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Abstract

A phase field model for the mixture of two incompressible fluids is presented in this paper. The model is based on an energetic
variational formulation. It consists of a Navier—Stokes system (linear momentum equation) coupled with a Cahn-Hilliard
equation (phase field equation) through an extra stress term and the transport term. The extra stress represents the (phas
induced) capillary effect for the mixture due to the surface tension. A Fourier-spectral method for the numerical approximation
of this system is proposed and analyzed. Numerical results illustrating the robustness and versatility of the model are presented.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The hydrodynamics of mixture of different materials play an increasingly important role in many current sci-
entific and engineering applications. Among them, the interfacial dynamics is one of the fundamental issues in
hydrodynamics and rheolod$8,30,37,52)of these materials. Conventionally, the model for the mixture consists
of separate hydrodynamic system of each component, together with the free interface that separates them. From
another point of view, the mixture can be treated as a special type of non-Newtonian fluids. The final rheology
property reflects the competition between the kinetic energy and the “elastic” mixing 88y

The interfacial dynamics in the mixture of different fluids, solids or gas have attracted attentions for more than
two centuries. Many surface properties, such as capillarity, are associated with the surface tension through special
boundary conditions on the interfadd$,30,37,52]

In classical approaches, the interface is usually considered to be a free surface that evolves in time with the fluid
(the kinematic boundary condition). The dynamics of the interface at each time is determined by the following stress
(force) balance condition:

[T]-n = mHn (1.2)
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where [['l = [vD(u) — pl] is the jump of the stress across the interfdgen its normal,D (u) = %(Vu + (V)"
the stretching tenso# the mean curvature of the surface andhe surface tension constant. This is the usual
Young—Laplace junction condition (see, for instaf&80,37,52). The hydrodynamic system describing the mixture
of two Newtonian fluids with a free interface will be the usual Navier—Stokes equations in each of the fluid domains
(possibly with different density and viscosity) together with the kinematic and force balance (traction free) boundary
conditions on the interface. The weak form of such a system when the deresitgf viscosityy may vary in the
mixture can be represented exactly in the following fod:
T T
/ f [—puv; — puu- Vo +vVuVv — pV - v]dx dr = / mHn- v ds dr (1.2)
0o Je o Jr,
for any test functiorv.

From the statistical (phase field approach) point of view, the interface represents a continuous, but steep chang
of the properties (density, viscosity, etc.) of two fluids. Within this “thin” transition region, the fluid is mixed and
has to store certain amount of “mixing energy”. This has been studied as early as 19th century by Rayleigh and
van der Waals (see the wonderful survey paper by Anderson f] ah this area). Such an approach coincides
with the usual phase field models that were developed in the theory of phase transitifi6($&e19,50,63and
the references therein), and attracted many interests in the mathematical commufityl §¢21,55,60] These
models allow topological changes of the interf§¢€] and have many advantages in numerical simulations of the
interfacial motion (cf[19]). In recent years, many researchers have employed the phase field approach in various
fluid environments (cf[3,9-11,25,28,33,36,46,48,53]

In this paper, we study a phase field model for the mixture of two incompressible fluids. The model is based
on an energetic variational formulation. In the next section, we introduce the model and present essential physical
considerations leading to this model. There is a clear similarity between this system and the liquid crystal flows
considered in the previous wof&7,46] In Section 3we present some mathematical results concerning the limiting
behaviors of the model based on the Allen—Cahn phase equa#ipand illustrate their relevance for the present
model which is based on the Chan-Hilliard phase equatioBebition 4 we propose and analyze a semi-discrete
Fourier-spectral method for the numerical approximation of this phase-field model. Fingbgiion 5we present
numerical results obtained by using a semi-implicit time discretization scheme of the Fourier-spectral method. Our
numerical examples exhibit the robustness and versatility of this phase-field approach for modeling the mixture of
two incompressible fluids.

2. A phasefield modéd for the mixture of two incompressible fluids

We consider the following system modeling a specific type of mixture of two incompressible fluids with same
density (which is taken to be 1) and same viscosity constantglgj):

U+ (u-Vyu+Vp —vdivDu) + AV - (Vo ® Vo) = g(x), (2.1)

V.u=0, (2.2)

¢+ - Vg =—yA(Ad — f(9)) (2.3)
with initial conditions

ul=0 =uo,  Pli=0 = ¢o (2.4)

and appropriate boundary conditions.
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In the above system, represents the velocity vector of the fluigsis the pressure, anfirepresents the “phase”
of the molecules2 ¢ R" is a bounded domain (unless otherwise stated3, the viscosity constantf (¢) is a
polynomial ofg such thatf (¢) = F’(¢), whereF (¢) = (|¢|% — 1)%/4n? is the bulk part of the mixing energy with
n as the capillary width (width of the mixing laye®(x) is the external body force. The tefiy ® V¢ is the usual
tensor product, i.e(Vg ® Vo¢)jj = V;¢V;¢. Finally, » corresponds to the surface tens[d6] andy represents
the elastic relaxation time of the system.

