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Abstract. We present some recent results on the pressure stabilization method and the projection method.
The relation between the two methods is exploited to derive an improved error estimate for the projection

method.

1. Introduction. In this paper, we consider the numerical approximation of the

unsteady Navier-Stokes equations:

ut − ν∆u + (u · ∇)u +∇p = f , in Ω× [0, T ], (1.1)

divu = 0, in Ω× [0, T ], (1.2)

u|∂Ω = 0, u|t=0 = u0, (1.3)

where Ω is a open bounded set in Rd with d = 2 or 3.

One of the main difficulties in numerical approximation of the unsteady Navier-Stokes

equations is how to treat the incompressibility constraint “divu = 0”, which not only

couples the velocity and the pressure, but also requires that the solution spaces, to which

the velocity and the pressure belong, verify the so called inf-sup condition. A popular

strategy to overcome this difficulty is to relax the incompressibility constraint in an ap-

propriate way, resulting in a class of pseudo-compressibility methods, among which are the

penalty method, the artificial compressibility method, pressure stabilization method and the

projection method.

A semi-discretized version of the projection method can be written as follows:

let u0 = u0, we solve successively ũn+1 and {un+1, pn+1} by

(ũn+1 − un)

∆t
− ν∆ũn+1 + (ũn+1 · ∇)ũn+1 = fn+1, in Ω,

ũn+1|∂Ω = 0,

(1.4)

(un+1 − ũn+1)

∆t
+∇pn+1 = 0, divun+1 = 0, in Ω,

un+1 · n|∂Ω = 0.

(1.5)
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The numerical efficiency of the scheme (1.4)-(1.5) is obvious since the velocity approx-

imation and the pressure approximation in (1.4)-(1.5) are totally decoupled. Furthermore,

the solution spaces for the velocity and the pressure need not to satisfy the Babuska-Brezzi

inf-sup condition.

It is interesting to notice that {un} in (1.4)-(1.5) can be eliminated to form a system

only involving {ũn}. taking the sum of (1.4) at step n and (1.5) at step n− 1, taking the

divergence of (1.5), we obtain

(ũn+1 − ũn)

∆t
− ν∆ũn+1 + (ũn+1 · ∇)ũn+1 +∇pn = fn+1, (1.6)

divũn+1 −∆t∆pn+1 = 0,
∂pn+1

∂n
|∂Ω = 0. (1.7)

(1.6)-(1.7) reminds us the so called pressure stabilization method, initially introduced

by Brezzi and Pitkäranta [1] for the approximation of the steady Stokes equation. When

applied to the unsteady Navier-Stokes equations, the pressure stabilization method takes

the form:

uε
t −∆uε + (uε · ∇uε) +∇pε = f , (1.8)

divuε − ε∆pε = 0,
∂pε

∂n
|∂Ω = 0. (1.9)

Therefore the projection method, written in the form of (1.6)-(1.7), is simply a decoupled

time discretization of the pressure stabilization method (1.8)-(1.9) with ε = ∆t. We will

present below some recent results on the pressure stabilization method and the projection

method, part of which improves previous results presented in [4].

We will use the standard natations L2(Ω), Hk(Ω) and Hk
0 (Ω) to denote the Sobolev

spaces over Ω. The norm corresponding to Hk(Ω) will be denoted by ‖ · ‖k, in particular,

‖ · ‖ will be denoting the norm in L2(Ω). The vector functions and vector spaces will be

indicated by bold face type. We will use c as a generic constant depending only on the

data.

In the three dimensional case, we assume a strong solution exists for 0 ≤ t ≤ T , i.e.

‖u‖L∞(0,T ;H1(Ω)) ≤ c. It is then easy to show that for sufficiently smooth data, the solution

(u, p) of (1.1)-(1.2) satisfies (see for instance [6], [2])

u ∈ L2(0, T ;H2(Ω)), p ∈ L2(0, T ;H1(Ω)) and t2pt ∈ L2(0, T ;H1(Ω)). (1.10)

2. Error estimates of the pressure stabilization method and projection

method.

Theorem 1. Let (u, p) be the solution of (1.1)-(1.2), (uε, pε) be the solution of (1.8)-(1.9),

then √
t‖u(t)− uε(t)‖1 + t‖p(t)− pε(t)‖ ≤ c

√
ε , ∀ 0 ≤ t ≤ T,

2



√
t‖u(t)− uε(t)‖ ≤ cε , ∀ 0 ≤ t ≤ T.

