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We develop a linear, first-order, decoupled, energy-stable scheme for a binary hydrodynamic 
phase field model of mixtures of nematic liquid crystals and viscous fluids that satisfies 
an energy dissipation law. We show that the semi-discrete scheme in time satisfies 
an analogous, semi-discrete energy-dissipation law for any time-step and is therefore 
unconditionally stable. We then discretize the spatial operators in the scheme by a finite-
difference method and implement the fully discrete scheme in a simplified version using 
CUDA on GPUs in 3 dimensions in space and time. Two numerical examples for rupture of 
nematic liquid crystal filaments immersed in a viscous fluid matrix are given, illustrating 
the effectiveness of this new scheme in resolving complex interfacial phenomena in free 
surface flows of nematic liquid crystals.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The binary phase field model, also known as the diffuse interface model, is a tool to resolve the motion of free interfaces 
between two distinct fluid components, whose origin can be traced back to Rayleigh [23] and Van der Waals [30]. It was 
first formulated to study material mixtures and later adopted as a technique to resolve motion of the interface between 
different material components in material mixtures [2,4,37]. With the new development in advanced algorithms and com-
putational technologies recently, it has emerged as an efficient method to resolve complex dynamics in interfacial fluid flows 
involving complex topological changes. An advantage of the phase-field approach is that the model is often derived from a 
variational principle with an energy dissipation law, making it possible to carry out rigorous mathematical analyses, includ-
ing the existence and uniqueness of the solution of the governing partial differential equations. It also makes it plausible 
to design the numerical scheme that obeys an analogous discrete energy dissipation law, warranting nonlinear stability in 
the numerical computation [3,11,12,22,28,29,34]. For more details about the numerical methods developed for phase field 
models, readers are referred to some recent review papers [15,25] and the references therein.
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Recently, Shen and Yang [27] developed a new numerical scheme for solving a hydrodynamic phase-field model for 
binary mixture flows of liquid crystals and viscous fluids, where the phase field transport equation is the Allen–Cahn equa-
tion [27]. Since the commonly used Allen–Cahn equation does not conserve the fluid volume, they used the Lagrangian 
multiplier method to enforce the volume conservation in their scheme. They proved that the new scheme satisfies a semi-
discrete energy law, leading to decoupled, elliptic equations to be solved at each time step, and is unconditionally stable in 
time. The type of schemes that obeys an analogous, discrete energy dissipation law is customarily called the energy stable 
scheme. In order to prove the energy stability for the scheme, however, they did not use the time invariant derivative in the 
director transport equation and in the meantime omitted the corresponding elastic stress for the liquid crystal component 
in the model as well. The mathematical convenience leads to a model that no longer describes the liquid crystal component 
well in flows of the fluid mixture, i.e., the model is no longer frame indifference.

In this paper, we extend the previous study to a hydrodynamic phase field model for the binary mixture flow of liquid 
crystals and viscous fluids, in which the Cahn–Hilliard equation is adopted as the transport equation for the phase variable 
so that the volume of the mixture fluid is automatically conserved. We devise a new semi-discrete scheme in time and then 
prove the scheme is energy stable for the full model without any modification. This is by no means an easy task due to 
highly nonlinear couplings among the velocity, the hydrostatic pressure, the phase field function (or variable), the director 
field for liquid crystals, the time invariant derivative and the nontrivial elastic stress tensor. We note that this approach 
also applies to the Allen–Cahn model with the correct invariant time derivative for the director vector and elastic stress, 
extending the work of [27]. In addition, the anchoring energy, where the liquid crystal has preferred orientation at the 
interface, has also been considered. Specifically, we design an energy stable numerical scheme in a semi-discrete form in 
time and show that it satisfies the following properties: (a) it is unconditionally stable in time; (b) it satisfies a discrete 
energy law; and (c) it leads to decoupled, elliptic equations to be solved at each time step so that fast solvers for elliptic 
equations can be employed. We then implement this numerical scheme on graphic processing units (GPUs) using CUDA to 
conduct the mesh refinement test and to study rupture dynamics of a nematic liquid crystal drop or a filament immersed 
in a viscous fluid matrix [32]. Numerical experiments demonstrate the desired accuracy in the mesh refinement test in time 
and the presented numerical examples capture some interesting phenomena when the liquid crystal filament ruptures.

The rest of the paper is organized as follows. In Section 2, we describe a hydrodynamic phase-field model for the 
mixture flow of nematic liquid crystals and viscous fluids using the Cahn–Hilliard equation as the phase transport equation 
and derive the associated energy dissipation law. In Section 3, we develop the decoupled, energy stable numerical scheme 
for the coupled nonlinear hydrodynamic equation system. In Section 4, we prove the semi-discrete energy law for the 
new numerical scheme. In Section 5, we present the mesh refinement test results and a couple of numerical examples to 
illustrate the efficiency of the proposed scheme and study dynamics of nematic liquid crystal drops and filaments immersed 
in a viscous fluid matrix.

2. Two-phase hydrodynamic model for mixtures of nematic liquid crystals and viscous fluids

We consider a two-phase hydrodynamic phase field model for immiscible mixtures of nematic liquid crystals (LC) and 
viscous fluids. The volume fraction of the liquid crystal phase is represented by a phase function φ,

φ(x, t) =
{

1 liquid crystal,
0 viscous fluid,

(2.1)

with a thin smooth transitional layer of thickness ε separating the liquid crystal phase from the viscous fluid phase. The 
interface of the mixture is described by the level set �t = {x : φ(x, t) = 1

2 }. Without loss of generality, we assume all model 
parameters are already non-dimensionalized and therefore dimensionless.

