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Abstract
Single-image super-resolution reconstruction aims to obtain a high-resolution image from a
low-resolution image. Since the super-resolution problem is ill-posed, it is common to use
a regularization technique. However, the choice of the fidelity and regularization terms is
not obvious, and it plays a major role in the quality of the desired high resolution image.
In this paper, a hybrid single-image super-resolution model integrated with total variation
(TV) and fractional-order TV is proposed to provide an effective reconstruction of the HR
image. We develop an efficient numerical scheme for this model using the scalar auxiliary
variable approach with an adaptive time stepping strategy. Thorough experimental results
suggest that the proposed model and numerical scheme can reconstruct high quality results
both quantitatively and perceptually.

Keywords Fractional-order variation · Super resolution · Scalar auxiliary variable · Texture

1 Introduction

Single image super-resolution (SR), also known as image scaling up or image enhancement,
aims at estimating a high-resolution (HR) image from a low-resolution (LR) observed image.
As a fundamental problem in image processing, it has been extensively studied over the
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past few decades and has many important applications in areas such as remote sensing [1],
hyperspectral [2], medical imaging [3], and consumer electronics [4].

Let ΩL be a subset of Ω ⊂ R
2. We define a low resolution image f as a real function

defined in ΩL and assume that high resolution images are defined on the whose domain Ω .
We consider a down-sampling linear operator D acting on high resolution images with values
in low resolution ones. The relationship between the observed image f and the unknown
high resolution image u can be formulated as

f = Hu + n, (1)

where Hu = D(h ∗u), h is a given translation invariant convolution kernel and n is Gaussian
white noise with zero mean and variance σ 2. The kernel h is determined as the point spread
function (PSF) of the sensor.

A large number of SR approaches have been developed. These techniques can be roughly
divided into three categories: interpolation-based methods [5,6], example learning-based
methods [7–9] and reconstruction-based methods [10–12].

The interpolation-basedmethods exploit base functions or interpolation kernels to estimate
the unknown pixels in the HR grid. By using linear, bilinear, cubic algorithm, the methods
of this family are comparatively simple and with relatively low computational complexity
[13–15]. However, these methods are more likely to produce ringing and jagged artifacts
when handling large magnification factors or small input images [16]. Consequently, the SR
capability of this family of methods may be insufficient in some applications.

The example learning-based methods typically exploit a training database composed of
LR and HR image patch pairs to infer the mapping relationship between the LR and HR
feature space. Then, the learned mapping relationship is used to recover the missing high-
frequency details of an input LR image. Extensive research results have demonstrated their
powerful SR capabilities [17–21]. However, themethods of this family usually require a large
number of image samples for learning and perform complicated learning process with high
computation complexity.

Reconstruction-based methods [22,23] generate a HR image based on designed degrada-
tion model. In the regularization framework, where HR image is estimated based on some
prior knowledge about the image (e.g., degree of smoothness) in the form of regularization,
the SR problem turns out to be well posed [24]. Particularly, Tikhonov regularization [25]
based on bounded variation (BV) (L2 norm) is one of the popular regularization methods
for SR reconstruction. It imposes smoothness in reconstructed image, but at the same time
loses some details (e.g., edges) present in the image. In order to preserve the edge in the
image, the regularization method based on total variation (TV) (L1 norm) is developed for
image restoration [26]. However, quite a few techniques [27–29] are available to handle non-
differentiable TV regularization efficiently. Particularly, Marquina and Osher [30] are first to
use Bregman iteration for fast SR image reconstruction with TV regularization.

