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Abstract

A phase field model for the mixture of two incompressible fluids is presented in this paper. The model is based on an energetic
variational formulation. It consists of a Navier–Stokes system (linear momentum equation) coupled with a Cahn–Hilliard
equation (phase field equation) through an extra stress term and the transport term. The extra stress represents the (phase
induced) capillary effect for the mixture due to the surface tension. A Fourier-spectral method for the numerical approximation
of this system is proposed and analyzed. Numerical results illustrating the robustness and versatility of the model are presented.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The hydrodynamics of mixture of different materials play an increasingly important role in many current sci-
entific and engineering applications. Among them, the interfacial dynamics is one of the fundamental issues in
hydrodynamics and rheology[18,30,37,52]of these materials. Conventionally, the model for the mixture consists
of separate hydrodynamic system of each component, together with the free interface that separates them. From
another point of view, the mixture can be treated as a special type of non-Newtonian fluids. The final rheology
property reflects the competition between the kinetic energy and the “elastic” mixing energy[8,18].

The interfacial dynamics in the mixture of different fluids, solids or gas have attracted attentions for more than
two centuries. Many surface properties, such as capillarity, are associated with the surface tension through special
boundary conditions on the interfaces[18,30,37,52].

In classical approaches, the interface is usually considered to be a free surface that evolves in time with the fluid
(the kinematic boundary condition). The dynamics of the interface at each time is determined by the following stress
(force) balance condition:

[T ] · n = mHn, (1.1)
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where [T ] = [νD(u)− pI] is the jump of the stress across the interfaceΓt , n its normal,D(u) = 1
2(∇u+ (∇u)T)

the stretching tensor,H the mean curvature of the surface andm the surface tension constant. This is the usual
Young–Laplace junction condition (see, for instance[6,30,37,52]). The hydrodynamic system describing the mixture
of two Newtonian fluids with a free interface will be the usual Navier–Stokes equations in each of the fluid domains
(possibly with different density and viscosity) together with the kinematic and force balance (traction free) boundary
conditions on the interface. The weak form of such a system when the densityρ and viscosityν may vary in the
mixture can be represented exactly in the following form[44]:∫ T

0

∫
Ω

[−ρuvt − ρuu · ∇v + ν∇u∇v − p∇ · v] dx dt =
∫ T

0

∫
Γt

mHn· v ds dt (1.2)

for any test functionv.
From the statistical (phase field approach) point of view, the interface represents a continuous, but steep change

of the properties (density, viscosity, etc.) of two fluids. Within this “thin” transition region, the fluid is mixed and
has to store certain amount of “mixing energy”. This has been studied as early as 19th century by Rayleigh and
van der Waals (see the wonderful survey paper by Anderson et al.[4] in this area). Such an approach coincides
with the usual phase field models that were developed in the theory of phase transition (see[16,17,49,50,63]and
the references therein), and attracted many interests in the mathematical community (cf.[2,15,21,55,60]). These
models allow topological changes of the interface[47] and have many advantages in numerical simulations of the
interfacial motion (cf.[19]). In recent years, many researchers have employed the phase field approach in various
fluid environments (cf.[3,9–11,25,28,33,36,46,48,53]).

In this paper, we study a phase field model for the mixture of two incompressible fluids. The model is based
on an energetic variational formulation. In the next section, we introduce the model and present essential physical
considerations leading to this model. There is a clear similarity between this system and the liquid crystal flows
considered in the previous work[27,46]. In Section 3, we present some mathematical results concerning the limiting
behaviors of the model based on the Allen–Cahn phase equation[44] and illustrate their relevance for the present
model which is based on the Chan–Hilliard phase equation. InSection 4, we propose and analyze a semi-discrete
Fourier-spectral method for the numerical approximation of this phase-field model. Finally inSection 5, we present
numerical results obtained by using a semi-implicit time discretization scheme of the Fourier-spectral method. Our
numerical examples exhibit the robustness and versatility of this phase-field approach for modeling the mixture of
two incompressible fluids.

2. A phase field model for the mixture of two incompressible fluids

We consider the following system modeling a specific type of mixture of two incompressible fluids with same
density (which is taken to be 1) and same viscosity constants (cf.[46]):

ut + (u · ∇)u+ ∇p − ν divD(u)+ λ∇ · (∇φ ⊗ ∇φ) = g(x), (2.1)

∇ · u = 0, (2.2)

φt + (u · ∇)φ = −γ�(�φ − f (φ)) (2.3)

with initial conditions

u|t=0 = u0, φ|t=0 = φ0 (2.4)

and appropriate boundary conditions.



C. Liu, J. Shen / Physica D 179 (2003) 211–228 213

In the above system,u represents the velocity vector of the fluids,p is the pressure, andφ represents the “phase”
of the molecules.Ω ⊂ Rn is a bounded domain (unless otherwise stated),ν is the viscosity constant,f (φ) is a
polynomial ofφ such thatf (φ) = F ′(φ), whereF(φ) = (|φ|2 −1)2/4η2 is the bulk part of the mixing energy with
η as the capillary width (width of the mixing layer),g(x) is the external body force. The term∇φ⊗∇φ is the usual
tensor product, i.e.(∇φ ⊗ ∇φ)ij = ∇iφ∇jφ. Finally, λ corresponds to the surface tension[46] andγ represents
the elastic relaxation time of the system.