The total energy of the mixture fluid system E is given by

E =
∫
�

[1

2
ρ|u|2dx + F ]dx, (2.2)

where the first part is the kinetic energy Ekin with ρ the volume averaged density of the mixture and u the volume-averaged 
fluid velocity and the second part is the material system’s free energy. The free energy contains three parts: the mixing free 
energy Eb , the bulk free energy for liquid crystals Ed , and the anchoring energy for liquid crystals Eanch [34],

F = Eb + Ed + Eanch. (2.3)

Specifically, we denote f (φ) = 1
ε2 φ2(1 − φ)2 as the Ginzburg–Landau double-well potential and define the mixing free 

energy by

Eb =
∫
�

γ (
1

2
|∇φ|2 + f (φ))dx, (2.4)

where γ is the strength of the energy proportional to the traditional surface tension [34] and the gradient term measures 

the conformational entropy.
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We assume that the bulk energy for liquid crystals is given by the modified Oseen–Frank distortional energy with a 
penalizing bulk term for handling potential defects in the liquid crystal phase [8,16,17,20,35]:

Ed =
∫
�

1

2
φ2W (d)dx, W (d) = K (

1

2
|∇d|2 + g(d)) (2.5)

where K is the Frank elastic constant [6] and g(d) = 1
4δ2 (|d|2 − 1)2 is a Ginzburg–Landau type penalty term, introduced to 

approximate the unit length constraint of d [18,19], where δ is a model parameter measuring the size of the defect core.
At the interface between the viscous fluid and the liquid crystal, a surface energy known as the anchoring energy is 

necessary to yield a preferred orientation for the liquid crystal [6,13]. The anchoring energy is given by

Eanch =
∫
�

[ A1

2
(d · ∇φ)2 + A2

2

(
|d|2|∇φ|2 − (d · ∇φ)2

)
]dx, (2.6)

where A1 and A2 (A1 > 0, A2 > 0) are the strength for the planar and homotropic anchoring energy, respectively.
Assuming (i) the phase field variable obeys the Cahn–Hilliard dynamics, (ii) the nematic director follows a relaxation 

dynamics in the Allen–Cahn form [2,9,21,22], (iii) the two fluids have a matching constant density ρ = 1 and viscosity η, 
we obtain the following dimensionless governing system of equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu + u · ∇u = −∇p + η�u + ∇ · τe − φ∇μ − h∇d,

∇ · u = 0,

∂td + u · ∇d − W · d = aD · d + M1h,

∂tφ + ∇ · (uφ) = M2�μ,

(2.7)

where

τe = −a

2
(dh + hd) + 1

2
(dh − hd),

μ = γ (�φ − f (φ)) − KφW (d) − (A1 − A2)∇ · ((d · ∇φ)d) − A2∇ · (|d|2∇φ),

h = ∇ · ( Kφ2

2
∇d) + Kφ2

2
g′(d) − (A1 − A2)(d · ∇φ)∇φ − A2|∇φ|2d. (2.8)

Here μ = δF
δφ

is the chemical potential [36], h = − δF
δd the molecular field, τe is the elastic stress tensor associated with liquid 

crystal dynamics [33], Dαβ = 1
2 (∂βuα + ∂αuβ) is the rate of strain tensor, Wαβ = 1

2 (∂βuα − ∂αuβ) is the vorticity tensor, p is 
the hydrostatic pressure, 1/M1 is the relaxation time parameter of LC director dynamics, M2 is the mobility parameter of 
the phase field function, a is a geometry parameter of liquid crystal molecules and η is the volume averaged viscosity.

Remark 2.1. When the two fluids have different densities with a relatively small difference, one can use the Boussinesq 
approximation [22]. The case of different viscosities can usually be dealt with in a straightforward manner by assuming the 
viscosity is a linear or harmonic average of the phase function.

Throughout the paper, we assume the following boundary conditions for the hydrodynamic variables and the internal 
variables:

u|∂� = 0, ∇φ · n|∂� = 0, ∇μ · n|∂� = 0, ∇d · n|∂� = 0, (2.9)

with n the unit outward normal, which warrants the boundary effect does not contribute to the energy dissipation. In fact, 
all results presented in this paper are valid for periodic boundary conditions as well.

Notice the fact that this system is energy dissipative, which enables us to prove the existence and uniqueness of the 
weak solution with certain smoothness by a standard Galerkin procedure [7]. The time rate of change of the total energy is 
given by

dE

dt
=

∫
�

u · ∂tu + δF

δφ

∂φ

∂t
+ δF

δd

∂d

∂t
dx

=
∫
�

u ·
(

− u · ∇u − ∇p + η�u − φ∇μ − h∇d + ∇ · (−a

2
(dh + hd) + 1

2
(dh − hd)

)

+ μ(−∇ · (uφ) + M2�μ) − h(−u · ∇d + W · d + aD · d + M1h)dx

=
∫

−∇ · (u
|u|2

) + |u|2 ∇ · u − ∇ · (pu) + p∇ · u − ∇ · (μφu)
�
2 2
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+ ∇ · (−a

2
(dh + hd)u + 1

2
(dh − hd)u) + ∇ · (ηu∇u) − η|∇u|2

− M1|h|2 + ∇ · (M2μ∇μ) − M2|∇μ|2dx

= −
∫
�

(η|∇u|2 + M1|h|2 + M2|∇μ|2)dx. (2.10)

Clearly, the parameters η, M1 and M2 affect the magnitude of the dissipation rate.

3. Decoupled semi-discrete scheme

One of the desirable properties for the discretized dissipative system to have is to maintain its own energy dissipation 
law that is consistent with the energy law obeyed by the continuous differential system. Practically, this is an indication for 
a good approximation to the differential dissipative system. In the following, we will design a semi-discrete energy stable 
scheme that addresses the following issues:

• the coupling of the velocity and pressure through the incompressible condition;
• the stiffness in the phase field equation and the director equation associated with the interfacial width ε and the defect 

core size δ;
• the nonlinear couplings among the momentum transport equation, the phase transport equation and the director equa-

tion.

In doing so, we develop the scheme based on a stabilization technique [26]. To prove energy stability of the scheme, we 
have to put some constraints on the potential function f (φ) and g(d), i.e., they satisfy the following conditions: (i) f and g
have continuous second order derivatives, (ii) there exist constants L1 and L2 such that

max
|d|∈R3

|H(d)| ≤ L2, max
|φ|∈R

| f ′′(φ)| ≤ L1, (3.1)

where H(d) is the Hessian matrix of g(d).
One immediately notice that this condition is not satisfied by the double-well potentials f (φ) = 1

ε2 φ2(φ − 1)2 and 
g(d) = 1

4δ2 (|d|2 − 1)2. However, we can modify f (φ) to the quadratic growth outside of a physically meaningful interval 
[−M, M] without affecting the solution if the maximum norm of the initial condition φ0 is bounded by M . Analogously, 
we can modify the function g outside a ball in R3 of radius M . For instance, we propose the following modifications:

f̃ (φ) =

⎧⎪⎪⎨
⎪⎪⎩

1
ε2 φ2, φ < 0,

1
ε2 φ2(1 − φ)2, 0 ≤ φ ≤ 1,

1
ε2 (1 − φ)2, φ > 1,

g̃(d) =
{

1
4δ2 (1 − |d|2)2, |d| ≤ 1,

1
δ2 (1 − |d|)2, |d| > 1.