The above system models the mixture of two fluids which have the same density and viscosity. Such an approach
can also be extended to the variable density and variable viscosity[d&$esven to the case of inhomogeneous
surface tension, for instance, the Marangoni—-Bénard convef2®80,37,45,52nd the case involving more
complicated fluid$54].

In the above systenkq. (2.1)is the linear momentum equation, where the induced elastic Sti¢ss V¢ is
due to the mixing of the different species. From this, we seeMlfgi¢p = V - (Vo @ Vo) — %|V¢|2 gives the
corresponding elastic forc&qg. (2.2)implies the incompressibility of both fluids in the mixtuteg. (2.3)is the
phase equation: the left-hand side of the equation represents the transport property of the phase function (that the
material point does not change type, at least in the limit case); the right-hand side describes the special dissipative
mechanism to the system. The choice of the Chan—Hilliard system over other systems (e.g., the Allen—Cahn system)
is made to preserve the integral #f(the volume fraction in the dynamics). It also provides a specific type of
dissipative mechanism in the energy law (&g (2.11).

In [44,46], we studied the system with the Allen—Cahn type of phase field equation instead of the Cahn—Hilliard
type that is studied here. We proved that whers small and. ~ surface tensiorx capillary width, the phase
equation will approach, as, n — 0, to the following transport equation:

G +u-Vp=0. (2:5)

Ontheinterfacd™ = {x € 2|¢(x, -) = 0} (which implies the kinematic boundary condition), the nonlinear elastic
force in the momentum equation becomes

Vo
Vol

This gives the kinetic jump condition for two immiscible fluidg:]p = surface tensionHn. We combined the
local existence of Hamilton (c{34,35])) and Denisova and Solonnik¢24], the convergence method [&1] and
the energy estimate to show that for fixedasn approaches zero, the model converges to an auxiliary system that
is the same as the level set formulat[@®,51] seeTheorem 3.3n Section 3
In the remainder of this section, we present essential physical and mathematical arguments leading to the system
(2.1)-(2.3)

/AAq’)V(/)-ww/ AV |PHw - ~/ surface tensionHw - n. (2.6)
@ Q r

2.1. Cahn-Hilliard phase field model
For a phase functiop, assuming that the elastic (mixing) energy is given by
W@ v = | {%|V¢|2+F<¢)} d, @7
then the Cahn—Hilliard equation takes the form

oW
¢ =V- <J/Vg) =—vA(Ap — f(9)). (2.8)
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Hered3W /3¢ represents the variation of the ene@ywith respect tap. Also, f(¢) = F’'(¢). The constany
represents the elastic relaxation time.
The solution of(2.8) satisfies the following energy law:

oo} o
Eg §| @l ®) X = QV %

This energy dissipation relation shows the variational nature of the Cahn—Hilliard equation. In fact, the Cahn—Hilliard
equation can be viewed as the gradient flow of the elastic eriérgythe Sobolev spac# —1, instead of theH !
space in the case of Allen—Cahn equation. Another important feat2e8)is that

d
a/Qqsolx —0. (2.10)

Hence, the (volume) fraction is conserved for all tiitg)].

It was shown that if, = ne and the bulk energy takes the usual double-well fattp) = (1/4n°)(¢? — 1),
the dynamics of Cahn—Hilliardquation (2.8yill converge, ag) approaches zero, to the dynamics of a Hele—Shaw
type flow[2].

We point out that there are many physical interpretation to the Cahn—Hilliard equati¢h7&3,64) and the
Allen—Cahn equatiofiL6]. However, in this paper, we only treat them as phenomenological equations, representing
certain dynamics of the elastic properties of the materials. From the energetic point of view (see the energy law
(2.11)), this choice determines the special dissipative mechanism of the system.

2
dx = — fg YIV(AG — f($))[%dx. (2.9)

2.2. Energy laws and least action principle

The systen(2.1)—(2.3)is a dissipative system. Indeed, multiplyi(@1) by « and(2.3) by 8W /3¢, integrating
by parts and summing up the results, we obtain:
d
dr
Itis important to notice that the energy contributions from the induced stress term and the transport term cancel eact
other. This is due to the following least action principle that is hidden behind the original system. In turn, the whole
coupled system can be viewed as an energetic variational formulation, which includes two different variational
procedures—the gradient flow for the phase variable and the least action principle for the flow map.
We consider the action function

/ {%|u|2+ %|V¢|2+AF(¢)} dx = —/ [v|Vu|2+yk|V(A¢ — f(¢))|2} dx. (2.11)
2 22

T
A(x)zf / {%m(xmz—%qub(x(x,r),mz—AF<¢<x<x,t),r>)}dth. (2.12)
0 20

Here we can viewX as the Lagrangian (initial) material coordinate atié, ) the Eulerian (reference) coordinate.
2o is the initial domain occupied by the fluids. The notatjgix (X, 1), 7) indicates thap is transported by the flow
field.