The above system models the mixture of two fluids which have the same density and viscosity. Such an approach
can also be extended to the variable density and variable viscosity cases[46], even to the case of inhomogeneous
surface tension, for instance, the Marangoni–Bénard convection[22,30,37,45,52]and the case involving more
complicated fluids[54].

In the above system,Eq. (2.1)is the linear momentum equation, where the induced elastic stress∇φ ⊗ ∇φ is
due to the mixing of the different species. From this, we see that�φ∇φ = ∇ · (∇φ ⊗ ∇φ) − 1

2|∇φ|2 gives the
corresponding elastic force.Eq. (2.2)implies the incompressibility of both fluids in the mixture.Eq. (2.3)is the
phase equation: the left-hand side of the equation represents the transport property of the phase function (that the
material point does not change type, at least in the limit case); the right-hand side describes the special dissipative
mechanism to the system. The choice of the Chan–Hilliard system over other systems (e.g., the Allen–Cahn system)
is made to preserve the integral ofφ (the volume fraction in the dynamics). It also provides a specific type of
dissipative mechanism in the energy law (seeEq. (2.11)).

In [44,46], we studied the system with the Allen–Cahn type of phase field equation instead of the Cahn–Hilliard
type that is studied here. We proved that whenγ is small andλ ∼ surface tension× capillary width, the phase
equation will approach, asγ, η→ 0, to the following transport equation:

φt + u · ∇φ = 0. (2.5)

On the interfaceΓ = {x ∈ Ω|φ(x, ·) = 0} (which implies the kinematic boundary condition), the nonlinear elastic
force in the momentum equation becomes∫

Ω

λ�φ∇φ · w ∼
∫
Ω

λ|∇φ|2Hw · ∇φ
|∇φ| ∼

∫
Γ

surface tension· Hw · n. (2.6)

This gives the kinetic jump condition for two immiscible fluids: [T ]n = surface tension· Hn. We combined the
local existence of Hamilton (cf.[34,35]) and Denisova and Solonnikov[24], the convergence method of[31] and
the energy estimate to show that for fixedγ , asη approaches zero, the model converges to an auxiliary system that
is the same as the level set formulation[19,51], seeTheorem 3.3in Section 3.

In the remainder of this section, we present essential physical and mathematical arguments leading to the system
(2.1)–(2.3).

2.1. Cahn–Hilliard phase field model

For a phase functionφ, assuming that the elastic (mixing) energy is given by

W(φ,∇φ) =
∫
Ω

{
1

2
|∇φ|2 + F(φ)

}
dx, (2.7)

then the Cahn–Hilliard equation takes the form

φt = ∇ ·
(
γ∇ �W

�φ

)
= −γ�(�φ − f (φ)). (2.8)
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Here�W/�φ represents the variation of the energyW with respect toφ. Also, f (φ) = F ′(φ). The constantγ
represents the elastic relaxation time.

The solution of(2.8)satisfies the following energy law:

d

dt

∫
Ω

{
1

2
|∇φ|2 + F(φ)

}
dx = −

∫
Ω

γ

∣∣∣∣∇ �W

�φ

∣∣∣∣
2

dx = −
∫
Ω

γ |∇(�φ − f (φ))|2 dx. (2.9)

This energy dissipation relation shows the variational nature of the Cahn–Hilliard equation. In fact, the Cahn–Hilliard
equation can be viewed as the gradient flow of the elastic energyW in the Sobolev spaceH−1, instead of theH 1

space in the case of Allen–Cahn equation. Another important feature of(2.8) is that

d

dt

∫
Ω

φ dx = 0. (2.10)

Hence, the (volume) fraction is conserved for all times[17].
It was shown that ifγ = ηε and the bulk energy takes the usual double-well formF(φ) = (1/4η2)(φ2 − 1)2,

the dynamics of Cahn–Hilliardequation (2.8)will converge, asη approaches zero, to the dynamics of a Hele–Shaw
type flow[2].

We point out that there are many physical interpretation to the Cahn–Hilliard equation (cf.[17,63,64]) and the
Allen–Cahn equation[16]. However, in this paper, we only treat them as phenomenological equations, representing
certain dynamics of the elastic properties of the materials. From the energetic point of view (see the energy law
(2.11)), this choice determines the special dissipative mechanism of the system.

2.2. Energy laws and least action principle

The system(2.1)–(2.3)is a dissipative system. Indeed, multiplying(2.1) by u and(2.3) by �W/�φ, integrating
by parts and summing up the results, we obtain:

d

dt

∫
Ω

{
1

2
|u|2 + λ

2
|∇φ|2 + λF(φ)

}
dx = −

∫
Ω

{
ν|∇u|2 + γ λ|∇(�φ − f (φ))|2

}
dx. (2.11)

It is important to notice that the energy contributions from the induced stress term and the transport term cancel each
other. This is due to the following least action principle that is hidden behind the original system. In turn, the whole
coupled system can be viewed as an energetic variational formulation, which includes two different variational
procedures—the gradient flow for the phase variable and the least action principle for the flow map.

We consider the action function

A(x) =
∫ T

0

∫
Ω0

{
1

2
|xt (X, t)|2 − λ

2
|∇xφ(x(X, t), t)|2 − λF(φ(x(X, t), t))

}
dX dt. (2.12)

Here we can viewX as the Lagrangian (initial) material coordinate andx(X, t) the Eulerian (reference) coordinate.
Ω0 is the initial domain occupied by the fluids. The notationφ(x(X, t), t) indicates thatφ is transported by the flow
field.

