Efficient spectral-element methods for electronic
Schrodinger equation
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Abstract Two efficient spectral-element methods, based on Legendre and Laguerre
polynomials respectively, are derived for direct approximation of the electronic
Schrédinger equation in one spatial dimension. A spectral-element approach is used
to treat the singularity in nucleus-electron Coulomb potential, and with the help of
Slater determinant, special basis functions are constructed to obey the antisymmetric
property of the fermionic wavefunctions. Numerical tests are presented to show the
efficiency and accuracy of the proposed methods.
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1 Introduction

In this article we consider the electronic Schrodinger equation (ESE) in one spatial
dimension
HY(x) = E¥Y(x), (1)

with the Hamiltonian operator

H:T+Vne+vem (2)
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where the kinetic energy T, nucleus-electron potential V,,, and electron-electron
potential V,, operators are

1 al S
T:_Ezaxzﬂ Vne:NZ|xi|7 Vee:_zz|xi_xj|' &)
i=1 i=1

i=1j>i

Here N denotes the number of electrons in this system, x; € R the position of the i-th
electron, and the solution ¥ (x), with x = (xj,-- - ,xy), describes the wave function
associated to the total energy E, and satisfies the boundary condition

¥(xi,x2,---,xn) =0, as|xj|—=oo, j=1,--- N. 4)

The electronic Schrodinger equation, in three spatial dimension, results from
Born-Oppenheimer approximation to the general Schrodinger equation for a system
of electrons and nuclei, which is one of the core problems in computational quantum
chemistry [23, 13, 5]. However, except for very simple cases, there is no analytical
solution available. Hence, it is essential to develop efficient and accurate numerical
algorithms for this problem. While most applications of the ESE are in three spatial
dimension, the one-dimensional formulation above does inherits some essential
features, such as high-dimensionality and singular behavior, of the three dimensional
case. Hence, developing a solver in one dimension is an important preliminary and
calibrating step that serves as a prototype for solving the ESE in two or three spatial
dimensions.

There are several major difficulties for solving the ESE (1). We summarize them
below and describe our strategies.

(1) It is an N dimensional problem so it suffers from the so-called curse of di-
mensionality if classical numerical methods are employed. Therefore, various
model approximations have been developed in quantum chemistry to reduced
the computational complexity. We intend to discretize the ESE directly using
sparse grids [3] which have proven to be useful for a class of high-dimensional
problems, including in particular the ESE [25, 26]. For example, M. Griebel and
J. Hamaekers proposed sparse grid methods for ESE based on Meyer wavelets
[71, Fourier functions [8], adaptive Gaussian type orbitals basis sets [9]. On the
other hand, we propose to use spectral sparse grid methods based on hyperbolic
cross approximations [19, 21, 22, 20] .

(i) The singularities of the Coulomb potentials shown in (3), called “Coulomb
singularity” or “Kato cusp condition” [6, 12], deteriorate the convergence
rates of global spectral methods. In order to treat the singularity in V,,, more
effectively, we propose a spectral element framework to design basis functions
which provide better approximations to the singularity.

(i) The wave function ¥(x) has the additional constraint that it must be antisym-
metric under exchange of variables, according to Pauli exclusion principle.
We shall construct, using the antisymmetrizer and Slater determinant, basis
functions which obey the antisymmetric property. We also propose an efficient
implementation of inner products with respect to antisymmetric functions.
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In our previous attempt for solving ESE [22], we used a global spectral method
whose convergence rate is severely affected by the Coulomb singularity, and we did
not enforce the antisymmetry so it resulted in a much larger number of unknowns
than actually needed by the physical problem. The main purpose of this paper is to
develop efficient procedures to address these two issues.

The rest of the paper is organized as follows. In Sections 2 and 3, we propose
two kinds of efficient spectral Galerkin methods based on Legendre and Laguerre
polynomials respectively, including the basis functions for one or many electrons,
full or sparse grids, and with or without the antisymmetric property. In Section 4,
we present numerical results to illustrate the convergence of our methods for ESE
calculations. Finally, some conclusions and possible directions for future research
are presented in Section 5.

2 A spectral-element method for ESE

In this and next sections, we develop a spectral-element framework to discretize
the ESE (1). First, we focus on the set of basis functions for one electron case.
Then, we demonstrate the strategies for dealing with high dimensional problems
and antisymmetric functions. In addition, we also briefly show how to generate
the matrices required in Galerkin methods efficiently, involving mass, stiffness and
various potential matrices.

2.1 One electron case

As a starting point, let us focus on the case with N = 1 in Eq. (1),

- %‘P"(x) +x|¥(x) =E¥(x), x€R,
lim ¥(x) =0.

