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SUMMARY 

We show that the continuous (in time) form of the projection-3 scheme proposed in Reference 2 is not 
a proper approximation of the unsteady Navier-Stokes equations. Hence, the projection-3 scheme and its 
variants are not appropriate for the numerical computation of the Navier-Stokes equations. 
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The projection-3 scheme' was proposed as a possible improvement over the projection-1 and 
projection-2 schemes.' To understand better the nature of these projection schemes, we will first 
exploit an intrinsic relation between the three schemes.'. * The classical projection method for 
solving the unsteady Navier -Stokes equations 

u,-vAu+(u.V)u+Vp=f, divu=0, E Q X  R+,  (1) 
was initially proposed by Chorinj and Temam.4 A semi-discretized version (named as projec- 
tion-1 scheme') of the classical projection method applied to the Navier-Stokes equations with 
homogeneous Dirichlet boundary condition can be written as follows: 

let uo=uo; we solve successively 2"" and {u"", p"") by 

in a, &"+I  lan=O, 

) + 0 ~ " + ~ = 0 ,  divu"+'=O, in a, u n + l  -nl,,=O. (u"+ - 
At (3) 

It  is well known that the above scheme suffers from large splitting errors. A number of modified 
projection schemes have been proposed to improve the accuracy (see, for instance, Reference 5 for 
a review). A typical modified scheme is: 

One can find in Reference 6, a detailed error analysis for both schemes. 
The projection-2 scheme' is, in fact, a scheme similar to (4) and ( 5 )  in the sense that the 

Crank-Nicolson treatment was used in favour of backward Euler in (4). We refer to 
Reference 5 for more related schemes. 
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It is clear that the above schemes can also be viewed as (Stokes) operator-splitting schemes, and 
that the non-linear term does not play any essential role here. Hence, to simplify our presentation, 
we shall focus on the linearized (dropping the non-linear term) Navier-Stokes equations. 

We note that {u"} in (2-3) and (4-5) can be eliminated to form systems only involving (ii"}. In 
fact, taking the sum of (2) at step n and (3) at step n - 1 and applying the divergence operator to (3), 
after dropping the non-linear term, we find that (2) and (3) are equivalent to 

Similarly, (4) and (5) are equivalent to 

We note that (6) (resp. (8)) can be replaced by higher-order time discretization schemes so that the 
leading error term of the schemes is dictated by the truncation error introduced by (7) (resp. (9)). 
But, unfortunately, any attempt to reduce this error by replacing Ar in (7) and (9) with (At)" for 
any a> 1 would result in an unstable scheme. 

To understand why (8) and (9) are superior than (6) and (7), let us write down the continuous (in 
time) forms of the above schemes. For (6) and (7), the continuous form is: 

U: - AU'+ Vp'= f ,  (10) 

divue-&ApPE=O, - z / d R = o >  

with &=At. On the other hand, the continuous form for (8) and (9) is: 

divu'-eAp:=O, - =0, 2 
with It is shown from Reference 7 that, for (10) and ( l l ) ,  we have the error estimate 

llu(t)-u"(t) Ilt~cn,-O(&). (14) 
It can be shown from Reference 4 that under suitable assumptions the same estimate holds for (12) 
and (1 3). One then realize that the improvement of ( 1  2) and (1 3) over (10) and (1 1) comes from the 
fact that by replacing Ap in (11) by Apt, we were able to choose &=$(At)'  in (13). We then realize 
that a second-order time stepping scheme for (12) and (13) would result in a second-order 
projection scheme. In fact, it has recently been shown4 that the projection-2 scheme with 
Crank-Nicolson time stepping is fully second-order accurate in time. Therefore, by intuition, one 
would naturally suggest that the formulation 

u:-AuE +Vp'=f, (1 5)  

divu'-&Ap;f=O, - E Ian =0, 
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would lead to an improved scheme over (4) and (3, since we can choose in a time- 
discretized scheme of (15) and (16). 

