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Abstract

Two new Gauge–Uzawa schemes are constructed for incompressible flows with variable density. One is in the conserved
form while the other is in the convective form. It is shown that the first-order versions of both schemes, in their semi-dis-
cretized form, are unconditionally stable. Numerical experiments indicate that the first-order (resp. second-order) versions
of the two schemes lead to first-order (resp. second-order) convergence rate for all variables and that these schemes are
suitable for handling problems with large density ratios such as in the situation of air bubble rising in water.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

We consider in this paper numerical approximations of incompressible viscous flows with variable density
governed by the following coupled nonlinear system:
0021-9

doi:10.

* Co
E-m

UR
1 Th
2 Th
qt þ u � rq ¼ 0; ð1:1aÞ
qðut þ ðu � rÞuÞ þ rp � lDu ¼ f in X� ð0; T �; ð1:1bÞ
r � u ¼ 0; ð1:1cÞ
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where the unknowns are the density q > 0, the velocity field u and the pressure p; l is the dynamic viscosity
coefficient, f represents the external force, X is a bounded domain in Rd (d = 2 or 3) and T > 0 is fixed time.
The system (1.1) is supplemented with initial and boundary conditions for u and q:
qðx; 0Þ ¼ q0ðxÞ in X and qðx; tÞjCuðx;tÞ
¼ rðx; tÞ;

uðx; 0Þ ¼ u0ðxÞ in X and uðx; tÞjC ¼ gðx; tÞ;

(
ð1:2Þ
where C = oX, and for any velocity field v, Cv is the inflow boundary defined by
Cv :¼ fx 2 C : vðxÞ � m < 0g

with m being the outward unit normal vector. We note that no initial and boundary condition is needed for the
pressure p which can be viewed as a Lagrange multiplier whose mathematical role is to enforce the incompress-
ibility condition (1.1c). We refer to [9] for the mathematical theory on the well posedness of (1.1)–(1.2).

How to construct stable and efficient numerical schemes for the system (1.1)–(1.2) is challenging since, in
addition to all the difficulties associated with the incompressible flows with constant density, it involves a
transport equation for the density q which enforces, in addition to the incompressibility, that the mass density
remains unchanged during the fluid motion. It is now well established (see, for instance, the review [5] and the
references therein) that the difficulties associated with the incompressibility can be effectively handled by using
a suitable projection type scheme originally proposed by Chorin [2] and Temam [14]. This approach has been
used in [1,6,8], among others, for incompressible flows with variable density. However, the variable density
introduces considerable difficulties for the construction and analysis of accurate and stable projection type
schemes. For example, it is well known that the skew-symmetry of the nonlinear term in the Navier–Stokes
equations (with constant density q0), namely,
Z

X
ðq0u � rÞv � vdx ¼ 0 for u; v smooth enough and u � mjC ¼ 0;
plays a very important role in the analysis of the Navier–Stokes equations and the corresponding numerical
schemes. However, this property no longer holds when q is not a constant. To overcome this difficulty, Guer-
mond and Quartapelle [6] considered the following system in conserved form:
qt þ u � rqþ q
2
r � u ¼ 0; ð1:3aÞ

rðruÞt þ ðqu � rÞuþ u

2
r � ðquÞ þ rp � lDu ¼ f in X� ð0; T �; ð1:3bÞ

r � u ¼ 0; ð1:3cÞ

where r ¼ ffiffiffi

q
p

. Note that the term q
2
r � u, which is zero everywhere due to (1.3c), is kept in the formulation in

anticipation that the incompressibility condition (1.3c) may not be satisfied exactly in the space discrete case.
We derive from (1.1a) and (1.1c) that
rðruÞt ¼ qut þ
1

2
qtu ¼ qut �

1

2
r � ðquÞu:
Hence, the system (1.3) is mathematically equivalent to the original system (1.1), but now the nonlinear terms
in (1.3) satisfy the desired properties that for q, u, v smooth enough and u Æ m|C = 0, we have
Z

X
u � rq � qdx ¼ 0 and

1

2

Z
X

qr � uqdx ¼ 0; ð1:4ÞZ
X
ðqu � rÞv � vdxþ 1

2

Z
X
r � ðquÞv � vdx ¼ 0: ð1:5Þ
Hence, taking the inner product of (1.3a) with q(x, t) and of (1.3b) with u(x, t), we obtain the following
identities:
1

2

d

dt
kqð�; tÞk2

L2 ¼ 0;