Sketch of the proof. We will only provide the proof in the linear case, which is indeed

responsible for the error. A complete proof will be given in [3].

Let us denote e = u − uε, q = p − pε. Dropping out the nonlinear term and setting

ν = 1 for simplicity, we obtain the following error equations.

et −∆e +∇q = 0, (2.1)

dive− ε∆q = −ε∆p,
∂q

∂n
|∂Ω =

∂p

∂n
|∂Ω. (2.2)

We will derive the desired results through a series of optimal estimates.

Taking the scalar product of (2.1) with e and (2.2) with q, summing up the two

relations, we obtain

1

2

d

dt
‖e‖2 + ‖∇e‖2 + ε‖∇q‖2 = ε(∇p,∇q) ≤ ε

2
‖∇q‖2 + ε

2
‖∇p‖2.

Integrating the above relation from 0 to t, since e(0) = 0, we obtain

‖e(t)‖2 +
∫ t

0

(‖∇e‖2 + ε‖∇q‖2)ds ≤ cε , ∀ 0 ≤ t ≤ T. (2.3)

Next, we differentiate (2.2) with respect to t to obtain

divet − ε∆qt = −ε∆pt,
∂qt

∂n
|∂Ω =

∂pt

∂n
|∂Ω. (2.4)

Taking the scalar product of (2.1) with 2tet and (2.4) with 2tq, we derive

2t‖et‖2 +
d

dt
(t‖∇e‖2) + ε

d

dt
(t‖∇q‖2) = ‖∇e‖2 + ε‖∇q‖2 + 2εt(∇pt,∇q)

≤ ‖∇e‖2 + 2ε‖∇q‖2 + εt2‖∇pt‖2.

Integrating the above relation from 0 to t, using (1.10) and the estimate (2.3), we derive

t‖∇e‖2 + εt‖∇q‖2 +
∫ t

0

s‖e(s)‖2ds ≤ cε+ ε

∫ t

0

s2‖∇pt‖2ds ≤ cε. (2.5)

We now use the standard parabolic duality argument. For s ≤ T fixed, let (w, r) be the

solution of the following system.

wt +∆w −∇r = e(t) , ∀ 0 ≤ t ≤ s, (2.6)
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divw = 0, w(s) = 0. (2.7)

It is standard to show that
∫ s

0

(‖w‖22 + ‖∇r‖2)dt ≤ c

∫ s

0

‖e‖2dt. (2.8)

Taking the scalar product of (2.6) with e(t), using the error equations (2.1)-(2.2) and the

fact divw = 0, we derive

‖e(t)‖2 = (wt, e) + (w,∆e) + (r,dive) =
d

dt
(e,w) + (∆e,w)− (et,w) + ε(∇r,∇pε)

=
d

dt
(e,w) + (∇q,w) + ε(∇r,∇pε) =

d

dt
(e,w) + ε(∇r,∇pε).

Integrating from 0 to s, since w(s) = e(0) = 0, we derive that for δ > 0, we have

∫ s

0

‖e(t)‖2dt ≤ δ

∫ s

0

‖∇r‖2dt+ ε2

δ

∫ s

0

‖∇pε‖dt.

Choose δ sufficiently small, using (2.3) and (2.8), we obtain

∫ s

0

‖e(t)‖2dt ≤ cε2. (2.9)

To derive the improved estimates for e and q, we need the following estimate on et and qt.

t2‖et‖2 + ε

∫ t

0

s2‖∇qt‖2ds ≤ cε , ∀ 0 ≤ t ≤ T. (2.10)

To prove (2.10), we differentiate (2.1) with respect to t to obtain

ett −∆et +∇qt = 0. (2.11)

Taking the scalar product of (2.11) with t2et and (2.4) with t2qt, we derive

1

2

d

dt
(t2‖e‖2) + t2‖∇et‖2 + εt2‖∇qt‖2 = t‖e‖2 + εt2(∇pt,∇qt).

Taking into account (1.10) and (2.3), (2.10) follows immediately after integrating the above

relation.