For incompressible materials, we look at the volume preserving flowa&pr) such that

x (X, ) =v(x(X,1),1), x(X,0)=X. (2.13)
The least action principle states that the linear momentum equation (force balance) shall be the least action state
without the viscosity terms. Suppose that we have a one parameter family of suck’hsauh that

0 dx n

O=x, Xy (2.14)
dn
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for any y such thatv, - y = 0. This is a direct consequence of the fact that the Jacobian determin@ntaof

is one. If we compute the variation df(x”) = A(¢(x", t)) with respect ta; and evaluate aj = 0, the kinetic
part%|x, (X, 1)|? will give the usual Euler equation part in the momentum equation, while the part due to the elastic
energy leads to

d
dn
T ) d

- AVip —
/0 /90 dn
T ) d

/0 /Qo dn

= / / (AVipVIVig(x, )y — AVip(x, 1)Vig(x, HViy! + LF (¢)Vigy/} dX dr.
0 20

T
f/ {&Wan&(x"(X,t),t)|2+)»F(¢(x"(X,t),t))}dth
n=0J0 Jao |2

Vip(x", 1) + xF’<¢>V£¢yf] dx dr
n=0

(Vigp(x", Vi, x)) + AF (¢)Vipy/ } dX dr
n=0

Here, we have used the fact that x is the inverse matrix oV, x". Sincey is an arbitrary divergence free vector
field, an integration by parts leads to the following equation:

ur+ w-VYu+Vp+AV .- (Vo ® Vo) =0, (2.15)

where all the pure gradient terms are absorbed in the pressure.

We point out that similar derivations were also used for the Ericksen—Leslie s{#243]in which case the
elastic energy is due to the molecular orientaf@8]. This is also equivalent to the principle of virtual work in the
physics and chemical engineering literat[#¥g3,26]

2.3. Hydrodynamic equilibrium

The existence of the hydrodynamic equilibrium states for the sygPein—(2.3)(the static solution with the
velocity u = 0) is due to the energetic variational formulation, in particular, it can be viewed as a special relation
between the solution of the Euler—Lagrange equation of the elastic energy and the solution of the equation from
variation of the domain to such an energy.

The least action principle (variation on the flow maps) and the fastest decent dynamics or other types of gradient
flows (variation on the phase variables) come from different physics laws. In the static case, the first one is equivalent
to the variation with respect to the domain and the second one is the variation of the same functional with respect
to the function. It is clear that if the solutions are smooth (or regular enough), they are equivalent. Formally, the
existence of the hydrodynamic equilibrium states is due to the following theorem (sgé38.9.

Theorem 2.1. Given an energy functiond/ (¢, V), all solutions of the Euler—Lagrangian equation

aw ow
B v T A 2.16
) + Vo (2.16)
also satisfy the equation
ow
V- |— ®Vep—-WI|)=0. 2.17
(355 ®v0-w) 247)

This result shows the connection between the diffusion from the gradient flow (variation of the elastic energy with
respect tap) and the capillary force (variation of the elastic energy with respect to the flow map, the domain in
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the static case) through Legendre transform 4%,]. This theorem guarantees the existence of the hydrodynamic
equilibrium states for our system. It also gives the stability regdsand shows that all solutions of the system
(2.1)—(2.4)will approach to an equilibrium state as— +oco. One can also derive fromheorem 2.lthe usual
Pohozaev identity62] by writing Egs. (2.16) and (2.17h weak forms.

In the general case, the weak solution of the Euler—Lagrange equation (due to the variation with respect to the
function) may not satisfy the equation from variation of the domain. Hence, the latter equation can be treated as a
regularity choice mechanism for the weak solution of the Euler—Lagrange eq{#8iorT his is analogous to the
“stationary weak solution” in the theory of harmonic m&p8,57] There, the variable is a vector from the domain
toaballg : 2 — S" andW(¢) = %|V¢|2. Then,(2.17)defines the “stationary weak solution” @.16)(cf. [56]),
and ensures the monotonicity of the normalized energy of the solution. This is a very important property pertaining
to the regularity of the solution and the structure of its singularities.

