
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FIG. 4.10. Snapshots of streamlines for Re30 at timet =70.4,t =70.56,t =71.04,t =7123,t =7141,
andt = 71.60 years.

to saying that all interior saddles are self-connected! Namely, the interior saddles occt
graphs whose topological form is that of the number 8, the singularities themselves be
hyperbolic. Condition (3) deals with singularities on the boundary.

e Genericity of solutions of fluid equations Ma and Wang proved in [19] that for
an open and dense sub-set of forcing in proper function space, all steady-state solu
of the two-dimensional Navier—Stokes equations as well as (2.1) studied in this paper
structurally stable. Moreover, given initial data, for a residual set (i.e., the intersection
a countable number afpen and denssets) of forcing, the instantaneous velocity field
is structurally stable in anpen and denseset of the time interval. Hence, the structural
bifurcation can occur only onmowhere denseset of time, and is a well-defined concept.

Hereafter, we shall combine the numerical simulations and the aforementioned dynarr
systems theory to analyze the structure and its bifurcation of the double-gyre wind-dri
ocean circulation.

General consideration. Consider a mid-latitude ocean basin which occupies a simp!
connected physical domain as a two-dimensional sk R?. Letv € D' (TM) (r > 1) be
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regular. In this casé in (A.4) is zero. Therefore, (A.4) amounts to saying that
C-S-iB=1, (4.1)

whereC, S, and B are respectively the number of centers, saddle points, and bounc
saddle points in the domain.

Consider the large-scale motion of the mid-latitude ocean basins with a strong zong
Because of this jet, there exist two saddle points on the boundary for anondegenerate s
velocity field: one is on the eastern boundary and the other is on the western boundary. |
case, Formula (4.1) shows that the number of centers equals the number of interior s
points plus 2. Therefore, the flow with the least singular points contains two centers an
saddle points in the interior. In this case, by the structural stability criterion, Theorem /
this flow pattern is structurally stable. In other words, this structure will persist when
timet (or the Reynolds number) changes. The results stated in Section A.7 clearly s
that the solution will be structurally stable in an open and dense set of time intervals,
structural bifurcation (with as a parameter) will occur only at a nowhere dense set of tir
instants. This justifies the study of the structural analysis of the flow in this paper.

We now analyze below in more detail the structural stability and bifurcation for eact
our simulations.

CaseRe=5. As we can see in Fig. 4.1, the flow, driven by the wind stress, genera
two circular gyres at timé=0.01 year. This flow is structurally stable. The flow quickly
approaches a steady state of the QG equations. This steady state has the same topc
structure as the two circular gyre patterns$ &t0.01 year, and there is no structural bifur-
cation present aftar=0.01 year with respect to the time variable. In view of the structu
classification, the phase structure of this pattern consists of two circle cells (two gyres)
the saddle connections.

CaseRe=10. The structure of the flow at Re 10 behaves similarly to the flow at
Re=5.

CaseRe=20. There is a structural bifurcation in the time interval (0.01, 2.03). Tt
flow also approaches a steady state as indicated by the energy history in Fig. 4.4. How
the steady state in this case is topologically equivalent to the schematic patternin Fig. 4
The flow pattern has six centers, four interior saddles, and two boundary saddles, an
index formula holds true in this case. It is easy to see that the flow pattern is structui
stable by the structural stability theorem.

When the Reynolds number is small, the flow converges quickly to a unique steady s
whichis structurally stable. Meanwhile, as the Reynolds number changes but remains s
the structural bifurcation would take place. For example, there is one bifurcation valu
the Reynolds number between 5 and 20.

CaseRe=30. The energy history in Fig. 4.5 shows a quasi-periodic motion; the c
responding dominant frequencies indicate inter-seasonal and inter-annual changes
double-gyre phenomenon. The energy spectrum and the phase portrait, shown in Fig
also suggest that the flow is quasi-periodic, although the dominant frequencies are s
imposed with turbulent small-scale motions.