Many partial differential equation (PDE)-based image restoration techniques utilize TV
regularization due to its discontinuity (edge) preserving property. However, this method
favors solutions that are piecewise constant, which results in the staircasing effect in recov-
ered images. There have been many efforts to improve the performance of TV by using
higher-order regularization. In [31,32], the second-order TV regularization was proposed to
reduce the staircasing effects. Though these methods can eliminate the staircase effect effi-
ciently, they often lead to a speckle effect. While those traditional TV based approaches to
image restoration result in sharper images, they yield an unnatural cartoon-like image, com-
promising on the quality of, and almost eliminating, textures. The reason is that TV based
methods are based upon local operators while textures are essentially nonlocal in nature [33].
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As a nonlocal operator, fractional-order differential has been introduced recently as a
regularization term, leading to some fractional differential-based variational models. Up to
now, fractional differential-based methods have been frequently used in many image pro-
cessing fields such as image denoising [34] and SR reconstruction [35]. Particularly, Bai and
Feng [36] proposed a new class of fractional order anisotropic diffusion equations for noise
removal. For ease of calculation, Pu et al. [37] implemented a class of fractional differential
masks and illustrated that fractional differentiation can deal well with fine structures like
texture information. Those results illustrated that fractional differential-based approach can
better enhance texture details than integral-based algorithms.

Although various types of SR reconstruction methods have been proposed to solve the
ill-posed inverse problem in SR, few could performwell in preserving textures in HR images.
Accordingly, finding a method that can recover the lost details is a major challenge in
reconstruction-based methods, which is also a goal of this paper. In order to obtain an effec-
tive image prior, it is of great importance to model the appropriate feature of natural images.
The combination of different types of prior knowledge makes a better model for characteriz-
ing various image features and benefits the SR performance. Based on the advantages of the
TV-based regularization and the fractional differential-based regularization, a hybrid term is
proposed in this paper, which increases the quality of the restoration step of the SR process.
Particularly, the proposed model would perform well in preserving both edges and texture
details of the image.

Another goal of this paper is to develop an efficient numerical scheme for the pro-
posed model. More precisely, we utilize the recently developed Scalar Auxiliary Variable
(SAV) approach [38,39] to construct an unconditionally energy diminishing, fast and easy to
implement algorithm. Different from usual optimization algorithms, this approach does not
introduce many auxiliary parameters that affect the efficiency of the whole algorithm, and
its convergence rate can be accelerated with an adaptive time stepping strategy.

In summary, the proposed hybrid variational method enjoys the following features:

– It combines total variation filter with a fractional order filter, which can unite the advan-
tages of the two filters, and has a remarkable effect in improving the quality of the
recovered HR images, in terms of preserving edges and texture details of images.

– The existence of the minimizer function of the proposed variational model is analyzed
theoretically.

– An efficient energy diminishing numerical scheme based on the SAV approach is devel-
oped along with an adaptive time stepping to accelerate the convergence.

– Numerical results indicate that the proposed algorithm recovers well edges and captures
small features not appearing in the low resolution images. In contrast to state of art
methods, our proposed approach performs better both visually and quantitatively.

The remainder of this paper is organized as follows. In Sect. 2, we review the total α-order
variation and the spaceof functions of fractional-order boundedvariations.Thenwegive some
properties of this space. Section 3 introduces a hybrid model and SAV algorithm in detail.
In Sect. 4, we present extensive experiments and corresponding analysis. The conclusion is
summarized in Sect. 5.

2 Preliminaries

In this section, we recall a fractional total α-order regularizer and detail some properties of
the α-bounded variation space in [40]. As a generalization of TV regularizers, the fractional
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total α-order variation is defined as follows:

TVα(u) = sup
v

{∫
Ω

(−udivαv)dx |v = (v1, v2) ∈
(
Cl0(Ω,R2)

)2
, ‖v‖L∞ < 1

}
, (2)

where 0 � l = n − 1 < α < n, ‖v‖L∞ = max
√

v21 + v22 , div
αv = ∂αv1

∂xα
1

+ ∂αv2
∂xα

2
and ∂αvi

∂xα
i

denotes a fractional α-order derivative of vi along the xi direction. Cl0(Ω,R2) represents the
l-compactly supported continuous-integrable function space. When α = 1, the definition of
TVα is identical to that of TV, which implies that TVα is a generalization of TV. Similarly,
the α-BV norm is defined by

‖u‖BV α = ‖u‖L1 + T V α(u)

in [40]. Furthermore, the space of functions of α-bounded variation on Ω can be defined by

BV α(Ω) := {
u ∈ L1(Ω)|T V α(u) < +∞}

.