1

2

d

dt
krðtÞuð�; tÞk2

L2 þ lkruð�; tÞk2
L2 ¼

Z
X

fðx; tÞ � uðx; tÞdx:
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It is from this conserved formulation that Guermond and Quartapelle were able to construct some stable pro-
jection type schemes for the incompressible flows with variable density and proved rigorously their stability in
[6]. To the best of our knowledge, the stability analysis [6] is still the only rigorous proof available for any
projection type scheme with variable density. However, for the more accurate version (see (4.1)–(4.5) in [6])
which is based on the incremental projection scheme (i.e., the pressure-correction scheme), two projection
steps (i.e., two pressure-Poisson solvers) are needed to preserve the stability of the scheme. Since the pres-
sure-Poisson solver consumes a significant part (it is often the most time consuming part) of the total compu-
tational effort, this approach could increase the total computational cost significantly as opposed to the
schemes with only one projection step. On the other hand, while the system in conserved form (1.3) is conve-
nient for analysis, it does involve additional cost in computing the two additional nonlinear terms in (1.3a) and
(1.3b). In some cases where a non-variational method such as spectral-collocation method or finite difference
method is used, it is often not advisable to use (1.3). Hence, it is also of interest to have a stable numerical
scheme which is based on the original system (1.1).

The purpose of this paper is to propose two new Gauge–Uzawa schemes for incompressible flows with var-
iable density. The first scheme will be based on the system in conserved form (1.3) while the second scheme will
be based on the system in convected form (1.1). We recall that the Gauge–Uzawa method is introduced in
[12,10] to overcome some implementation difficulties associated with the Gauge method introduced in [3].
It has been shown in [12,10,13,11] that the Gauge–Uzawa method has many advantages over the original
Gauge method and the pressure-correction method. We will show that a proper Gauge–Uzawa formulation
is well suitable for problems with variable density. More precisely, our two new schemes will only involve
one projection step and will be proved unconditionally stable.

The paper is organized as follows. In the next two sections, we present the two Gauge–Uzawa schemes and
show that they are unconditionally stable, respectively. In Section 4, we present some numerical results which
reveal the convergence rate of our schemes for each of the three unknown functions. We also present a chal-
lenging numerical simulation of an air bubble rising in water. some concluding remarks are given in Section 5.

We now introduce some notations. We denote by Hs(X) and H s
0ðXÞ the usual Sobolev spaces. Let d = 2 or 3

be the space dimension. We set L2(X) := (L2(X))d and Hs(X) := (Hs(X))d, and denote by L2
0ðXÞ the subspace of

L2(X) of functions with vanishing mean-value. We use i Æ is to denote the norm in Hs(X) and ÆÆ, Ææ to denote the
inner product in L2(X).

2. Gauge–Uzawa method in conserved form

2.1. The scheme and its stability

The first-order semi-discrete Gauge–Uzawa method based on the conserved system (1.3) reads as follows:

Algorithm 1 (Gauge–Uzawa method in conserved form). Set q0 = q0, u0 = u0 and s0 = 0; repeat for
1 6 n 6 N 6 T/s�1:

Step 1. Find qn+1 as the solution of
qnþ1�qn

s þ un � rqnþ1 þ qnþ1

2
r � un ¼ 0;

qnþ1jCun ¼ rnþ1:

(
ð2:1Þ
Step 2. Find bunþ1 as the solution of
rnþ1 rnþ1bunþ1�rnun

s þ qnþ1ðun � rÞbunþ1 þ 1
2
ðr � ðqnþ1unÞÞbunþ1 þ lrsn � lDbunþ1 ¼ fnþ1;bunþ1jC ¼ gnþ1:

(
ð2:2Þ
Step 3. Find /n+1 as the solution of
�r � 1
qnþ1r/nþ1
� �

¼ r � bunþ1;

om/
nþ1jC ¼ 0:

8<: ð2:3Þ
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Step 4. Update un+1 and sn+1 by
unþ1 ¼ bunþ1 þ 1

qnþ1
r/nþ1;

snþ1 ¼ sn �r � bunþ1:

ð2:4Þ
Remark 2.1. In practice, (2.3) is often reformulated in the following weak formulation
1

qnþ1
r/nþ1;rq

� �
¼ �hbunþ1;rqi 8q 2 H 1ðXÞ; ð2:5Þ
and then discretized. We derive immediately from (2.5, 2.4) that
hunþ1;rqi ¼ 0 8q 2 H 1ðXÞ; ð2:6Þ
which implies that in the space continuous case, we have
r � unþ1 ¼ 0 and unþ1 � mjC ¼ gnþ1 � mjC: ð2:7Þ
However, in the space discrete case, only a discrete version of (2.6) will be satisfied so the discrete velocity field
will generally not be divergence free.

