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Abstract Two efficient spectral-element methods, based on Legendre and Laguerre
polynomials respectively, are derived for direct approximation of the electronic
Schrödinger equation in one spatial dimension. A spectral-element approach is used
to treat the singularity in nucleus-electron Coulomb potential, and with the help of
Slater determinant, special basis functions are constructed to obey the antisymmetric
property of the fermionic wavefunctions. Numerical tests are presented to show the
efficiency and accuracy of the proposed methods.
Key words spectral methods, electronic Schrödinger equation, sparse grids, Slater
determinant, Coulomb potential.

1 Introduction

In this article we consider the electronic Schrödinger equation (ESE) in one spatial
dimension

HΨ(x) = EΨ(x), (1)

with the Hamiltonian operator

H = T +Vne +Vee, (2)
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where the kinetic energy T , nucleus-electron potential Vne and electron-electron
potential Vee operators are

T =−1
2

N

∑
i=1

∂
2
xi
, Vne = N

N

∑
i=1
|xi|, Vee =−

N

∑
i=1

∑
j>i
|xi− x j|. (3)

Here N denotes the number of electrons in this system, xi ∈ R the position of the i-th
electron, and the solution Ψ(x), with x = (x1, · · · ,xN), describes the wave function
associated to the total energy E, and satisfies the boundary condition

Ψ(x1,x2, · · · ,xN)→ 0, as |x j| → ∞, j = 1, · · · ,N. (4)

The electronic Schrödinger equation, in three spatial dimension, results from
Born-Oppenheimer approximation to the general Schrödinger equation for a system
of electrons and nuclei, which is one of the core problems in computational quantum
chemistry [23, 13, 5]. However, except for very simple cases, there is no analytical
solution available. Hence, it is essential to develop efficient and accurate numerical
algorithms for this problem. While most applications of the ESE are in three spatial
dimension, the one-dimensional formulation above does inherits some essential
features, such as high-dimensionality and singular behavior, of the three dimensional
case. Hence, developing a solver in one dimension is an important preliminary and
calibrating step that serves as a prototype for solving the ESE in two or three spatial
dimensions.

There are several major difficulties for solving the ESE (1). We summarize them
below and describe our strategies.

(i) It is an N dimensional problem so it suffers from the so-called curse of di-
mensionality if classical numerical methods are employed. Therefore, various
model approximations have been developed in quantum chemistry to reduced
the computational complexity. We intend to discretize the ESE directly using
sparse grids [3] which have proven to be useful for a class of high-dimensional
problems, including in particular the ESE [25, 26]. For example, M. Griebel and
J. Hamaekers proposed sparse grid methods for ESE based on Meyer wavelets
[7], Fourier functions [8], adaptive Gaussian type orbitals basis sets [9]. On the
other hand, we propose to use spectral sparse grid methods based on hyperbolic
cross approximations [19, 21, 22, 20] .

(ii) The singularities of the Coulomb potentials shown in (3), called “Coulomb
singularity” or “Kato cusp condition” [6, 12], deteriorate the convergence
rates of global spectral methods. In order to treat the singularity in Vne more
effectively, we propose a spectral element framework to design basis functions
which provide better approximations to the singularity.

(iii) The wave function Ψ(x) has the additional constraint that it must be antisym-
metric under exchange of variables, according to Pauli exclusion principle.
We shall construct, using the antisymmetrizer and Slater determinant, basis
functions which obey the antisymmetric property. We also propose an efficient
implementation of inner products with respect to antisymmetric functions.
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In our previous attempt for solving ESE [22], we used a global spectral method
whose convergence rate is severely affected by the Coulomb singularity, and we did
not enforce the antisymmetry so it resulted in a much larger number of unknowns
than actually needed by the physical problem. The main purpose of this paper is to
develop efficient procedures to address these two issues.

The rest of the paper is organized as follows. In Sections 2 and 3, we propose
two kinds of efficient spectral Galerkin methods based on Legendre and Laguerre
polynomials respectively, including the basis functions for one or many electrons,
full or sparse grids, and with or without the antisymmetric property. In Section 4,
we present numerical results to illustrate the convergence of our methods for ESE
calculations. Finally, some conclusions and possible directions for future research
are presented in Section 5.

2 A spectral-element method for ESE

In this and next sections, we develop a spectral-element framework to discretize
the ESE (1). First, we focus on the set of basis functions for one electron case.
Then, we demonstrate the strategies for dealing with high dimensional problems
and antisymmetric functions. In addition, we also briefly show how to generate
the matrices required in Galerkin methods efficiently, involving mass, stiffness and
various potential matrices.

2.1 One electron case

As a starting point, let us focus on the case with N = 1 in Eq. (1),
− 1

2
Ψ
′′(x)+ |x|Ψ(x) = EΨ(x), x ∈ R,

lim
x→±∞

Ψ(x) = 0.
(5)

Let ξ be a truncation parameter. After a truncation from the unbounded interval
(−∞,+∞) to bounded one [−2ξ ,2ξ ],ξ > 0, and further a linear map from general
interval [−2ξ ,2ξ ] to standard one [−2,2], we arrive at −

1
2ξ 2Ψ̃

′′(x)+ξ |x|Ψ̃(x) = EΨ̃(x), x ∈ [−2,2],

Ψ̃(±2) = 0.
(6)
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Galerkin formulation

Let Xn be an approximation space and ω be the weight function. The spectral Galerkin
method for the problems (5) or (6) can all be casted in the following form: Find
un ∈ Xn such that

c1 〈∂xun,∂x(φnω)〉+ c2 〈|x|un,φn〉ω = λ 〈un,φn〉ω , ∀φn ∈ Xn. (7)

Note that c1 =
1
2 ,c2 = 1 for problem (5), c1 =

1
2ξ 2 ,c2 = ξ for problem (6), and λ

is the numerical estimate of E.
Let {φk}n

k=−n be a set of basis functions for Xn. We denote

un(x) =
n

∑
k=−n

ûkφk(x), u = (û−n, · · · , ûn)
T , (8)

slk = 〈φ ′k,(φlω)′〉, S = (slk)−n≤l,k≤n, (9)
mlk = 〈φk,φl〉ω , M = (mlk)−n≤l,k≤n, (10)
pne

lk = 〈|x|φl ,φk〉ω , Pne = (pne
lk )−n≤l,k≤n. (11)

Thus, the Galerkin formulation (7) yields the following generalized eigenvalue
problem

(c1S+ c2Pne)u = λMu, (12)

where λ is the eigenvalue and u is the corresponding eigenvector.