2.4. Phase induced capillary effects

For simplicity, let us look at the following well-known functional of Ginzburg—Landau type (with double-well in
the bulk potential)

W(p. V) :/ {g|V¢|2+4i(¢2—1)2} dr. (2.18)
2 n
The part of bulk energy represents the interaction of different volume fractions of individual species (to certain degree,
this corresponds to the Flory—Higgins free end2,39)). The gradient part is the regularization (relaxation) part.
This relaxation links the mass average of the energy (especially the kinetic energy) with the volume average of the
elastic energy. The gradient part is also the approximation of the interface surface energy (the surface area in this
case). Since the surface tension can be derived through the variation of the surfacd4fjeigig not surprising
that it is the contribution of this term in the momentum equation that gives the surface tension in the limit.
Assuming that the dissipation effect is described through the following gradient flow (fastest decent) mechanism
¢,+v-¢=—18—wzZ(nA¢—1<¢2—1)¢), (2.19)
nodp n n
the (internal) dissipation mechanism will disappeay approaches zero. Thus, the choice of the right-hand side of
(2.3)is not important whery is small. This is verified in our numerical experiments (Egample 2in Section 5.
However, a rigorous proof of this statement is not yet available.
The constant) in (2.18)is the capillary width of the mixturgl2,13]and[55] (the width of the mixing layer).
As the constani approaches zer@, will approach 1 and-1 almost everywhere, and the contribution due to the
induced stress will converge to a measure-valued force term supported only on the interface bgtwelgrand
{¢ = —1}. Moreover,W (¢) is uniformly bounded in time.
As n — 0, we expect the following equal partition of the energy

n 2_i 2 4\2
2|V<15| _4n(¢ 1 (2.20)

to be held. We point out that this has been rigorously justified in many cases including the Allen—Cahn model (cf.
[13,20,21,58,59]
Let us set
V¢

n= , a=|V¢|, H=V-n (2.21)
Vo
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We see that{ is the mean curvature of the interface in the limit. With these notations, we can split the induced
force term as follows:

2 2
AV - (Vo @ Vo) = AV% + LAV = Aa?Hn + A(n - Va)an+ W%

2 Clz a2 2 1 2 2 a2
=rxa‘Hn+A|(n-V— |n+AV— =2da“Hn+ A |n - V-—@ - D |n+ AV—
2 2 4n?2 2

1 2 1 2
= 1a®Hn + 2.5 (6% — D (n - Vé)n + w% — ha?Hn + 1= (¢? — Dgpan+ )N%
n n

= ra’Hn + )»iz(qbz — 1)V + Wf = ra?Hn + Wi(qaz -1+ wa—z.
n 2 42 2
Absorbing all the gradient terms in the pressure, we see that the equal partition of the energy gives the pure surface
tension on the limiting interface, even thoughmay not be a distance function. This indicates the capillary effect
induced by the mixture of two different materials.
Finally, the above calculation also shows thdt) is equal to the surface tension constantSince the mixing
width n is usually small, so is.. However, for each fixed (hencel), the capillary term stabilizes the system
(in fact, it stabilizes the transport of the phase function). Moreover, as 0, it is clear that the elastic energy
fo W (¢, V) dx converges to the surface energy (area) of the interface.

2.5. Variable density and viscosity, Boussinesq approximation

Egs. (2.1)—(2.3)escribe the mixture of two fluids with same density and viscosity. When these material properties
are different, we need to modif.1)—(2.3)accordingly.

One approach is to define “average” density and viscosity as follows:

1 1+¢ 1-9¢ 1 1+¢ 1-9¢
(@) 201 2p2 V(@)  2v 2vp

wherep1, p2 are the corresponding density and v, are the viscosity constants. The reason to choose the harmonic
average as if2.22)is that the solution of the Cahn—Hilliashuation (2.3Jloes not satisfy the maximal principle.
Hence, the linear average cannot be guaranteed to be bounded away from zero. However, dif€ tbahad of
the solutionf14], the harmonic averages lead to desired properties. This approach can be replaced using the normal
linear averages in the case wh@n3)is replaced by the Allen—Cahn equation for which the solution satisfies the
maximal principle.