X—doo

®)

Let & be a truncation parameter. After a truncation from the unbounded interval
(—o0,400) to bounded one [—2&,2&], & > 0, and further a linear map from general
interval [—2&,2€] to standard one [—2,2], we arrive at

1 7L = o ~ X X _
j@?’ (x) +Ex[P(x) =EP(x), x€[-2,2], ©

P (+2) =0.
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Galerkin formulation

Let X, be an approximation space and @ be the weight function. The spectral Galerkin
method for the problems (5) or (6) can all be casted in the following form: Find
u, € X, such that

Cl <axun,ax(¢nw)>+C2<|x|un7¢n>w:)L<un7¢n>w» v¢n € X @)

Note that ¢ = %,cz = 1 for problem (5), ¢; = %,cz = & for problem (6), and A
is the numerical estimate of E.
Let {¢};__, be a set of basis functions for X,,. We denote

un(x) = Y (), u=(li_p,din) ", ()
k=—n

Sik = <¢l£u (¢1@)/>7 S= (slk)fnﬁl,kgm (9)

my = (P, §1) o, M = (my) —p<ik<n; (10

Pic = (1x|91, 00) o, P" = (Pl ) -n<tk<n- (11)

Thus, the Galerkin formulation (7) yields the following generalized eigenvalue
problem
(c1S+ c2P™)u = AMu, (12)

where A is the eigenvalue and u is the corresponding eigenvector.

Basis functions

In classical spectral-Galerkin approach, Hermite functions are often served as the
basis functions for the problem defined on the whole line [10, 18] while Legendre
or Chebyshev polynomials are frequently used for the problem in bounded intervals
[14, 15]. However, the nucleus-electron potential V,,, = |x| in Eq. (5) and Eq. (6)
is not differentiable at the origin. Thus, the convergence rates are rather limited if
classical spectral methods are employed here. Therefore, we split the interval at the
origin into two subintervals, and use a spectral-element method [4] to deal with the
singularity at the origin. The basis functions for the (two-elements) spectral-element
methods are as follows:

(i) For the problem (6) in bounded domain [—2,2], the function space X? =
span {¢? : k= —n,--- ,n}, the weight @ = 1, and the basis functions {¢?}7_
for one electron are chosen as

—n

kal(x_l)_LkJrl(x_l)a k>0, xe [072]3
op(x) =< 2|, k=0, xe[-2,2], (13)
Lyg—1(|x] = 1) = L1 (|x[ = 1), k<0, x€[-2,0],
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(i) Legendre basis in bounded domain (ii) Laguerre basis in unbounded domain

Fig. 1 First few basis functions for one electron case: Legendre and Laguerre basis sets.

where Ly (x),x € [—1, 1], is the Legendre polynomial of degree k. By the property
of Legendre polynomials, we know that

¢ (0) = ¢2(2) =0, k>0,
0 (—2) = ¢2(0) =0, k<0

If the basis functions {¢y} in Eq. (7) are chosen as ¢ (x) = ¢} (x), then by
using the properties of Legendre polynomials [17], the stiffness, mass and
potential matrices defined in (9), (10) and (11) are diagonal, penta-diagonal
and seven-diagonal matrices, respectively, and can be computed explicitly.

(ii) For the problem (5) in unbounded domain (—eo, +oe0), the function space X =
span {¢;' : k= —n,--- ,n}, the weight @ = 1, and the basis functions {¢; }}_
for one electron are chosen as

—n

I:k(x) —I:k,1 (x), k>0, xe [0,+°°),
Oil(x) = q e 2, k=0x € (~oo,fe),  (14)
I:‘k|(|x|) _i’|k‘71(|x|)7 k< Oa RS (_0070]7

where I (x),x € [0,4o0), is the Laguerre function of degree k. By the property
of the Laguerre functions, we know that

i (0) =0, k+#0,
¢(I)A(O) = 17 k= 07
lim ¢(x) = lim ¢}“(x) =0, Vk.

X—oo X—y—o0
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If the basis functions {¢} in Eq. (7) are chosen as ¢¢(x) = ¢;(x), then by
using the properties of Laguerre polynomials [17], the stiffness, mass and
potential matrices defined in (9), (10) and (11) are tri-diagonal, tri-diagonal
and penta-diagonal matrices, respectively, and can be computed explicitly.

A few basis functions {¢}(x)} and {¢}*(x)} for k = —3,-2,—1,0,1,2,3 defined
above are illustrated in Figure 1.

2.2 N-electron case

We first introduce some notations:

e For N € N, we use boldface lowercase letters to denote N-dimensional multi-
indices and vectors, e.g., k = (ki, -+ ,ky) € 7N . Besides, we need following
norms: k| =} = maxi<j<n |kj|, [K|mix = H’}’Zl max{1,|k;|}. Note
that |k|ix > 1 for all k € ZV.

e A CZV is the set of indices and |A| means its cardinality.

Now let us consider the ESE for the system with N electrons.

ZaZ‘P+NZ|x,|lP ZZ|x,—x,|lP E¥, xeRV,
i=1j>i (15)
lim Y(x)=0, Vj=1,2,---N

Xjﬁioo

Similarly as in the one electron case, after truncation and linear mapping, the
problem in the unbounded domain is equivalent to the following in a bounded domain:

1 N
——Z +N§Z|x,|‘1’ 522|x,—x1|w E¥Y, xe€Q,
282 5 i (16)
¥ (x)|se =0,

where Q = [-2,2]V.