From the point of view of structural analysis, the flow patterns in the first 0.87 year gi\
in Fig. 4.7 indicate several structural transitions/bifurcations between structurally st:
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s

By

B,

FIG. 4.11. Schematic topological structures.

patterns, and a symmetry breaking of the structure between the sub-polar and sub-tro
cells. Consider now the flow pattern in Figs. 4.8—4.10. The time is sufficiently long
generate typical flow patterns related to long-term dynamics. We can observe from tt
snapshots the following typical features:

e patterns which are topologically equivalent to those shown in Fig. 4.11 appe
frequently, representing the typical gyre circulation;

e several structural transitions/bifurcations between structurally stable patterns apj
during this time interval as well as in the beginning period;

¢ there is a symmetry breaking of the structure between the sub-polar and sub-trof
cells;

¢ the mixing phenomenon is a typical feature; and

e as the mixing forces sub-gyre circulation detachment, the anti-cyclonic anomal
appear in both the sub-polar and the sub-tropical circulations.

5. CONCLUDING REMARKS

To understand the mechanism of the double-gyre phenomenon, a wind-driven, dou
gyre, mid-latitude,f -plane, quasi-geostrophic ocean model is studied. First, we adap!
an efficient and accurate spectral-projection method for this model. The method was b:
on a spectral-Galerkin approximation (cf. [25] for the spatial variables and a second-or
projection scheme (cf. [13, 27]) for time marching. We implemented this method to sil
ulate the wind-driven double-gyre ocean flow for a range of physically relevant paran
ters.

We used a new dynamical systems theory for two-dimensional incompressible flc
[16, 17] (see also [18]) to analyze the structural stability and transition of the flow pattel
in our numerical simulations. Our analysis led to the following observations:

1. When the Reynolds number is small, the flow converges quickly to a unique ste:
state, which is structurally stable. Meanwhile, as the Reynolds number changes but ren
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small, the structural bifurcation would take place. For example, there is one bifurca
value of the Reynolds number between 5 and 20.

2. For Re=30 which is more physically relevant to the double-gyre phenomenc
the flow pattern seems to be quasi-periodic with a few dominant frequencies superimp
with turbulent small-scale motions; the corresponding dominant frequencies indicate i
seasonal and inter-annual changes of the double-gyre phenomenon. It is also observe
(i) several structural transitions/bifurcations between structurally stable patterns ap
during this time interval as well as in the beginning period; (ii) there is a symmetry break
of the structure between the sub-polar and sub-tropical cells; (iii) the mixing phenome
is a typical feature; and (iv) as the mixing forces the detachment of sub-gyre circulat
the anti-cyclonic anomalies appear in both the sub-polar and the sub-tropical circulati

The anti-cyclonic anomalies and symmetry breaking seem to be generated by the Co
force and the nonlinear interaction of the flow.

In summary, our numerical results and their structural analysis demonstrated the pre:
of regular inter-annual variability in the ocean basins. Anti-cyclonic anomalies app
frequently with timescale in years, and they appear to be typically related to the in
annual variability associated with the double gyres. The new dynamical systems th
demonstrates among other things the following features of the problem:

1. Structural bifurcation does occur with Reynolds as a parameter when the st
state is unique.

2. With timet as a parameter and for generic forcing, the time-dependent solutio
structurally stable fot in an open and dense set of the entire time interval. This justifi
the notion of the structural bifurcation, which appears only for time in a nowhere dense
of the time interval.

3. Theflow patterns are structurally classified, providing theoretical possible guida
to both numerical and physical considerations of the problem.

As we mentioned in the Introduction, a simple quasi-geostrophic model is studie
this article with the hope that the methods and ideas presented here will be useful in |
realistic models as well as in other relevant problems.

APPENDIX

Recapitulation of the Geometrical Theory of Two-Dimensional
Incompressible Flows

A.1. General Approach

Fluid motion and states are normally described by either the Eulerian approach o
Lagrangian approach. For the Eulerian method, one solves the Navier—Stokes type o
tial differential equations governing the motion and states of the fluid. The Lagranc
representation of a fluid flow, on the other hand, amounts to studying the dynamics
trajectories in the two- or three-dimensional physical space that the fluid occupies. Nan
one studies the dynamics of the ordinary differential equations in the physical space:

dx _
{ a = v, (A1)

X|t—o = Xo.
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Herev is the velocity field of the fluid, satisfying the Navier—Stokes equations or the qua
geostrophic equations in the context of this papeis the physical location of the fluid
parcel, and is the time.