Basis functions

In classical spectral-Galerkin approach, Hermite functions are often served as the
basis functions for the problem defined on the whole line [10, 18] while Legendre
or Chebyshev polynomials are frequently used for the problem in bounded intervals
[14, 15]. However, the nucleus-electron potential Vne = |x| in Eq. (5) and Eq. (6)
is not differentiable at the origin. Thus, the convergence rates are rather limited if
classical spectral methods are employed here. Therefore, we split the interval at the
origin into two subintervals, and use a spectral-element method [4] to deal with the
singularity at the origin. The basis functions for the (two-elements) spectral-element
methods are as follows:

(i) For the problem (6) in bounded domain [−2,2], the function space Xb
n =

span {φ b
k : k =−n, · · · ,n}, the weight ω = 1, and the basis functions {φ b

k }n
k=−n

for one electron are chosen as

φ
b
k (x) =


Lk−1(x−1)−Lk+1(x−1), k > 0, x ∈ [0,2],
2−|x|, k = 0, x ∈ [−2,2],
L|k|−1(|x|−1)−L|k|+1(|x|−1), k < 0, x ∈ [−2,0],

(13)
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(i) Legendre basis in bounded domain (ii) Laguerre basis in unbounded domain

Fig. 1 First few basis functions for one electron case: Legendre and Laguerre basis sets.

where Lk(x),x∈ [−1,1], is the Legendre polynomial of degree k. By the property
of Legendre polynomials, we know that

φ
b
k (0) = φ

b
k (2) = 0, k > 0,

φ
b
0 (0) = 1, φ

b
0 (±2) = 0, k = 0,

φ
b
k (−2) = φ

b
k (0) = 0, k < 0.

If the basis functions {φk} in Eq. (7) are chosen as φk(x) = φ b
k (x), then by

using the properties of Legendre polynomials [17], the stiffness, mass and
potential matrices defined in (9), (10) and (11) are diagonal, penta-diagonal
and seven-diagonal matrices, respectively, and can be computed explicitly.

(ii) For the problem (5) in unbounded domain (−∞,+∞), the function space Xu
n =

span {φ u
k : k =−n, · · · ,n}, the weight ω = 1, and the basis functions {φ u

k }n
k=−n

for one electron are chosen as

φ
u
k (x) =


L̂k(x)− L̂k−1(x), k > 0, x ∈ [0,+∞),

e−|x|/2, k = 0,x ∈ (−∞,+∞),

L̂|k|(|x|)− L̂|k|−1(|x|), k < 0, x ∈ (−∞,0],

(14)

where L̂k(x),x ∈ [0,+∞), is the Laguerre function of degree k. By the property
of the Laguerre functions, we know that

φ
u
k (0) = 0, k 6= 0,

φ
u
0 (0) = 1, k = 0,

lim
x→∞

φ
u
k (x) = lim

x→−∞
φ

u
k (x) = 0, ∀k.
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If the basis functions {φk} in Eq. (7) are chosen as φk(x) = φ u
k (x), then by

using the properties of Laguerre polynomials [17], the stiffness, mass and
potential matrices defined in (9), (10) and (11) are tri-diagonal, tri-diagonal
and penta-diagonal matrices, respectively, and can be computed explicitly.

A few basis functions {φ b
k (x)} and {φ u

k (x)} for k =−3,−2,−1,0,1,2,3 defined
above are illustrated in Figure 1.

2.2 N-electron case

We first introduce some notations:

• For N ∈ N, we use boldface lowercase letters to denote N-dimensional multi-
indices and vectors, e.g., k = (k1, · · · ,kN) ∈ ZN . Besides, we need following
norms: |k|1 = ∑

N
j=1 |k j|, |k|∞ = max1≤ j≤N |k j|, |k|mix = ∏

N
j=1 max{1, |k j|}. Note

that |k|mix ≥ 1 for all k ∈ ZN .
• Λ ⊂ ZN is the set of indices and |Λ | means its cardinality.

Now let us consider the ESE for the system with N electrons.
− 1

2

N

∑
i=1

∂
2
xi

Ψ +N
N

∑
i=1
|xi|Ψ −

N

∑
i=1

∑
j>i
|xi− x j|Ψ = EΨ , x ∈ RN ,

lim
x j→±∞

Ψ(x) = 0, ∀ j = 1,2, · · ·N.

(15)

Similarly as in the one electron case, after truncation and linear mapping, the
problem in the unbounded domain is equivalent to the following in a bounded domain: −

1
2ξ 2

N

∑
i=1

∂
2
xi

Ψ +Nξ

N

∑
i=1
|xi|Ψ −ξ

N

∑
i=1

∑
j>i
|xi− x j|ψ = EΨ , x ∈Ω ,

Ψ(x)|∂Ω = 0,

(16)

where Ω = [−2,2]N .

Galerkin formulation

Similarly as in previous subsection, let Xn be the approximation space. The spectral
Galerkin method for the problems (15) or (16) can all be casted in the following
form: Find un ∈ Xn such that ∀Φn ∈ Xn,

c1

N

∑
j=1

〈
∂x j un,∂x j Φn

〉
+c2

〈
N

∑
j=1
|x j|un,Φn

〉
+c3

〈
N

∑
i=1

∑
j>i
|xi− x j|un,Φn

〉
= λ 〈un,Φn〉 , .