Galerkin formulation
Similarly as in previous subsection, let X,, be the approximation space. The spectral

Galerkin method for the problems (15) or (16) can all be casted in the following
form: Find u, € X,, such that V&, € X,,,

N N
ClZ<axj-un»ax./¢n>+62<z|xj|una >+C3<ZZ|X,—XJMH7 n> <una¢n>a'
=1

j=1 i=1j>i
(17)
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Note that for problem (15), ¢; = %,cz = N,c3 = —1 while for problem (16), ¢; =
%76‘2 =NE,c3 = —£&. A, to be solved, is an approximation of E in X,,.

Let { Py }ea be a set of basis functions for X,,, where A is the set of indices to be
determined. We denote

w(x) = Y, i Py(x), u=vee(@iess  (18)
keA
N

Sik= 1<8j¢k,8jd>1>, S=(s;z), (19)
j:

mj; = (P, 1), M = (m;p), (20)
N
Jj=
N

Pig = <Z1 g i — x| P, B1), P = (pf%)- (22)

i=1j>i
where k is the corresponding order of k = (kj,---,ky) in the set A and u =

vec (flk)ic, is a column vector with entries {i}rca. Suppose the cardinality of
the set A be |A|, then u defined in (18) is a |A|-by-1 column vector and the matrices
defined in (19), (20), (21) and (22) are |A|-by-|A| square matrices.
Thus, the Galerkin formulation (17) gives the following generalized eigenvalue
problem
(c1S+ 2P + ¢3P%)u = AMu, (23)

where A is the eigenvalue and u is the corresponding eigenvector.

Full grid and sparse grid

The classical tensor-product basis function in N-dimensional space is

D (x) =

—-

0, (x5), (24)

J=1

where k = (ki ko, -+ ,ky) € ZV,x = (x1,%2,--- ,.xn) € RY, and ¢y, (x;) is the one-

dimensional basis function considered in previous subsection, e.g. {¢}(x)} defined
in (13) or {¢}(x)} defined in (14).
The approximation space in N-dimensional space is

XN = span {®(x) :k€A,}, neN.

For different set of indices A, we have different space.

e The set of indices for full grid is
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AF — [k N .
a =1keZ" :|klo<n}, neN. (25)
e The set of indices for sparse grid of hyperbolic cross type is

AS ={ke€Z" : |kl <n,1 < |K|pix <n}, neN. (26)

Here are several remarks on the spectral-element basis function sets we use.

e The electronic eigenfunctions are proved to decay exponentially as the spatial
variable goes to infinity in the sense that there exist positive constants A and B for
which | (x)| < Ae BIMl (see Ref [1].) Hence, in the Legendre spectral method,
the error caused by restriction from unbounded domain to bounded one would
also be exponentially convergent as the parameter L goes to the infinity.

e The idea of spectal-element method to treat the nuclei-electron cusps could be
easily generalized to the case with several nuclei. See Figure 2 for two nuclei
case.

e For ESE in three spatial dimension, it is known that the sparse grids based on
hyperbolic cross fit the smoothness property of the eigenfunctions [3, 25, 26].
However, for the ESE in one spatial dimension considered in this paper, there are
no theoretical results available in the literature. In Section 4, we will compare the
numerical results obtained from full grids (25) and sparse grids (26).

Legendre basis sets (two nuclei at x=+1) Laguerre basis sets (two nuclei at x=+10)

15

0.5r

(i) Legendre basis in bounded domain (ii) Laguerre basis in unbounded domain

Fig. 2 Legendre and Laguerre basis sets for two nuclei case

3 Antisymmetry and antisymmetric inner product

The electronic wavefunction ¥(x) for many body system must be antisymmetric
with respect to electron positions x = (xj,--- ,xy), i.e.

40
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ql(xh"' s Xiyt s Xjy e 7-XN) = —II](X],"' s Xjy Xyt axN)~ (27)

It is obvious that ®(x) defined in (24) does not obey the antisymmetric property. A
main difficulty is how to construct basis functions which satisfy the antisymmetry,
and how to efficiently compute the inner products between them.

3.1 Antisymmetrizer and Slater determinant

In order to enforce antisymmetry, we introduce a linear operator called antisym-
metrizer [11], also called skew symmetrization or alternation, which is defined by

== X (=12, (28)

where Sy is the permutation group on N elements. For the element p € Sy, the
operator & acts on a function by permuting its variables, as ¥ (y,7,--+) =
P (Yp(1), Yp(2)» ). The sign (=1)” is —1 if p is an odd permutation and 1 if it is
even. Applying < to the function &y (x) defined in (24) leads to the antisymmetric
basis dbf (x) expressed as a Slater determinant:

P (x) = B (x)

Ok, (x1) Ory (x2) -+ -+ O, (xn)
_ 1 ¢k2 ()C] ) ¢k2 (Xz) """ ¢k2 (XN) ) (29)

N!

