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ON THE ERROR ESTIMATES FOR THE ROTATIONAL
PRESSURE-CORRECTION PROJECTION METHODS

J.L. GUERMOND1 AND JIE SHEN2

Abstract. In this paper we study the rotational form of the pressure-correction
method that was proposed in [19]. We show that the rotational form of the algo-
rithm provides better accuracy in terms of the H1-norm of the velocity and of the
L2-norm of the pressure than the standard form.

1. Introduction

There are numerous way to discretize the unsteady incompressible Navier-Stokes equa-
tions in time. Undoubtedly, the most popular one consists of using projection methods.
This class of techniques has been introduced by Chorin and Temam [2, 3, 17]. They are
time marching algorithms based on a fractional step technique that may be viewed as a
predictor-corrector strategy aiming at uncoupling viscous diffusion and incompressibil-
ity effects. The method proposed originally, although being simple, is not satisfactory
since its convergence rate is irreducibly limited to O(δt). This limitation comes from the
fact that the method is basically an artificial compressibility technique as shown in [11]
and [13]. To cure these problems, numerous modifications have been proposed, among
which are pressure-correction methods (see [5, 20]) and splitting techniques based on
extrapolated pressure boundary conditions (see [10, 9]).

Pressure-correction methods are widely used and have been extensively analyzed.
These schemes are composed of two time substeps: the pressure is made explicit in
the first substep and is corrected in the second one by projecting the provisional velocity
onto the space of solenoidal vector fields. Rigorous second-order error estimates for the
velocity have been proved in Shen [15] in the semi-discrete case and in Guermond [6]
for the fully discrete case. We refer also to [4] and [16] for different proofs based on
asymptotic analysis in a periodic channel [4], and normal mode analysis in the right half
plane [16].

However, standard pressure-correction schemes still suffer from non-physical pressure
boundary condition which induces a numerical boundary layer, and consequently, de-
grades the accuracy of the pressure approximation. Indeed, Strikwerda and Lee [16]
showed that the pressure approximation in a standard pressure-correction scheme can
be at most first-order accurate. In 1996, Timmermans, Minev & Van De Vosse [19] pro-
posed a modified version of the pressure-correction scheme, which we shall hereafter refer
to as the rotational form of the pressure-correction scheme for reasons we shall specify
later, and they showed numerically that it leads to improved pressure approximation.
Recently, Brown, Cortez & Minion [1] used normal mode analysis to study the accuracy
of this scheme in a periodic channel and showed that the pressure approximation in this
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particular case is second-order accurate. However, whether the rotational form can yield
second-order pressure approximation in more general domains is still an open question.
In fact, to the best of the authors’ knowledge, there is no rigorous analysis available yet
in the literature for this type of algorithms in general domains.

The aim of this paper is to provide a rigorous stability and error analysis for the rota-
tional form of pressure-correction schemes. Our results indicate that while the rotational
form of pressure-correction schemes does not improve the accuracy on the approximate
velocity in the L2-norm, it does improve the accuracy on this quantity in the H1-norm
and that on the approximate pressure in the L2-norm from first-order to 3

2 -order. Based
on our numerical results, this 3

2 -order convergence rate on the pressure appears to be the
best possible for the rotational form of pressure-correction schemes in general domains.
The results presented in this paper have been announced in [8].

This paper is organized as follows. In § 2, we introduce notations and recall important
results that are used repeatedly in the core of the paper. In § 3, we present the rotational
form of the pressure-correction algorithm using BDF2 to march in time. In this section,
we also analyze a singular perturbation of the Navier–Stoke equations that mimics the
characteristics of the new scheme. The analysis of the discrete scheme is performed in
§4. We illustrate the performance of the proposed scheme in § 5 by showing numerical
convergence tests using P2/P1 finite elements and PN/PN−2 spectral approximations.

2. Notations and preliminaries

We now introduce some notations. We shall consider the time-dependent Navier-
Stokes equations on a finite time interval [0, T ] and in an open, connected and bounded
domain Ω ⊂ Rd (d = 2, or 3) with a boundary Γ sufficiently smooth. Let δt > 0 be a
time step and set tk = kδt for 0 ≤ k ≤ K = [T/δt].

Let φ0, φ1, . . . φK be some sequence of functions in some Hilbert space E. We denote
by φδt this sequence, and we use of the following discrete norms:

(2.1) ‖φδt‖l2(E) :=

(
δt

K∑
k=0

‖φk‖2
E

)1/2

, ‖φδt‖l∞(E) := max
0≤k≤K

(
‖φk‖2

E

)
.