Remark 2.2. Note that the pressure does not appear in the above algorithm. However, a proper approxima-
tion of the pressure can be constructed. To this end, let us assume for the moment q = q0 is a constant and
drop the nonlinear terms. Then, eliminating bunþ1 from (2.2) using (2.4) and (2.7) leads to
q0

unþ1 � un

s
� lDunþ1 þrðlsnþ1 � 1

s
/nþ1Þ ¼ fnþ1;

r � unþ1 ¼ 0; unþ1 � mjC ¼ gnþ1 � mjC:
Hence, we should define the pressure approximation as
pnþ1 ¼ � 1

s
/nþ1 þ lsnþ1: ð2:8Þ
Next, we establish a stability result. For the sake of simplicity, we shall consider only homogeneous Dirich-
let boundary conditions for the velocity, i.e., u|C = 0.

Theorem 2.1. Assuming g ” 0, the Gauge–Uzawa Algorithm 1 is unconditionally stable in the sense that, for all
s > 0 and 0 6 N 6 T/s � 1, the following a priori bounds hold:
kqNþ1k2
0 þ

XN

n¼0

kqnþ1 � qnk2
0 ¼ kq0k2

0 ð2:9Þ
and
krNþ1buNþ1k2
0 þ

XN

n¼1

krnþ1bunþ1 � rnunk2
0 þ k

1

rn
r/nk2

0

� �
þ lsksNþ1k2

0 þ
l
2

s
XN

n¼1

krbunþ1k2
0

6 kr0bu0k2
0 þ Cls

XN

n¼1

kfnþ1k2
�1: ð2:10Þ
Proof. Taking the inner product of (2.1) with 2sqn+1, thanks to (1.4), we get
kqnþ1k2
0 þ kqnþ1 � qnk2

0 � kqnk2
0 ¼ 0:
Summing it over n from 0 to N leads to (2.9).
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Next, we take the inner product of (2.2) with 2sbunþ1, thanks to (1.5), we get
krnþ1bunþ1k2
0 þ krnþ1bunþ1 � rnunk2

0 � krnunk2
0 þ 2lskrbunþ1k2

0 þ 2lshrsn; bunþ1i ¼ 2lshfnþ1; bunþ1i: ð2:11Þ

The next task is to derive a suitable relation between krnunk2

0 and krnbunk2
0 so that we can sum over n the rela-

tion (2.11). To this end, we derive from (2.3) and (2.6) that
krnunk2
0 ¼ hqnun; uni ¼ hqnbun þr/n; uni ¼ hqnbun; uni ¼ qnbun; bun þ 1

qn
r/n

� �
¼ krnbunk2

0 þ un � 1

qn
r/n;r/n

� �
¼ krnbunk2

0 � k
1

rn
r/nk2

0: ð2:12Þ
We now sum up (2.11) and (2.12) to get
krnþ1bunþ1k2
0 � krnbunk2

0 þ k
1

rn
r/nk2

0 þ krnþ1bunþ1 � rnunk2
0 þ 2lskrbunþ1k2

0 ¼ A1 þ A2 ð2:13Þ
with
A1 :¼ 2ls sn;r � bunþ1h i;
A2 :¼ 2ls fnþ1; bunþ1

	 

:

ð2:14Þ
We derive from the well-known inequality
kr � vk0 6 krvk0 8v 2 H1
0ðXÞ; ð2:15Þ
and (2.4) that
A1 ¼ �2lshsn; snþ1 � sni ¼ �lsðksnþ1k2
0 � ksnþ1 � snk2

0 � ksnk2
0Þ

¼ �lsðksnþ1k2
0 � ksnk2

0Þ þ lskr � bunþ1k2
0 6 �lsðksnþ1k2

0 � ksnk2
0Þ þ lskrbunþ1k2

0: ð2:16Þ
Using the Cauchy-Schwarz inequality, we find
A2 6 Clskfnþ1k2
�1 þ

l
2

skrbunþ1k2
0: ð2:17Þ
Inserting the above two results into (2.13) leads to
krnþ1bunþ1k2
0 � krnbunk2