In fact, after similar reformulation as before, we find that the projection-3 scheme1 can be 
viewed as a discrete version of (15) and (16). But, unfortunately, as proved below, the formulation 
(15) and (16) is not a proper approximation of the linearized Navier-Stokes equations. Hence, no 
scheme based on the discretization of (15) and (16) will be appropriate for the approximation of 
the Navier-Stokes equations. 

We now show that the solution of (15) and (16) cannot be bounded uniformly for t~ [S, + co) 
for any 6 > 0. While, on the contrary, for any 6 > 0, the solution of the (linearized) Navier-Stokes 
equations is uniformly bounded for t E [6, + cc j. 

Applying the divergence operator to (15) and taking into account (16), we derive 

cApftt - &A * p:t + Ape = div f, __ ;.; I Fn = 0. 

Differentiating with respect to t twice the first relation of (17) and denoting q=ptt ,  we find 

Let {in, @”) be the eigenpairs of the Laplacian operator with homogeneous Neumann boundary 
condition, i.e. 

with O=E.,<i,<...<1,<...+cc. We can then expand divf,,(r) and q‘(t) of (18) by using the 
eigenfunctions 

1 

4 
64;’ ( t )  + &3”,q:(t) + qn( t )  = - 7 g n ( t ) ,  v n  2 1. 

The characteristic form of this third-order ordinary differential equation is 

Ex3+&3.nx2+1=0, v n a .  (22) 
One notes immediately that (22)  does not admit any real positve root. On the other hand, the 
three roots of the above equation, x;, xz, x;, satisfy, in particular, the following relation: 

1 1 1  
-+-+-=O. 
x; x; x; 

Hence, there must be a negative real root and two complex roots with positive real part, i.e. 
- 

x;=x;=a,+ib, with a,>O and x;<O. 

Therefore, the general solution of (21) is of the form 

4.( t )  = c (t)e(*n + i b n ) t  + c2 ( ~ ) ~ ( a .  - ibn)t  +c,(t)exlt. 

Since a,>O, we conclude that q n ( t )  and, therefore, p t , ( t )  cannot be bounded uniformly for 
&[6,  + co) for any 6>0. 
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The above method can be generalized to show that, for any n 2  3, the following system 

cannot be used as an approximation to the linearizaed Navier-Stokes equations. Indeed, 
repeating the process from (18) to (22), we find that the characteristic form of the (n- 1)th-order 
ordinary differential equations corresponding to (23) and (24) is 

E X " f & i X " - l +  1 =o, (25) 

where I 2 0  is an eigenvalue of the Laplacian operator with homogeneous Neumann boundary 
condition. We recall that the n roots xl, x2,  .. . , x, of (25) satisfy, in particular, the following 
relation: 

(26) 
1 

+ - = O .  
1 1  -+-+ ... 

X1 x2 Xn 

It is obvious from (25) that none of the xi)s can be positive real number. We then derive from (26) 
that there exist at  least one pair of conjugate complex roots. Hence, we can arrange x;s as follows: 

( ~ p j - ~ ,  x 2 j ) = ( u , + i b j ,  uj-ibj), j =  1, 2, ... ,k (k2 1) 

and x ~ ~ +  x~~ + , . . . , x, are all negative real numbers. Since 

1 1 2aj -+-=- 
x Z j p l  x2j uj"+b;' 

we derive from (26) that 

Hence, at least one of aj will be positive and, consequently, the solution of (23) and (24) cannot be 
uniformly bounded for t~ [ 6, + co ) for any 6 > 0. 

Remarks 

A similar (and simpler) analysis applied to ( 1 e - 1 1 )  and (12-13) shows them both to be stable. 
It turns out (P. Gresho, personal communication) that, in an independent effort, James A. 

Schutt at Sandia National Laboratory has actually tested the projection-3 scheme on the 
Navier-Stokes equations, and also found it to be unconditionally unstable. 
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