(3.2)

Therefore, it is common (cf. [5,14,26]) to consider the Cahn–Hilliard equation with a modified double-well potential f̃ (φ)

and the Allen–Cahn equation with a modified g̃ . In the following, we drop the tilde •̃ and assume both f and g satisfy 
conditions (i) and (ii) listed above.

We now present the numerical scheme as follows.

Semi-discrete scheme
Given the initial conditions d0, φ0, u0 and p0 = 0, and having computed dn , φn , un and pn for n ≥ 0, we compute 

(dn+1, φn+1, un+1, pn+1) in the following sequence.

(1) Step 1: update dn+1:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dn+1−dn

δt + un
� · ∇dn − Wn

� · dn − aDn
� · dn = M1hn+1,

hn+1 = −Cn
1

(
dn+1 − dn

)
+ ∇ · ( K

2 (φn)2∇dn+1) − K
2 (φn)2 g′(dn)

− (A1 − A2)(dn · ∇φn)∇φn − A2|∇φn|2dn+1,

∂d
∂n |∂� = 0,

(3.3)

with Wn
� = 1

2

(
∇un

� − (∇un
�)

T
)
, Dn

� = 1
2

(
∇un

� + (∇un
�)

T
)

and

1 − a 1 + a

un

� = un − δthn+1∇dn + δt∇ · (
2

dnhn+1 −
2

hn+1dn). (3.4)
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We impose an additional boundary condition un
� |∂� = 0 in this step when physical boundary conditions are imposed 

instead of the periodic boundary condition. This condition sometimes is satisfied automatically if the liquid crystal 
phase (denoted by φ = 1) is completely inside �, namely, φ|∂� = 0 and ∇φ|∂� = 0. By definition, hn+1|∂� = 0 and 
un

�|∂� = un|∂� = 0. Otherwise, this new boundary condition serves as a bona fide intermediate boundary condition 
for dn+1.

(2) Step 2: update φn+1:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φn+1−φn

δt + ∇ ·
(

un
��φ

n
)

= M2�μn+1,

μn+1 = Cn
2(φn+1 − φn) + Cn

3(�φn+1 − �φn) + γ (−�φn+1 + f ′(φn))

+ φn+1W (dn+1) − (A1 − A2)∇ ·
(
(dn · ∇φn)dn+1

)
− A2∇ · (|dn+1|2∇φn+1),

∂φn+1

∂n |∂� = 0,
∂μn+1

∂n |∂� = 0,

(3.5)

with W (dn+1) = K
(

1
2 |∇dn+1|2 + g(dn+1)

)
and

un
�� = un

� − δtφn∇μn+1. (3.6)

(3) Step 3: update un+1:⎧⎪⎨
⎪⎩

ũn+1−un

δt + (un · ∇)ũn+1 = η�ũn+1 − ∇pn − φn∇μn+1

− hn+1∇dn + ∇ · (− a
2 (dnhn+1 + hn+1dn) + 1

2 (dnhn+1 − hn+1dn)),

ũn+1|∂� = 0.

(3.7)

{
un+1−ũn+1

δt = −∇(pn+1 − pn),

∇ · un+1 = 0, un+1 · n|∂� = 0.
(3.8)

In the above, Cn
1 , Cn

2 and Cn
3 are stabilizing parameters to be determined. The above scheme is constructed by com-

bining several effective approaches in the approximation of Cahn–Hilliard equation [26], Navier–Stokes equations [10] and 
phase-field models [1,24].

Remark 3.1. A pressure-correction scheme [10] is used to decouple the computation of the pressure from that of the velocity.

Remark 3.2. We note that the explicit discretization of f ′(φ) = 2
ε2 φ(1 − φ)(1 − 2φ) often leads to a severe restriction on 

time step δt when ε � 1. Thus, we introduce a “stabilizing” term to improve stability while preserving simplicity in (3.5), 
which allows us to treat the nonlinear term explicitly without subject to any time step constraint [26]. This stabilizing term 
introduces an error of order O (δt) in a small region near the interface, the same order as the error introduced by treating 
f (φ) explicitly; so the overall truncation error of the scheme is essentially the same with or without the stabilizing term. 
A similar approach is applied to the director equation for the treatment of g(d).

Remark 3.3. The scheme given by (3.3)–(3.8) is a fully decoupled, linear scheme. Hence, one only needs to solve a series of 
elliptic equations, which can be done very efficiently using fast solvers. Of course, some of these elliptic equations may be 
of variable coefficients.

Remark 3.4. If we don’t study the embedded phase and boundary interaction when the boundary is primarily adjacent to 
the other phase, the new intermediate boundary condition on dn+1 in practice can be avoided so long as we don’t allow 
the embedded phase (for example, denoted by φ = 1) to touch the boundary. This boundary condition is unnecessary if we 
deal with a periodic boundary condition.

We shall show next that the above scheme is energy stable unconditionally assuming each step can be solved uniquely.

4. Semi-discrete energy dissipation law

In this section, we prove that the scheme derived in the previous section is unconditionally energy stable. Instead of 
going directly to the proof, we first provide some lemmas to help readers to better follow the detail of the proof.