0 þ lsksnþ1k2
0 � lsksnk2

0 þ k
1

rn
r/nk2

0 þ krnþ1bunþ1 � rnunk2
0 þ

l
2

skrbunþ1k2
0

6 Clskfnþ1k2
�1:
Summing the above over n from 0 to N yields (2.10). h
2.2. A finite element discretization

We now describe, as an example of space discretizations, a finite element method for Algorithm 1. Let
R = {K} be a shape regular quasi-uniform partition of X with mesh-size h. We define
Wh ¼ f/h 2 L2ðXÞ : /hjK 2 PðKÞ 8K 2 Rg;
Qh ¼ fqh 2 L2

0ðXÞ \ CðXÞ : qhjK 2 QðKÞ 8K 2 Rg;
Vb

h ¼ fvh 2 CðXÞ : vhjK 2 RðKÞ 8K 2 R; vhjC ¼ bg;
where, for all K 2 R, PðKÞ;QðKÞ and RðKÞ are spaces of polynomials with degree P;Q and R, respectively.
Then, the FEM Gauge–Uzawa method reads as follows:

FEM Gauge–Uzawa method. Let q0h and u0h be a suitable approximation of q0 and u0, respectively. Set
q0

h ¼ q0h; u
0
h ¼ u0h and s0

h ¼ 0; repeat for 1 6 n 6 N 6 T/s � 1:



186 J.-H. Pyo, J. Shen / Journal of Computational Physics 221 (2007) 181–197
Step 1. Find qnþ1
h 2Wh such that
qnþ1
h �qn

h
s þ un

h � rqnþ1
h þ qnþ1

h
2
r � un

h;wh

D E
¼ 0 8wh 2Wh;

qnþ1
h jCun ¼ rnþ1

h :

8<: ð2:18Þ
Step 2. Find bunþ1
h 2 V

gnþ1

h such that
rnþ1
h

rnþ1
h bunþ1

h � rn
hun

h

s
;wh

� �
þ hqnþ1

h ðun
h � rÞbunþ1

h ;whi þ
1

2
ðr � ðqnþ1

h un
hÞÞbunþ1

h ;wh

	 

� l sn

h;r � wh

	 

þ l rbunþ1

h ;rbunþ1
h

	 

¼ fhðtnþ1Þ;wh

	 

8V h 2 V0

h: ð2:19Þ
Step 3. Find /nþ1
h 2 Qh such that
1

qnþ1
h

r/nþ1
h ;rqh

� �
¼ � bunþ1

h ;rqh

	 

8qh 2 Qh: ð2:20Þ
Step 4. Update unþ1
h and snþ1

h 2 Qh by
unþ1
h ¼ bunþ1

h þ 1
qnþ1

h
r/nþ1

h ;

snþ1
h ; qh

	 

¼ sn

h �r � bunþ1
h ; qh

	 

8qh 2 Qh:

ð2:21Þ
Remark 2.3. We recall that in proving Theorem 2.1, we did not use directly the incompressibility condition. In
fact, only the properties (1.4), (1.5) and (2.6) were used. Since we derive from (2.20) and (2.21) that
unþ1
h ;rqh

	 

¼ 0 8qh 2 Qh
so the proof of Theorem 2.1 can be carried over to this discrete case and the stability results in Theorem 2.1 are
also valid with all quantities replaced by their discrete counterparts.

Note that un
h computed from (2.21) lives in a strange space which is not convenient for implementation and

for analysis. However, it is clear that one may completely eliminate un
h from the above algorithm to avoid this

difficulty.
The solution of the discrete density Eq. (2.18) presents the usual difficulties associated with Galerkin FEM

for hyperbolic equations (see, for instance, [7,4]). Many finite element techniques have been developed to over-
come these difficulties, e.g., streamline diffusion [7], discontinuous Galerkin [7], artificial diffusion [7], sub-grid
discretization or least-squares [4], and so on. In the numerical results presented below, we adopted a least-
square method which we briefly describe now. To simplify the presentation, we consider the simple equation
qþ aU � rq ¼ f ; ð2:22Þ

where a is a given constant and U is a given velocity with $ Æ U = 0 and U Æ m|C = 0. The Least-Squares method
can be derived by taking the inner product of (2.22) with w + aU Æ $w:
hqþ aU � rq;wþ aU � rwi ¼ hf ;wþ aU � rwi: ð2:23Þ

Since $ Æ U = 0 and U Æ m = 0, we have ÆU Æ $q, wæ = �ÆU Æ $w, qæ. So (2.23) can be rewritten as
hq;wi þ a2hU � rq;U � rwi ¼ hf ;wþ aU � rwi:

