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Abstract. We present in this paper a up-to-date review on the error analysis of

a class of pseudo-compressibility methods and their time discretizations for the un-

steady incompressible Navier-Stokes equations.

1. Introduction. Numerical simulation of the Navier-Stokes equations, being an
essential part of the computational fluid dynamics, plays an important role in nu-
merous scientific and industrial applications of current interest, including aeronau-
tical sciences, meteorology, thermo-hydraulics, petroleum reservoir modeling and
climatology. Although important advances have been made in recent years on both
the hardware (high-performance computing) and software (new algorithms), the nu-
merical simulation of the Navier-Stokes equations remains a challenging problem,
especially when the flow governed by the Navier-Stokes equations exhibits complex
transient or turbulent behaviors. It is clear that improvements in computational
methods will play a major role in advancing our understanding of complex flow
phenomena. The purpose of this paper is to provide a up-to-date review on a class
of pseudo-compressibility method and their time discretizations for the unsteady
incompressible Navier-Stokes equations.
Let Ω ∈ IRd (with d = 2 or 3) be an open bounded set with a sufficiently smooth

boundary. The Navier-Stokes equations governing the motion of an incompressible
viscous fluid inside Ω read:

ut − ν∆u+ (u · ∇)u+∇p = f in Q = Ω× (0, T ],(1.1)

∇ · u = 0 in Q.(1.2)

The unknowns are the velocity u and the pressure p. The system (1.1)-(1.2) should
be completed with an initial condition for the velocity: u|t=0 = u0 and an appro-
priate boundary condition. For the sake of simplicity, we shall consider only the ho-
mogeneous Dirichlet boundary condition for the velocity, i.e. u|∂Ω = 0, ∀ t ∈ [0, T ].
One of the main difficulties in a numerical procedure for approximating the solu-

tion of the Navier-Stokes equations is introduced by the incompressibility constraint
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“∇ · u = 0”, which not only couples the velocity u and the pressure p, but also
requires that the approximation spaces for the velocity and the pressure satisfy the
so called Babuska-Brezzi inf-sup condition. There exists a vast literature on numer-
ical approximations of the Stokes equations and the incompressible Navier-Stokes
equations. Excluding those associated with non primitive-variable formulations,
the numerical methods for incompressible flows can be classified in three categories
according to how the incompressibility constraint is treated:
(i) Using a divergence-free subspace for the velocity approximation (see for instance
[18]): the pressure is then eliminated from the system, resulting in a well-behaved
positive definite discrete system with a significant smaller number of unknowns com-
pared to a coupled formulation. However, the divergence-free subspaces are usually
not easy to construct and they involve in general tedious programming.
(ii) Using a pair of compatible pressure and velocity spaces that satisfy the Babuska-
Brezzi inf-sup condition (cf. [12] and [5] for finite element methods and cf. [7] and
[3] for spectral methods): the resulting discrete system is coupled and indefinite.
How to efficiently solve the resulting discrete system is still a challenging task.
(iii) Relaxing the incompressibility constraint in an appropriate way: a number of
possible approaches are listed below:

∇ · uε + εpε = 0 in Q;(1.3)

∇ · uε + εpε
t = 0 in Q;(1.4)

∇ · uε − ε∆pε = 0 in Q,
∂pε

∂n
|∂Ω = 0;(1.5)

∇ · uε − ε∆pε
t = 0 in Q,

∂pε
t

∂n
|∂Ω = 0.(1.6)

The first three versions are well known while the last one was recently introduced
in [22]. We will refer them as a class of pseudo-compressibility methods for the un-
steady incompressible Navier-Stokes equations. The aim of this paper is to present
some recent analyses on this class of pseudo-compressibility methods as the pertur-
bation parameter ε → 0. An important aspect of this work is the error analysis of
time discretization schemes (they can be employed, in principle, with any consistent
space discretization) associated with the pseudo-compressibility methods.
We describe below some of the notations which will be frequently used in this

paper. We will use bold face letters to denote vector functions and vector spaces, and
standard notations L2(Ω), Hk(Ω) and Hk

0 (Ω) to denote the usual Sobolev spaces.
The norm corresponding to Hk(Ω) will be denoted by ‖ · ‖k. In particular, we will
use ‖·‖ to denote the norm in L2(Ω) and (·, ·) to denote the scalar product in L2(Ω).
To simplify the notation, we shall omit the space variables from the notation, i.e.
v(t) should be considered as a function of t with value in a Sobolev space. We will
use C to denote a generic constant which may depend on the data Ω, ν, f , · · · , but
will be independent of the perturbation parameter ε.
We now introduce some operators associated with the Navier-Stokes equations

and its approximations. We denote B(u,v) = (u · ∇)v. It is an easy matter to
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verify that