The modified momentum equation with variable density and viscosity takes the form

(p(@)u) + (u - V)(p(@)u) + Vp —div(v(¢) D)) + AV - (Vo @ Vo) = g(x), (2.23)
whereg(x) is the external body force. ABqg. (2.3)converges to the transpagtjuation (2.5)together with the
incompressibility conditior{2.2), the densityp will satisfy the continuity equation:

pr + V- (pu)=0. (2.24)

Another way to model the mixture of different densities is to use the classical Boussinesq approximation, which is
the linear version of all different types of average approaches. Here, the “background” density can be treated as a

constantop and the difference between the actual density andill contribute only to the buoyancy fordd1].
Hence, the modified momentum equation becomes

pous + (- Vu) + Vp —divvD(u)) + AV - (Vo ® Vo) = —(1+ @) g(p1 — po) — (1 — p)g(p2 — po),
(2.25)

(2.22)
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whereg is the gravitational acceleration. Because of its simplicity in practical implementations, this approach is
employed in our numericéixamples 4—6n Section 5

3. Well-posedness and the limiting system

Following exactly the same arguments aplip], we can prove the following existence and regularity theorems for
the systen{2.1)—(2.3) In the following, we assume that all the material parameteksandn are positive constants.

Theorem 3.1. Assuming that the initial conditiorigg, ¢o) are such thatig € L2(£2), ¢, € H1(§2) and satisfy the
periodic boundary conditionghen the systent2.1)—(2.3)with the initial condition(2.4) has at least one global
weak solution(u, ¢) such that

ue L%0,T; HX(£2)) N L®(, T; L%(R)), ¢ € L0, T; H3(2)) N L™, T; HX(2))

forall0 < T < 4o0.
In addition, we can also derive from higher-order energy estimates the following result:

Theorem 3.2. Forany0 < T < +o0, there exist® < T; < T such that the syste2.1)—(2.3)with the initial
conditiong(2.4)admits a unique classical solutidn, d, p) in [0, T1]. In particular, Ty = T in the two-dimensional
case

As we discussed in the previous sections, the choice of Cahn—Hilliard equat@:3)jninstead of Allen—Cahn
equation or other types of regularization for the sharp interface model, is made to maintain the volume fraction
Jo ¢ Inthe case wher.3)is replaced by the Allen—Cahn system:

b1+ (u-V)p —y(Ap — f(d) =0, 3.1

we proved in44] the following result:

Theorem 3.3. For fixedy the systeni2.1)—(2.3)and(3.1)will approach asn — 0, the following auxiliary system
ur+ @ -Vu+Vp—vdivD@u) = g, (3.2)
V.u=0, (3.3)

in the domain away from the interface. The interface evolution satisfies the equation
4+ Ww-V)z=yAz, (3.4)

on{x € 2|z(x, -) = 0}, where z is the distance function to the interflaence/ Vz| = 1). The system also satisfies
the traction-fregforce balancgboundary condition on the interfade € $2|z(x, -) = O}:

[2vD(u) — pl] - n = mHn (3.5)

wheren = Vz is the normal to the interfaceind H = Az is the mean curvature of the interface

In the above theorem, asapproaches zero, we recover the classical two-phase fluid sySter(8.4)is in fact
the motion by mean curvature equation plus a transport (by the velgdigym. The convergence is understood in
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the usual viscosity solution sense ag3d]. It is also shown that this system is related to the level set method for
tracking the interfacgs1]. In the proof, we used the transformation

d(x, 1) = tanh(z(x—n’t)> (3.6)

and the fact that ag approaches zero, we obtain (formallg). (3.4)

We expect that a corresponding result would hold when the phase equation is of Cahn—Hilliard type. Especially,
we believe thatin the limiy — 0, the two systems will approach the same limit, that is, the Navier—Stokes equations
in each separate domain with the kinematic and traction-free boundary condition on the free interface. We note that
such a limit was established jB] for the Cahn—Hilliard equation without the flow velocity field.

4. Fourier-spectral approximation

In this section, we considé&igs. (2.1)—(2.4in the domair2 = (0, 27)" (n = 2 or 3) and equipped with periodic
conditions in all directions. The choice of periodic boundary condition is legitimate when the boundary effects are
negligible (as in the examples in the next section), and is quite appropriate for investigating the correctness and
robustness of the present model. Note that the choice of periodic boundary condition leads to a fast and accurate
Fourier-spectral method and greatly simplifies the implementation.

Without loss of generality, we assunfig ¢odx = 0 and/,, uodx = 0. For anyr > 0, we set

H, = {v € H'(£2), vperiodig / vdx = 0} . (4.1)
Q2
The spacéd), is equipped with the semi-norf|, = |- |ur(2) and the normj - ||, = || - [ (). We setin particular
-1 =1"lo. Itiswell-known that
6lle <cll@llpg <clplg, Vve Hf(ot <B). (4.2)

We also denote
H={eH)": V-v=0} V={eH)": V-v=0) (4.3)

Foranyv, w € H}, let

(D(v), D(w)) = / D(v) - D(w) dx.
2

We have

(D(v), D)) = 3|vl. (4.4)
A direct calculation shows that for anye H?,

V- (Vv ® Vo) = V(3 [Vu]?) + (Vo) T Av. (4.5)
Therefore,

(V- (Vv ® Vv), w) = (Av(Vv), w), veH5 weH. (4.6)