Oy (X1) Py (x2) +- -+ Ory (Xn)

It is easy to check that the basis function @l‘? (x) satisfies the antisymmetric property
(27). Besides, if k; = k;, then the determinant in Eq.(29) would be zero. Thus, the set
of indices for antisymmetric basis { P (x) },. s should be

Af={keZV: Kl <nk <ky<--<ky}, neN. (30)

It implies that the cardinality of antisymmetric basis set is about % times of the
regular one.

Now we have four kinds of grids, namely full grid (‘F’), sparse grid (‘S”), full grid
with antisymmetric property (‘FA’) and sparse grid with antisymmetric property (‘SA’
). The cardinality of them are shown in the Table 1 and sketch for two dimensional
case are shown Figure 3.
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Table 1 Four kinds of grids for N-dimensional problems

Grids Set of indices Cardinality®

‘F’ AF (2n+ 1)V

‘FA’ AFnAA (2’1;‘1)N

K AS 0((2n+1)log""'(2n+1))
SA? AS AL 0((2n+1)10%\1;;’1(2n+1))

¢ The cardinality of hyperbolic cross sparse grids can be found in [19].

F grid (n=30)

FA grid (n=30)

S grid (n=30) SA grid (n=30)

Fig. 3 Full/sparse grids without/with antisymmetric property: two dimensional case

3.2 Antisymmetric inner product and Lowdin’s rule

One of the main difficulties in implementation of spectral type methods based on
antisymmetric grids (‘FA’ and ‘SA’) is the calculation of inner products between two
Slater determinants. In this subsection, we briefly show how to compute the entries in
the matrices S, M, P" and P°¢ defined in (19)-(22) with respect to the antisymmetric
basis functions {®f (x) }cpa-

e For the mass matrix M, we need to construct the following auxiliary matrix

<¢k1 ’ ¢l1> toe <¢k1 s ¢IN>

My, = Vk,1eAX 31

(Duos011) (B O
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Then each entry of M can be computed as
1 _
(@, @)y = 7 det(¥i), (32)

which is the so called Lowdin’s rule [11]. Note that the matrix MkJ defined above
is a submatrix of the one-dimensional mass matrix M defined in (10), either
tri-diagonal one in Laguerre case or penta-diagonal one in Legendre case, so
its determinant can be computed efficiently. The denominator N! need never be
computed, since it will occur in every term in our equations and so cancels.

e For the stiffness matrix S and nucleus-electron potential matrix P, we need to
construct the following auxiliary matrices

<¢k15¢l|> <¢/£Ia¢[/l> <¢k17¢l}v>

(B 00) -+ (00,01 -+ (Do O0)
<¢k1’¢11> <|x|¢k17¢li> <¢k17¢l1v>

Hhe

Pyi=

sy

(Grer01,) -+ (¥l 00) (D 91y

for each k,1 € A, Then each entry of S and P can be computed as

N N
Y (9, P, 0, D) Z et(Sk1i) (33)
i=1 —

N N

Y (il @ft) = Z et(Pk1). (34)

—_

= i=1

e For the electron-electron interaction potential matrix P¢, we use the methodology
proposed by G.Beylkin [2]. To show the idea, we need more notations.

N Ok, (x1)

By (x) = [ [ 0 (), oyx) = | %0 | s

Py (Xn)

N o, (x1)

a0 =[]0, (x). o= | %20 a6
Oy ()

(37)
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Then the electron-electron inner products can be computed by

N det(Mk_1> P
<l:21 ;W(xi,xj)d)f, €D1A> = m;j/W(xi,xj')¢li (xi)CDZj(xj) det(@f(’fl)dxidxj,
(38)

where the weight W (x;,x;) = |x; —x;| and

ij_ [ 6i(xi) 6i(x;)
oli= (e,.<x,.> @»(xﬂ-)) '

The formula (38) should be very efficient for large N. However, for many cases,
the matrix M is singular, that is to say we need to redefine the O, in (37) and
det(]\7l ). The detailed discussion can be found in [2]. We omit the details here for
simplicity.

Stifiness (FA)

1000 jm 1000 fym

1800

1500

2000 2000

Fig. 4 Mass/stiffness matrices for Legendre basis in full/sparse antisymmetric grids: N =4,n =8

The mass and stiffness and matrices M, S based on antisymmetric Legendre and
Laguerre bases for 4 electrons with n = 8 are shown in Figures 4-5. All of this
matrices are symmetric and positive definite.
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Wass (FA) Stifness (FA)

1000 1000

1500

1500

2000 2000

o 500 1000 1500 2000 ] 500 1000 1500 2000
nz=112828 nz=B2070

Mass (SA) Stifness (SA)

Fig. 5 Mass/stiffness matrices for Laguerre basis in full/sparse antisymmetric grids: N =4,n =8