We then define the Least-squares method as: find qh 2 Vh such that
hqh;whi þ a2hU � rqh;U � rwhi ¼ hf ;wh þ aU � rwhi 8wh 2 Vh:
We indicate that, unlike the standard Galerkin formulation, the above linear system is symmetric and we have
the following error bound (cf. [4]):
kq� qhk0 þ kU � rðq� qhÞk0 6 Chckqkcþ1:
Note that this estimate is optimal in the norm induced by the stream-wise derivative but is only sub-optimal in
the L2-norm as is in the standard Galerkin method.
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2.3. A second-order version

Algorithm 1 is only first-order accurate. However, a second-order version with essentially the same com-
putational procedures can be constructed as follows. For simplicity, we denote, for any function a, its sec-
ond-order extrapolation by anþ1 ¼ 2an � an�1.

A second-order Gauge–Uzawa method. Set q0 = q0, u0 = u0 and s0 = 0 and compute u1, /1, s1, p1 with Algo-
rithm 1; repeat for 2 6 n 6 N 6 T/s�1.

Step 1. Find qn+1 as the solution of
3qnþ1�4qnþqn�1

2s þ unþ1 � rqnþ1 þ qnþ1

2
r � unþ1 ¼ 0;

qnþ1jC
unþ1
¼ rnþ1:

(
ð2:24Þ
Step 2. Find bunþ1 as the solution of
qnþ1 3bunþ1�4unþun�1

2s þ qnþ1ðunþ1 � rÞbunþ1 þ 1
2
ðr � ðqnþ1unþ1ÞÞbunþ1 þrpn þ lrsn � lDbunþ1 ¼ fnþ1;bunþ1jC ¼ gnþ1:

(
ð2:25Þ
Step 3. Find /n+1 as the solution of
�r � 1
qnþ1r/nþ1
� �

¼ r � bunþ1; om/
nþ1jC ¼ 0:

n
ð2:26Þ
Step 4. Update un+1, sn+1 and pn+1 by
unþ1 ¼ bunþ1 þ 1
qnþ1r/nþ1;

snþ1 ¼ sn �r � bunþ1;

pnþ1 ¼ pn � 3/nþ1

2s þ lsnþ1:

ð2:27Þ
To see that the above scheme is indeed (formally) second-order accurate, we drop the nonlinear terms and
consider q = q0 (note that it is obvious that the approximations for the nonlinear terms and the density are
second-order), after eliminating bunþ1, we find
q0

3unþ1 � 4un þ un�1

2s
� lDunþ1 þrpnþ1 ¼ fnþ1;

r � unþ1 ¼ 0; unþ1 � mjC ¼ 0:
Hence, the scheme is formally second-order accurate.
However, although ample numerical experiments indicate that this scheme is unconditionally stable, how to

prove the unconditional stability is an open problem. In fact, how to prove the stability of the above algorithm
without the nonlinear terms and with constant density is still an open problem.
3. Gauge–Uzawa method in convective form

As we mentioned in the introduction, in some cases where a non-variational method such as spectral-col-
location method or finite difference method is used, it is often desirable to use numerical algorithms based on
the original system in convective form.

Algorithm 2 (Gauge–Uzawa method in convective form). Set q0 = q0, u0 = u0 and s0 = 0; repeat for
1 6 n 6 N 6 T/s � 1:
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Step 1. Find qn+1 as the solution of

qnþ1�qn

s þ un � rqnþ1 ¼ 0;

qnþ1jCun ¼ rnþ1:

(
ð3:1Þ
Step 2. Find bunþ1 as the solution of
qnbunþ1�un

s þ qnþ1ðun � rÞbunþ1 þ lrsn � lDbunþ1 ¼ fnþ1;bunþ1jC ¼ gnþ1:

(
ð3:2Þ
Step 3. Find /n+1 as the solution of
�r � ð 1
qnþ1r/nþ1Þ ¼ r � bunþ1;

om/
nþ1jC ¼ 0:

(

Step 4. Update un+1 and sn+1 by
unþ1 ¼ bunþ1 þ 1

qnþ1
r/nþ1;

snþ1 ¼ sn �r � bunþ1:
Remark 3.1. Once again, the pressure does not appear directly in the algorithm but an approximation of the
pressure can be defined by (2.8).

A second-order version of this algorithm can be similarly constructed as in Eqs. (2.24)–(2.27).

We now present a stability result. As in Theorem 2.1, we shall consider, for the sake of simplicity, only
homogeneous Dirichlet boundary conditions for the velocity, i.e., u|C = 0.