In [40], for any positive integer p ∈ N
+, Qα

p(Ω) =
{
u ∈ L p(Ω)|‖u‖Qα

p(Ω) < +∞
}
is

defined as a function space equipped with the norm

‖u‖Qα
p(Ω) =

(∫
Ω

|u|pdx1dx2 +
∫

Ω

|∇αu|pdx1dx2
)1/p

,

where ∇αu =
(

∂αu
∂xα

1
, ∂αu

∂xα
2

)T
.

Proposition 1 Assume that u ∈ Qα
1 (Ω); then T V α(u) =

∫
Ω

|∇αu|dx.

Proposition 2 The functional T V α(u) is convex.

Theorem 1 (Weak∗ convergence in BV α(Ω)) Let {uk}k∈N and u belong to BV α(Ω). The
sequence {uk}k∈N converges to u weakly∗ in BV α(Ω) if uk → u in L1(Ω) and

∫
Ω
v ·

∇αukdx → ∫
Ω
v · ∇αudx weakly∗ holds for all v ∈ (C00(Ω,R2)

)2
, as k → ∞.

The following theorem states the compactness result corresponding to weak∗ convergence
in BV α(Ω).

Theorem 2 (Compactness in BV α(Ω)) Suppose that the sequence {uk}k∈N is bounded in
BV α(Ω). Then there exist a subsequence {ukl }l∈N and a function u ∈ BV α(Ω) such that
{ukl }l∈N converges to u weakly∗ in BV α(Ω).

Based on these results, the authors of [40] proposed the following energy functional, which
involves the semi-BV α(Ω) norm as a regularization term:

E(u) = T V α(u) + λ

2

∫
Ω

|u − z|2dx, (3)

where z is given data, 1 < α < 2 and λ � 0 is a constant parameter. They also proved that the
functional in (3) is lower semi-continuous with respect to the weak∗ topology of BV α(Ω).
In addition, the functional in (3) is convex for λ � 0 and strictly convex if λ > 0. The lower
semi-continuity and the convexity of E give rise to the following theorem for the existence
and uniqueness of a minimizer.
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Theorem 3 (Existence and uniqueness of a minimizer) Assume that 1 < α < 2 and λ > 0.
The following minimization problem associated with the functional in (3),

min
u∈BV α(Ω)

E(u) (4)

has a solution u ∈ BV α(Ω). Moreover, if λ > 0, then the solution to the minimization
problem in (4) is unique.

3 Description of the ProposedModel and the SAV Algorithm

In this section, we propose a hybrid variational model for image SR that makes use of
TV regularization and fractional order regularizer. The existence of the solution of the model
comprising two convex regularizers is analyzed.We also present a stable and efficient iterative
algorithm for solving the problem.

3.1 Mathematical Model

In our proposed framework, the fidelity term based on half-quadratic estimation and the TV-
L2 regularization term based on the L2-norm of TV and fractional order bounded variation
are combined to estimate the HR image from a LR image.

Specifically, we consider the hybrid total variation (HTV) regularizer defined as

FHTV (u) = ε

2

∫
Ω

|∇u|2dx + βT V α(u) (5)

with ε > 0, β > 0, 1 < α < 2. The first term is used to preserve smooth regions of
HR images. In order to preserve some fine details like textures, we add the fractional-order
regularization into the model.

Furthermore, we propose the following variational problem, which is composed of the
hybrid functional FHTV and a convex data-fidelity term,

min
u∈BV α(Ω)∩H1(Ω)

F(u) := FHTV (u) + λ

2

∫
Ω

( f − Hu)2dx, (6)

where f ∈ L2(Ω) is the given LR image, H : L2(Ω) → L2(Ω) is a bounded linear operator,
and λ > 0 is a constant parameter.

Thus, our model has the advantage of better restoring (less staircase effects) in smooth
regions due to TV-L2 regularization and the advantage of preserving textures due to the
fractional order regularization.

Equivalently, we consider the following variational problem:

min
u∈R|Ω|

F(u) :=
∑

(i, j)∈Ω

ε

2
|(∇u)i, j |2 + β|(∇αu)i, j | + λ

2
|( f − Hu)i, j |2, (7)

where Ω is a two-dimensional index set representing the image domain. By |Ω| we denote
its cardinality.