Lemma 4.1. Denote δφn+1 = φn+1 − φn and δδφn+1 = φn+1 − 2φn + φn−1 . Then, the following equalities hold,

2(φn+1 − φn)φn+1 = |φn+1|2 − |φn|2 + |φn+1 − φn|2,

2(φn+1 − φn)φn = |φn+1|2 − |φn|2 − |φn+1 − φn|2,
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2(∇φn+1 − ∇φn) · ∇φn+1 + |∇φn+1|2 − |∇φn|2 + |∇φn+1 − ∇φn|2,
2(∇φn+1 − ∇φn) · ∇φn = |∇φn+1|2 − |∇φn|2 − |∇φn+1 − ∇φn|2. (4.1)

Proof. We can obtain the equalities by simply expanding the inner product on the right hand side and then combining the 
common terms. �
Lemma 4.2. If F ∈ C2(Rk), where k is the dimension of the space, and

max
x∈Rk

|H(x)| < L, (4.2)

where H is the Hessian matrix of F , ∀xn+1, xn ∈ R
k, the following inequality holds,

(xn+1 − xn) · ∇ F (xn) ≥ F (xn+1) − F (xn) − L|xn+1 − xn|2. (4.3)

Proof. Notice the fact,

F (xn+1) = F (xn) + ∇ F (xn) · (xn+1 − xn) +
xn+1∫
xn

(xn+1 − xn)T H(x) · dx

≥ F (xn) + ∇ F (xn) · (xn+1 − xn) − L|xn+1 − xn|2. (4.4)

Then, we obtain

(xn+1 − xn) · ∇ F (xn) ≥ F (xn+1) − F (xn) − L|xn+1 − xn|2. � (4.5)

Lemma 4.3. The following identity holds,∫
�

(v · ∇)u · udx = 0, (4.6)

provided that n · v|∂� = 0, v and u are sufficiently smooth and ∇ · v = 0, where n is the unit external normal of the surface ∂�.

Proof. It is straightforward to show the following:∫
�

(v · ∇)u · udx =
∫
�

∇ · (v
|u|2

2
) − |u|2

2
∇ · vdx

=
∫
∂�

n · v
|u|2

2
ds

= 0. � (4.7)

Lemma 4.4. If Cn
1 , Cn

2 and Cn
3 satisfy the following conditions,

Cn
1 ≥ K L2

2
‖φn‖2∞ + 1

2
max(A1 − 2A2,0)‖∇φn‖∞,

Cn
2 ≥ γ L1,

Cn
3 ≥ 1

2
max(A1 − 2A2,0)‖dn+1‖∞ − γ

2
, (4.8)

then

(φn+1 − φn,μn+1) − (dn+1 − dn,hn+1) ≥ F n+1 − F n, (4.9)

where F n is the semi-discrete free energy defined as

F n = F n
b + F n

d + F n
anch,

F n
b = γ

(1

2
|∇φn|2 + f (φn),1

)
,

F n
d =

(1

2
(φn)2W (dn),1

)
, W (dn) = K

(1

2
|∇dn|2 + g(dn)

)
,

F n
anch = A1

2

(
(∇φn · dn)2,1

)
+ A2

2

(
|dn|2|∇φn|2 − (∇φn · dn)2,1

)
. (4.10)
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Proof. Using the definition of μn+1 in (3.5) and hn+1 in (3.3), the first term on the left hand in (4.9) can be expanded as

(φn+1 − φn,μn+1) = Cn
2‖φn+1 − φn‖2 + Cn

3‖∇φn+1 − ∇φn‖2

+ γ

2

(
‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 − ∇φn‖2

)
+ γ (φn+1 − φn, f ′(φn))

+
(
φn+1 − φn, φn+1W (dn+1)

)
−

(
φn+1 − φn, (A1 − A2)∇ ·

(
(dn · ∇φn)dn+1

)
+

(
φn+1 − φn, A2∇ · (|dn+1|2∇φn+1)

)
. (4.11)

The second term on the left hand in (4.9) can be rewritten into the following

−(dn+1 − dn,hn+1) = Cn
1‖dn+1 − dn‖2 − (dn+1 − dn,∇ · ( K

2
(φn)2∇dn+1))

+ (dn+1 − dn,
K

2
(φn)2 g′(dn)) + (A1 − A2)(dn+1 − dn, (dn · ∇φn)∇φn)

+ A2(dn+1 − dn, |∇φn|2dn+1). (4.12)

We denote

T = (φn+1 − φn,μn+1),

T0 = Cn
2‖φn+1 − φn‖2 + Cn

3‖∇φn+1 − ∇φn‖2,

T1 = γ (φn+1 − φn, f ′(φn)) + γ

2
(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 − ∇φn‖2),

T2 = (φn+1 − φn, φn+1W (dn+1)),

T3 = −(A1 − A2)
(
φn+1 − φn,∇ · ((dn · ∇φn)dn+1)

)
,

T4 = −A2

(
φn+1 − φn,∇ · (|dn+1|2∇φn+1)

)
. (4.13)

In addition, we introduce

P = −(dn+1 − dn,hn+1),

P0 = Cn
1‖dn+1 − dn‖2,

P1 = −(dn+1 − dn,∇ · ( K

2
(φn)2∇dn+1)),

P2 = (dn+1 − dn,
K

2
(φn)2 g′(dn)),

P3 = (A1 − A2)(dn+1 − dn, (dn · ∇φn)∇φn),

P4 = A2(dn+1 − dn, |∇φn|2dn+1), (4.14)

such that

T =
4∑

i=0

Ti, P =
4∑

i=0

Pi . (4.15)

Next, we analyze these terms one-by-one. For T1, we have,

T1 = γ (φn+1 − φn, f ′(φn)) + γ

2
(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 − ∇φn‖2)

= γ ( f (φn+1) − f (φn),1) − γ L1‖φn+1 − φn‖2 + γ

2
(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 − ∇φn‖2), (4.16)

i.e.

γ

T1 ≥ F n+1

b − F n
b +

2
‖∇φn+1 − ∇φn‖2 − γ L1‖φn+1 − φn‖2. (4.17)
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For T2, we have,

T2 = (φn+1 − φn, φn+1W (dn+1))

= (
1

2
(φn+1)2 − 1

2
(φn)2, W (dn+1)) + 1

2

(
(φn+1 − φn)2, W (dn+1)

)

≥ (
1

2
(φn+1)2 − 1

2
(φn)2, W (dn+1)), (4.18)

if W (d) ≥ 0, ∀d ∈R
3, which is true in our case.