For incompressible materials, we look at the volume preserving flow mapx(X, t) such that

xt (X, t) = v(x(X, t), t), x(X,0) = X. (2.13)

The least action principle states that the linear momentum equation (force balance) shall be the least action state,
without the viscosity terms. Suppose that we have a one parameter family of such mapsxη such that

x0 = x, dxη

dη
= y (2.14)



C. Liu, J. Shen / Physica D 179 (2003) 211–228 215

for anyy such that∇x · y = 0. This is a direct consequence of the fact that the Jacobian determinant of∂x/∂X

is one. If we compute the variation ofA(xη) = A(φ(xη, t)) with respect toη and evaluate atη = 0, the kinetic
part 1

2|xt (X, t)|2 will give the usual Euler equation part in the momentum equation, while the part due to the elastic
energy leads to

d

dη

∣∣∣∣
η=0

∫ T

0

∫
Ω0

{
λ

2
|∇xηφ(xη(X, t), t)|2 + λF(φ(xη(X, t), t))

}
dX dt

=
∫ T

0

∫
Ω0

{
λ∇ixφ

d

dη

∣∣∣∣
η=0

∇ixηφ(xη, t)+ λF ′(φ)∇jx φyj
}

dX dt

=
∫ T

0

∫
Ω0

{
λ∇ixφ

d

dη

∣∣∣∣
η=0
(∇jx φ(xη, t)∇ixηxj )+ λF ′(φ)∇jx φyj

}
dX dt

=
∫ T

0

∫
Ω0

{λ∇ixφ∇jx∇ixφ(x, t)yj − λ∇ixφ(x, t)∇jx φ(x, t)∇ixyj + λF ′(φ)∇jx φyj } dX dt.

Here, we have used the fact that∇xηx is the inverse matrix of∇xxη. Sincey is an arbitrary divergence free vector
field, an integration by parts leads to the following equation:

ut + (u · ∇)u+ ∇p + λ∇ · (∇φ ⊗ ∇φ) = 0, (2.15)

where all the pure gradient terms are absorbed in the pressure.
We point out that similar derivations were also used for the Ericksen–Leslie system[42,43] in which case the

elastic energy is due to the molecular orientation[23]. This is also equivalent to the principle of virtual work in the
physics and chemical engineering literature[7,23,26].

2.3. Hydrodynamic equilibrium

The existence of the hydrodynamic equilibrium states for the system(2.1)–(2.3)(the static solution with the
velocityu = 0) is due to the energetic variational formulation, in particular, it can be viewed as a special relation
between the solution of the Euler–Lagrange equation of the elastic energy and the solution of the equation from
variation of the domain to such an energy.

The least action principle (variation on the flow maps) and the fastest decent dynamics or other types of gradient
flows (variation on the phase variables) come from different physics laws. In the static case, the first one is equivalent
to the variation with respect to the domain and the second one is the variation of the same functional with respect
to the function. It is clear that if the solutions are smooth (or regular enough), they are equivalent. Formally, the
existence of the hydrodynamic equilibrium states is due to the following theorem (see, e.g.[43]):

Theorem 2.1. Given an energy functionalW(φ,∇φ), all solutions of the Euler–Lagrangian equation:

−∇ · ∂W
∂∇φ + ∂W∇φ = 0 (2.16)

also satisfy the equation

∇ ·
(
∂W

∂∇φ ⊗ ∇φ − WI

)
= 0. (2.17)

This result shows the connection between the diffusion from the gradient flow (variation of the elastic energy with
respect toφ) and the capillary force (variation of the elastic energy with respect to the flow map, the domain in
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the static case) through Legendre transform as in[1,5]. This theorem guarantees the existence of the hydrodynamic
equilibrium states for our system. It also gives the stability results[42] and shows that all solutions of the system
(2.1)–(2.4)will approach to an equilibrium state ast → +∞. One can also derive fromTheorem 2.1the usual
Pohozaev identity[62] by writing Eqs. (2.16) and (2.17)in weak forms.

In the general case, the weak solution of the Euler–Lagrange equation (due to the variation with respect to the
function) may not satisfy the equation from variation of the domain. Hence, the latter equation can be treated as a
regularity choice mechanism for the weak solution of the Euler–Lagrange equation[43]. This is analogous to the
“stationary weak solution” in the theory of harmonic maps[56,57]. There, the variable is a vector from the domain
to a ballφ : Ω → Sn andW(φ) = 1

2|∇φ|2. Then,(2.17)defines the “stationary weak solution” of(2.16)(cf. [56]),
and ensures the monotonicity of the normalized energy of the solution. This is a very important property pertaining
to the regularity of the solution and the structure of its singularities.

2.4. Phase induced capillary effects

For simplicity, let us look at the following well-known functional of Ginzburg–Landau type (with double-well in
the bulk potential)

W̃ (φ,∇φ) =
∫
Ω

{
η

2
|∇φ|2 + 1

4η
(φ2 − 1)2

}
dx. (2.18)

The part of bulk energy represents the interaction of different volume fractions of individual species (to certain degree,
this corresponds to the Flory–Higgins free energy[29,39]). The gradient part is the regularization (relaxation) part.
This relaxation links the mass average of the energy (especially the kinetic energy) with the volume average of the
elastic energy. The gradient part is also the approximation of the interface surface energy (the surface area in this
case). Since the surface tension can be derived through the variation of the surface energy[40], it is not surprising
that it is the contribution of this term in the momentum equation that gives the surface tension in the limit.