Theorem 3.1. Assuming g ” 0, the Gauge–Uzawa Algorithm 2 is unconditionally stable in the sense that, for all

s > 0 and 0 6 N 6 T/s � 1, the following a priori bounds hold:
kqNþ1k2
0 þ

XN

n¼0

kqnþ1 � qnk2
0 ¼ kq0k2

0 ð3:3Þ
and
krNþ1bunþ1k2
0 þ

XN

n¼0

krnðbunþ1 � unÞk2
0 þ

1

rn
r/n

���� ����2

0

 !
þ lsksNþ1k2

0 þ
l
2

s
XN

n¼0

krbunþ1k2
0

6 kr0bu0k2
0 þ Cls

XN

n¼0

kfnþ1k2
�1: ð3:4Þ
Proof. Taking the inner product of (3.1) with 2sqn+1, thanks to the first equation in (1.4), we have
kqnþ1k2
0 þ kqnþ1 � qnk2

0 � kqnk2
0 ¼ 0:
Summing up over n from 0 to N leads to (3.3).
Next, taking the inner product of (3.2) with 2sbunþ1, we find
2 qnðbunþ1 � unÞ; bunþ1
	 


þ 2s qnþ1ðun � rÞbunþ1; bunþ1
	 


þ 2ls rsn; bunþ1
	 


þ 2lskrbunþ1k2
0

¼ 2ls fnþ1; bunþ1
	 


: ð3:5Þ
Setting rn ¼ ffiffiffiffiffi
qn
p

, we can write the first term in the above as
2 qnðbunþ1 � unÞ; bunþ1
	 


¼ krnbunþ1k2
0 þ krnðbunþ1 � unÞk2

0 � krnunk2
0: ð3:6Þ
The relation (2.12) is still valid so we only need to derive a suitable relation between krnbunþ1k2
0 and

krnþ1bunþ1k2
0. To this end, we take the inner product of (3.1) with a scalar function sbunþ1 � bunþ1 to get
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hqnþ1 � qn; bunþ1 � bunþ1i ¼ �shr � ðqnþ1unÞ; bunþ1 � bunþ1i; ð3:7Þ
which can be rewritten as
krnþ1bunþ1k2
0 � krnbunþ1k2

0 ¼ 2s qnþ1ðun � rÞbunþ1; bunþ1
	 


: ð3:8Þ
Combining (3.8) and (2.12) into (3.6), we obtain
2 qnðbunþ1 � unÞ; bunþ1
	 


þ 2s qnþ1ðun � rÞbunþ1; bunþ1
	 


¼ krnþ1bunþ1k2
0 þ krnðbunþ1 � unÞk2

0 � krnbunk2
0 þ

1

rn
r/n

���� ����2

0

:

Now, replacing the first two terms in (3.5) by the above leads to
krnþ1bunþ1k2
0 þ krnðbunþ1 � unÞk2

0 � krnbunk2
0 þ

1

rn
r/n

���� ����2

0

þ 2lskrbunþ1k2
0 ¼ A1 þ A2
with A1 and A2 defined in (2.14). Using the estimates (2.16) and (2.17) yields
krnþ1bunþ1k2
0 þ krnðbunþ1 � bunÞk2

0 � krnbunk2
0 þ

l
2

skrbunþ1k2
0 þ

1

rn
r/n

���� ����2

0

þ lsðksnþ1k2
0 � ksnk2

0Þ

6 Clskfnþ1k2
�1:
Summing up the above over n from 0 to N leads to (3.4). h

Remark 3.2. How to design a suitable space discretization for Algorithm 2 and prove its stability is a more
complicate issue.

First of all, (3.7) indicates that the polynomial degree for the density q may have to be twice that of the
velocity u. Secondly, the incompressibility condition for un plays an essential role in the stability proof. Hence,
in order to carry over the proof to the discrete case, one may need to reformulate Steps 3 and 4 in a mixed
formulation to ensure that the finite dimensional approximation of un+1 satisfies
hr � unþ1
h ; qhi ¼ 0 8qh 2 Qh:
4. Numerical experiments

In this section, we present some computational experiments using the Gauge–Uzawa methods. Since the
numerical results with the Gauge–Uzawa method in conserved form behave similarly with those with
Gauge–Uzawa method in convective form, only the results with Gauge–Uzawa method in convective form
will be presented.