One can also easily check the following skew-symmetric property:

(v-V)zow) =—((v-VIw.2), YveV, w.zeH,, 4.7
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and similarly,
(v Vyw, f(w)) = (v, VF($)) =0, YveV, weH,. (4.8)
To introduce the Fourier-spectral approximation, we set
Py = spar{sinmx cosmxm =1,2,..., M},
Pyu=PyxPymn=2), Py=PyxPyxPymn=2>3), Vu =Py NV. (4.9)

Letmy : H — Py be theHg—orthogonaI projector. The Fourier-spectral method 2ot )—(2.4)can be formulated
as follows:
Find (i, o) € Vi x Py such that

d
E(MM» v) + ((upy - VIup, v) +v(D(up), D) + AV - (Vou ® Vou),v) =0, Vv e Vy,

d
o @) + (- Vgur. V) =y (V(Ady = f(dn)). Vi) = 0, Vv €Pu, (4.10)

with u s (x, 0) = mpuo(x) andgy (x, 0) = myepo(x). We note that in practice, different valuesMfmay be used
for Vi andPyy,.

A complete stability and error analysis f¢t.10)is beyond the scope of this paper whose main purpose is to
propose and justify a phase field model for the mixture of two incompressible fluids. Nevertheless, we prove below
a priori estimates which are critical for establishing the well-posedness and error estiméiesdpr

Theorem 4.1. Let (uy, ¢pr) be any solution of the systef@#.10) For any givens < 4, there exist two positive
constants:1, c2(8) independent of any functipM andn such that
(i) three-dimensional caséor all ¢ € [0, T1), we have

lups 012 + Al (0)]2

2 2
lup DN+ Aom @)]7 < (11— (t/T) Y4

c1n 8t (Jlup (0)[12 + Algu (0)[2)°
(1— (t/T)%*

t
/O Wlun () 241y IV A ()112) ds <([lun (0) |24l (0)[12) +

where

778

T = .
YT e (lum (O)12 + Ao (0 2)

(ii) two-dimensional casédor all ¢ € [0, T»), we have

lup(0)[12 + Alpw (0)|2 + 24 [, F (¢ (0)) dx
(1— (t/T2)/3 ’

s (D12 + M ()12 + 2x/9 Fgu () dx <
t
/O Wliar ()27 [V (Adar () —mag £ (dar ()12 ds

< (IIMM(0)||2+)»II¢M(0)||§+2A/Q F(¢M(0))dX)

N can™ M3 =2t (lupr ()12 + M (0)12 + 20 [ F(eppr (0)) dx)”
(1— (t/T2)%3 ’
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774

c2(8)M2=8 (Jlup (0)|12 + 2w (0)|F + 25 [, F (¢ (0)) dX)g.

T =

Proof. We takev = 2uy; andy = —2AA¢y, in (4.10) Using(4.4), (4.6) and (4.7)we obtain that
D st 12 4 vl B+ 20(ABL) Vb ) = O (4.11)
dr ! M ’

and
A%Mmﬁ = 2((upt - V), Ady) + 2y [V AGu |17 = 20y (V f (¢u1), VAG). (4.12)

Below, we shall use to denote a generic positive constant independent of any funetiamd M .
Using the Sobolev inequality (cf32,38)

3/4 1/4
lwlize < clvly vl vve B (0 <3), (4.13)
the Holder’s inequality an#.2), we find

20y (Vf(pm), VASM) =20y (f (om)Vou, VAPM) < cll f @m) > ldumlizlldm i1

c c 3/2 2
< ?uwuiw + Dllgmlialoumll < F(||¢M||1/ !5 >+ Dlignr 1zl darlln

<y IVAGMIZ+ 5 1m0+ 5 lou 2. (4.14)
n n
Combining(4.11), (4.12) and (4.14yve obtain
d
E(Huw)nz + Mo (D12) + vlup ()12 + 2y IV APy (D)% < %m&mz)ﬁ + %IWO)I}O
C
< n—1<1+ luar ()11 + Aar (0)1D)°. (4.15)

We derive the first result by applyingemma 4.iwith m = 5, 8 = ¢1/5® and

y() = 14 lup O + Mop )5, b)) = viup (012 + 1y |V AGu (1|2

The aboveresultis valid for both the three-dimensional and two-dimensional cases. However, for the two-dimensional

case, an improved result can be obtained as follows.
Takingy = —2A(A¢y — 7y f (dar)) in (4.10) instead of4.12) we obtain

d
O (wmi + 21 /9 F(om) dx) — 20((upt - VIus Abyr) + 20 ((ns - Vb, T f (dar)
+ 20y IV (Apy — 7 f (@) |? = 0. (4.16)