(1.7) (B(u,v),v) = 0, ∀u ∈H, v ∈H1
0 (Ω),

where

(1.8) H = {v ∈ L2(Ω) : ∇ · v = 0, v · n|∂Ω = 0}
with n to the unit normal vector at ∂Ω. Following Temam [24], we introduce the
modified bilinear form

B̃(u,v) = (u · ∇)v + 1
2
(∇ · u)v

to deal with a non divergent-free approximation of the Navier-Stokes equations.
Obviously B̃(u,v) = B(u,v) if v ∈ H and more importantly, we have

(1.9) (B̃(u,v),v) = 0, ∀u,v ∈H1
0 (Ω).

We now recall some classical results for the Navier-Stokes equations.

Proposition 1.1. (see for instance [28] and [13]) Given

(1.10) u0 ∈H2(Ω) ∩ V , f ∈ C([0, T ];L2(Ω)),

there exists T0 ≤ T (T0 = T if d = 2) such that the variational formulation of
(1.1)-(1.2) admits a unique solution satisfying

(1.11) ‖u(t)‖2 + ‖ut(t)‖+ ‖p(t)‖1 ≤ C, ∀ t ∈ [0, T0].
Higher regularity for the solution at t = 0 requires that the data Ω, u0 and

f(0) satisfy certain non local compatibility conditions (see [27] and [13]). How-
ever, thanks to the smoothing property of the Navier-Stokes equations, the solution
becomes as smooth as the data allows for t > 0. In particular, we have the following
results which are sufficient for our error analysis.

Proposition 1.2. (see [27] and [13]) In addition to (1.10), we assume that

(1.12) ft ∈ C([0, T ];L2(Ω)),

then

(1.13) t‖ut(t)‖21 +
∫ t

0

s2(‖utt(s)‖2 + ‖ut(s)‖22 + ‖pt(s)‖21)ds ≤ C, ∀ t ∈ (0, T0].

Furthermore, if we have additionally

(1.14) ftt ∈ C([0, T ];L2(Ω)),

then

(1.15) t2‖ut(t)‖22 +
∫ t

0

s3(‖uttt(s)‖2 + ‖utt(s)‖22 + ‖ptt(s)‖21)ds ≤ C, ∀ t ∈ (0, T0].
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2. Penalty Method. The penalty method, in which the incompressibility con-
straint is relaxed by using (1.3), was first used for approximating the Navier-Stokes
equations in [24]. More precisely, we look for (uε, pε) such that

uε
t − ν∆uε + B̃(uε,uε) +∇pε = f in Q,(2.1)

∇ · uε + εpε = 0 in Q, uε(0) = u0.(2.2)

A distinguished feature of the penalty method is that the pressure approximation
pε can be eliminated from the above system. In particular, when applied to the
(linear, steady) Stokes equations, it results in a positive definite system for the
velocity, although severely ill-conditioned when ε ¿ 1. The penalty method has
been used extensively for the approximation of the Stokes equations (see [2], [16]).
As for the unsteady Navier-Stokes equations, a convergence result was proved in
[24] and the following error estimate was recently established in [23].

Theorem 2.1. Assuming (1.10) and (1.12), there exists T1 ≤ T0 (T1 = T if d = 2)
such that

√
t‖u(t)−uε(t)‖+t‖u(t)−uε(t)‖1+

(
∫ t

0

s2‖p(t)− pε(t)‖2ds
)

1

2

≤ Cε, ∀0 < t ≤ T1.

We note that the smoothing property of (2.1)-(2.2) played an important role in
proving the above result.
Let us consider now the time discretization of the penalized system (2.1)-(2.2)

by a backward Euler scheme:

un+1 − un

k
− ν∆un+1 +∇pn+1 + B̃(un,un+1) = f(tn+1),(2.3)

∇ · un+1 + εpn+1 = 0, with u0 = u0,(2.4)

where k is the time step size and tn = nk. Since (2.3)-(2.4) is simply a first-
order time discretization of the penalized system (2.1)-(2.2), using the triangular
inequality

‖u(tn)− un‖ ≤ ‖u(tn)− uε(tn)‖+ ‖uε(tn)− un‖
and the estimate in Theorem 2.1, we can prove (see [23])

Theorem 2.2. Under the assumption of Theorem 2.1, we have

√
tm‖u(tm)− um‖+ tm‖u(tm)− um‖1 +

(

k

m
∑

n=1

t2n‖p(tn)− pn‖2
)

1

2

≤ C(k + ε),

for all 0 < m ≤ T1/k.