In all the experiments, we use Taylor-Hood finite element for (u, p) and linear element for q, i.e.,
ðP1;P2;P1Þ for (q, u, p). Before performing the numerical experiments presented below, we have carried
out a series of runs which confirmed that both the first- and second-order Gauge–Uzawa schemes in conserved
form and in convective form are unconditionally stable.

4.1. Example 1: Accuracy check using an exact solution

In order to check the convergence rate of our numerical algorithms, we consider the exact solution used in
[6]. The computational domain is the unit circle |r| 6 1 and we choose an exact solution of (1.1) to be:
qðx; y; tÞ ¼ 2þ r cosðh� sinðtÞÞ;
uðx; y; tÞ ¼ �y cosðtÞ;
vðx; y; tÞ ¼ x cosðtÞ;
pðx; y; tÞ ¼ sinðxÞ sinðyÞ sinðtÞ:

8>>><>>>:
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We set l = 1 and find the force function f to be:
Table
Error
and s

s = h

kekL2

kekL1

iEi2

kEkL1

kEkH1

kekL2

kekL1

Table
Error
l = 1

s = h

kekL2

kekL1

iEi2

kEkL1

kEkH1

kekL2

kekL1

Table
Physic

Param

Densit
Viscos
fðx; y; tÞ ¼
ðy sinðtÞ � x cos2ðtÞÞqðx; y; tÞ þ cosðxÞ sinðyÞ sinðtÞ
�ðx sinðtÞ þ y cos2ðtÞÞqðx; y; tÞ þ sinðxÞ cosðyÞ sinðtÞ

� �
:

We choose the same mesh size for time and space s = h.
Let us denote
enþ1 ¼ qðtnþ1Þ � qnþ1; Enþ1 ¼ uðtnþ1Þ � unþ1; enþ1 ¼ pðtnþ1Þ � pnþ1:
In Tables 1 and 2, the errors and convergence rates for the first-order and second-order Gauge–Uzawa
methods in convective form are displayed respectively. We note that optimal convergence rates (in time)
for all variables are observed for both the first- and second-order schemes.
1
and convergence rate of the first-order Gauge–Uzawa scheme in convective form with finite element ðP1;P2;P1Þ for (q, u, p), l = 1
= h

1/8 1/16 1/32 1/64 1/128

0.0439168 0.0226351 0.0114484 0.00574574 0.00287605
Order 0.956211 0.983416 0.994581 0.998404
0.0645181 0.0351897 0.0181881 0.00926832 0.00473454
Order 0.874551 0.952158 0.972615 0.969084
0.00694788 0.00345072 0.00170972 0.000849323 0.000423064
Order 1.009675 1.013137 1.009375 1.005437
0.00722572 0.0038037 0.00190435 0.000945517 0.000470576
Order 0.925738 0.998105 1.010123 1.006676
0.0495402 0.0246391 0.0120976 0.00595981 0.00295276
Order 1.007650 1.026229 1.021383 1.013202
0.040379 0.0203382 0.0101331 0.00504652 0.00251691
Order 0.989413 1.005116 1.005715 1.003635
0.0691807 0.0359907 0.0180811 0.00901139 0.00449888
Order 0.942745 0.993142 1.004661 1.002184

2
and convergence rate of the second-order Gauge–Uzawa scheme in convective form with finite element ðP1;P2;P1Þ for (q, u, p),
and s = h

1/8 1/16 1/32 1/64 1/128

0.00536121 0.00153932 0.000409795 0.000105529 2.67632e�05
Order 1.800266 1.909319 1.957263 1.979317
0.00671147 0.00184529 0.000480763 0.000122597 3.0921e�05
Order 1.862781 1.940450 1.971402 1.987265
0.000547451 0.000151833 4.01149e�05 1.02998e�05 2.60881e�06
Order 1.850245 1.920275 1.961522 1.981153
0.000591473 0.000162425 4.53672e�05 1.19136e�05 3.03836e�06
Order 1.864539 1.840052 1.929040 1.971245
0.00350691 0.00102363 0.000279096 7.2713e�05 1.85415e�05
Order 1.776506 1.874861 1.940476 1.971455
0.00511148 0.00130559 0.000329946 8.29264e�05 2.07863e�05
Order 1.969039 1.984400 1.992326 1.996199
0.00864952 0.00247663 0.000705502 0.000197117 5.43216e�05
Order 1.804242 1.811656 1.839598 1.859454

3
al parameters for Example 2

eter Air Water Unit (MKS)

y (q) 1.161 995.65 kg/m3

ity (l) 0.0000186 0.0007977 kg/ms
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4.2. Example 2: An air bubble rising in water

This example has been simulated by a number of authors in a two dimensional rectangular domain (cf. [8]),
although the situation can not be realized in an experimental setting, as well as in a cylinder (cf. [1]). To com-
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Fig. 1. Air bubble rises in a rectangular domain filled with water – I.
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pare with the available numerical simulations, we carried out simulations in both situations using the FEM
specified before with the Gauge–Uzawa scheme in convective form. The physical parameters we used are listed
in Table 3. They are the same as in [8]. The finite element space ðP1;P2;P1Þ for (q, u, p) is used for both sim-
ulation with h = 0.01/256 m and s = 1/10,000 s.