(17)
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Note that for problem (15), c1 =
1
2 ,c2 = N,c3 = −1 while for problem (16), c1 =

1
2ξ 2 ,c2 = Nξ ,c3 =−ξ . λ , to be solved, is an approximation of E in Xn.

Let {Φk}k∈Λ be a set of basis functions for Xn, where Λ is the set of indices to be
determined. We denote

uk(x) = ∑
k∈Λ

ûkΦk(x), u = vec(ûk)k∈Λ
, (18)

sl̂,k̂ =
N

∑
j=1
〈∂ jΦk,∂ jΦl〉, S = (sl̂,k̂), (19)

ml̂,k̂ = 〈Φk,Φl〉, M = (ml̂,k̂), (20)

pne
l̂,k̂ = 〈

N

∑
j=1
|x j|Φk,Φl〉, Pne = (pne

l̂,k̂), (21)

pee
l̂,k̂ = 〈

N

∑
i=1

∑
j>i
|xi− x j|Φk,Φl〉, Pee = (pee

l̂,k̂). (22)

where k̂ is the corresponding order of k = (k1, · · · ,kN) in the set Λ and u =
vec(ûk)k∈Λ

is a column vector with entries {ûk}k∈Λ . Suppose the cardinality of
the set Λ be |Λ |, then u defined in (18) is a |Λ |-by-1 column vector and the matrices
defined in (19), (20), (21) and (22) are |Λ |-by-|Λ | square matrices.

Thus, the Galerkin formulation (17) gives the following generalized eigenvalue
problem

(c1S+ c2Pne + c3Pee)u = λMu, (23)

where λ is the eigenvalue and u is the corresponding eigenvector.

Full grid and sparse grid

The classical tensor-product basis function in N-dimensional space is

Φk(x) =
N

∏
j=1

φk j(x j), (24)

where k = (k1,k2, · · · ,kN) ∈ ZN ,x = (x1,x2, · · · ,xN) ∈ RN , and φk j(x j) is the one-
dimensional basis function considered in previous subsection, e.g. {φ b

k (x)} defined
in (13) or {φ u

k (x)} defined in (14).
The approximation space in N-dimensional space is

XN
n = span {Φk(x) : k ∈Λn}, n ∈ N.

For different set of indices Λ , we have different space.

• The set of indices for full grid is
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Λ
F
n = {k ∈ ZN : |k|∞ ≤ n}, n ∈ N. (25)

• The set of indices for sparse grid of hyperbolic cross type is

Λ
S
n = {k ∈ ZN : |k|∞ ≤ n,1≤ |k|mix ≤ n}, n ∈ N. (26)

Here are several remarks on the spectral-element basis function sets we use.

• The electronic eigenfunctions are proved to decay exponentially as the spatial
variable goes to infinity in the sense that there exist positive constants A and B for
which |φ(x)| ≤ Ae−B‖x‖. (see Ref [1].) Hence, in the Legendre spectral method,
the error caused by restriction from unbounded domain to bounded one would
also be exponentially convergent as the parameter L goes to the infinity.

• The idea of spectal-element method to treat the nuclei-electron cusps could be
easily generalized to the case with several nuclei. See Figure 2 for two nuclei
case.

• For ESE in three spatial dimension, it is known that the sparse grids based on
hyperbolic cross fit the smoothness property of the eigenfunctions [3, 25, 26].
However, for the ESE in one spatial dimension considered in this paper, there are
no theoretical results available in the literature. In Section 4, we will compare the
numerical results obtained from full grids (25) and sparse grids (26).
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Fig. 2 Legendre and Laguerre basis sets for two nuclei case

3 Antisymmetry and antisymmetric inner product

The electronic wavefunction Ψ(x) for many body system must be antisymmetric
with respect to electron positions x = (x1, · · · ,xN), i.e.
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Ψ(x1, · · · ,xi, · · · ,x j, · · · ,xN) =−Ψ(x1, · · · ,x j, · · · ,xi, · · · ,xN). (27)

It is obvious that Φk(x) defined in (24) does not obey the antisymmetric property. A
main difficulty is how to construct basis functions which satisfy the antisymmetry,
and how to efficiently compute the inner products between them.

3.1 Antisymmetrizer and Slater determinant

In order to enforce antisymmetry, we introduce a linear operator called antisym-
metrizer [11], also called skew symmetrization or alternation, which is defined by

A =
1

N! ∑
p∈SN

(−1)pP, (28)

where SN is the permutation group on N elements. For the element p ∈ SN , the
operator P acts on a function by permuting its variables, as PΨ(γ1,γ2, · · ·) =
Ψ(γp(1),γp(2), · · ·). The sign (−1)p is −1 if p is an odd permutation and 1 if it is
even. Applying A to the function Φk(x) defined in (24) leads to the antisymmetric
basis ΦA

k (x) expressed as a Slater determinant:

Φ
A
k (x) :=A Φk(x)

=
1

N!

∣∣∣∣∣∣∣∣
φk1(x1) φk1(x2) · · · · · · φk1(xN)
φk2(x1) φk2(x2) · · · · · · φk2(xN)
· · · · · · · · · · · · · · ·

φkN (x1) φkN (x2) · · · · · · φkN (xN)

∣∣∣∣∣∣∣∣ . (29)

It is easy to check that the basis function ΦA
k (x) satisfies the antisymmetric property

(27). Besides, if ki = k j, then the determinant in Eq.(29) would be zero. Thus, the set
of indices for antisymmetric basis {ΦA

k (x)}k∈Λ A
n

should be

Λ
A
n = {k ∈ ZN : |k|∞ ≤ n,k1 < k2 < · · ·< kN}, n ∈ N. (30)

It implies that the cardinality of antisymmetric basis set is about 1
N! times of the

regular one.
Now we have four kinds of grids, namely full grid (‘F’), sparse grid (‘S’), full grid

with antisymmetric property (‘FA’) and sparse grid with antisymmetric property (‘SA’
). The cardinality of them are shown in the Table 1 and sketch for two dimensional
case are shown Figure 3.
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Table 1 Four kinds of grids for N-dimensional problems

Grids Set of indices Cardinalitya

‘F’ Λ F
n (2n+1)N

‘FA’ Λ F
n ∩Λ A

n
(2n+1)N

N!
‘S’ Λ S

n O
(
(2n+1) logN−1(2n+1)

)
‘SA’ Λ S

n ∩Λ A
n O

(
(2n+1) logN−1(2n+1)

N!