For P1, we have

P1 = (∇dn+1 − ∇dn,
K

2
(φn)2∇dn+1)

= (
K

2
(φn)2,

1

2
(∇dn+1)2 − 1

2
(∇dn)2) + (

K

2
(φn)2,

1

2
(∇dn+1 − ∇dn)2)

≥ (
K

2
(φn)2,

1

2
(∇dn+1)2 − 1

2
(∇dn)2). (4.19)

For P2, we use Lemma 4.2 and obtain

P2 ≥ (
K

2
(φn)2, g(dn+1) − g(dn)) − (

K

2
(φn)2, L2(dn+1 − dn)2)

≥ (
K

2
(φn)2, g(dn+1) − g(dn)) − L2 K

2
‖(φn)2‖∞‖dn+1 − dn‖2. (4.20)

Combining T2, P1 and P2, we obtain

T2 + P1 + P2 ≥ F n+1
d − F n

d − L2 K

2
‖(φn)2‖∞‖dn+1 − dn‖2. (4.21)

Combining T3 and P3, we have

T3 + P3

= (A1 − A2)
((

dn+1 − dn, (dn · ∇φn)∇φn
)

−
(
φn+1 − φn,∇ ·

(
(dn · ∇φn)dn+1

)))
= (A1 − A2)

((
dn+1 − dn, (dn · ∇φn)∇φn

)
+

(
∇φn+1 − ∇φn, (dn · ∇φn)dn+1

))
= (A1 − A2)

(
(dn · ∇φn,dn+1 · ∇φn+1) − (dn · ∇φn,dn · ∇φn)

)
= A1 − A2

2

(
‖dn+1 · ∇φn+1‖2 − ‖dn · ∇φn‖2 − ‖dn+1 · ∇φn+1 − dn · ∇φn‖2

)
. (4.22)

Adding T4 with P4, we have

T4 + P4

= A2

(
(∇φn+1 − ∇φn, |dn+1|2∇φn+1) + (dn+1 − dn, |∇φn|2dn+1)

)

= A2

2

((
|∇φn+1|2 − |∇φ|2 + |∇φn+1 − ∇φn|2, |dn+1|2

)
+

(
|dn+1|2 − |dn|2 + |dn+1 − dn|2, |∇φn|2

))

= A2

2

(
|dn+1|2|∇φn+1|2 − |dn|2|∇φn|2,1

)
+ A2

2
(|∇φn+1 − ∇φn|2, |dn+1|2) + A2

2
(|dn+1 − dn|2, |∇φn|2). (4.23)

Combining T3, T4, P3 and P4, we have

T3 + T4 + P3 + P4 = F n+1
anch − F n

anch − A1 − A2

2
(‖dn+1 · ∇φn+1 − dn · ∇φn‖2)

A2 A2
+
2

(|∇φn+1 − ∇φn|2, |dn+1|2) +
2

(|dn+1 − dn|2, |∇φn|2). (4.24)
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Note that

−‖dn+1 · ∇φn+1 − dn · ∇φn‖2

= −‖dn+1 · ∇φn+1 − dn+1 · ∇φn + dn+1 · ∇φn − dn · ∇φn‖2

≥ −‖dn+1 · (∇φn+1 − ∇φn)‖2 − ‖∇φn · (dn+1 − dn)‖2

≥ −(|dn+1|2, |∇φn+1 − ∇φn|2) − (|∇φn|2, |dn+1 − dn|2). (4.25)

Then, we have

T3 + T4 + P3 + P4 ≥ F n+1
anch − F n

anch

− 1

2
max(A1 − 2A2,0)

(
‖(dn+1)2‖∞‖∇φn+1 − ∇φn‖2 + ‖(∇φn)2‖∞‖dn+1 − dn‖2

)
. (4.26)

Adding up (4.17), (4.21), (4.26), T0 and P0, we have

(φn+1 − φn,μn+1) − (dn+1 − dn,hn+1)

=
4∑

i=0

Ti +
4∑

i=0

Pi

≥ F n+1 − F n + Cn
2‖φn+1 − φn‖2 + Cn

3‖∇φn+1 − ∇φn‖2 + Cn
1‖dn+1 − dn‖2

+ γ

2
‖∇φn+1 − ∇φn‖2 − γ L1‖φn+1 − φn‖2 − K L2

2
‖φn‖2∞‖dn+1 − dn‖2

− 1

2
max(A1 − 2A2,0)

(
‖(dn+1)2‖∞‖∇φn+1 − ∇φn‖2 + ‖(∇φn)2‖∞‖dn+1 − dn‖2

)
= F n+1 − F n + (Cn

1 − K L2

2
‖φn‖2∞ − 1

2
max(A1 − 2A2,0)‖∇φn‖∞)‖dn+1 − dn‖2

+ (Cn
2 − γ L1)‖∇φn+1 − ∇φn‖2 + (Cn

3 + γ

2
− 1

2
max(A1 − 2A2,0)‖dn+1‖∞)‖∇φn+1 − ∇φn‖2. (4.27)

By the assumption, we have,

Cn
1 ≥ K L2

2
‖φn‖2∞ + 1

2
max(A1 − 2A2,0)‖∇φn‖∞,

Cn
2 ≥ γ L1,

Cn
3 ≥ 1

2
max(A1 − 2A2,0)‖dn+1‖∞ − γ

2
. (4.28)

Finally, we arrive at

(φn+1 − φn,μn+1) − (dn+1 − dn,hn+1) ≥ F n+1 − F n. � (4.29)

Theorem 4.1. Under the conditions in Lemma 4.4, the scheme (3.3)–(3.8) admits a unique solution satisfying the following semi-
discrete energy dissipation law:

1

2
‖un+1‖2 + F n+1 + δt2

2
‖∇pn+1‖2 + δt

(
η‖∇ũn+1‖2 + M2‖∇μn+1‖2 + M1‖hn+1‖2

)

≤ 1

2
‖un‖2 + F n + δt2

2
‖∇pn‖2, (4.30)

where the semi-discrete energy F n is defined in (4.10).