In general, when a pth-order (p > 1) time discretization scheme is used instead of
(2.3)-(2.4), it can be shown (with necessary smoothness assumption) that the right
hand side of the estimate in Theorem 2.2 becomes O(kp + ε). Hence, we should
choose ε = O(kp) which results in a severely ill-conditioned linear system.
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3. Artificial Compressibility Method. The artificial compressibility method,
in which the incompressibility constraint is relaxed by using (1.4), was introduced
by Chorin [8] and Temam [26]. We look for (uε, pε) such that

uε
t − ν∆uε + B̃(uε,uε) +∇pε = f in Q,(3.1)

∇ · uε + εpε
t = 0 in Q, uε|∂Ω = 0.(3.2)

A fundamental difficulty associated with this system (compare to the penalized
system (2.1)-(2.2)) is the lack of dissipative mechanism for pε and consequently the
lack of smoothing property at t = 0 (see also [11]). It was proved in [26] (see also
Section 3.8 in [28]) that uε → u in L2(0, T ;H1(Ω)) and ∇ pε → ∇ p in H−1(Q).
But an error estimate requires further regularity or smoothing property at t = 0
which is not available for (3.1)-(3.2). To avoid making non local compatibility
assumptions on the data (see [13]), we consider the system (3.1)-(3.2) for t ≥ t0
(with some t0 > 0) and with the initial conditions uε(t0) = uε

0 and pε(t0) = pε
0.

The following result is proved in [22].

Theorem 3.1. We assume (1.10), (1.12), (1.14) and

(3.3) ‖uε
0 − u(t0)‖ ≤ Cε, ‖pε

0 − p(t0)‖ ≤ C
√
ε.

Then there exists T2 ≤ T0 (T2 = T if d = 2) such that

‖u(t)−uε(t)‖+
(
∫ t

t0

‖u(s)− uε(s)‖21ds
)

1

2

+
√
ε‖p(t)− pε(t)‖ ≤ Cε, ∀ t ∈ [t0, T2].

We observe from Theorems 2.1 and 3.1 that as an approximation to the Navier-
Stokes equations in term of the perturbation parameter ε, the system (3.1)-(3.2)
offers no improvement over the penalized system (2.1)-(2.2). However, the results
below indicate that time discretizations of (3.1)-(3.2) lead to substantially better
conditioned linear systems than those of (2.1)-(2.2). In fact, let us consider for
instance a first-order scheme for (3.1)-(3.2):

un+1 − un

k
− ν∆un+1 + B̃(un,un+1) +∇pn+1 = f(tn+1),(3.4)

∇ · un+1 + ε
pn+1 − pn

k
= 0,(3.5)

with the initial conditions: u0 = uε
0, p0 = pε

0. Similar to (2.3)-(2.4), at each
time step pn+1 can be eliminated from the above system to obtain a linear system
for un+1 only. However, the condition number of (3.4)-(3.5) is related to k

ε
and is

considerably smaller than the condition number for (2.3)-(2.4) which is related to
1
ε
. The following error estimates (see [23]) hold.
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Theorem 3.2. Under the assumptions of Theorem 3.1, we have

‖u(tm)− um‖+
(

k
m
∑

n=0

‖u(tn)− un‖21

)
1

2

+
√
ε‖p(tm)− pm‖ ≤ C(k + ε),

for all 0 < m ≤ (T2 − t0)/k.

It can also be shown that for a pth-order time discretization of (3.1)-(3.2), the
right hand side of the estimate in Theorem 3.2 become C(kp + ε). Thus, with
the same accuracy requirement, time discretizations of the artificial compressibility
method always lead to better conditioned linear systems than those of the penalty
method.
In addition to the ill-conditioning, another difficulty associated with (2.3)-(2.4)

or (3.4)-(3.5) is that different components of the velocity un+1 are coupled together
and there is no direct fast method available for solving this coupled system for un+1.

4. Pressure Stabilization Method and First-order Projection Method. The
projection method was introduced by Chorin [9] and Temam [25] to decouple the
computation of the pressure and the velocity. A semi-discretized version of the
classical projection method can be written as follows:

ũn+1 − un

k
− ν∆ũn+1 +B(un, ũn+1) = f(tn+1),(4.1)

un+1 − ũn+1

k
+∇pn+1 = 0,(4.2)

∇ · un+1 = 0, un+1 · n|∂Ω = 0.