We use the standard Sobolev spaces Hm(Ω) (m = 0,±1, · · · ) whose norms are denoted
by ‖ · ‖m. In particular, the norm and inner product of L2(Ω) = H0(Ω) are denoted by
‖ · ‖ and (·, ·) respectively. To account for homogeneous Dirichlet boundary conditions
we define H1

0 (Ω) = {v ∈ H1(Ω) : v|Γ = 0}. Thanks to the Poincaré inequality, for
v ∈ H1

0 (Ω)d, ‖∇v‖ is a norm equivalent to ‖v‖1. We also have

(2.2) ‖∇v‖2 = ‖∇·v‖2 + ‖∇×v‖2, ∀v ∈ H1
0 (Ω)d.

We introduce two spaces of solenoidal vector fields

H = {v ∈ L2(Ω)d; ∇·v = 0; v · n|Γ = 0},(2.3)

V = {v ∈ H1(Ω)d; ∇·v = 0; v|Γ = 0},(2.4)

and define PH as the L2-orthogonal projector in H , i.e.

(2.5) (u− PHu, v) = 0 ∀u ∈ L2(Ω)d, v ∈ H.
We denote by c a generic constant that is independent of ε and δt but possibly depends

on the data and the solution. We shall use the expression A . B to say that there exists
a generic constant c such that A ≤ cB.
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Next, we define the inverse Stokes operator S : H−1(Ω)d −→ V . For all v in H−1(Ω)d,
S(v) ∈ V is the solution to the following problem(∇S(v),∇w)− (r,∇·w) = 〈v, w〉, ∀w ∈ H−1(Ω)d,

(q,∇·S(v)) = 0, ∀q ∈ L2
0(Ω),

where 〈·, ·〉 denotes the duality paring between H−1(Ω)d and H1
0 (Ω)d.

We assume that Γ is sufficiently smooth that the following regularity properties hold
(cf. [18]):

(2.6) ∀v ∈ L2(Ω)d, ‖S(v)‖2 + ‖∇r‖ ≤ c‖v‖.
The following properties of S are proved in [7].

Lemma 2.1. For all v in H1
0 (Ω)d and all 0 < γ < 1 we have

(∇S(v),∇v) ≥ (1− γ)‖v‖2 − c(γ)‖v − v?‖2, ∀v? ∈ H.
In particular,

(∇S(v),∇v) = ‖v‖2, ∀v ∈ V.

Lemma 2.2. The bilinear form H−1(Ω)d×H−1(Ω)d 3 (v, w) 7−→ 〈S(v), w〉 ∈ R induces
a semi-norm on H−1(Ω)d that we denote | · |?, and

|v|? = ‖S(v)‖1 ≤ c‖v‖−1, ∀v ∈ H−1(Ω)d.

3. Rotational form of the pressure-correction methods

We consider the movement of an incompressible fluid inside Ω whose velocity u and
pressure p are governed by the Navier-Stokes equations:

(3.1)


∂tu− ν∇2u+ u·∇u+∇p = f in Ω× [0, T ],

∇·u = 0 in Ω× [0, T ],

u|Γ = 0, u|t=0 = u0 in Ω,

The boundary condition on the velocity is set to zero for the sake of simplicity, and
u0 ∈ H is an initial velocity field.

Since for projection methods the treatment of nonlinear term does not contribute
in any essential way to the error behaviors, we shall describe the rotational pressure-
correction scheme and carry out all the error analyses for the linearized equations only,
thus avoiding technicalities associated with the nonlinearities which obscure the essen-
tial difficulties. In practice, the nonlinear terms can be treated either implicitly, semi-
implicitly or explicitly depending on various factors such as stability, simplicity, efficiency
and the practitioners’ preferences.

Thus, to fix the idea, we will only consider the approximation of the following linearized
Navier-Stokes equations (we set ν = 1 for simplicity):

(3.2)


∂tu−∇2u+∇p = f in Ω× [0, T ],

∇·u = 0 in Ω× [0, T ],

u|Γ = 0, u|t=0 = u0 in Ω,
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To simplify our presentation, we assume that the unique solution (u, p) for the above
system is sufficiently smooth in time and in space.

3.1. Description of the scheme. Before introducing the rotational form of the pressure-
correction algorithm, let us recall its standard form using BF2 to march in time. Using
the linearized version of the Navier–Stokes equations, the first substep accounting for
viscous diffusion is

(3.3)

3ũk+1 − 4uk + uk−1

2δt −∇2ũk+1 +∇pk = f(tk+1),

ũk+1|Γ = 0,

and the second substep accounting for incompressibility is

(3.4)


3uk+1 − 3ũk+1

2δt +∇(pk+1 − pk) = 0,

∇·uk+1 = 0,

uk+1 · n|Γ = 0.