)
a The cardinality of hyperbolic cross sparse grids can be found in [19].
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Fig. 3 Full/sparse grids without/with antisymmetric property: two dimensional case

3.2 Antisymmetric inner product and Löwdin’s rule

One of the main difficulties in implementation of spectral type methods based on
antisymmetric grids (‘FA’ and ‘SA’) is the calculation of inner products between two
Slater determinants. In this subsection, we briefly show how to compute the entries in
the matrices S,M,Pne and Pee defined in (19)-(22) with respect to the antisymmetric
basis functions {ΦA

k (x)}k∈Λ A
n

.

• For the mass matrix M, we need to construct the following auxiliary matrix

M̃k,l =

〈φk1 ,φl1〉 · · · 〈φk1 ,φlN 〉
...

. . .
...

〈φkN ,φl1〉 · · · 〈φkN ,φlN 〉

 ∀ k, l ∈Λ
A
n . (31)
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Then each entry of M can be computed as

〈ΦA
k ,Φ

A
l 〉=

1
N!

det(M̃k,l), (32)

which is the so called Löwdin’s rule [11]. Note that the matrix M̃k,l defined above
is a submatrix of the one-dimensional mass matrix M defined in (10), either
tri-diagonal one in Laguerre case or penta-diagonal one in Legendre case, so
its determinant can be computed efficiently. The denominator N! need never be
computed, since it will occur in every term in our equations and so cancels.

• For the stiffness matrix S and nucleus-electron potential matrix Pne, we need to
construct the following auxiliary matrices

S̃k,l,i =

〈φk1 ,φl1〉 · · · 〈φ ′k1
,φ ′li〉 · · · 〈φk1 ,φlN 〉

... · · ·
... · · ·

...
〈φkN ,φl1〉 · · · 〈φ ′kN

,φ ′li〉 · · · 〈φkN ,φlN 〉

 ,

P̃ne
k,l,i =

〈φk1 ,φl1〉 · · · 〈|x|φk1 ,φli〉 · · · 〈φk1 ,φlN 〉
... · · ·

... · · ·
...

〈φkN ,φl1〉 · · · 〈|x|φkN ,φli〉 · · · 〈φkN ,φlN 〉

 .

for each k, l ∈Λ A
n . Then each entry of S and Pne can be computed as

N

∑
i=1
〈∂x1Φ

A
k ,∂xiΦ

A
l 〉 =

1
N!

N

∑
i=1

det(S̃k,l,i), (33)

N

∑
i=1
〈|xi|ΦA

k ,Φ
A
l 〉 =

1
N!

N

∑
i=1

det(P̃ne
k,l,i). (34)

• For the electron-electron interaction potential matrix Pee, we use the methodology
proposed by G.Beylkin [2]. To show the idea, we need more notations.

Φk(x) =
N

∏
i=1

φki(xi), Φk(x) =


φk1(x1)
φk2(x2)
· · ·

φkN (xN)

 , (35)

Φl(x) =
N

∏
i=1

φli(xi), Φl(x) =


φl1(x1)
φl2(x2)
· · ·

φlN (xN)

 , (36)

Θk,l = M̃−1
k,l Φk :=


θ1(x1)
θ2(x2)
· · ·

θN(xN)

 . (37)
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Then the electron-electron inner products can be computed by

〈
N

∑
i=1

∑
j>i

W (xi,x j)Φ
A
k ,Φ

A
l 〉=

det(M̃k,l)

2N! ∑
i 6= j

∫
W (xi,x j)Φli(xi)Φl j(x j)det(Θi, j

k,l)dxidx j,

(38)
where the weight W (xi,x j) = |xi− x j| and

Θ
i, j
k,l =

(
θi(xi) θi(x j)
θ j(xi) θ j(x j)

)
.

The formula (38) should be very efficient for large N. However, for many cases,
the matrix M̃ is singular, that is to say we need to redefine the Θk,l in (37) and
det(M̃). The detailed discussion can be found in [2]. We omit the details here for
simplicity.
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Fig. 4 Mass/stiffness matrices for Legendre basis in full/sparse antisymmetric grids: N = 4,n = 8

The mass and stiffness and matrices M,S based on antisymmetric Legendre and
Laguerre bases for 4 electrons with n = 8 are shown in Figures 4-5. All of this
matrices are symmetric and positive definite.
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Fig. 5 Mass/stiffness matrices for Laguerre basis in full/sparse antisymmetric grids: N = 4,n = 8

4 Numerical results

It is well known that the performance of spectral methods in unbounded domains can
be significantly enhanced by choosing a proper truncation or scaling parameter such
that the extreme collocation points are at or close to the endpoints of the effective
interval (outside of which the solution is essentially zero). For the mapped Legendre
method, the scaling parameter is the parameter ξ in Eq. (6). For the Laguerre method,
one usually needs to determine a suitable scaling parameter ζ [24, 16] and then make
a coordinate transform y = x/ζ . That is to say the basis function for problem (5)
should be chosen as

φ
u
k,ζ (x) := φ

u
k (x/ζ ), ζ > 0, (39)

where φ u
k is defined in (14).

We apply the efficient spectral methods proposed in the previous section to the
ESE (1). More precisely, the methods used in this section are

• Antisymmetric full grids based on Legendre basis (‘Leg-FA’) with parameters ξ

and Laguerre basis (‘Lag-FA’) with parameters ζ ;
• Antisymmetric sparse grids based on Legendre basis (‘Leg-SA’) with parameters

ξ and Laguerre basis (‘Lag-SA’) with parameters ζ .