Assuming that the dissipation effect is described through the following gradient flow (fastest decent) mechanism

φt + v · φ = −γ
η

�W̃

�φ
= γ

η

(
η�φ − 1

η
(φ2 − 1)φ

)
, (2.19)

the (internal) dissipation mechanism will disappear asγ approaches zero. Thus, the choice of the right-hand side of
(2.3) is not important whenγ is small. This is verified in our numerical experiments (seeExample 2in Section 5).
However, a rigorous proof of this statement is not yet available.

The constantη in (2.18)is the capillary width of the mixture[12,13] and[55] (the width of the mixing layer).
As the constantη approaches zero,φ will approach 1 and−1 almost everywhere, and the contribution due to the
induced stress will converge to a measure-valued force term supported only on the interface between{φ = 1} and
{φ = −1}. Moreover,W̃ (φ) is uniformly bounded in time.

As η→ 0, we expect the following equal partition of the energy

η

2
|∇φ|2 = 1

4η
(φ2 − 1)2 (2.20)

to be held. We point out that this has been rigorously justified in many cases including the Allen–Cahn model (cf.
[13,20,21,58,59]).

Let us set

n = ∇φ
|∇φ| , a = |∇φ|, H = ∇ · n. (2.21)
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We see thatH is the mean curvature of the interface in the limit. With these notations, we can split the induced
force term as follows:

λ∇ · (∇φ ⊗ ∇φ)= λ∇ a
2

2
+ λ�φ∇φ = λa2Hn + λ(n · ∇a)an+ λ∇ a

2

2

= λa2Hn + λ
(
n · ∇ a

2

2

)
n+ λ∇ a

2

2
= λa2Hn + λ

(
n · ∇ 1

4η2
(φ2 − 1)2

)
n+ λ∇ a

2

2

= λa2Hn + λ 1

η2
(φ2 − 1)φ(n · ∇φ)n+ λ∇ a

2

2
= λa2Hn + λ 1

η2
(φ2 − 1)φan+ λ∇ a

2

2

= λa2Hn + λ 1

η2
(φ2 − 1)φ∇φ + λ∇ a

2

2
= λa2Hn + λ∇ 1

4η2
(φ2 − 1)2 + λ∇ a

2

2
.

Absorbing all the gradient terms in the pressure, we see that the equal partition of the energy gives the pure surface
tension on the limiting interface, even thoughφ may not be a distance function. This indicates the capillary effect
induced by the mixture of two different materials.

Finally, the above calculation also shows thatλ/η is equal to the surface tension constantm. Since the mixing
width η is usually small, so isλ. However, for each fixedη (henceλ), the capillary term stabilizes the system
(in fact, it stabilizes the transport of the phase function). Moreover, asη → 0, it is clear that the elastic energy∫
Ω
W̃(φ,∇φ)dx converges to the surface energy (area) of the interface.

2.5. Variable density and viscosity, Boussinesq approximation

Eqs. (2.1)–(2.3)describe the mixture of two fluids with same density and viscosity. When these material properties
are different, we need to modify(2.1)–(2.3)accordingly.

One approach is to define “average” density and viscosity as follows:
1

ρ(φ)
= 1 + φ

2ρ1
+ 1 − φ

2ρ2
,

1

ν(φ)
= 1 + φ

2ν1
+ 1 − φ

2ν2
, (2.22)

whereρ1, ρ2 are the corresponding density andν1, ν2 are the viscosity constants. The reason to choose the harmonic
average as in(2.22)is that the solution of the Cahn–Hilliardequation (2.3)does not satisfy the maximal principle.
Hence, the linear average cannot be guaranteed to be bounded away from zero. However, due to theL∞-bound of
the solution[14], the harmonic averages lead to desired properties. This approach can be replaced using the normal
linear averages in the case when(2.3) is replaced by the Allen–Cahn equation for which the solution satisfies the
maximal principle.

The modified momentum equation with variable density and viscosity takes the form

(ρ(φ)u)t + (u · ∇)(ρ(φ)u)+ ∇p − div(ν(φ)D(u))+ λ∇ · (∇φ ⊗ ∇φ) = g(x), (2.23)

whereg(x) is the external body force. AsEq. (2.3)converges to the transportequation (2.5), together with the
incompressibility condition(2.2), the densityρ will satisfy the continuity equation:

ρt + ∇ · (ρu) = 0. (2.24)

Another way to model the mixture of different densities is to use the classical Boussinesq approximation, which is
the linear version of all different types of average approaches. Here, the “background” density can be treated as a
constantρ0 and the difference between the actual density andρ0 will contribute only to the buoyancy force[41].
Hence, the modified momentum equation becomes

ρ0(ut + (u · ∇)u)+ ∇p − div(νD(u))+ λ∇ · (∇φ ⊗ ∇φ) = −(1 + φ)g(ρ1 − ρ0)− (1 − φ)g(ρ2 − ρ0),

(2.25)
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whereg is the gravitational acceleration. Because of its simplicity in practical implementations, this approach is
employed in our numericalExamples 4–6in Section 5.