The numerical efficiency of the scheme (4.1)-(4.2) is evident, since different com-
ponents of the velocity un+1 and the pressure pn+1 are totally decoupled. In fact,
applying the divergence operator to the first equation in (4.2), we find that (4.2) is
equivalent to a Poisson equation for pn+1 with homogeneous Neumann boundary
condition. Furthermore, if we treat the nonlinear term in (4.1) explicitly, then (4.1)
reduces to a vector Helmholtz equation for un+1. The convergence of the scheme
(4.1)-(4.2) was established in [25], while a first rigorous error estimate was provided
in [19].
The pressure stabilization method, in which the incompressibility constraint is

relaxed by using (1.5), was first introduced in [6] for the approximation of the Stokes
equations. It results in a positive definite (though usually non-symmetric) linear
coupled system for almost any type of discretization. In particular, it allows the
use of convenient equal-order approximations for the velocity and the pressure (see
for instance [4] and [14]).
It is interesting to observe that {un} in (4.1)-(4.2) can be eliminated to obtain

a system for (ũn, pn) only. In fact, taking the sum of (4.1) at step n and (4.2) at
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step n− 1, and taking the divergence of (4.2), we obtain

ũn+1 − ũn

k
− ν∆ũn+1 +B(un, ũn+1) +∇pn = fn+1,(4.3)

∇ · ũn+1 − k∆pn+1 = 0,
∂pn+1

∂n
|∂Ω = 0,(4.4)

where P is the orthogonal projector in L2(Ω) onto H (see the definition (1.8)).
Hence, we can interpret (4.3)-(4.4) as a decoupled first-order time discretization for
the following pressure stabilization method with ε = k (see [17] and [20]):

uε
t − ν∆uε + B̃(uε,uε) +∇pε = f in Q, uε|t=0 = u0,(4.5)

∇ · uε − ε∆ pε = 0 in Q,
∂pε

∂n
|∂Ω = 0.(4.6)

Hence, the error behavior of the projection method (4.1)-(4.2) is dictated by that
of (4.5)-(4.6). The following results were proved in [17] (see also [20]).

Theorem 4.1. Assuming (1.10) and (1.12), there exists T3 ≤ T0 (T3 = T if d = 2)
such that

√
t‖u(t)− uε(t)‖1 + t‖p(t)− pε(t)‖ ≤ C

√
ε, ∀ 0 ≤ t ≤ T3,

√
t‖u(t)− uε(t)‖ ≤ Cε, ∀ 0 ≤ t ≤ T3.

Theorem 4.2. Let (un, ũn, pn) be the solution of (4.1)-(4.2) and let (u, p) be the
solution of (1.1)-(1.2). Under the assumption of Theorem 4.1, we have

√
tn(‖u(tn)− ũn‖1 + ‖u(tn)− un‖1) +

√
tn‖p(tn)− pn‖ ≤ C

√
k,

√
tn(‖u(tn)− ũn‖+ ‖u(tn)− un‖) ≤ Ck,

for all 0 ≤ n ≤ T3/k.

Unfortunately, any decoupled time discretization scheme of (4.5)-(4.6) will be
unstable if ε = O(kp) with any p > 1. Thus, a decoupled higher-order scheme
for (4.5)-(4.6) will not yield a higher-order accuracy for the approximation of the
Navier-Stokes equations due to the perturbation error of order ε = O(k) in Theorem
4.1.

5. A New Pseudo-compressibility Method and Second-order Projection
Method. Let us consider the following second-order projection scheme (see [15]
and [1] for similar schemes):

(5.1)



















ũn+1 − un

k
− ν

2
∆(ũn+1 + un) + B̃(

ũn+1 + un

2
,
ũn+1 + un

2
)

+∇pn = f(tn+ 1

2

),

(ũn+1 + un)|∂Ω = 0,
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(5.2)







un+1 − ũn+1

k
+
1

2
∇(pn+1 − pn) = 0,

∇ · un+1 = 0, un+1 · n|∂Ω = 0.

As we did for the first-order scheme (4.1)-(4.2), we can eliminate {un} from (5.1)-
(5.2) to form the following system for (ũn, pn):

(5.3)























ũn+1 − ũn

k
− ν

2
∆(ũn+1 + P ũn) + B̃(

ũn+1 + P ũn

2
,
ũn+1 + P ũn

2
)

1

2
∇(3pn − pn−1) = f(tn+ 1

2

),

(ũn+1 + P ũn)|∂Ω = 0.