Besides, we make the following notations: DoF means the total number of degrees
of freedom; E is the first eigenvalue and ∆E denotes the relative difference between
the two successive values of E.
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The numerical results for N = 1 are shown in Tables 2-3. The exponential rates
of convergence could be observed both in Legendre and Laguerre basis, since the
singularity in the Vne has been taken care of (However, this exponential convergence
does not extend to the more electron cases, see below). Further, the best choice for
parameters is ξ = 4 and ζ = 0.1 for N = 1. Note that the Legendre method with
ξ = 2 has a faster convergence rate than Legendre methods with larger ξ values,
but it converges to an energy that is too far from the exact one. In Figure 6, we plot
the convergence curves of our Legendre and Laguerre methods together with the
results of ‘Fourier’ method (hyperbolic cross sparse grid method based on Fourier
basis, proposed in [8]). The significant advantages of the bases proposed here over
the Fourier bases demonstrates the importance of handling the nucleus-electron
singularity. From Figure 6, we also see that the Laguerre method is more sensitive
to the scaling parameter than the Legendre method, although that an optimal scaled
Laguerre method seems gives better solution than Legendre method.

The numerical results of ‘Leg-FA’, ‘Lag-FA’, ‘Leg-SA’ and ‘Lag-SA’ for N =
2,4,6,8 are shown in Tables 4-7 respectively. We see that the advantages of sparse
grids over full grids is not significant for small N (N ≤ 4). The reason might be
that the sparse grids based on hyperbolic cross allow to treat the nucleus-electron
cusps properly which are aligned to the particle coordinate axes of the system while
does not fit well to the “diagonal” directions of the electron-electron cusps. However
the sparse grids based on hyperbolic cross for six and eight dimensional case do
give better results that the full grid cases. We observe also that carefully choice
of parameters ξ and ζ is needed to obtain a decent accuracy for E. As showed in
the one-dimensional case, the Legendre method is not very sensitive to the scaling
parameter comparing to the Laguerre method. The results show that all our numerical
methods have monotonic convergence property, which might be used to determine
optimal scaling in practice through multiple runs.

As a comparison with published results using a Fourier method in [8], we list in
Table 8 our results with the “best” parameters and the corresponding results in [8].
We observe that our method gives much better results with significant less number of
unknowns.

Table 2 First eigenvalues: Legendre basis for N = 1.

DoF ξ = 2 ξ = 4 ξ = 6 ξ = 8
E ∆E E ∆E E ∆E E ∆E

9 0.80898847 0.85120259 0.88298404 0.88823511
17 0.80862555 4.49e-04 0.80875522 4.24e-02 0.80937787 9.09e-02 0.82066506 6.76e-02
25 0.80862554 8.19e-09 0.80861663 1.39e-04 0.80863141 9.23e-04 0.80885868 1.18e-02
33 0.80862554 6.97e-13 0.80861652 1.17e-07 0.80861657 1.84e-05 0.80861710 2.42e-04
41 0.80862554 2.06e-15 0.80861652 3.57e-11 0.80861652 6.61e-08 0.80861652 5.82e-07
49 0.80862554 2.75e-16 0.80861652 3.44e-15 0.80861652 7.90e-11 0.80861652 2.48e-09
57 0.80862554 1.37e-16 0.80861652 5.55e-16 0.80861652 4.39e-14 0.80861652 1.69e-11
65 0.80862554 1.51e-15 0.80861652 1.11e-16 0.80861652 5.49e-16 0.80861652 3.42e-14
73 0.80862554 1.51e-15 0.80861652 4.44e-16 0.80861652 6.86e-16 0.80861652 3.33e-15
81 0.80862554 8.24e-16 0.80861652 5.55e-16 0.80861652 1.78e-15 0.80861652 1.11e-16
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Table 3 First eigenvalues: Laguerre basis for N = 1.

DoF ζ = 0.05 ζ = 0.1 ζ = 0.5 ζ = 1
E ∆E E ∆E E ∆E E ∆E

9 1.53707272 0.83910765 0.81007589 0.85464218
17 0.87424212 7.58e-01 0.80862774 3.05e-02 0.80862429 1.80e-03 0.80943446 4.52e-02
25 0.81259311 7.59e-02 0.80861652 1.12e-05 0.80861676 9.31e-06 0.80898253 4.52e-04
33 0.80873830 4.77e-03 0.80861652 1.30e-11 0.80861653 2.83e-07 0.80862929 3.53e-04
41 0.80861843 1.48e-04 0.80861652 2.22e-18 0.80861652 1.67e-08 0.80861978 9.51e-06
49 0.80861653 2.35e-06 0.80861652 3.33e-16 0.80861652 1.51e-10 0.80861711 2.67e-06
57 0.80861652 2.01e-08 0.80861652 2.22e-16 0.80861652 8.05e-12 0.80861654 5.74e-07
65 0.80861652 9.65e-11 0.80861652 4.44e-16 0.80861652 4.20e-13 0.80861653 8.02e-09
73 0.80861652 2.63e-13 0.80861652 4.44e-16 0.80861652 4.39e-15 0.80861652 9.20e-09
81 0.80861652 1.10e-15 0.80861652 1.11e-16 0.80861652 4.12e-16 0.80861652 1.88e-09
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Fig. 6 Convergence rates for different scaling parameters ξ and ζ (one electron case)
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Table 4 First eigenvalues: ‘Leg-FA’ method for N = 2,4,6,8.