Since the air and water have different viscosities, we replace the viscous term �lDu by �$ Æ (l(q)$u), so in
the FEM implementation, the bilinear form l Æ$u, $væ in (2.19) is replaced by Æl(q)$u, $væ. We approximate
the initial discontinuous density at the air–water interface by
qðx; 0Þ ¼ qair þ
qwater � qair

2

� �
� 1þ tanh

d � 0:0025

0:00025

� �� �
; ð4:9Þ
where d is the distance from the center of the bubble to the point. The discontinuity for the viscosity is handled
in a similar fashion. Gravity is accounted for via the force term f

q ¼ ½0; �9:80665 kg=m2�T. The initial condi-
tion for the velocity is set to be zero.

We first computed the problem in a rectangle of size [0, 0.02 m] · [0,0.03 m] with an air bubble of radius
0.25 cm initially in the lower middle of the rectangle filled with water. We assume that the flow remains to
be symmetric so the computational domain is reduced by half. Snapshots of the air bubble at nine different
times from 0 to 0.8 s are displayed in Figs. 1 and 2. These results are essentially the same as those reported
in [8]. The slight difference between our results and theirs may be due to the fact in their computation, an arti-
ficial homogeneous Neumann boundary condition was applied to the density, while in our computation, no
boundary condition is enforced on the density since the inflow boundary Cu is empty.

Next, we consider a physically realistic situation, namely, the rise of an air bubble of radius 0.25 cm initially
in the lower middle axis of a cylinder of radius 1 cm and hight 3 cm filled with water. We assume that the flow
remains to be axisymmetric so the computational domain is [0,0.01 m] · [0, 0.03 m]. Snapshots of the air bub-
ble at twenty different times from 0 to 0.19 s are displayed in Figs. 3–6. It can be noted that the bubble in the
cylinder evolves quite differently form the rectangular case. We also observe that the Gauge–Uzawa algorithm
is even robust as the bubble goes through a topological change around t = 0.1 s when a large part of the bub-
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Fig. 2. Air bubble rises in a rectangular domain filled with water – II.
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Fig. 3. Air bubble rising in a cylinder filled with water – I.

J.-H. Pyo, J. Shen / Journal of Computational Physics 221 (2007) 181–197 193
ble is detached from the axis. We note that this detachment may be due to the lack of surface tension in the
governing equations; since the main purpose of the paper is to develop efficient and stable algorithms for flows
with variable density, we will leave the surface tension effect on this problem to a future study. Finally, we note
that our results at early times are qualitatively consistent with those presented in [1] where the results were
computed with a constant viscosity of the water and only up to t = 0.022 s.
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Fig. 4. Air bubble rising in a cylinder filled with water – II.
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5. Concluding remarks

We presented in this paper two new Gauge–Uzawa schemes for incompressible flows with variable density
and proved that the first-order versions of both schemes, in their semi-discretized form, are unconditionally
stable. The first scheme is based on the conserved form and its stability proof can be readily carried over
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Fig. 5. Air bubble rising in a cylinder filled with water – III.
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to its finite element discretization without using the incompressibility condition. The second scheme is based
on a convective form which is computationally more efficient but its stability proof relies on the incompress-
ibility condition. As opposed to the incremental projection scheme introduced in [6], our schemes only involve
one projection step so they are more attractive computationally and easier to analyze as well.
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Fig. 6. Air bubble rising in a cylinder filled with water – IV.
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We presented numerical evidence that first-order (resp. second-order) versions of the two schemes lead to
first-order (resp. second-order) convergence rate for all variables. We also presented numerical simulations of
air bubble rising in a cylinder filled with water as well as in a rectangle filled with water. Our numerical results
are consistent with those available in the literature.

Our stability analysis and numerical experiments indicate that the new schemes are well suited for numer-
ical simulation of incompressible flows with variable density.
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