Remark 1 In fact, if the operator H is a blurring operator, then f is defined in Ω . However,
when H is a down-sampling linear operator, f is defined in the region ΩL , which is a subset
of Ω . In (7), we compute

∑
(i, j)∈Ω |( f − Hu)i, j |2 by s2

∑
(i, j)∈ΩL

|( f − Hu)i, j |2, where
s is the scale factor in down-sampling operator.
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Theorem 4 (Existence of solution) Assume that ε > 0, β > 0, 1 < α < 2, λ > 0 and

Ker∇ ∩ Ker∇α ∩ KerH = {0}. (8)

Then there exists a global minimizer for the variational problem (7).

Proof Since F is bounded from below, it suffices to show that F is coercive, i.e. F(uk) →
+∞whenever ‖uk‖ → +∞ for the sequence {uk}k∈N inR2. We prove this by contradiction.
For this purpose, assume that ‖uk‖ → +∞ and that {F(uk)}k∈N is uniformly bounded. For
each k, let uk = skvk such that sk � 0, vk ∈ R

2, and ‖vk‖ = 1. For a sufficient large k, we
have

0 ≤ ε

2s2k
|(∇uk)i, j |2 + β

sk
|(∇αuk)i, j | + λ

2s2k
|(Huk)i, j |2

≤
(

ε

2
+ β + λ

2

) (|(∇uk)i, j |2 + |(∇αuk)i, j | + |(Huk)i, j |2
) → 0.

This fact leads to

lim
k→+∞

∑
(i, j)∈Ω

(
ε

2
|(∇vk)i, j |2 + β|(∇αvk)i, j | + λ

2
|(Hvk)i, j |2

)
= 0.

By compactness, the sequence {vk}k∈N has an accumulation point v∗ with ‖v∗‖ = 1 such
that v∗ ∈ Ker∇ ∩Ker∇α ∩KerH . This contradicts our hypothesis (8). Hence, F is coercive.

Next, we denote c = inf
u∈R|Ω|

F(u). Then there exist um ∈ R
|Ω| such that

c ≤ F(um) < c + 1

m
, m = 1, 2, 3, . . .

From the coerciveness of F , there exists a positive constant b such that F(u) > c + 1
holds for ‖u‖ > b. Hence, we have um ∈ Bb(0) ⊆ R

|Ω|. By the sequential compactness of
B̄b(0), there exists u∗ ∈ B̄b(0) such that limm→+∞ um → u∗. Then we have c ≤ F(u∗) =
limm→+∞ F(um) ≤ c+ 1

m → c. This means that u∗ is a global minimizer for the variational
problem (7). �

Remark 2 One can readily know that the model (6) is strictly convex, that can guarantee a
unique minimizer.

Remark 3 The remainder of this section is devoted to designing and analyzing an algorithm
for numerically finding the minimizer of (6). In this paper, we solve problem (6) by adopting
the SAV approach proposed in [38].

3.2 SAV Algorithm for Solving the Approximated Problem (6)

In fact, the SAV approach is a new tool for solving the minimization problem for a free
energy functional E(u), which is bounded from below. Denote its variational derivative as
μ = δE/δu. The L2 gradient flow can be written as

∂u

∂t
= −μ, (9)
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Usually, the free energy functional contains a quadratic term, which can be written as

E(u) = 1

2
(u, Lu) + E1(u), (10)

where L is a symmetric non-negative linear operator (also independent of u), and E1[u]
are nonlinear. In the proposed model (6), we can regard L = −εΔ. In addition, the Euler-
Lagrange derivative of the TVα-term is not well defined at points where ∇αu = 0, due to
the presence of the term 1

|∇αu| . Then, it is common to slightly perturb the TVα functional to
become ∫

Ω

√
|∇αu|2 + ε1dx,

where ε1 is a sufficiently small positive parameter.
In order to employ the SAV approach, the free energy E1(u) should be bounded from

below, i.e, there exists a constant C0 such that E1(u) � C0 > 0. Therefore, we modify E1

by adding a positive constant C0 to E1 without altering the gradient flow.
Consequently, we take E1(u) = ∫

Ω
F1(u)dx + C0, where

F1(u) = β
√

|∇αu|2 + ε1 + λ

2
( f − Hu)2

and C0 is a positive constant.
Then, we employ the SAV approach to solve the proposed variational problem. Specifi-

cally, we consider (9) with the free energy in the form of

E[u(x)] =
∫

Ω

[ ε

2
|∇u|2 + F1(u)

]
dx + C0,

and the corresponding gradient flow in L2:

∂u

∂t
= − μ,

μ = δE/δu = −εΔu + F ′
1(u).