We now take the scalar product of (2.6) with tet, using again the error equations

(2.1)-(2.2), we have

1

2

d

dt
(t‖e‖2) =1

2
‖e‖2 + (et, twt) + t(∆et,w) + t(r,divet)

=
1

2
‖e‖2 + (et, twt) +

d

dt
t(∆e,w)− (∆e, twt)− (e,∆w) + t(r,divet)

=
1

2
‖e‖2 + d

dt
t(∆e,w)− (∇q, twt)− (e,∆w) + εt(∇r,∇pε

t ).
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Integratin from 0 to s, since divwt = 0, using (2.8), (2.9) and (2.10), we derive

s‖e‖2 ≤ c

∫ s

0

‖e‖dt+ cε2
∫ s

0

t2‖∇pε
t‖2dt ≤ cε2.

Finally for the pressure estimate, we simply use the error equation (2.1) to derive

‖q‖ ≤ c‖∇q‖−1 ≤ c(‖et‖−1 + ‖∆e‖−1) ≤ c(‖et‖+ ‖∇e‖),

Hence using (2.5) and (2.10), we arrive to

t2‖q‖2 ≤ ct2(‖et‖2 + ‖∇e‖2) ≤ cε.

Considering the projection method (1.6)-(1.7) as a time discretization for (1.8)-(1.9),

we have the following results, which will be proved elsewhere.

Theorem 2. Let (ũn, pn) be the solution of (1.6)-(1.7) and let (u, p) be the solution of

(1.1)-(1.2), then

√
tn‖u(tn)− ũn‖1 +

√
tn‖p(tn)− pn‖ ≤ c

√
∆t , ∀ 0 ≤ n ≤ T/∆t,

√
tn‖u(tn)− ũn‖ ≤ c∆t , ∀ 0 ≤ n ≤ T/∆t.

Remark 1. The results in Theorem 2 improve the results presented in [4] by taking into

account the smoothing property at t = 0 of the Navier-Stokes equations.

3. Finite element approximation for the pressure stabilization method. We

now consider the semi-discretization of (1.8)-(1.9) by using a finite element method. For

simplicity, we assume Ω to be a convex polygonal domain. Given a quasi uniform triangu-

lation Th for Ω, let Wh consist of C0 piecewise polynomial functions over the triangulation

Th such that Wh ⊂ H1
0 (Ω) and for some m ≥ 2,

inf
vh∈Wh

{‖v − vh‖+ h‖∇(v − vh)‖} ≤ chm‖v‖m , ∀ v ∈ H1
0 (Ω) ∩Hm(Ω),

let Qh consist of C0 piecewise polynomial functions over the triangulation Th such that

Qh ∈ H1(Ω) ∩ L20(Ω) and for some k ≥ 2,

inf
qh∈Qh

{‖q − qh‖+ h‖∇(q − qh)‖} ≤ chk‖q‖k , ∀ q ∈ L20(Ω) ∩Hk(Ω).

We denote Wh = (Wh)
d. Then the finite element approximation of (1.8)-(1.9) is to seek

(uε,h, pε,h) ∈ (W h, Qh) such that

(uε,h
t ,vh) + ν(∇uε,h,∇vh) + ((uε,h · ∇)uε,h,vh)− (pε,h,divvh) = (f ,vh), ∀vh ∈ Wh,

(3.1)

(divuε,h, qh) + ε(∇pε,h,∇qh) = 0, ∀qh ∈ Qh. (3.2)

We have the following results, which will be proved in [3].
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Theorem 3. Let k ≥ min{2,m− 1}, then

√
tm−1‖∇(u− uε,h)(t)‖ ≤ c

√
ε+ cm(u, p)(hm−1 +

hm

√
ε
) , ∀ 0 ≤ t ≤ T.

Remark 2.

(i) Cm(u, p) is a constant depending on the solution (u, p). In case Ω is of class Cm,

Cm(u, p) can be bounded by a constant only depending on the data u0, f and Ω.

(ii) Due to the O(
√
ε) error committed by the continuous pressure stabilization method,

uε,h(t) is not an optimal approximation to u(t) in Wh. The optimal choice for ε is

ε =
√
hm, which results in the error estimate

√
tm−1‖∇(u− uε,h)(t)‖ ≤ c

√
hm.

(iii) With ε = hm, we can also prove

‖p(t)− pε,h(t)‖ ≤ ch , ∀ 0 ≤ t ≤ T.

Due to the incompatible Neumann boundary condition imposed by the pressure stabi-

lization method, the error estimate for ‖p(t)− pε,h(t)‖ does not improve when higher

order methods are used.

The space discretization of the projection scheme (1.4)-(1.5) and its higher order ex-

tensions (see [5]) will be studied in a future paper.
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