3. Well-posedness and the limiting system

Following exactly the same arguments as in[42], we can prove the following existence and regularity theorems for
the system(2.1)–(2.3). In the following, we assume that all the material parametersγ ,λ andη are positive constants.

Theorem 3.1. Assuming that the initial conditions(u0, φ0) are such thatu0 ∈ L2(Ω), φo ∈ H 1(Ω) and satisfy the
periodic boundary conditions, then, the system(2.1)–(2.3)with the initial condition(2.4) has at least one global
weak solution(u, φ) such that

u ∈ L2(0, T ;H 1(Ω)) ∩ L∞(0, T ;L2(Ω)), φ ∈ L2(0, T ;H 3(Ω)) ∩ L∞(0, T ;H 1(Ω))

for all 0< T < +∞.

In addition, we can also derive from higher-order energy estimates the following result:

Theorem 3.2. For any0 < T < +∞, there exists0 < T1 ≤ T such that the system(2.1)–(2.3)with the initial
conditions(2.4)admits a unique classical solution(u, d, p) in [0, T1]. In particular, T1 = T in the two-dimensional
case.

As we discussed in the previous sections, the choice of Cahn–Hilliard equation in(2.3), instead of Allen–Cahn
equation or other types of regularization for the sharp interface model, is made to maintain the volume fraction∫
Ω
φ. In the case where(2.3) is replaced by the Allen–Cahn system:

φt + (u · ∇)φ − γ (�φ − f (φ)) = 0, (3.1)

we proved in[44] the following result:

Theorem 3.3. For fixedγ the system(2.1)–(2.3)and(3.1)will approach, asη→ 0, the following auxiliary system:

ut + (u · ∇)u+ ∇p − ν divD(u) = g, (3.2)

∇ · u = 0, (3.3)

in the domain away from the interface. The interface evolution satisfies the equation:

zt + (u · ∇)z = γ�z, (3.4)

on{x ∈ Ω|z(x, ·) = 0}, where z is the distance function to the interface(hence|∇z| = 1).The system also satisfies
the traction-free(force balance) boundary condition on the interface{x ∈ Ω|z(x, ·) = 0}:

[2νD(u)− pI] · n = mHn, (3.5)

wheren = ∇z is the normal to the interface, andH = �z is the mean curvature of the interface.

In the above theorem, asγ approaches zero, we recover the classical two-phase fluid system.Eq. (3.4)is in fact
the motion by mean curvature equation plus a transport (by the velocityu) term. The convergence is understood in
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the usual viscosity solution sense as in[31]. It is also shown that this system is related to the level set method for
tracking the interface[51]. In the proof, we used the transformation

φ(x, t) = tanh

(
z(x, t)

η

)
(3.6)

and the fact that asη approaches zero, we obtain (formally)Eq. (3.4).
We expect that a corresponding result would hold when the phase equation is of Cahn–Hilliard type. Especially,

we believe that in the limitη→ 0, the two systems will approach the same limit, that is, the Navier–Stokes equations
in each separate domain with the kinematic and traction-free boundary condition on the free interface. We note that
such a limit was established in[2] for the Cahn–Hilliard equation without the flow velocity field.

4. Fourier-spectral approximation

In this section, we considerEqs. (2.1)–(2.4)in the domainΩ = (0,2π)n (n = 2 or 3) and equipped with periodic
conditions in all directions. The choice of periodic boundary condition is legitimate when the boundary effects are
negligible (as in the examples in the next section), and is quite appropriate for investigating the correctness and
robustness of the present model. Note that the choice of periodic boundary condition leads to a fast and accurate
Fourier-spectral method and greatly simplifies the implementation.

Without loss of generality, we assume
∫
Ω
φ0 dx = 0 and

∫
Ω
u0 dx = 0. For anyr ≥ 0, we set

Hrp =
{
v ∈ Hr(Ω), v periodic,

∫
Ω

v dx = 0

}
. (4.1)

The spaceHrp is equipped with the semi-norm| · |r = | · |Hr(Ω) and the norm‖ · ‖r = ‖·‖Hr(Ω). We set in particular
‖ · ‖ = ‖ · ‖0. It is well-known that

‖φ‖α ≤ c‖φ‖β ≤ c|φ|β, ∀v ∈ Hβp (α < β). (4.2)

We also denote

H = {v ∈ (H 0
p)
n : ∇ · v = 0}, V = {v ∈ (H 1

p)
n : ∇ · v = 0}. (4.3)

For anyv,w ∈ H 1
p , let

(D(v),D(w)) =
∫
Ω

D(v) ·D(w)dx.