(11)

First, we introduce a scalar auxiliary variable r = √
E1(u). Then we rewrite the gradient

flow (10) as

∂u

∂t
= −μ, (12)

μ = −εΔu + r√
E1(u)

F ′
1(u), (13)

dr

dt
= 1

2
√
E1(u)

∫
Ω

F ′
1(u)utdx . (14)

Take the time step as Δt , we solve (un+1, r̃ n+1) by using the following first-order scheme:

un+1 − un

Δt
= −μn+1, (15)

μn+1 = −εΔun+1 + r̃ n+1

√
E1(un)

F ′
1(u

n), (16)

r̃ n+1 − rn

Δt
= 1

2
√
E1(un)

∫
Ω

F ′
1(u

n)
un+1 − un

Δt
dx . (17)
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Inspired by the work of [41], we update rn+1 via

rn+1 =
√
E1(un+1). (18)

In fact, the SAV scheme (15)–(17) is easy to implement. Indeed, taking (16) and (17) into
(15), we obtain

un+1 − un

Δt
= εΔun+1 − F ′

1(u
n)√

E1(un)

[
rn +

∫
Ω

F ′
1(u

n)

2
√
E1(un)

(un+1 − un)dx

]
. (19)

Denote

bn = F ′
1(u

n)/
√
E1(un).

Then the above equation can be written as

(I − ΔtεΔ)un+1 + Δt

2
bn(bn, un+1) = un − Δtrnbn + Δt

2
(bn, un)bn . (20)

Denote the righthand side of (20) by cn . Multiplying (20) with (I − ΔtεΔ)−1, then taking
the inner product with bn , we obtain

(bn, un+1) + Δt

2
γ n(bn, un+1) = (bn, (I − ΔtεΔ)−1cn), (21)

where γ n = −(bn,−(I − ΔtεΔ)−1bn) = (bn, (I − εΔtΔ)−1bn) > 0. Hence

(bn, un+1) = (bn, (I − ΔtεΔ)−1cn)

1 + Δtγ n/2
. (22)

To summarize, we implement (15)–(17) as follows:

(i) Compute bn and cn [the righthand side of (20)];
(ii) Compute (bn, un+1) from (22);
(iii) Compute un+1 from (20).

Remark 4 According to (i) and (iii), we only need to solve, twice, a linear equation with
constant coefficients of the form

(I − ΔtεΔ)x̄ = b̄. (23)

Therefore, the scheme is easy to implement.

Multiplying the three equations (15)–(17) by μn+1, (un+1 − un)/Δt , 2r̃ n+1, integrating
the first two equations, and adding them together, we derive the following stability result.

Theorem 5 Scheme (15)–(17) is first-order accurate and unconditionally energy stable in
the sense that

1

Δt
[Ẽ(un+1, r̃ n+1) − Ẽ(un, rn)]

+ 1

Δt

[ ε

2
(un+1 − un,−Δ(un+1 − un)) + (r̃ n+1 − rn)2

]

= −(μn+1, μn+1),

where Ẽ(u, r) = − ε
2 (u,Δu) + r2 is the modified energy, and one can obtain (un+1, r̃ n+1)

by solving two linear equations with constant coefficients of the form (23).
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Remark 5 The above result does not imply that the scheme (15)–(18) is energy diminishing,
since we can not prove Ẽ(un+1, rn+1) � Ẽ(un, rn). However, if we do not perform the
update in (18) and replace r̃ n+1 by rn+1 in (17), then the scheme is energy diminishing with
Ẽ(un+1, rn+1) � Ẽ(un, rn).