The point of view of our theory is to classify the topological structure and its transitiot
of the instantaneouselocity field (i.e., streamlines in the Eulerian coordinates), treatin
the time variable as a parameter. Following the above viewpoint, Ma and Wang [16—
developed a systematic geometrical theory of the velocity fields of two-dimensional incc
pressible flows, which is summarized as follows. One justification of this viewpoint is th
(see below) given initial data, for a residual set (i.e., the intersection of a countable nurr
of open and denssets) of forcing, the instantaneous velocity field is structurally stable |
anopen and denseset of the time interval. Hence, the structural bifurcation can occur on
on anowhere denseset of time, and is a well-defined concept.

A.2. Classification of Singularities of Divergence-Free Vector Fields

Let M c R? (or M C S?) be a two-dimensional manifold with boundary, ang 0 c M.
For simplicity, we set

D' (TM) = {v € C"(TM) | div v = 0} (A.2)

forr > 1. HereTM is the tangent bundle d¥, and in the case whetd c R?, C" (TM) =
(C"(M))? containing allC" vector fields onV.

We consider a divergence-free vector field D' (TM) (r > 1), andx =0 a nondegen-
erate singular point ob; i.e., the Jacobiard (v(0)) of v at x=0 is nonsingular. In a
neighborhood ok =0, v can be expressed by

v(X) = AX+ g(x), (A.3)

where

A=<m1mﬂ, g(x) = o([Ix|).

1 ax

Sincev is divergence-free, it is proved (see Proposition 2.1 in [16]) that an interi
nondegenerate singular point must be either a center or a saddle point, and a nondegel
singular point on the boundary must be a saddle point. The indices and physical mean
of these singular points are as follows:

1. When the eigenvalues of the matéxare purely imaginary numbers, the interior
singularityx =0 is a center of the vector field (A.3) with index 1:

ind(v, 0) = 1.
In fluid mechanicsx = 0 corresponds to the center of a local circulation.
2. When the eigenvalueg andi, of A are real numbers, we ha¥g= —1, > 0. In

this casex =0 is a saddle point with index1.:

ind(v, 0) = —1.
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FIG. A.1. Saddle points on the boundary.

3. Whenx=0€dM, it has to be a saddle point of the vector fieldas shown in
Fig. A.1. Inthis case, using the reflection principle we can extend the vector field acros:
boundary neax =0, and then define its index to be half of the extended field. Namely, 1
index is—1/2:

ind(v, 0) = —1.

In the large-scale oceanic motion (resp. a general fluid motion), saddle points on the bc
ary are normally caused by a jet flowing toward or away from the coastal line or the bound
see Fig. A.2.

A.3. An Index Formula for Divergence-Free Vector Fields

Let M cR? (or M c $?) be a compacted manifold with boundary withholes (see
Fig. A.3). For the oceanic motion, tlkegenus represenksislands, and for the atmospheric
motion, they represent the horizontal sectionk ofountains.

Letve D" (TM) (r > 1) be regular; i.e., all singular points are nondegenerate. Set

C = the number of centers of
S = the number of interior saddle points of
B = the number of boundary saddle pointsuof

Then we have the following index formula [17]

1
C-s-iB=1-k (A.4)

//7

FIG. A.2. Flow passing through an island.
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FIG. A.3. DomainM with k islands.

A.4. Global Structural Classification of Divergence-Free Vector Fields
DEFINITION A.1.

1. Let pe M be a center ob. The largest neighborhoad of p containing closed
orbits is called a circle cell of the centpr

2. Given a closed orbiy, let B be the largest neighborhood ef containing only
closed orbits. If any connected componend & is not a single point, theB is called a
circle band.

3. An orbit with its end points is called a saddle connection if its two end points a
saddle points.

Then we have

THEOREM A.1 (Global Structural Classification [16]).Let v € D" (TM) be a regular
vector field. Then the topological set of orbitsvxafonsists of a finite number of connected
components of circle cellgircle bands and saddle connections.

A.5. Topological Classification

Two vector fieldsvy, v, € D" (TM) are called topologically equivalent if there exists
a homeomorphisngp: M — M, which maps orbits ob; to orbits of v, preserving the
orientation.