4 Numerical results

It is well known that the performance of spectral methods in unbounded domains can
be significantly enhanced by choosing a proper truncation or scaling parameter such
that the extreme collocation points are at or close to the endpoints of the effective
interval (outside of which the solution is essentially zero). For the mapped Legendre
method, the scaling parameter is the parameter £ in Eq. (6). For the Laguerre method,
one usually needs to determine a suitable scaling parameter § [24, 16] and then make
a coordinate transform y = x/{. That is to say the basis function for problem (5)
should be chosen as

O (x) =9 (x/C), £>0, (39)

where ¢’ is defined in (14).
We apply the efficient spectral methods proposed in the previous section to the
ESE (1). More precisely, the methods used in this section are

e Antisymmetric full grids based on Legendre basis (‘Leg-FA’) with parameters &
and Laguerre basis (‘Lag-FA’) with parameters {;

e Antisymmetric sparse grids based on Legendre basis (‘Leg-SA’) with parameters
& and Laguerre basis (‘Lag-SA”) with parameters ¢.

Besides, we make the following notations: DoF means the total number of degrees
of freedom; E is the first eigenvalue and AE denotes the relative difference between
the two successive values of E.
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The numerical results for N = 1 are shown in Tables 2-3. The exponential rates
of convergence could be observed both in Legendre and Laguerre basis, since the
singularity in the V,,, has been taken care of (However, this exponential convergence
does not extend to the more electron cases, see below). Further, the best choice for
parameters is £ =4 and { = 0.1 for N = 1. Note that the Legendre method with
& = 2 has a faster convergence rate than Legendre methods with larger & values,
but it converges to an energy that is too far from the exact one. In Figure 6, we plot
the convergence curves of our Legendre and Laguerre methods together with the
results of ‘Fourier’ method (hyperbolic cross sparse grid method based on Fourier
basis, proposed in [8]). The significant advantages of the bases proposed here over
the Fourier bases demonstrates the importance of handling the nucleus-electron
singularity. From Figure 6, we also see that the Laguerre method is more sensitive
to the scaling parameter than the Legendre method, although that an optimal scaled
Laguerre method seems gives better solution than Legendre method.

The numerical results of ‘Leg-FA’, ‘Lag-FA’, ‘Leg-SA’ and ‘Lag-SA’ for N =
2,4,6,8 are shown in Tables 4-7 respectively. We see that the advantages of sparse
grids over full grids is not significant for small N (N < 4). The reason might be
that the sparse grids based on hyperbolic cross allow to treat the nucleus-electron
cusps properly which are aligned to the particle coordinate axes of the system while
does not fit well to the “diagonal” directions of the electron-electron cusps. However
the sparse grids based on hyperbolic cross for six and eight dimensional case do
give better results that the full grid cases. We observe also that carefully choice
of parameters £ and ( is needed to obtain a decent accuracy for E. As showed in
the one-dimensional case, the Legendre method is not very sensitive to the scaling
parameter comparing to the Laguerre method. The results show that all our numerical
methods have monotonic convergence property, which might be used to determine
optimal scaling in practice through multiple runs.

As a comparison with published results using a Fourier method in [8], we list in
Table 8 our results with the “best” parameters and the corresponding results in [8].
We observe that our method gives much better results with significant less number of
unknowns.

Table 2 First eigenvalues: Legendre basis for N = 1.

DoF - AE E AE E AE E AE
9 0.80898847 0.85120259 0.88298404 0.88823511

17 0.80862555 4.49e-04 0.80875522 4.24e-02 0.80937787 9.09e-02 0.82066506 6.76e-02
25 0.80862554 8.19e-09 0.80861663 1.39e-04 0.80863141 9.23e-04 0.80885868 1.18e-02
33 0.80862554 6.97e-13 0.80861652 1.17e-07 0.80861657 1.84e-05 0.80861710 2.42e-04
41  0.80862554 2.06e-15 0.80861652 3.57e-11 0.80861652 6.61e-08 0.80861652 5.82¢-07
49 0.80862554 2.75e-16 0.80861652 3.44e-15 0.80861652 7.90e-11 0.80861652 2.48e-09
57 0.80862554 1.37e-16 0.80861652 5.55e-16 0.80861652 4.39e-14 0.80861652 1.69e-11
65 0.80862554 1.51e-15 0.80861652 1.11e-16 0.80861652 5.49e-16 0.80861652 3.42e-14
73 0.80862554 1.51e-15 0.80861652 4.44e-16 0.80861652 6.86e-16 0.80861652 3.33e-15
81 0.80862554 8.24e-16 0.80861652 5.55e-16 0.80861652 1.78e-15 0.80861652 1.11e-16
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Table 3 First eigenvalues: Laguerre basis for N = 1.