N DoF ξ = 2 ξ = 4 ξ = 6 ξ = 8
E ∆E E ∆E E ∆E E ∆E

2 36 2.77064844 2.83934161 3.23853921 3.83477463
2 136 2.75897331 4.23e-03 2.75962610 7.97e-02 2.78271494 1.64e-01 2.79743867 1.04e+00
2 300 2.75896782 1.99e-06 2.75853265 1.09e-03 2.75867580 8.71e-03 2.76007806 3.74e-02
2 528 2.75896776 2.02e-08 2.75852536 7.29e-06 2.75852924 5.31e-05 2.75856947 1.51e-03
2 820 2.75896776 1.98e-09 2.75852515 2.03e-07 2.75852540 1.39e-06 2.75852700 4.25e-05
2 1176 2.75896775 3.41e-10 2.75852513 2.53e-08 2.75852517 8.17e-08 2.75852535 1.65e-06
2 1596 2.75896775 8.62e-11 2.75852512 5.58e-09 2.75852513 1.34e-08 2.75852518 1.75e-07
2 2080 2.75896775 2.63e-11 2.75852512 1.65e-09 2.75852513 3.56e-09 2.75852514 3.72e-08
2 2628 2.75896775 3.59e-11 2.75852512 8.05e-10 2.75852512 4.76e-09 2.75852513 1.77e-08
2 3916 2.75896775 5.44e-12 2.75852512 1.15e-10 2.75852512 6.47e-10 2.75852512 2.22e-09
2 5460 2.75896775 1.09e-12 2.75852512 2.47e-11 2.75852512 1.32e-10 2.75852512 4.35e-10
2 7260 2.75896775 3.62e-13 2.75852512 6.53e-12 2.75852512 3.55e-11 2.75852512 1.14e-10
2 9316 2.75896775 3.62e-13 2.75852512 2.17e-12 2.75852512 1.16e-11 2.75852512 3.66e-11
4 35 11.3744684 14.6183222 19.5555592 25.2272328
4 126 11.1529293 1.99e-02 12.5401722 2.08e+00 15.4303761 2.67e-01 19.0645225 6.16e+00
4 330 11.0906509 5.62e-03 11.4897741 1.05e+00 13.2777107 1.62e-01 15.5602812 3.50e+00
4 715 11.0387961 4.70e-03 11.1928180 2.97e-01 12.0181657 1.05e-01 13.5778359 1.98e+00
4 1365 11.0311564 6.93e-04 11.1503562 4.25e-02 11.3807587 5.60e-02 12.3383459 1.24e+00
4 2380 11.0309216 2.13e-05 11.0667169 8.36e-02 11.2139303 1.49e-02 11.5916733 7.47e-01
4 3876 11.0306460 2.50e-05 11.0150199 5.17e-02 11.1756559 3.42e-03 11.2803427 3.11e-01
4 5985 11.0305710 6.80e-06 11.0034337 1.16e-02 11.0953952 7.23e-03 11.2180070 6.23e-02
4 8855 11.0305636 6.76e-07 11.0025213 8.29e-05 11.0312699 5.81e-03 11.1718388 4.13e-03
4 12650 11.0305614 2.00e-07 11.0020105 4.64e-05 11.0076249 2.15e-03 11.0932904 7.08e-03
6 7 30.4774572 0.00e+00 41.7709865 0.00e+00 59.0079666 0.00e+00 77.4736697 0.00e+00
6 84 27.7191179 9.95e-02 34.4566265 2.12e-01 45.3580818 3.01e-01 58.2795553 3.29e-01
6 462 27.3018885 1.53e-02 30.7355475 1.21e-01 37.4024467 2.13e-01 46.1984215 2.62e-01
6 1716 27.0408367 9.65e-03 28.3071847 8.58e-02 33.0501800 1.32e-01 38.7185569 1.93e-01
6 5005 26.8872665 5.71e-03 27.3234899 3.60e-02 30.2367754 9.30e-02 34.2981982 1.29e-01
6 12376 26.8720859 5.65e-04 27.1394812 6.78e-03 28.3094643 6.81e-02 31.4814019 8.95e-02
8 9 58.97684862 75.48658360 104.9615300 137.2152993
8 165 53.64284607 9.94e-02 65.09745212 1.60e-01 84.71660799 2.39e-01 108.4869011 2.65e-01
8 1287 52.91599468 1.37e-02 59.33803295 9.71e-02 72.01714565 1.76e-01 89.02662541 2.19e-01
8 6435 52.15277285 1.46e-02 54.85127080 8.18e-02 64.67355647 1.14e-01 76.12430898 1.69e-01
8 24310 51.83345874 6.16e-03 52.69663222 4.09e-02 59.72645435 8.28e-02 68.00062085 1.19e-01

5 Concluding remarks

We developed in this paper efficient spectral-element methods with Legendre and
Laguerre basis sets for ESE in one spatial dimension. To achieve high-order approxi-
mation to the nucleus-electron cusps, we construct the basis sets in spectral-element
type. For the system with N electrons, we proposed to use sparse grids of hyperbolic
cross type to deal with high dimensionality.

We also presented efficient procedure to enforce the antisymmetry using Slater
determinants which reflect the Pauli principle, and lead to antisymmetric basis sets for
full/sparse grid spaces with a substantially reduced amount of degree of freedoms. We
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Table 5 First eigenvalues: ‘Lag-FA’ method N = 2,4,6,8.