3.3 Time-Step Adaptivity

Time-step adaptivity is of prime importance to simulate the entire dynamics of the Cahn–
Hilliard equation [42,43], accurately and efficiently. Similarly, we propose an adaptive time-
stepping strategy for our provably stable scheme. The method is presented in Algorithm 1.
We update the time step size by using the formula

Adρ(e, τ ) = ρ

(
tol

e

)1/2

τ,

where ρ is a default safety coefficient, tol is a reference tolerance, and e is the relative error
at each time level. In this paper, we choose ρ = 0.8 and tol = 0.07. The minimum and
maximum time steps are taken as τmin = 10−4 and τmax = 10−1, respectively. The initial
time step is taken as τmin .

Algorithm 1 SAV algorithm with adaptive time step strategy
1: given ε, β, β1, α, λ, tol, ρ, τmin , τmax
2: compute un+1 by the first order SAV scheme with τn
3: calculate Eyn+1 = E(un+1)
4: calculate en+1 = ||Eyn − Eyn+1||/||Eyn+1||
5: if en+1 > tol then
6: recalculate time step τn = max{τmin ,min{Adρ(en+1, τn), τmax }} go to step 2
7: else
8: update τn+1 = max{τmin ,min{Adρ(en+1, τn), τmax }} Stop; or set n = n + 1 and go to step 2
9: end if
10: return

3.4 Space discretization of the scheme

In this subsection, we introduce the space discretization of SAV scheme (15)–(17) at each
iteration. For practical applications, we first assume that the initial discrete image u ism×m
pixels, and that it has been sampled from its continuous version at uniformly spaced points
starting at (0, 0), i.e., u(x1, x2) = u(x1Δx1, x2Δx2) for x1, x2 = 0, 1, . . . ,m − 1. The grid
size Δx1 and Δx2 is chosen as Δx1 = Δx2 = 1. According to the scheme (15)–(17), we
present the computation for Δun+1, E1(un) and F ′

1(u
n). After considering the input image

as a periodic image, we apply fast Fourier transform to compute Δun+1 for a given un+1.
In order to compute E1(un) and F ′(un), we need introduce the computation for the

fractional-order difference ∇αu for a given image u. For convenience, we use the notation
F to denote the 2-D discrete Fourier transform operator and the notation F−1 to denote the
2-D inverse discrete Fourier transform operator. Then we use the central difference scheme
in [36] to compute the fractional-order difference, which can be defined as
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(a) Fabric (b) Flower (c) Pepper (d) Barbara

(e) Lena (f) Parrot (g) Synthetic (h) Timg

Fig. 1 Original images

Dα
x u = F−1((1 − exp(−i2πω1/m))α × exp(iπαω1/m)F(u)),

Dα
y u = F−1((1 − exp(−i2πω2/m))α × exp(iπαω2/m)F(u)).

(24)

To simplify, let K1 be a purely diagonal operator in the frequency domain defined by

K1 = diag((1 − exp(−i2πω1/m))α × exp(iπαω1/m)),

where diag(v) means creating a diagonal matrix with the elements of vector v. Then we get
the following equivalent expression

Dα
x = F−1 ◦ K1 ◦ F . (25)

Denote Dα∗
x as the adjoint of Dα

x , then we obtain

Dα∗
x = F−1 ◦ K ∗

1 ◦ F .

Since K1 is a purely diagonal operator and K ∗
1 is the complex conjugation of K1, we have

Dα∗
x u ↔ conj((1 − exp(−i2πω1/m))α × exp(iπαω1/m))Fu(ω1, ω2),

Dα∗
y u ↔ conj((1 − exp(−i2πω2/m))α × exp(iπαω2/m))Fu(ω1, ω2),

where conj(·) is the complex conjugation.
Then, according to (7) and remark 1, we can compute E1(un) by

E1(u
n) =

∑
(i, j)∈Ω

− ε

2
(un)i, j (Δun)i, j + β|(∇αun)i, j | + λs2

2

∑
(i, j)∈ΩL

|( f − Hun)i, j |2,

where∇αun = (Dα
x u

n, Dα
y u

n), |(∇αun)i, j | =
√

(Dα
x u

n)2i, j + (Dα
y u

n)2i, j , s is the scale factor

in down-sampling operator.
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(a) (b) (c)