Let I be the identity operator, andz) = (1/7%)|z|%z. Thus, the sum of4.11)—(4.16)eads to

d
e (nuM 12+ Alpm|3 + 2 fg F(om) dx) + 20[up |2 + 20y IV (Apy — 7wu f (da) 1P
< 2((up - Vo, (I — man)g(dm))- (4.17)
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We recall that for any € H), and 0< p < r, we have

lmpv — vl < Mo, (4.18)
Therefore,
(I —ma)g(@a)l < CM_1||8(¢M)||1~ (4.19)

For any givens < 4, we setp = 4/5. Using the Hdélder's inequality and the Sobolev embedding theorem (in the
two-dimensional case), we find

C C
g (@2 < clg(du)3 < F|¢§4V¢M|i < F||¢;‘4||Lp||(V<st)2||Lp/<H>

c c cM?/p
= F||¢M||i4p||V¢M||iz,,/(,,,1> < F||¢M||‘1‘||V¢M||i/,, < ann?, (4.20)
where in the last step we have used the inverse inequality
lvmllr < M loyll, Yoy € Pu. (4.21)

Now, we combing4.19) and (4.20and use the Hoélder's inequality and the Sobolev embedding theorem again to
get

201 (Gt - V), (1 = a8 (@an))]
< 2l ll 20 [V 9ull zoson 1 = Tan)g ()|
<MD 2y 11 1§ < vl + MGP 2=, (4.22)

Substituting(4.22)into (4.17) we find
d
e (nuMn2 +Mluml]+ 2A/Q F($u) dx) +vluplf + 20711V (Adur — 7ar f (@m) 1P
< 2@ MYV 2y 15 (4.23)
We can then conclude by applyihgmma 4.1below to the above withm = 4, 8 = con~*M©@/P)~2 and

y(r)=||uM||2+A|¢M|§+2A/QF(¢M>dx, b(t) = viup|? + 20y IV (Ady — i f(@a)) |12 O (4.24)

Lemma4.l. Letg > 0,m > 1,andy(z), b(¢) be two non-negative functions satisfying

Y'(t) +b(r) < gy"(t), te(OT). (4.25)
Then for ¢ € [0, Tp) with Tp = min(1/((m — 1)/3y’”‘1(0)), T), we have
y(0) ! y(0)"
O TG BRIy RS SO b e

Proof. We sketch the proof below for the readers’ convenience.
Letv(r) = y~ 1(r). We derive from(4.25)that

V(@) > —m—1B and v() > v(0) — (m — 1)Bt.

The first result follows directly from the above. Integratidg25)and taking into account the first result, we obtain
the second result. O
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Remark 4.1. With the a priori estimates established in the above theorem, one can follow essentially the same
standard procedure as[i/] to prove the well-posedness of the syst@mi0)and to establish an error estimate of
spectral-type, namely, the convergence rate of the Fourier-approximation is only limited by the smoothness of the
solution.

We would like to point out that the above analysis can be essentially extended to other admissible boundary
conditions.

5. Numerical results

We implemented a second-order semi-implicit time discretization scheme for the Fourier-spectral4ysi¢m
in the two-dimensional case. Thanks to the periodic boundary conditions, the pressure can be easily eliminated
from the system, and the Laplace and biharmonic operators are reduced to, in Fourier space, diagonal operators.
Thus, at each time step, the linear systems (for the discrete Fourier coefficients of the unknown functions) to be
solved are diagonal systems and the computational cost is dominated by the evaluation of the nonlinear terms in
(4.10)which, in actual computations, are computed using the so-called pseudospectral/collocation approach with
fast Fourier transform (FFT).

Below, we present several numerical experiments using this code. In all computations, we have fixed the physical
parameters to be

n = 0.02, A =0.1, v=0.1, y =01

and the computational parameters toMse= 128 and d = 0.005. The initial condition for is taken to be zero in
all computations while the initial condition fgris specified in each example. We recall thad the capillary width

(mixing region) of the fluidsj /7 is the surface tension constantis the viscosity angr is the “elastic” relaxation
time.

Example 1 (Surface tension effects). This test exhibits the surface tension effects of the model. We start with a
rectangular bubble, i.e¢y = 1 inside the bubble angl = —1 outside the bubble. The rectangular bubble quickly
deforms into a circular bubble due to the surface tension. In fact, if we choes8 (i.e., no fluid in the system),

the bubble will not deform. Also, we notice that the volume of the bubble is preserigd(]).