Dop & =005 ¢=0.1 =05 =1
E AE E AE E AE E AE
9 1.53707272 0.83910765 0.81007589 0.85464218

17 0.87424212 7.58e-01 0.80862774 3.05e-02 0.80862429 1.80e-03 0.80943446 4.52e-02
25  0.81259311 7.59e-02 0.80861652 1.12e-05 0.80861676 9.31e-06 0.80898253 4.52e-04
33 0.80873830 4.77e-03 0.80861652 1.30e-11 0.80861653 2.83e-07 0.80862929 3.53e-04
41  0.80861843 1.48e-04 0.80861652 2.22e-18 0.80861652 1.67e-08 0.80861978 9.51e-06
49 0.80861653 2.35e-06 0.80861652 3.33e-16 0.80861652 1.51e-10 0.80861711 2.67e-06
57 0.80861652 2.01e-08 0.80861652 2.22e-16 0.80861652 8.05e-12 0.80861654 5.74e-07
65 0.80861652 9.65e-11 0.80861652 4.44e-16 0.80861652 4.20e-13 0.80861653 8.02e-09
73 0.80861652 2.63e-13 0.80861652 4.44e-16 0.80861652 4.39e-15 0.80861652 9.20e-09
81 0.80861652 1.10e-15 0.80861652 1.11e-16 0.80861652 4.12e-16 0.80861652 1.88e-09
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Fig. 6 Convergence rates for different scaling parameters & and { (one electron case)
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Table 4 First eigenvalues: ‘Leg-FA’ method for N = 2,4,6,8.

N

DoF & =2

E AE

E=4

E AE

£=6

E AE

£=38

E AE

OOV PRARPRERPRERPRERPRARPREPREPRTPRPPODNODRODNODDNDNDNDNDNDDNDNDN

36 2.77064844
136 2.75897331
300 2.75896782
528 2.75896776
820 2.75896776
1176 2.75896775
1596 2.75896775
2080 2.75896775
2628 2.75896775
3916 2.75896775
5460 2.75896775
7260 2.75896775
9316 2.75896775
35 11.3744684
126 11.1529293
330  11.0906509
715  11.0387961
1365 11.0311564
2380 11.0309216
3876 11.0306460
5985 11.0305710
8855 11.0305636
12650 11.0305614
7 30.4774572
84  27.7191179
462 27.3018885
1716 27.0408367
5005 26.8872665
12376 26.8720859
9 58.97684862
165  53.64284607 9.94e-02
1287 52.91599468 1.37e-02
6435 52.152772851.46e-02
24310 51.83345874 6.16e-03

4.23e-03
1.99e-06
2.02e-08
1.98e-09
3.41e-10
8.62e-11
2.63e-11
3.59%-11
5.44e-12
1.09e-12
3.62e-13
3.62e-13

1.99e-02
5.62e-03
4.70e-03
6.93e-04
2.13e-05
2.50e-05
6.80e-06
6.76e-07
2.00e-07
0.00e+00
9.95¢-02
1.53e-02
9.65e-03
5.71e-03
5.65e-04

2.83934161
2.75962610
2.75853265
2.75852536
2.75852515
2.75852513
2.75852512
2.75852512
2.75852512
2.75852512
2.75852512
2.75852512
2.75852512
14.6183222
12.5401722
11.4897741
11.1928180
11.1503562
11.0667169
11.0150199
11.0034337
11.0025213
11.0020105
41.7709865
34.4566265
30.7355475
28.3071847
27.3234899
27.1394812
75.48658360
65.097452121.60e-01
59.33803295 9.71e-02
54.85127080 8.18e-02
52.69663222 4.09e-02

7.97e-02
1.09¢-03
7.29e-06
2.03e-07
2.53e-08
5.58e-09
1.65e-09
8.05e-10
1.15e-10
2.47e-11
6.53e-12
2.17e-12

2.08e+00
1.05e+00
2.97e-01
4.25e-02
8.36e-02
5.17e-02
1.16e-02
8.29e-05
4.64e-05
0.00e+00
2.12e-01
1.21e-01
8.58e-02
3.60e-02
6.78e-03

3.23853921
2.78271494
2.75867580
2.75852924
2.75852540
2.75852517
2.75852513
2.75852513
2.75852512
2.75852512
2.75852512
2.75852512
2.75852512
19.5555592
15.4303761
13.2777107
12.0181657
11.3807587
11.2139303
11.1756559
11.0953952
11.0312699
11.0076249
59.0079666
45.3580818
37.4024467
33.0501800
30.2367754
28.3094643
104.9615300
84.71660799 2.39¢-01
72.01714565 1.76e-01
64.67355647 1.14e-01
59.72645435 8.28e-02

1.64e-01
8.71e-03
5.31e-05
1.39¢-06
8.17e-08
1.34e-08
3.56e-09
4.76e-09
6.47e-10
1.32e-10
3.55e-11
1.16e-11

2.67e-01
1.62e-01
1.05e-01
5.60e-02
1.49¢-02
3.42e-03
7.23e-03
5.81e-03
2.15e-03
0.00e+00
3.01e-01
2.13e-01
1.32e-01
9.30e-02
6.81e-02