Proof. From the definition of un
� in equation (3.4) and un

�� in equation (3.6), we can rewrite the momentum equation as 
follows

ũn+1 − un
��

δt
+ (un · ∇)ũn+1 − η∇2ũn+1 + ∇pn = 0. (4.31)

Taking the inner-product of (4.31) with 2δtũn+1, we obtain,
‖ũn+1‖2 − ‖un
��‖2 + ‖ũn+1 − un

��‖2 + 2ηδt‖∇ũn+1‖2 + 2δt(∇pn, ũn+1) = 0. (4.32)
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To deal with the pressure term, we take the inner product of (3.8) with 2δt2∇pn to arrive at

δt2(‖∇pn+1‖2 − ‖∇pn‖2 − ‖∇pn+1 − ∇pn‖2) − 2δt(ũn+1,∇pn) = 0. (4.33)

Taking the inner product of (3.8) with 2δtun+1, we obtain

‖un+1‖2 − ‖ũn+1‖2 + ‖un+1 − ũn+1‖2 = 0. (4.34)

It follows from (3.8) directly that

δt2‖∇pn+1 − ∇pn‖2 − ‖ũn+1 − un+1‖2 = 0. (4.35)

Adding up (4.32)–(4.35), we obtain

‖un+1‖2 − ‖un
��‖2 + ‖ũn+1 − un

��‖2 + δt2(‖∇pn+1‖2 − ‖∇pn‖2) + 2ηδt‖∇ũn+1‖2 = 0. (4.36)

If we take the inner product of (3.3) with −2δthn+1, we get

2δtM1‖hn+1‖2 − 2δt(hn+1, (un
� · ∇)dn) − 2(dn+1 − dn,hn+1) + 2δt

(
hn+1, (Wn

� + aDn
�) · dn

)
= 0. (4.37)

Taking the inner product of (3.4) with 2un
� , we obtain

‖un
�‖2 − ‖un‖2 + ‖un

� − un‖2 + 2δt(hn+1∇dn,un
�)) − 2δt

(
∇ · (1 − a

2
dnhn+1 − 1 + a

2
hn+1dn),un

�

)
= 0. (4.38)

Adding (4.37) with (4.38) and noticing the fact that(
∇ · (1 − a

2
dnhn+1 − 1 + a

2
hn+1dn),un

�

)
=

(
hn+1, (Wn

� + aDn
�) · dn

)
, (4.39)

we arrive at

‖un
�‖2 − ‖un‖2 + ‖un

� − un‖2 + 2δtM1‖hn+1‖2 − 2(dn+1 − dn,hn+1) = 0. (4.40)

If we take the inner product of (3.5) with 2δtμn+1, we obtain

2(φn+1 − φn,μn+1) + 2δt(∇ · (φnun
��),μ

n+1) + 2M2δt‖∇μn+1‖2 = 0. (4.41)

Taking the inner product of (3.6) with 2un
�� , we have

‖un
��‖2 − ‖un

�‖2 + ‖un
�� − un

�‖2 + 2δt(un
��,φ

n∇μn+1)) = 0. (4.42)

Adding (4.41) with (4.42), we arrive at

‖un
��‖2 − ‖un

�‖2 + ‖un
�� − un

�‖2 + 2(φn+1 − φn,μn+1) + 2M2δt‖∇μn+1‖2 = 0. (4.43)

Finally, adding up the equations (4.36), (4.40), (4.43) and dividing both side by 2, we obtain

1

2

(
‖un+1‖2 − ‖un‖2 + ‖ũn+1 − un

��‖2
)

+ 1

2
δt2(‖∇pn+1‖ − ‖∇pn‖2) + ηδt‖∇ũn+1‖2

+ δtM2‖∇μn+1‖2 + δtM1‖hn+1‖2 + (φn+1 − φn,μn+1) − (dn+1 − dn,hn+1) = 0. (4.44)

According to Lemma 4.4

(φn+1 − φn,μn+1) − (dn+1 − dn,hn+1) ≥ F n+1 − F n, (4.45)

hence, we finally obtain

1

2
‖un+1‖2 + F n+1 + δt2

2
‖∇pn+1‖2 + δt

(
η‖∇ũn+1‖2 + M2‖∇μn+1‖2 + M1‖hn+1‖2

)

≤ 1

2
‖un‖2 + F n + δt2

2
‖∇pn‖2. � (4.46)

Here are several remarks regarding the constraints for Cn
1 , Cn

2 and Cn
3 in Lemma 4.4.

Remark 4.1. Without the anchoring energy, the conditions in Lemma 4.4 reduce to Cn
1 ≥ K L2

2 ‖φn‖2∞ and Cn
2 ≥ γ L1. When 

the anchoring condition is weak such that γ
2 > 1

2 max(A1 − 2A2, 0)‖dn+1‖2, the stabilizer Cn
3 is not necessary.

Remark 4.2. The constraint for Cn
2 is due to the explicit treatment of f ′(φ) in the scheme (3.5) for φn+1. This constraint can 
be removed if we adopt convex splitting strategy [31] for f ′(φ) or allow nonlinear schemes, i.e. treating f (φ) implicitly.
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Remark 4.3. Although Cn
3 explicitly depends on dn+1, Cn

3 only exists in the scheme (3.5) when solving φn+1, while dn+1 has 
already been obtained. In this sense, as long as the constraint for Cn

3 is satisfied, this scheme is energy stable for any time 
step δt .

5. Decoupled energy stable scheme for a reduced model

In the flow regime where ‖W‖ and ‖D‖ are small, a reduced model is obtained as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tu + u · ∇u = −∇p + η�u − φ∇μ − h∇d,

∇ · u = 0,

∂td + u · ∇d = M1h,

∂tφ + ∇ · (uφ) = M2�μ,

(5.1)

where the chemical potential μ and molecular field h are given respectively by

μ = γ (�φ − f (φ)) − KφW (d) − (A1 − A2)∇ · ((d · ∇φ)d) − A2∇ · (|d|2∇φ),

h = ∇ · ( Kφ2

2
∇d) + Kφ2

2
g′(d) − (A1 − A2)(d · ∇φ)∇φ − A2|∇φ|2d. (5.2)

An energy dissipation law exists for this model. In [27], a slightly different model in which the phase transport equation 
is the Allen–Cahn instead of the Cahn–Hilliard equation was studied. A first order energy stable scheme was devised and 
proved. For this model (eq. (5.1)), we devise a decoupled scheme below following our approach alluded to earlier.

Semi-discrete scheme
Given the initial conditions d0, φ0, u0 and p0 = 0 and having computed dn , φn , un and pn for n ≥ 0, we compute 

(dn+1, φn+1, un+1, pn+1) in the following sequence.