We have

(D(v),D(v)) ≥ 1
2|v|21. (4.4)

A direct calculation shows that for anyv ∈ H 2
p ,

∇ · (∇v ⊗ ∇v) = ∇(1
2|∇v|2)+ (∇v)T�v. (4.5)

Therefore,

(∇ · (∇v ⊗ ∇v),w) = (�vT(∇v),w), v ∈ H 2
p, w ∈ H. (4.6)

One can also easily check the following skew-symmetric property:

((v · ∇)z, w) = −((v · ∇)w, z), ∀v ∈ V, w, z ∈ H 1
p, (4.7)
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and similarly,

((v · ∇)w, f (w)) = (v,∇F(φ)) = 0, ∀v ∈ V, w ∈ H 1
p. (4.8)

To introduce the Fourier-spectral approximation, we set

PM = span{ sinmx, cosmx,m = 1,2, . . . ,M},
PM = PM × PM (n = 2), PM = PM × PM × PM (n = 3), VM = PnM ∩ V. (4.9)

LetπM : H → PM be theH 0
p-orthogonal projector. The Fourier-spectral method for(2.1)–(2.4)can be formulated

as follows:
Find (uM, φM) ∈ VM × PM such that

d

dt
(uM, v)+ ((uM · ∇)uM, v)+ ν(D(uM),D(v))+ λ(∇ · (∇φM ⊗ ∇φM), v) = 0, ∀v ∈ VM,

d

dt
(φM,ψ)+ ((uM · ∇)φM,ψ)− γ (∇(�φM − f (φM)),∇ψ) = 0, ∀ψ ∈ PM, (4.10)

with uM(x,0) = πMu0(x) andφM(x,0) = πMφ0(x). We note that in practice, different values ofM may be used
for VM andPM .

A complete stability and error analysis for(4.10) is beyond the scope of this paper whose main purpose is to
propose and justify a phase field model for the mixture of two incompressible fluids. Nevertheless, we prove below
a priori estimates which are critical for establishing the well-posedness and error estimates for(4.10).

Theorem 4.1. Let (uM, φM) be any solution of the system(4.10). For any givenδ < 4, there exist two positive
constantsc1, c2(δ) independent of any function, M andη such that:

(i) three-dimensional case: for all t ∈ [0, T1), we have

‖uM(t)‖2 + λ|φM(t)|21 ≤ ‖uM(0)‖2 + λ|φM(0)|21
(1 − (t/T1))1/4

,

∫ t

0
(ν|uM(s)|21+λγ ‖∇�φM(s)‖2)ds≤(‖uM(0)‖2+λ‖φM(0)‖2

1)+
c1η

−8t (‖uM(0)‖2 + λ|φM(0)|21)5
(1 − (t/T1))5/4

,

where

T1 = η8

4c1(‖uM(0)‖2 + λ|φM(0)|21)4
.

(ii) two-dimensional case: for all t ∈ [0, T2), we have

‖uM(t)‖2 + λ|φM(t)|21 + 2λ
∫
Ω

F(φM(t))dx ≤ ‖uM(0)‖2 + λ|φM(0)|21 + 2λ
∫
Ω
F(φM(0))dx

(1 − (t/T2))1/3
,∫ t

0
(ν|uM(s)|21+λγ ‖∇(�φM(s)−πMf (φM(s)))‖2)ds

≤
(

‖uM(0)‖2+λ‖φM(0)‖2
1+2λ

∫
Ω

F(φM(0))dx

)

+ c2η
−4Mδ−2t

(‖uM(0)‖2 + λ|φM(0)|21 + 2λ
∫
Ω
F(φM(0))dx

)4

(1 − (t/T2))4/3
,
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where

T2 = η4

c2(δ)M2−δ (‖uM(0)‖2 + λ|φM(0)|21 + 2λ
∫
Ω
F(φM(0))dx

)3
.

Proof. We takev = 2uM andψ = −2λ�φM in (4.10). Using(4.4), (4.6) and (4.7), we obtain that

d

dt
‖uM‖2 + ν|uM |21 + 2λ((�φT

M)∇φM, uM) = 0 (4.11)

and

λ
d

dt
|φM |21 − 2λ((uM · ∇)φM,�φM)+ 2λγ ‖∇�φM‖2 = 2λγ (∇f (φM),∇�φM). (4.12)

Below, we shall usec to denote a generic positive constant independent of any function,η andM.
Using the Sobolev inequality (cf.[32,38])

‖v‖L∞ ≤ c‖v‖3/4
1 ‖v‖1/4

3 , ∀v ∈ H 3
p (n ≤ 3), (4.13)

the Hölder’s inequality and(4.2), we find

2λγ (∇f (φM),∇�φM)= 2λγ (f ′(φM)∇φM,∇�φM) ≤ c‖f ′(φM)‖L∞‖φM‖3‖φM‖1

≤ c

η2
(‖φ‖2

L∞ + 1)‖φM‖3‖φM‖1 ≤ c

η2
(‖φM‖3/2

1 ‖φM‖1/2
3 + 1)‖φM‖3‖φM‖1

≤ λγ ‖∇�φM‖2 + c

η8
|φM |10

1 + c

η4
|φM |21. (4.14)

Combining(4.11), (4.12) and (4.14), we obtain

d

dt
(‖uM(t)‖2 + λ|φM(t)|21)+ ν|uM(t)|21 + λγ ‖∇�φM(t)‖2 ≤ c

η4
|φM(t)|21 + c

η8
|φM(t)|10

1

≤ c1

η8
(1 + ‖uM(t)‖2 + λ|φM(t)|21)5. (4.15)

We derive the first result by applyingLemma 4.1with m = 5,β = c1/η8 and

y(t) = 1 + ‖uM(t)‖2 + λ|φM(t)|21, b(t) = ν|uM(t)|21 + λγ ‖∇�φM(t)‖2.

The above result is valid for both the three-dimensional and two-dimensional cases. However, for the two-dimensional
case, an improved result can be obtained as follows.