(d) (e) (f)

Fig. 2 SR results (Gaussian kernel, ×2) of Parrot by different methods. a LR image bWBM [44] (26.8dB) c
TVRBM [44] (27.2dB) d SRBM [45] (27.8dB) e ours (28.2dB, 319 iterations) f original image

Furthermore, we compute F ′
1(u

n) by

F ′
1(u

n) = βDα∗
x

(
Dα
x u

n√|∇αun |2 + ε1

)
+ βDα∗

y

(
Dα

y u
n√|∇αun |2 + ε1

)
+ λH ′(Hun − f ),

where H ′ is the transpose operator to H .

4 Numerical Experiments

In this section, we present numerical results for the model we proposed in (7), tested on
several images.

4.1 Experimental Settings

In the experiments of super-resolution, the degraded LR imageswere generated by first apply-
ing a truncated 15×15 Gaussian kernel of standard deviation 1 to the original image and then
down-sampling by a factor of 2. We compare the proposed method with three state-of-the-art
methods: wavelet based method (WBM) [44], TV regularization based method (TVRBM)
[44] and sparse representation based method (SRBM) [45]. In the proposed variational based
super-resolution, the parameters are set as follows. For the noiseless LR images, we empiri-
cally set α = 1.1, β = 1, λ = 40, ε = 10−18, ε1 = 10−9. Empirically, we take the stopping
criterion as tn > Ttol = 20, where tn = ∑n

i=1 τi .
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(a) (b) (c)

(d) (e) (f)

Fig. 3 SR results (Gaussian kernel, ×2) of Timg by different methods. a LR image b WBM [44] (26.7dB) c
TVRBM [44] (27.2dB) d SRBM [45] (29.4dB) e ours (30.2dB, 318 iterations) f original image

PSNR (Peak Signal to Noise Ratio, unit: dB) [46] is used to evaluate the objective image
quality.We recommend the reader to carefully examine the different parts of the images
(constant areas, sharp edges, small details and oriented textures) to observe how these parts
are restored (Fig 1).

4.2 Experimental Results on Single-Image Super-Resolution

Reconstructed HR images by the TV-regularization-based method in [44] have many jaggy
and ringing artifacts. Therefore, they fail to reconstruct fine image edges. It is observed that
the reconstructed edges by [44] are relatively smooth and some fine image structures are
not recovered. The sparse representation based method [45] is effective in suppressing the
ringing artifacts, but it damages some edges of images, see Figs. 2, 3 and 4. The proposed
method leads to the best visual quality. It can not only remove the blurring effects, but also
reconstruct more and sharper image edges than other methods. The excellent edge and detail
preservation owes to the fractional order T V α regularizations.

In Table 1, we present the comparison of the corresponding PSNR values and CPU times
for results in Figs. 2, 3 and 4. All simulations listed here are run in MATLAB 8.5 (R2015a)
on a PC equipped with 2.90 GHz CPU and 8 G RAM memory. As presented in Table 1,
the proposed model delivers the best results in a relatively short amount of time due to few
iterations (about 319 iterations).
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(a) (b) (c)

(d) (e) (f)

Fig. 4 SR results (Gaussian kernel, ×2) of Fabric by different methods. a LR image b WBM [44] (24.1dB)
c TVRBM [44] (24.5dB) d SRBM [45] (25.2dB) e ours (26.2dB, 319 iterations) f original image

Table 1 Comparison of PSNR and CPU time

Index PSNR(dB) CPU time(s)

Test images Parrot Timg Fabric Parrot Timg Fabric

WTBM [44] 26.8 26.7 24.1 1.39 6.03 2.44

TVRBM [44] 27.2 27.2 24.5 0.33 0.57 0.41

SRBM [45] 27.8 29.4 25.2 360.4 513.45 408.42

Ours 28.2 30.2 26.2 44.43 62.14 44.84

Table 2 Comparison of the
PSNR (dB) of the recovered
results by different methods, with
respect to the scaling parameter
s = 2