(1) Step 1: update dn+1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ḋn+1 = M1hn+1,

ḋn+1 = dn+1−dn

δt + un
� · ∇dn,

hn+1 = −Cn
1

(
dn+1 − dn

)
+ ∇ · ( K

2 (φn)2∇dn+1) − K
2 (φn)2 g′(dn)

− (A1 − A2)(dn · ∇φn)∇φn − A2|∇φn|2dn+1,

∂d
∂n |∂� = 0,

(5.3)

with

un
� = un − δthn+1∇dn. (5.4)

(2) Step 2: update φn+1:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ̇n+1 = M2�μn+1,

μn+1 = Cn
2(φn+1 − φn) + Cn

3(�φn+1 − �φn) + γ (−�φn+1 + f ′(φn))

+ φn+1W (dn+1) − (A1 − A2)∇ ·
(
(dn · ∇φn)dn+1

)
− A2∇ · (|dn+1|2∇φn+1),

∂φn+1

∂n |∂� = 0,
∂μn+1

∂n |∂� = 0,

(5.5)

with

φ̇n+1 = φn+1 − φn

δt
+ ∇ ·

(
un

��φ
n
)
,

un
�� = un

� − δtφn∇μn+1,(1 )

W (dn+1) = K

2
|∇dn+1|2 + g(dn+1) . (5.6)
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Fig. 6.1. Variable locations on the 3-D staggered grid.

(3) Step 3: update un+1:{
ũn+1−un

δt + (un · ∇)ũn+1 = η�ũn+1 − ∇pn − φn∇μn+1 − hn+1∇dn,

ũn+1|∂� = 0.
(5.7)

{
un+1−ũn+1

δt = −∇(pn+1 − pn),

∇ · un+1 = 0, un+1 · n|∂� = 0.
(5.8)

It can be proved analogously that the scheme is energy stable with respect to any δt . We omit the details since the proof 
is identical to the one we discussed previously in the paper. We comment on this reduced model because it has been a 
subject of intensive investigations by many numerical analysts and PDE analysts; physically it’s applicability is limited, but 
it may be of mathematical and numerical values to some extend. In the next section, we will focus on the full model, its 
discretization and a couple of numerical results computed using it.

6. Numerical implementation and mesh refinement results

The first step (eq. (3.3)) in this semi-discrete, decoupled scheme is implicit. It involves a variable coefficient fourth order 
spatial operator with the coefficient proportional to δt . In order to solve this fourth order equation system, an additional 
boundary condition must be supplied as alluded to earlier. The solvability condition for this system is not yet established, not 
mention the uniqueness. However, if we drop the term proportional to δt in un∗ and use un instead, the scheme remains first 
order in time and becomes a fully decoupled elliptic equation system. In the following, we will implement this simplified 
version of the scheme and study its behavior in mesh refinement. For simplicity in the implementation, we approximate 
un

�� by un , which doesn’t affect the order-of-accuracy of this scheme, i.e., it is still first-order accurate in time. Numerical 
tests show that energy decreases in time; so, the discrete energy dissipation law still holds numerically.

We denote the computational domain in space by [0, Lx] × [0, Ly] × [0, Lz] where Lx, Ly, Lz are the length in x, y, z
directions, respectively. In all the numerical studies presented below, we set

δt = 2 × 10−4, ε = 0.01, δ = 0.03, a = 1.2, γ = 10, (6.1)

where the choice of a = 1.2 indicate that the liquid crystal is rodlike. Then, we vary values of the other parameters in the 
various examples to be studied. We note a detailed parameter study is essential for investigating the physical properties of 
this LC model. However, in this paper, our goal is to illustrate the effectiveness of the proposed scheme instead of focusing 
on such a detailed parameter investigation.

6.1. Spacial discretization and GPU implementation

For the spatial operators in the scheme, we use second-order central finite difference methods to discretize them over 
a uniform spatial grid, where the velocity fields are discretized at the center of mesh surfaces, and pressure p, phase 
variables (φ and d) are discretized at the cell center, as shown in Fig. 6.1. The boundary conditions are handled by ghost 
cells to maintain the spacial accuracy.

The fully discretized equations in the scheme are implemented on GPUs (graphics processing units) in 3 dimensional 
space and time for high-performance computing. To better utilize the performance of GPU, we store all variables in the 
global memory and store all parameters and mesh information (which do not change during the simulation) in the constant 
memory, which is the on-chip memory, such that it greatly reduces the latency of data access.

All the spatial discretizations are implemented the basic linear operators, such as the gradient, Laplacian, and divergence 
operator. For each time-step, we use a preconditioned Bi-Conjugate Gradient method to solve the linear equations, where 
the pre-conditioner is solved using FFT. For instance, in each time step, we need solving
Lnψn+1 = f n, (6.2)
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Fig. 6.2. 2D schematic of mapping from GPU threads to the mesh elements. This figure shows a 2D schematic on how each thread in a GPU implementation 
maps into a corresponding mesh element. Here, we have a 16 × 16 uniform mesh and claim 4 × 4 blocks in a grid, where each block contains 4 threads.

Table 6.1
CPU time vs. degrees of freedom.

Mesh 483 963 1443 1923 2403

CPU time (seconds) 0.04 0.12 0.37 0.87 2.02

with ψn+1 the variable, Ln a linear operator, f n the right-hand-side, depending only on the variables in the n-th time step. 
We approximate Ln by a linear operator L̃n = ∑k

i=0 λi�
i , where 2k is less than or equal to the highest spatial derivative in 

Ln and λi are numerical weights. After having calculated L̃−1
n by FFT, we solve

L̃−1
n Lnψn+1 = L̃−1

n f n. (6.3)

Instead of constructing the stiffness matrix (which takes memory storage on GPUs), we only need to apply linear operator 
L̃−1

n Ln on intermediate vectors (i.e. matrix vector multiplication), since we are using the Bi-Conjugate Gradient method, 
which is one of the Krylov subspace methods.

One advantage in using GPUs is its virtual allocations of processors (we can claim as many threads as we desire, even if 
it is beyond the existing number of multiprocessors on the physical device). Therefore, in our implementation, we allocate 
as many processors as the degree of freedom of the computed problem. A schematic is shown in Fig. 6.2, where we have 
a 16 × 16 uniform mesh, so we can claim 4 × 4 blocks with each block containing 4 threads. In this situation, there is a 
one to one mapping from the thread to the mesh point such that each thread calculates the respective component for the 
matrix vector multiplication. This strategy turns out to be very effective.

Remark 6.1. We note that the stability property of the full discretized scheme with the finite difference discretization in 
space is not yet established. Nor, are the corresponding fully discretized schemes with finite element, finite volume and 
spectral method, etc. Research in this direction still is ongoing.