3.83477463
279743867
2.76007806
2.75856947
2.75852700
2.75852535
2.75852518
275852514
2.75852513
275852512
2.75852512
275852512
2.75852512
25.2272328
19.0645225
15.5602812
13.5778359
12.3383459
11.5916733
11.2803427
11.2180070
11.1718388
11.0932904
77.4736697
58.2795553
46.1984215
38.7185569
34.2981982
31.4814019
137.2152993
108.4869011 2.65e-01
89.02662541 2.19¢-01
76.12430898 1.69¢-01
68.00062085 1.19e-01

1.04e+00
3.74e-02
1.51e-03
4.25e-05
1.65e-06
1.75e-07
3.72e-08
1.77e-08
2.22e-09
4.35¢-10
1.14e-10
3.66e-11

6.16e+00
3.50e+00
1.98e+00
1.24e+00
7.47e-01
3.11e-01
6.23e-02
4.13e-03
7.08e-03
0.00e+00
3.29¢-01
2.62e-01
1.93e-01
1.29¢-01
8.95e-02

5 Concluding remarks

We developed in this paper efficient spectral-element methods with Legendre and
Laguerre basis sets for ESE in one spatial dimension. To achieve high-order approxi-
mation to the nucleus-electron cusps, we construct the basis sets in spectral-element
type. For the system with N electrons, we proposed to use sparse grids of hyperbolic
cross type to deal with high dimensionality.

We also presented efficient procedure to enforce the antisymmetry using Slater

determinants which reflect the Pauli principle, and lead to antisymmetric basis sets for
full/sparse grid spaces with a substantially reduced amount of degree of freedoms. We
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Table 5 First eigenvalues: ‘Lag-FA’ method N = 2,4,6,8.

17

Dop & =005

N E AE

£=0.1
E AE

=05
E AE

(=1
E AE

36
136
300
528
820
1176
1596
2080
2628
3916
5460
7260
9316
35
126
330
715
1365
2380
3876

7.30379716
3.34341896
2.82490601
2.76277165
2.75865751
2.75852721
2.75852514
2.75852512
2.75852512
2.75852512
2.75852512
2.75852512
2.75852512
84.5261141
48.1712017
32.5685850
24.4059885
19.6523245
16.6988902
14.7880278
5985 13.5204842
8855 12.6679704
12650 12.0916290
7 488.968428
84  194.6512414 1.51e+00
462 114.5606263 6.99¢-01
1716 79.2855548 4.45e-01
5005 60.3655526 3.13e-01
12376 49.0792283 2.30e-01
9 862.24608230

165 351.8825621 1.45e+00
1287 211.4500817 6.64e-01
6435 148.7485015 4.22e-01
24310 114.6497701 2.97e-01

1.18e+00
1.84e-01
2.25e-02
1.49e-03
4.72e-05
7.51e-07
6.37e-09
6.41e-09
1.09e-12
3.63e-13
3.63e-13

7.55e-01
4.79e-01
3.34e-01
2.42e-01
1.77e-01
1.29e-01
9.37e-02
6.73e-02
4.77e-02

LR, PR PRPRERPRERRARPREPREPRTPRPPODNODRODNODDNDNODNDNDNDDNDNDN

3.12261380
2.75950375
2.75852513
2.75852512
2.75852512
2.75852512
2.75852512
2.75852512
2.75852512
2.75852512
2.75852512
2.75852512
2.75852512
24.0010489
15.9511257
12.9989513
11.7815358
11.2772003
11.0837922
11.0207238
11.0046752
11.0017149
11.0013445
126.923387
55.6839778
38.0266025
31.4021247
28.5962373 9.81e-02
27.3804649 4.44e-02
225.04342820
101.6315296 1.21e+00
70.80521708 4.35e-01
59.174120321.97e-01
54.24858141 9.08e-02

3.63e-01
9.79¢-04
6.59¢-09
8.16e-10
2.76e-10
1.15e-10
5.55e-11
3.12e-11
9.79%-12
3.99e-12
1.81e-12
1.09e-12

8.05e+00
2.95e+00
1.22e+00
5.04e-01
1.93e-01
6.31e-02
1.60e-02
2.69e-04
3.37e-05

1.28e+00
4.64e-01
2.11e-01

277777209
2.75896094
2.75854050
2.75852626
2.75852547
2.75852526
2.75852519
2.75852516
2.75852514
2.75852513
2.75852512
2.75852512
2.75852512
11.4543515
11.3868658
11.2011807
11.0620997
11.0168962
11.0106396
11.0084099
11.0054217
11.0033635
11.0023306
30.8058940
28.3194836
27.8526463
27.5394558 1.14e-02
27.0880214 1.67e-02
26.7879171 1.12e-02
61.42218240

56.01728167 9.65e-02
54.10871261 3.53e-02
53.50632043 1.13e-02
52.653958771.62e-02

6.82e-03
1.52e-04
5.16e-06
2.85e-07
7.83e-08
2.53e-08
1.09e-08
1.64e-08
4.71e-09
1.79e-09
8.05e-10
4.09¢e-10