N DoF ζ = 0.05 ζ = 0.1 ζ = 0.5 ζ = 1
E ∆E E ∆E E ∆E E ∆E

2 36 7.30379716 3.12261380 2.77777209 2.85513015
2 136 3.34341896 1.18e+00 2.75950375 3.63e-01 2.75896094 6.82e-03 2.78956672 6.56e-02
2 300 2.82490601 1.84e-01 2.75852513 9.79e-04 2.75854050 1.52e-04 2.75986845 2.97e-02
2 528 2.76277165 2.25e-02 2.75852512 6.59e-09 2.75852626 5.16e-06 2.75897551 8.93e-04
2 820 2.75865751 1.49e-03 2.75852512 8.16e-10 2.75852547 2.85e-07 2.75858518 3.90e-04
2 1176 2.75852721 4.72e-05 2.75852512 2.76e-10 2.75852526 7.83e-08 2.75853935 4.58e-05
2 1596 2.75852514 7.51e-07 2.75852512 1.15e-10 2.75852519 2.53e-08 2.75852947 9.88e-06
2 2080 2.75852512 6.37e-09 2.75852512 5.55e-11 2.75852516 1.09e-08 2.75852635 3.12e-06
2 2628 2.75852512 6.41e-09 2.75852512 3.12e-11 2.75852514 1.64e-08 2.75852581 1.33e-06
2 3916 2.75852512 1.09e-12 2.75852512 9.79e-12 2.75852513 4.71e-09 2.75852535 1.65e-07
2 5460 2.75852512 3.63e-13 2.75852512 3.99e-12 2.75852512 1.79e-09 2.75852522 4.68e-08
2 7260 2.75852512 3.63e-13 2.75852512 1.81e-12 2.75852512 8.05e-10 2.75852517 1.74e-08
2 9316 2.75852512 2.75852512 1.09e-12 2.75852512 4.09e-10 2.75852515 8.05e-09
4 35 84.5261141 24.0010489 11.4543515 14.4696514
4 126 48.1712017 7.55e-01 15.9511257 8.05e+00 11.3868658 5.93e-03 12.9426380 1.53e+00
4 330 32.5685850 4.79e-01 12.9989513 2.95e+00 11.2011807 1.66e-02 12.0343856 9.08e-01
4 715 24.4059885 3.34e-01 11.7815358 1.22e+00 11.0620997 1.26e-02 11.5559439 4.78e-01
4 1365 19.6523245 2.42e-01 11.2772003 5.04e-01 11.0168962 4.10e-03 11.3619089 1.94e-01
4 2380 16.6988902 1.77e-01 11.0837922 1.93e-01 11.0106396 5.68e-04 11.3091692 5.27e-02
4 3876 14.7880278 1.29e-01 11.0207238 6.31e-02 11.0084099 2.03e-04 11.2814318 2.77e-02
4 5985 13.5204842 9.37e-02 11.0046752 1.60e-02 11.0054217 2.72e-04 11.2304460 5.10e-02
4 8855 12.6679704 6.73e-02 11.0017149 2.69e-04 11.0033635 1.87e-04 11.1647721 5.88e-03
4 12650 12.0916290 4.77e-02 11.0013445 3.37e-05 11.0023306 9.39e-05 11.1040989 5.46e-03
6 7 488.968428 126.923387 30.8058940 44.1789048
6 84 194.6512414 1.51e+00 55.6839778 1.28e+00 28.3194836 8.78e-02 37.5755909 1.76e-01
6 462 114.5606263 6.99e-01 38.0266025 4.64e-01 27.8526463 1.68e-02 34.1104499 1.02e-01
6 1716 79.2855548 4.45e-01 31.4021247 2.11e-01 27.5394558 1.14e-02 31.6957497 7.62e-02
6 5005 60.3655526 3.13e-01 28.5962373 9.81e-02 27.0880214 1.67e-02 29.9054490 5.99e-02
6 12376 49.0792283 2.30e-01 27.3804649 4.44e-02 26.7879171 1.12e-02 28.7231166 4.12e-02
8 9 862.24608230 225.04342820 61.42218240 89.76996256
8 165 351.8825621 1.45e+00 101.6315296 1.21e+00 56.01728167 9.65e-02 77.38512422 1.60e-01
8 1287 211.4500817 6.64e-01 70.80521708 4.35e-01 54.10871261 3.53e-02 70.39360988 9.93e-02
8 6435 148.7485015 4.22e-01 59.17412032 1.97e-01 53.50632043 1.13e-02 65.88471983 6.84e-02
8 24310 114.6497701 2.97e-01 54.24858141 9.08e-02 52.65395877 1.62e-02 62.16347168 5.99e-02

performed numerical experiments which showed that our methods enjoy exponential
convergence rate for the one electron case, and for multi-electron cases, can lead to a
target accuracy with significantly fewer number of unknowns than other appraoches.

We only presented some preliminary numerical results with one-dimensional
particles here. We believe that these preliminary results are very encouraging, and
many techniques developed in this paper can be extended to solving ESE in two and
three spatial dimensions. For example, we can construct special basis functions of
spectral-element type that take care of the nuclei-electron singularities like 1/‖x‖
in R3 and log(‖x‖) in R2. Such consideration and other issues are currently under
investigation.
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Table 6 First eigenvalues: ‘Leg-SA’ method N = 2,4,6,8.