THEOREMA.2 [16]. Letvy, v2 € D'(TM) be two regular divergence-free vector fields
andT';, I'; are the collections of saddle connectionspéndv,, respectively. Themy and
v are topologically equivalent if and only if; andT", have the same topological structure.

This theorem tells us that the global topological structure of the flow orbits of a regu
divergence-free vector fieldis completely determined by its saddle connection set.

A.6. Global Structural Stability

A divergence-free vector fieldis called incompressibly structurally stable if there exists
a neighborhood? c D" (TM) of v such that anyi € O is topologically equivalent ta.
Then we have

THEOREMA.3 (Global Structural Stability [16, 18]). A divergence-free vector fielde
D" (TM) (r > 1) is (globally) incompressibly structurally stabl@r for simplicity, struc-
turally stable if and only if
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B

B

0

FIG. Al4. C4, C,, andC; are circle cellsB is a circle band, and the orbits connectedptor q are saddle
connections.

1. visregular,

2. all interior saddle points of are self-connectedand

3. each boundary saddle pointis connected to boundary saddles on the same conn
component of the boundary.

Moreover the set of all structurally stable vector fields is open and densé&{@m) (r > 1).

Here we make a comparison with the classical structural stability theorem by Pei
[24] for general vector fields (not necessarily divergence free). The conditions for struct
stability and genericity in Peixoto’s theorem are: (i) the field can have only a finite num
of singularities and closed orbits (critical elements) which must be hyperbolic; (ii) there
no saddle connections; and (iii) the nonwandering set consists of singular points and cl
orbits.

In Theorem A.3, the first condition here requires only regularity of the field and so it d
not exclude centers which are not hyperbolic and excluded by (i) above. The second c
tion is of a completely different nature from the corresponding one in the Peixoto theor
Namely, condition (ii) above excludes the possibility of saddle connections. In contr
(2) amounts to saying that all interior saddles are self-connected! Namely, the inte
saddles occur in graphs whose topological form is that of the number 8, the singular
themselves being hyperbolic. Condition (3) deals with singularities on the boundary.
this theorem itis easy to see that the flow pattern given in Fig. A.4 is NOT structurally ste
since two saddle pointp andq are connected, while both the flow patterns illustrated i
Fig. 4.11 are structurally stable.

A.7. Genericity of Structurally Stable Steady States of the 2D Navier—Stokes Equatiol

Consider the following Navier—Stokes equations on a two-dimensional closed bour
domainM:

—uAU+ (U-V)u+Vp=1f, inMcR? (A.5)
divu=0, inM (A.6)
=0, M _o  onom. (A7)

N am

HereM stands for the interior of.
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Set

o0V,
on

B'(TM) = {v e Dr(TM)‘

— o}, (A.8)
oM

wherev, =v - n, v, =v - t, andn andt are the unit normal and tangent vectorsaivi,
respectively. Iff =k + « with k> 0 an integer and & « < 1, thenv € C" (TM) means that
v e CX(TM) and all derivatives o up to orderk area-Holder continuous. By definition,
vector fields inB" (TM) satisfy the following free boundary conditions:

dv;
an

—0. (A.9)
oM

vnlam =0,

Then we have (see [19]).

THEOREMA.4. Foranyu > 0, there is an open and dense et C*(TM) O <« < 1)
such that for each & F, the steady-state solutionsauX = B+ (TM) of (A.5)—A.7) are
structurally stable in X.

Moreover, we can prove that for any given initial data and a residual set (i.e., the inters
tion of a countable number @fpen and denssets) of forcing, the instantaneous velocity
field is structurally stable in aopen and denseset of the time interval. Therefore, gener-
ically, the structural bifurcation occurs only at a nowhere dense set of the time inten
therefore this fact justifies the structural bifurcation concept.

A.8. A Remark on Applications

We remark that the interior centers correspond to circulations, which are observa
boundary saddles correspond to jets moving toward or away from the boundary, which
also observable. By the index formula, the number of interior saddles can be easily de
mined. The structural classification theorem and the global structural theorem ensure
the global structure of the flow pattern is then uniquely determined by saddle connectic
Moreover, given a divergence-free vector field, it is easy to verify the structural stabil
conditions in the structural stability theorem, which can be directly used in verifying tl
structural stability of the flow pattern.
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