Takingψ = −2λ(�φM − πMf (φM)) in (4.10), instead of(4.12), we obtain

d

dt

(
λ|φM |21 + 2λ

∫
Ω

F(φM)dx

)
− 2λ((uM · ∇)φM,�φM)+ 2λ((uM · ∇)φM, πMf (φM))

+ 2λγ ‖∇(�φM − πMf (φM))‖2 = 0. (4.16)

Let I be the identity operator, andg(z) = (1/η2)|z|2z. Thus, the sum of(4.11)–(4.16)leads to

d

dt

(
‖uM‖2 + λ|φM |21 + 2λ

∫
Ω

F(φM)dx

)
+ 2ν|uM |21 + 2λγ ‖∇(�φM − πMf (φM))‖2

≤ 2λ((uM · ∇)φM, (I − πM)g(φM)). (4.17)
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We recall that for anyv ∈ Hrp and 0≤ µ ≤ r, we have

‖πMv − v‖µ ≤ cMµ−r‖v‖r . (4.18)

Therefore,

‖(I − πM)g(φM)‖ ≤ cM−1‖g(φM)‖1. (4.19)

For any givenδ < 4, we setp = 4/δ. Using the Hölder’s inequality and the Sobolev embedding theorem (in the
two-dimensional case), we find

‖g(φM)‖2
1 ≤ c|g(φM)|21 ≤ c

η4
|φ2
M∇φM |21 ≤ c

η4
‖φ4
M‖Lp‖(∇φM)2‖Lp/(p−1)

= c

η4
‖φM‖4

L4p‖∇φM‖2
L2p/(p−1) ≤ c

η4
‖φM‖4

1‖∇φM‖2
1/p ≤ cM2/p

η4
‖φM‖6

1, (4.20)

where in the last step we have used the inverse inequality

‖vM‖r ≤ cMr‖vM‖, ∀vM ∈ PM. (4.21)

Now, we combine(4.19) and (4.20)and use the Hölder’s inequality and the Sobolev embedding theorem again to
get

2λ|((uM · ∇)φM, (I − πM)g(φM))|
≤ 2λ‖uM‖L2p‖∇φM‖L2p/(p−1)‖(I − πM)g(φM)‖
≤ cM(2/p)−1η−2‖uM‖1‖φM‖4

1 ≤ ν|uM |21 + cM(4/p)−2η−4‖φM‖8
1. (4.22)

Substituting(4.22)into (4.17), we find

d

dt

(
‖uM‖2 + λ|φM |21 + 2λ

∫
Ω

F(φM)dx

)
+ ν|uM |21 + 2λγ ‖∇(�φM − πMf (φM))‖2

≤ c2(δ)η−4M(4/p)−2‖φM‖8
1. (4.23)

We can then conclude by applyingLemma 4.1below to the above withm = 4,β = c2η−4M(4/p)−2 and

y(t) = ‖uM‖2 + λ|φM |21 + 2λ
∫
Ω

F(φM)dx, b(t) = ν|uM |21 + 2λγ ‖∇(�φM − πMf (φM))‖2 � (4.24)

Lemma 4.1. Letβ > 0,m > 1, andy(t), b(t) be two non-negative functions satisfying

y′(t)+ b(t) ≤ βym(t), t ∈ (0, T ). (4.25)

Then, for t ∈ [0, T0) with T0 = min(1/((m− 1)βym−1(0)), T ), we have

y(t) ≤ y(0)

(1 − (m− 1)βym−1(0)t)1/(m−1)
,

∫ t

0
R(s)ds ≤ y(0)+ βt y(0)m

(1 − (m− 1)βym−1(0)t)m/(m−1)
.

Proof. We sketch the proof below for the readers’ convenience.
Let v(t) = y−m−1(t). We derive from(4.25)that

v′(t) ≥ −(m− 1)β and v(t) ≥ v(0)− (m− 1)βt.

The first result follows directly from the above. Integrating(4.25)and taking into account the first result, we obtain
the second result. �
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Remark 4.1. With the a priori estimates established in the above theorem, one can follow essentially the same
standard procedure as in[27] to prove the well-posedness of the system(4.10)and to establish an error estimate of
spectral-type, namely, the convergence rate of the Fourier-approximation is only limited by the smoothness of the
solution.

We would like to point out that the above analysis can be essentially extended to other admissible boundary
conditions.

5. Numerical results

We implemented a second-order semi-implicit time discretization scheme for the Fourier-spectral system(4.10)
in the two-dimensional case. Thanks to the periodic boundary conditions, the pressure can be easily eliminated
from the system, and the Laplace and biharmonic operators are reduced to, in Fourier space, diagonal operators.
Thus, at each time step, the linear systems (for the discrete Fourier coefficients of the unknown functions) to be
solved are diagonal systems and the computational cost is dominated by the evaluation of the nonlinear terms in
(4.10)which, in actual computations, are computed using the so-called pseudospectral/collocation approach with
fast Fourier transform (FFT).

Below, we present several numerical experiments using this code. In all computations, we have fixed the physical
parameters to be

η = 0.02, λ = 0.1, ν = 0.1, γ = 0.1

and the computational parameters to beM = 128 and dt = 0.005. The initial condition foru is taken to be zero in
all computations while the initial condition forφ is specified in each example. We recall thatη is the capillary width
(mixing region) of the fluids,λ/η is the surface tension constant,ν is the viscosity andγ is the “elastic” relaxation
time.