(5.4) ∇ · ũn+1 − 1
2
k∆(pn+1 − pn) = 0,

∂pn+1

∂n
|∂Ω =

∂pn

∂n
|∂Ω.

The above system can be interpreted in particular as a second-order time discretiza-
tion of the following new pseudo-compressibility method:

uε
t − ν∆uε + B̃(uε,uε) +∇pε = f ,(5.5)

divuε − ε∆ pε
t = 0,

∂pε
t

∂n
|∂Ω = 0,(5.6)

with ε = 1
2
k2 (compare to ε = k in the previous section).

Similar to the artificial compressibility method (3.1)-(3.2), there is neither dissi-
pative mechanism for pε nor smoothing effect at t = 0. An error estimate which is
valid as ε→ 0 is only possible provided with further regularities which involve non
local compatibility assumptions on the data. Therefore, we consider (5.5)-(5.6) only
for t ≥ t0 for some t0 > 0 and with the initial conditions uε|t=0 = uε

0, p
ε|t=0 = pε

0.
The following result was established in [22].

Theorem 5.1. We assume (1.10), (1.12), (1.14) and that

(5.7) ‖u(t0)− uε
0‖ ≤ Cε, ‖p(t0)− pε

0‖1 ≤ C
√
ε.

Then there exist T4 ≤ T0 (T4 = T0 if d = 2) such that

‖u(t)− uε(t)‖1 + ‖p(t)− pε(t)‖ ≤ C
√
ε, ∀ t ∈ (t0, T4],

(
∫ t

t0

‖u(s)− uε(s)‖2ds
)

1

2

≤ Cε, ∀ t ∈ (t0, T4].

We also have the following results for the projection scheme (5.1)-(5.2) (see [21],
see also [10] for a similar result):
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Theorem 5.2. Let (un, ũn, pn) be the solution of (5.1)-(5.2) and let (u, p) be the
solution of (1.1)-(1.2). Under the assumption of Theorem 5.1, we have

‖u(tm)− um‖1 + ‖u(tm)− ũm‖1 + ‖p(tm)− pm‖ ≤ Ck, ∀ 1 ≤ m ≤ T4 − t0
k

,

{

k

m
∑

n=1

(‖u(tn)− un‖2 + ‖u(tn)− ũn‖2)
}

1

2

≤ Ck2, ∀ 1 ≤ m ≤ T4 − t0
k

.

We observe from Theorems 4.1 and 5.1 that as an approximation to the Navier-
Stokes equation, (5.5)-(5.6) is no better than the pressure stabilization method
(4.5)-(4.6). However, as Theorem 5.2 indicates, the decoupled time discretization
(5.3)-(5.4) for (5.5)-(5.6) is of second-order accurate for the velocity, while any
decoupled time discretization of (4.5)-(4.6) is at best of first-order. It is worthwhile
to note that a decoupled time discretization of (5.5)-(5.6) can be at best of second-
order due to the perturbation error ε = O(k2), since it will be unstable if ε = O(kp)
with any p > 2.

6. Concluding remarks. Based on the error analysis presented above, we con-
clude with the following remarks:
(i) The penalty method (2.1)-(2.2) (resp. the pressure stabilization method (4.5)-
(4.6)) is a slightly better approximation, in term of the perturbation parameter
ε, to the Navier-Stokes equations than the artificial compressibility method (3.1)-
(3.2) (resp. the new pseudo-compressibility method (5.5)-(5.6)). However, time
discretizations of (3.1)-(3.2) (resp. (5.5)-(5.6)) results in substantially better nu-
merical schemes than those of (2.1)-(2.2) (resp. (4.5)-(4.6)).
(ii) All numerical schemes based on pseudo-compressibility methods decouple the
computation of the pressure and the velocity, and they result in positive definite
systems at each time step. In addition, the Babuska-Brezzi inf-sup condition be-
tween the pressure space and the velocity space is not required. Hence, they are
more efficient and more flexible than solving the coupled indefinite systems.
(iii) The projection schemes, which can be interpreted as decoupled time discretiza-
tions of (4.5)-(4.6) or (5.5)-(5.6), decouple a generalized Stokes system to a vector
Helmholtz equation for the velocity and a Poisson equation for the pressure. They
are more efficient (but slightly less accurate) than the schemes based on (2.1)-(2.2)
or (3.1)-(3.2), especially when fast Poisson solvers are available.
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24. R. TEMAM, Une méthode d’approximation des solutions des équations de
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