N DoF ξ = 2 ξ = 4 ξ = 6 ξ = 8
E ∆E E ∆E E ∆E E ∆E

2 30 2.77117360 2.85154776 3.29333192 4.00360881
2 76 2.75907121 4.39e-03 2.77186894 7.97e-02 2.84618789 1.57e-01 2.98567403 1.02e+00
2 188 2.75898056 3.29e-05 2.75912734 1.27e-02 2.77101057 2.71e-02 2.79193494 1.94e-01
2 440 2.75896878 4.27e-06 2.75856637 5.61e-04 2.75897392 4.36e-03 2.76075915 3.12e-02
2 1016 2.75896792 3.11e-07 2.75852925 3.71e-05 2.75856020 1.50e-04 2.75873647 2.02e-03
2 2288 2.75896776 5.80e-08 2.75852531 1.43e-06 2.75852667 1.22e-05 2.75853155 7.43e-05
4 45 11.2855573 13.1270840 17.5972705 22.7581385
4 185 11.0456316 2.17e-02 11.8762275 1.25e+00 14.1293533 2.45e-01 17.2075738 5.55e+00
4 685 11.0315868 1.27e-03 11.2689744 6.07e-01 12.3384003 1.45e-01 14.0281403 3.18e+00
4 2166 11.0306207 8.76e-05 11.0607111 2.08e-01 11.3668441 8.55e-02 12.1527206 1.88e+00
4 6438 11.0305668 4.89e-06 11.0050047 5.57e-02 11.0629403 2.75e-02 11.4151839 7.38e-01
4 18070 11.0305602 5.95e-07 11.0018297 2.89e-04 11.0111051 4.71e-03 11.1064143 2.78e-02
6 4 28.8667472 0.00e+00 40.2289337 0.00e+00 57.5510278 0.00e+00 74.9994059 0.00e+00
6 42 27.5001095 4.97e-02 34.8584080 1.54e-01 47.0333024 2.24e-01 60.8190456 2.33e-01
6 258 26.9802045 1.93e-02 31.3576095 1.12e-01 39.9539319 1.77e-01 50.1906803 2.12e-01
6 1240 26.8819947 3.65e-03 28.4995437 1.00e-01 32.8373715 2.17e-01 39.6716608 2.65e-01
6 4984 26.8682208 5.13e-04 27.0984039 5.17e-02 30.0298964 9.35e-02 34.9065789 1.37e-01
6 18232 26.8675138 2.63e-05 26.7326315 1.37e-02 28.4165043 5.68e-02 31.8035686 9.76e-02
8 4 59.40209940 76.68172385 107.3043916 140.4792744
8 57 54.08534117 9.83e-02 62.51098600 2.27e-01 81.15357811 3.22e-01 103.7463664 3.54e-01
8 425 52.17333953 3.66e-02 57.86688923 8.03e-02 73.18590963 1.09e-01 91.50522209 1.34e-01
8 2425 51.81422944 6.93e-03 55.23428566 4.77e-02 67.37989091 8.62e-02 82.06933495 1.15e-01
8 11641 51.78818166 5.03e-04 53.37488078 3.48e-02 62.67868975 7.50e-02 74.35006938 1.04e-01
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2. G. Beylkin, M. J. Mohlenkamp, and F. Pérez. Approximating a wavefunction as an uncon-
strained sum of slater determinants. Journal of Mathematical Physics, 49(3):032107, 2008.

3. H. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.
4. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral methods. Scientific

Computation. Springer-Verlag, Berlin, 2006. Fundamentals in single domains.
5. D. B. Cook. Handbook of computational quantum chemistry. Courier Dover Publications,

2012.
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Table 7 First eigenvalues: ‘Lag-SA’ method N = 2,4,6,8.

N DoF ζ = 0.05 ζ = 0.1 ζ = 0.5 ζ = 1
E ∆E E ∆E E ∆E E ∆E

2 30 8.67617797 3.34484794 2.77827775 2.86808325
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2 188 3.56995225 3.87e-01 2.76696643 8.35e-02 2.75857016 1.95e-04 2.76032963 3.48e-02
2 440 2.97004425 2.02e-01 2.75854879 8.42e-03 2.75853604 1.24e-05 2.75890350 1.43e-03
2 1016 2.78412765 6.68e-02 2.75852514 2.36e-05 2.75852721 3.20e-06 2.75857819 3.25e-04
2 2288 2.75876032 9.20e-03 2.75852512 7.25e-09 2.75852561 5.80e-07 2.75853878 1.43e-05
4 45 86.6917450 24.7000085 11.4797932 13.0563335
4 185 47.4767386 8.26e-01 15.7385648 8.96e+00 11.0834163 3.58e-02 11.9600581 1.10e+00
4 685 32.5716096 4.58e-01 12.9635893 2.77e+00 11.0087891 6.78e-03 11.3378162 6.22e-01
4 2166 22.7567084 4.31e-01 11.5596749 1.40e+00 11.0027861 5.46e-04 11.0910824 2.47e-01
4 6438 16.9797442 3.40e-01 11.0511325 5.09e-01 11.0015878 1.09e-04 11.0167019 7.44e-02
4 18070 14.1738357 1.98e-01 11.0034033 4.34e-03 11.0013648 2.03e-05 11.0045689 1.10e-03
6 4 952.185785 242.664898 31.7056642 40.9407131
6 42 278.0484912 2.42e+00 75.6539917 2.21e+00 28.0048853 1.32e-01 35.2221880 1.62e-01
6 258 183.0644900 5.19e-01 52.9850239 4.28e-01 27.0791781 3.42e-02 31.7607206 1.09e-01
6 1240 118.8419089 5.40e-01 39.4694998 3.42e-01 26.7470351 1.24e-02 29.4671183 7.78e-02
6 4984 88.6458674 3.41e-01 33.3728721 1.83e-01 26.6316558 4.33e-03 28.1039769 4.85e-02
6 18232 62.0557435 4.28e-01 28.4594806 1.73e-01 26.6028587 1.08e-03 27.2593918 3.10e-02
8 4 1397.855236 358.1470801 63.17782097 90.38022455
8 57 739.6581056 8.90e-01 194.9633013 8.37e-01 57.62889533 9.63e-02 69.29072364 3.04e-01
8 425 439.0533644 6.85e-01 123.6510866 5.77e-01 53.87219761 6.97e-02 64.08200887 8.13e-02
8 2425 291.0249117 5.09e-01 89.23827767 3.86e-01 51.68828658 4.23e-02 59.76006788 7.23e-02
8 11641 202.0154616 4.41e-01 69.31440411 2.87e-01 50.95865047 1.43e-02 57.05869814 4.73e-02

Table 8 Best results of first eigenvalues achieved by various methods for N = 2,4,6,8.

Methods N = 2 N = 4 N = 6 N = 8
DoF E DoF E DoF E DoF E

‘Leg-FA’ 9316 2.75852512 12650 11.0020105 12376 26.872086 24310 51.83345874
‘Leg-SA’ 2288 2.75852531 18070 11.0018297 18232 26.867514 11641 51.78818166
‘Lag-FA’ 9316 2.75852512 12650 11.0013445 12376 26.787917 24310 52.65395877
‘Lag-SA’ 2288 2.75852512 18070 11.0013648 18232 26.602859 11641 50.95865047
‘Fourier’ 3409 2.758536 79498 11.011562 297605 27.571226 215864 60.838970
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