Example 1 (Surface tension effects). This test exhibits the surface tension effects of the model. We start with a
rectangular bubble, i.e.,φ = 1 inside the bubble andφ = −1 outside the bubble. The rectangular bubble quickly
deforms into a circular bubble due to the surface tension. In fact, if we chooseλ = 0 (i.e., no fluid in the system),
the bubble will not deform. Also, we notice that the volume of the bubble is preserved (Fig. 5.1).

Example 2 (Surface tension effects and Allen–Cahn dissipation). In this test, we choose the same initial condition
as inExample 1but we replace the Cahn–Hilliard system(2.3) by the Allen–Cahn system. We notice that the
rectangular bubble still deforms into a circular bubble while the size of the bubble shrinks (eventually it shrinks to
zero) due to the dissipative mechanism in the Allen–Cahn system.

Notice that in bothExamples 1 and 2, the shape of the bubble vibrates tangentially before it becomes a circular
bubble (the preferred configuration). This tangential vibration is attributed to the so-called T-modes of the spheric
normal modes (cf.[61]). This illustrates that our model captures another important special effect of the surface
tension (Fig. 5.2).

Example 3 (Coalescence of two kissing bubbles). We start with two kissing bubbles. As time evolves, the two
bubbles coalesces into one big bubble. This is the combination of the surface tension effect and the elastic effect
from the phase equation. We note that if we start with two non-kissing bubbles of the same size, the two bubbles
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Fig. 5.1.Example 1: phase evolution att = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1.2, 1.4, 1.7, 2.5.

Fig. 5.2.Example 2: (Allen–Cahn) phase evolution att = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1.2, 1.6, 3.0, 5.0.

Fig. 5.3.Example 3: phase evolution att = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8.
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Fig. 5.4.Example 4: phase evolution att = 0, 4.0, 5.0, 6.0, 7.5, 9.0, 10.5, 12.0.

Fig. 5.5.Example 5: phase evolution att = 0, 1.2, 1.8, 2.5, 3.3, 4.0, 4.8, 5.5.

will not move since the dynamics of Cahn–Hilliard is static (i.e., the chemical potential and the curvature are the
same).

In the next three examples, we use the Boussinesq approximation(2.25)to model the case where the two fluids
have different densities. We rewrite the right-hand side of(2.25)as

−g(2ρ0 + ρ1 + ρ2)− gφ(ρ1 − ρ2).

The first term is a constant vector which can be absorbed into the pressure so we only have to consider the second
term. In all three examples below, we setρ1 − ρ2 = −1 (Fig. 5.3).

Fig. 5.6.Example 6: phase evolution att = 0, 0.1, 0.2, 0.3, 0.5, 1.0, 6.0, 9.0.
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Example 4 (Boussinesq approximation, Case A). We start with a circular bubble near the bottom of the domain.
The density of the bubble is lighter than the density of the surrounding fluid. The gravitational constant vector is
taken to beg = (0.1,0)t . The bubble rises as expected due to the gravity differential (Fig. 5.4).

Example 5 (Boussinesq approximation, Case B). The situation is the same as inExample 4except that the gravita-
tional constant vector is taken to beg = (1,0)t . Thus, the gravity differential is 10 times larger than the previous case.

We notice that the bubble deforms as it rises. The deformation of the shape of the bubble indicates the influence
of the flow field. The shape deformation is not visually noticeable in the previous case due to the much smaller
gravity differential (Fig. 5.5).

Example 6 (Boussinesq approximation, Case C). We start with two circular bubbles of different sizes at different
heights. The density of the bubbles is lighter than the density of the surrounding fluid. Here, the gravitational constant
vector is taken to beg = (0.1,0)t .

Notice that the small bubble is absorbed by the big bubble before any noticeable rise. This phenomenon, i.e., the
big bubble absorbs the small bubble, is purely due to the Cahn–Hilliard equation, since the curvature of the bubbles
serves as the chemical potential in the dynamics of the phase function. The rate of this process is determined by the
elastic relaxation timeγ (Fig. 5.6).

6. Concluding remarks

We presented in this paper a phase field model for the mixture of two incompressible fluids. The model consists
of a momentum equation with an extra “elastic” term due to the mixing of different materials and a Cahn–Hilliard
equation with the corresponding transport term. We illustrated that such a system converges to the usual two phase
fluid system as the mixing region shrinks to an interface. We note that the derivation of the model provides a general
framework to incorporate the elastic effects in different complex fluids.

We analyzed a semi-discrete Fourier-spectral method for the numerical approximation of this system and imple-
mented a semi-implicit scheme for the time discretization. We presented several illustrative numerical examples
which exhibited various physical mechanisms of the model and demonstrated its robustness and versatility. These
examples demonstrate that the proposed model captures many interesting surface tension effects that are of great
interest in the theory of mixtures and interfaces.

In upcoming works, we will investigate the cases with other admissible boundary conditions, with variable
viscosities, and eventually the more challenging cases such as solid–liquid and liquid–air mixtures. We also plan to
study different interfacial dynamics (configurations) for the mixtures of more complicated materials, such as liquid
crystals, polymeric materials and viscoelastic solids.
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