6.2. Mesh refinement test

In order to have high resolution of spatial mesh size to eliminate the spatial error, here we test the code in 2D with the 
spatial mesh-size 512 × 512 and time step δt = 2 × 10−3, 10−3, 5 × 10−4, 2.5 × 10−4 and 1.25 × 10−4, respectively. At t = 1, 
the numerical solutions are compared. Here, we calculate the error by calculating the difference between the numerical 
result with the one of its nearest finer time step (which is regarded as the approximation to the accurate solution). The 
errors in L1, L2 and L∞ norms are shown. The numerical tests demonstrate that the numerical scheme is at least first-order 
accurate in time. The mesh refinement test results are shown in Fig. 6.3.

In addition, we also summarize the CPU time for each time step versus varying mesh sizes (different nodes of freedom) 
in Table 6.1, where we choose δt = 10−3. Our implementation is shown to be effective.

7. Numerical examples

7.1. Example 1: breakup of liquid crystal filaments

To demonstrate the power of this phase field model and the numerical code resulted from the new scheme we conduct a 
numerical simulation of the LC filament breakup phenomenon induced by capillary instability. The computational domain is 
chosen as [0, 0.25] ×[0, 1] ×[0, 0.25] with 128 × 512 × 128 grids. The initial orientation of the LCs parallels to the filament. 
We denote

r =
√

(x − Lx/2)2 + (z − Lz/2)2, R = 0.03 + 0.005 sin(2 × π(y − Ly/2) + 0.5π). (7.1)

The initial profile of the phase function φ is given by

1( R − r )

φ =

2
tanh(

ε
) + 1 . (7.2)
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Fig. 6.3. Mesh refinement test in time. Here, we use spatial mesh size 512 × 512, and choose time step δt = 2 × 10−3, 10−3, 5 × 10−4, 2.5 × 10−4, 
1.25 × 10−4, respectively. The log2(L1, L2, L∞ norm of the error) for φ , v and d vs. log2(δt) are plotted. The slope of the lines is 1.

The simulation result is shown in Fig. 7.1. In this computation, we do not impose any anchoring condition assuming the 
anchoring effect is weak. The filament eventually breaks up into satellite drops, where each drop shows a pair of defects 
located at the north and sole pole, respectively. The bead on a string morphology is demonstrated, where we observe 
multiple small beads near a bigger one connected via thin liquid bridges. In order to observe the LC orientation and give 
a better view of interfacial dynamics, LC orientation is shown in Figs. 7.1(h)–(n), where 2D slices at x = 0.5Lx are plotted. 
We observe that the LC aligns roughly in the direction of the axis of filament symmetry in the bulk; whereas at the 
LC-viscous fluid interface, the LC orientation is orthogonal to the normal of the interface at the interface leading to the pair 

of defects at the north and south pole. This phenomenon agrees qualitatively with the experimental finding.
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Fig. 7.1. Capillary instability of free liquid crystal jets. This figure shows beads formation induced by capillary instability with mesh 128 × 512 × 128 and 
domain size [0, 0.25] × [0, 1] × [0, 0.25]. A time series (t = 0, 1, 2, 3, 4, 5, 6) of 3D view is shown in (a)–(g), respective 2D view is shown in (h)–(n). The 
parameters are δt = 5.0 × 10−4, η = 1.0, M1 = 1.0 × 10−10, M2 = 1.0 × 10−3, K = 0.025, A1 = A2 = 0.

7.2. Example 2: a liquid crystal drop in a shear flow of viscous fluids

In this example, we simulate the shear induced rupture of a liquid crystal drop. Initially, a spherical liquid crystal drop is 
placed in a viscous fluid matrix with the same density and viscosity. The parallel plates (y = 0, Ly) moves in the opposite 
direction with relative speed v0 = 20. One numerical result is shown in Fig. 7.2 and Fig. 7.3. The drop first elongates due to 
the shearing flow. After it elongates into a filament, it ruptures into satellite drops or beads. We also conduct a comparative 
study on the rupture phenomenon of liquid crystal drops with respect to various Frank-elastic constant K and plot the 
results in Fig. 7.4, where we observe that a high Frank-elastic constant facilitates the rupture of the drop into more satellite 
drops than it is small.

8. Conclusion

In this paper, we present a hydrodynamic phase field model derived using the generalized Onsager principle, which obeys 
an energy dissipative law even with the anchoring condition incorporated. We then design a linear, first-order, decoupled, 
energy stable scheme for the full model and show that the semi-discrete scheme satisfies an analogous, discrete energy 
dissipation law. While we have only considered the semi-discrete scheme in time, the results can be carried over to the 
fully discrete scheme for any consistent finite element or spectral Galerkin approximations since the proof is based on the 
variational formulation with all test functions in the same space as the trial function. We further implement the scheme 
with a finite difference method in space on GPUs for high performance computing. Two 3D numerical examples are shown 
to illustrate the power of this code in resolving complex interfacial fluid dynamics. More detailed studies on dynamics of 

n
ematic liquid crystal drops will be given in a sequel.
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Fig. 7.2. 3D simulation of shear induced rupture of a liquid crystal drop in a viscous fluid. This figure shows a time sequence (t = 0, 0.4, 0.8, 1.2, 1.6, 1.8, 2.0) 
of a liquid crystal drop in a viscous shear flow field induced by a moving boundary. The moving speed, which is also the shear rate in this paper, is 20 in 
the simulation. The domain is [0, 0.5] × [0, 1] × [0, 10] with mesh 64 × 128 × 1280, δt = 5.0 × 10−4, η = 0.1, M1 = 2.5 × 10−6, M2 = 1.0 × 10−3, K = 0.05, 
A1 = A2 = 0.

Fig. 7.3. 3D simulation of shear induced rupture of liquid crystal drop in a viscous fluid. This shows a 2D view of the dynamics shown in Fig. 7.2 at 

(t = 0, 0.4, 0.8, 1.2, 1.6, 1.8, 2.0).
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Fig. 7.4. The effect of distortional elasticity K on the shear induced rupture of the liquid crystal drop. These figures show that the micro-structure of the 
liquid crystal enhances the shear induced rupture in that the stronger the distortional elasticity of the liquid crystal is, the more satellite drops are produced 
by shear. All the other parameters are the same as in Fig. 7.2, except: (A) K = 0; (B) K = 0.01; (C) K = 0.05.
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