Image WTBM [44] TVRBM [44] SRBM [45] Ours

Fab. 24.1 24.5 25.2 26.2

Flo. 30.6 30.9 32.3 32.1

Pep. 34.0 34.3 35.5 35.3

Bar. 23.6 23.3 23.3 23.5

Lena 30.3 30.7 32.4 31.6

Parr. 26.8 27.2 27.8 28.2

Syn. 21.9 22.4 22.4 23.0

Timg 26.7 27.2 29.4 30.2

Aver. 27.25 27.56 28.54 28.75
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Fig. 5 Parrot SR: comparisons among small time steps, adaptive time steps, and large time steps

The PSNR results by different methods are listed in Table 2. For the experiments using
Gaussian kernel, the average PSNR improvements of the proposed method over other three
methods are 0.21 dB at least.

4.3 Efficiency of the Adaptive Time Stepping Strategy

In order to illustrate the efficiency of the adaptive time stepping strategy, we apply the SAV
algorithm to reconstruct three test images (Fabric, Parrot andTimg) fromdegradedLR images
generated as we mentioned before. In the experiment, we take τmin = 10−4, τmax = 10−1,
tol = 0.07, ρ = 0.8 for adaptive time stepping strategy. For comparison, we also apply the
SAV algorithm with a small uniform time step Δt = 10−4 and a large uniform time step
Δt = 10−2.

We present the energy evolutions by using different kinds of time stepping in Figs. 5, 6
and 7. As shown these figures, the energy of numerical solutions decrease with time increas-
ing and finally converge to the same final steady state. In addition, we observe that the
algorithm with adaptive time stepping needs the least iterations to converge to steady state.
In addition, we present comparison of the total number of iterations and corresponding
CPU time in Table 3. Table 3 illustrates that the algorithm with adaptive time steps con-
sumes least CPU time and the total number of iterations among three computing methods.
This means that the SAV scheme with adaptive time stepping is more efficient than other
two computing methods. Furthermore, Fig. 8 implies that the time step changes accord-
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Fig. 6 Timg SR: comparisons among small time steps, adaptive time steps, and large time steps

ingly with the energy evolution. There are almost three-orders of magnitude variation in
the time step, which indicates that the adaptive time stepping for the SAV schemes is very
efficient.

5 Conclusion

We proposed a hybrid TV and total α-order variation based minimization models for single
image super resolution. Our model consists of a convex data-fidelity term and the TV-L2

norm regularization term and total α-order variation regularization term. The proposedmodel
eliminates the staircasing artifacts commonly appeared in the results of TV-based models.
Moreover, the proposed hybrid model can produce better preserved edges, textures, and fine
features in the restored images. We proved the existence and uniqueness of the minimizers
for the proposed model.

We developed efficient iterative algorithms using the SAV approach with adaptive
time steps to handle the complicated data fidelity term and total α-order variation reg-
ularization term. Although we only considered semi-discretization in time in this paper,
all the results can be extended to fully discretized schemes as long as the spatial dis-
cretization respect integration by parts, since our proofs are variational with simple test
functions.
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Fig. 7 Timg SR: comparisons among small time steps, adaptive time steps, and large time steps

Table 3 Comparison of the total number of iterations and CPU time in Figs. 5, 6, and 7

Index Total number of iterations CPU time(s)

Test images Parrot Timg Fabric Parrot Timg Fabric

Δt = 10−4 4502 4689 4908 433.27 624.98 466.53

Δt = 10−2 297 461 251 27.77 51.29 22.76

Adaptive step 120 131 119 14.80 23.99 14.92

t

10-4

10-3

10-2

10-1

Ti
m

e 
st

ep
s

(a) Result of Parrot SR
t

10-4

10-3

10-2

10-1

Ti
m

e 
st

ep
s

(b) Result of Timg SR

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5
t

10 -4

10-3

10-2

10-1

Ti
m

e 
st

ep
s

(c) Result of Fabric SR

Fig. 8 Adaptive time steps
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The proposed model and numerical scheme are able to effectively smoothing homoge-
neous regions while preserving edges and textures, and they provide better HR results for
both natural images and synthetic images when compared with other approaches.
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