5.93e-03
1.66e-02
1.26e-02
4.10e-03
5.68e-04
2.03e-04
2.72e-04
1.87e-04
9.39e-05

8.78e-02
1.68e-02

2.85513015
2.78956672
2.75986845
275897551
2.75858518
2.75853935
2.75852947
2.75852635
2.75852581
2.75852535
2.75852522
275852517
275852515
14.4696514
12.9426380
12.0343856
11.5559439
11.3619089
11.3091692
11.2814318
11.2304460
11.1647721
11.1040989
44.1789048
37.5755909
34.1104499
31.6957497
29.9054490
28.7231166
89.76996256
77.38512422 1.60e-01
70.39360988 9.93e-02
65.88471983 6.84¢-02
62.16347168 5.99e-02

6.56e-02
2.97e-02
8.93e-04
3.90e-04
4.58e-05
9.88e-06
3.12e-06
1.33e-06
1.65e-07
4.68e-08
1.74e-08
8.05e-09

1.53e+00
9.08e-01
4.78e-01
1.94e-01
5.27e-02
2.77e-02
5.10e-02
5.88e-03
5.46e-03

1.76e-01
1.02¢-01
7.62e-02
5.99¢-02
4.12e-02

performed numerical experiments which showed that our methods enjoy exponential
convergence rate for the one electron case, and for multi-electron cases, can lead to a
target accuracy with significantly fewer number of unknowns than other appraoches.

We only presented some preliminary numerical results with one-dimensional
particles here. We believe that these preliminary results are very encouraging, and
many techniques developed in this paper can be extended to solving ESE in two and
three spatial dimensions. For example, we can construct special basis functions of
spectral-element type that take care of the nuclei-electron singularities like 1/||x||
in R? and log(||x||) in R2. Such consideration and other issues are currently under

investigation.
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Table 6 First eigenvalues: ‘Leg-SA’ method N = 2,4,6,8.
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N

DoF & =2

E AE

E=4

E AE

£E=6

E AE

£=38

E AE

VOV OXOANANDNAANOAAPR R PRPODNODNDNDNDND

30
76
188
440
1016
2288
45
185

277117360
2.75907121
2.75898056
2.75896878
2.75896792
2.75896776
11.2855573
11.0456316
685 11.0315868
2166 11.0306207
6438 11.0305668
18070 11.0305602
4 28.8667472
42 27.5001095
258  26.9802045
1240 26.8819947 3.65e-03
4984 26.8682208 5.13e-04
18232 26.8675138 2.63e-05
4 59.40209940

57  54.08534117 9.83e-02
425  52.17333953 3.66e-02
2425 51.81422944 6.93e-03
11641 51.78818166 5.03e-04

4.39¢e-03
3.29e-05
4.27e-06
3.11e-07
5.80e-08

2.17e-02
1.27e-03
8.76e-05
4.89¢-06
5.95e-07
0.00e+00
4.97e-02
1.93e-02

2.85154776
2.77186894
2.75912734
2.75856637
2.75852925
2.75852531
13.1270840
11.8762275
11.2689744
11.0607111
11.0050047
11.0018297
40.2289337
34.8584080
31.3576095
28.4995437
27.0984039
26.7326315
76.68172385
62.51098600 2.27e-01
57.86688923 8.03e-02
55.23428566 4.77e-02
53.37488078 3.48e-02

7.97e-02
1.27e-02
5.61e-04
3.71e-05
1.43e-06

1.25e+00
6.07e-01
2.08e-01
5.57e-02
2.89e-04
0.00e+00
1.54e-01
1.12e-01
1.00e-01
5.17e-02
1.37e-02

3.29333192
2.84618789
2.77101057
2.75897392
2.75856020
2.75852667
17.5972705
14.1293533
12.3384003
11.3668441
11.0629403
11.0111051
57.5510278
47.0333024
39.9539319
32.8373715
30.0298964
28.4165043
107.3043916
81.15357811 3.22e-01
73.18590963 1.09¢-01
67.37989091 8.62e-02
62.67868975 7.50e-02

1.57e-01
2.71e-02
4.36e-03
1.50e-04
1.22e-05

2.45e-01
1.45e-01
8.55e-02
2.75e-02
4.71e-03
0.00e+00
2.24e-01
1.77e-01
2.17e-01
9.35e-02
5.68e-02

4.00360881
2.98567403
2.79193494
276075915
2.75873647
2.75853155
22.7581385
17.2075738
14.0281403
12.1527206
11.4151839
11.1064143
74.9994059
60.8190456
50.1906803
39.6716608
34.9065789
31.8035686
140.4792744
103.7463664 3.54e-01
91.50522209 1.34e-01
82.06933495 1.15e-01
74.35006938 1.04e-01

1.02e+00
1.94e-01

3.12e-02
2.02e-03
7.43e-05

5.55e+00
3.18e+00
1.88e+00
7.38e-01
2.78e-02
0.00e+00
2.33e-01
2.12e-01
2.65e-01
1.37e-01
9.76e-02
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