Example 2 (Surface tension effects and Allen—Cahn dissipation). In this test, we choose the same initial condition
as inExample 1but we replace the Cahn-Hilliard systd3) by the Allen—Cahn system. We notice that the
rectangular bubble still deforms into a circular bubble while the size of the bubble shrinks (eventually it shrinks to
zero) due to the dissipative mechanism in the Allen—Cahn system.

Notice that in bottExamples 1 and,2he shape of the bubble vibrates tangentially before it becomes a circular
bubble (the preferred configuration). This tangential vibration is attributed to the so-called T-modes of the spheric
normal modes (cf[61]). This illustrates that our model captures another important special effect of the surface
tension Fig. 5.2.

Example 3 (Coalescence of two kissing bubbles). We start with two kissing bubbles. As time evolves, the two
bubbles coalesces into one big bubble. This is the combination of the surface tension effect and the elastic effect
from the phase equation. We note that if we start with two non-kissing bubbles of the same size, the two bubbles
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Fig. 5.1.Example 1 phase evolution at= 0, 0.1,0.2,0.3,0.4,0.5,0.6,0.7,1.2,1.4,1.7, 2.5.

Fig. 5.2.Example 2 (Allen—Cahn) phase evolution at= 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1.2, 1.6, 3.0, 5.0.

Fig. 5.3.Example 3 phase evolution at= 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8.
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.
O

Fig. 5.4.Example 4 phase evolution at= 0, 4.0, 5.0, 6.0, 7.5, 9.0, 10.5, 12.0.

HAHBN
O
2 K e

Fig. 5.5.Example 5 phase evolution at=0, 1.2, 1.8, 2.5, 3.3, 4.0, 4.8, 5.5.

will not move since the dynamics of Cahn—Hilliard is static (i.e., the chemical potential and the curvature are the
same).

In the next three examples, we use the Boussinesq approxin{atki)to model the case where the two fluids
have different densities. We rewrite the right-hand sid€dt5)as

—8(2po + p1+ p2) — gP(p1 — p2).

The first term is a constant vector which can be absorbed into the pressure so we only have to consider the second
term. In all three examples below, we ggt— p» = —1 (Fig. 5.3.

Fig. 5.6.Example 6 phase evolution at= 0, 0.1, 0.2, 0.3, 0.5, 1.0, 6.0, 9.0.
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Example 4 (Boussinesq approximation, Case A). We start with a circular bubble near the bottom of the domain.
The density of the bubble is lighter than the density of the surrounding fluid. The gravitational constant vector is
taken to beg = (0.1, 0)'. The bubble rises as expected due to the gravity differeritigl 6.4.

Example5 (Boussinesq approximation, Case B). The situation is the samdzaaimple 4except that the gravita-
tional constant vector is taken to pe= (1, 0)’. Thus, the gravity differential is 10 times larger than the previous case.

We notice that the bubble deforms as it rises. The deformation of the shape of the bubble indicates the influence
of the flow field. The shape deformation is not visually noticeable in the previous case due to the much smaller
gravity differential Fig. 5.9.

Example 6 (Boussinesq approximation, Case C). We start with two circular bubbles of different sizes at different
heights. The density of the bubbles is lighter than the density of the surrounding fluid. Here, the gravitational constant
vector is taken to be = (0.1, 0)’.

Notice that the small bubble is absorbed by the big bubble before any noticeable rise. This phenomenon, i.e., the
big bubble absorbs the small bubble, is purely due to the Cahn—Hilliard equation, since the curvature of the bubbles
serves as the chemical potential in the dynamics of the phase function. The rate of this process is determined by th
elastic relaxation time (Fig. 5.6).

6. Concluding remarks

We presented in this paper a phase field model for the mixture of two incompressible fluids. The model consists
of a momentum equation with an extra “elastic” term due to the mixing of different materials and a Cahn-Hilliard
equation with the corresponding transport term. We illustrated that such a system converges to the usual two phas
fluid system as the mixing region shrinks to an interface. We note that the derivation of the model provides a general
framework to incorporate the elastic effects in different complex fluids.

We analyzed a semi-discrete Fourier-spectral method for the numerical approximation of this system and imple-
mented a semi-implicit scheme for the time discretization. We presented several illustrative numerical examples
which exhibited various physical mechanisms of the model and demonstrated its robustness and versatility. These
examples demonstrate that the proposed model captures many interesting surface tension effects that are of gre
interest in the theory of mixtures and interfaces.

In upcoming works, we will investigate the cases with other admissible boundary conditions, with variable
viscosities, and eventually the more challenging cases such as solid—liquid and liquid—air mixtures. We also plan to
study different interfacial dynamics (configurations) for the mixtures of more complicated materials, such as liquid
crystals, polymeric materials and viscoelastic solids.
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