This step is usually referred to as the projection step, for it is a realization of the identity
uk+1 = PH ũ

k+1.
This scheme has been thoroughly studied (cf. [12, 4, 15, 6]). Though it is second

order accurate on the velocity in the L2-norm, it is plagued by a numerical boundary
layer that prevents it to be fully second order on the H1-norm of the velocity and on the
L2-norm of the pressure. Actually, from (3.4) we observe that ∇(pk+1 − pk) · n|Γ = 0
which implies that

(3.5) ∇pk+1 · n|Γ = ∇pk · n|Γ = · · ·∇p0 · n|Γ.
It is this non-realistic Neumann boundary condition for the pressure that introduces the
numerical boundary layer referred to above and consequently limits the accuracy of the
scheme.

In 1996, a modified scheme with a divergence correction has been proposed in [19].
More precisely, the second step (3.4) is replaced by:

(3.6)


3uk+1 − 3ũk+1

2δt +∇(pk+1 − pk +∇·ũk+1) = 0,

∇·uk+1 = 0,

uk+1 · n|Γ = 0.

The authors have shown numerically that the modified scheme (3.3)-(3.6) provides signif-
icantly better approximations for the pressure. To the best of our knowledge, no rigorous
analysis for the modified scheme (3.3)-(3.6) has yet been proposed in the literature.

To understand why the modified scheme performs better, we take the sum of (3.3)
and (3.6), notice from (3.6) that ∇×∇×ũk+1 = ∇×∇×uk+1, we get

(3.7)

3uk+1 − 4uk + uk−1

2δt +∇×∇×uk+1 +∇pk+1 = f(tk+1),

∇·uk+1 = 0,

with uk+1 · n|Γ = 0. We observe from (3.7) that

∂pk+1

∂n
|Γ = (f(tk+1)−∇×∇×uk+1) · n|Γ,
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which, unlike (3.5), is a consistent pressure boundary condition. The splitting error now
manifests itself only in the form of an inexact tangential boundary condition for the
velocity.

In view of (3.7), where the operator ∇×∇×plays a key role, we shall hereafter refer to
the algorithm (3.3)-(3.6) as the pressure-correction scheme in rotational form, and refer
to the original algorithm (3.3)-(3.4) as the pressure-correction scheme in standard form.

The aim of this paper is to prove stability and derive error estimates for the scheme
(3.3)-(3.6).

3.2. Initialization of the scheme. Note that we will need (u0, ũ0, p0) and (u1, ũ1, p1)
to start the scheme (3.3)-(3.6). We set

(3.8) u0 = u0, ũ
0 = u0, p

0 = p(0),

where p(0) is determined from u0 and the equations (3.2). We solve (u1, ũ1, p1) from the
following first-order pressure-correction projection scheme:

(3.9)

ũ
1 − u0

δt
−∇2ũ1 +∇p0 = f(t1)

ũ1|Γ = 0,

and

(3.10)


u1 − ũ1

δt
+∇(p1 − p0) = 0,

∇·u1 = 0

u1 · n|Γ = 0.

Let us denote R1 = ut(δt)− u(δt)−u(0)
δt . The error equation corresponding to (3.9) is:

(u(δt)− ũ1)− δt∆(u(δt)− ũ1) = −δt∇(p(δt)− p(0))− δtR1 = O(δt2),

(u(δt)− ũ1)|∂Ω = 0.
(3.11)

One derives immediately from the standard PDE theory that

(3.12) ‖u(δt)− ũ1‖+ δt
1
2 ‖∇(u(δt)− ũ1)‖+ δt‖∆(u(δt)− ũ1)‖ . δt2.

The error equation corresponding to (3.10) is:

(3.13) ∇(p(δt)− p1) =
(u(δt)− u1)− (u(δt)− ũ1)

δt
+∇(p(δt)− p(0)).

We derive easily from the above and (3.12) that:

(3.14) ‖∇(p(δt)− p1)‖ . δt.

Repeating the same procedure above for (3.3)-(3.6) with k = 1, we obtain:

(3.15) ‖u(2δt)− ũ2‖+ δt
1
2 ‖∇(u(2δt)− ũ2)‖+ δt‖∆(u(2δt)− ũ2)‖ . δt2.

(3.16) ‖∇(p(2δt)− p2)‖ . δt.
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3.3. Time continuous version: a singularly perturbed PDE. It is instructive to
study the singularly perturbed system corresponding to the limiting case (as δt→ 0) of
the rotational pressure–correction scheme (3.3)-(3.6), since the essential error behaviors
of (3.3)-(3.6) are determined by its limiting system. To derive a suitable limiting system,
we can eliminate uk from (3.3)-(3.6) to obtain:

(3.17)

3ũk+1 − 4ũk + ũk−1

2δt −∇2ũk+1 +∇pk+1 + 1
3∇(pk+1 − 2pk + pk−1) = f(tk+1),

ũk+1|Γ = 0,

(3.18)
3

2δt
∇·ũk+1 −∇2φk+1 = 0,

∂φk+1

∂n
|Γ = 0,

and

(3.19) pk+1 = φk+1 + pk −∇·ũk+1.

Neglecting the higher-order term 1
3∇(pk+1−2pk +pk−1), the limiting system with ε ∼ δt

is:

∂tu
ε −∇2uε +∇pε = f, uε|Γ = 0,(3.20)

∇·uε − ε∇2φε = 0, ∂φε

∂n |Γ = 0,(3.21)
ε∂tp

ε = φε −∇·uε,(3.22)

with uε|t=0 = u(0) and pε(0) = p(0).
The following lemma exhibits the essential feature of this singularly perturbed system

and is the key to prove higher order estimates.

Lemma 3.1. Provided u and p and smooth enough in time and space, we have

‖∇·uε‖L∞(L2(Ω)) . ε
3
2 .

Proof. We shall first derive some a priori estimates.
We denote e = uε − u and q = pε − p. Subtracting (3.20) from (3.2), we find

et −∇2e+∇q = 0, e|Γ = 0,(3.23)

∇·e− ε∇2φε = 0, ∂φε

∂n |Γ = 0,(3.24)
εqt = φε −∇·uε − εpt.(3.25)

with e(0) = 0 and q(0) = 0.
Taking the inner product of the time derivative of (3.23) with et, we find:

(3.26)
1
2
∂t‖et‖2 + ‖∇et‖2 − (qt,∇·et) = 0.

Using (3.24) and (3.25):
−(qt,∇·et) = −ε(qt,∆φε

t ) = −(φε − ε∆φε − εpt,∆φε
t )

=
1
2
∂t‖∇φε‖2 +

ε

2
∂t‖∆φε‖2 + ε(∇pt,∇φε

t )

=
1
2
∂t‖∇φε‖2 +

ε

2
∂t‖∆φε‖2 + ε∂t(∇pt,∇φε) + ε(∇ptt,∇φε).

(3.27)

The above two relations lead to:
1
2
∂t‖et‖2 + ‖∇et‖2 +

1
2
∂t‖∇φε‖2 +

ε

2
∂t‖∆φε‖2

= −ε∂t(∇pt,∇φε)− ε(∇ptt,∇φε).
(3.28)
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Since we have e(0) = 0 and q(0) = 0, which imply that φε(0) = 0 and et(0) = 0.
Therefore, an application of the Gronwall lemma to the above relation leads to:

(3.29) ‖et(t)‖2 + ‖∇φε(t)‖2 + ε‖∆φε(t)‖2 +
∫ t

0
‖∇et(s)‖2ds . ε2.

We obtain immediately

(3.30) ‖∇·uε(t)‖2 = ε2‖∆φε(t)‖2 . ε3.

�

Lemma 3.2. Provided u and p and smooth enough in time and space, we have

‖u− uε‖L2(L2(Ω)d) . ε2.

Proof. We take the inner product of (3.23) with S(e), where S is the inverse Stokes
operator defined in Section 2. Since S(e) ∈ V , we find

(3.31)
1
2
∂t|e|2? + (∇e,∇S(e)) = 0.

Thanks to Lemma 2.1, we have

(3.32)
1
2
∂t|e|2? +

1
2
‖e‖2 . ‖e− PHe‖2.

By the definition of PH , we can write e − PHe = ∇r with ∂r
∂n |∂Ω = 0. Consequently

∇·e = ∆r and from (3.24), we infer r = εφε and

(3.33) ‖e− PHe‖2 = ‖∇r‖2 = ε2‖∇φε‖2.

Applying the Gronwall lemma to (3.32) and taking into account (3.29), we derive

|e(t)|2? +
∫ t

0
‖e(s)‖2ds . ε2

∫ t

0
‖∇φε(s)‖2ds . ε4.

�

Remark 3.1. These two lemmas are essential to understand the arguments that will be
used in the discrete case. They will have two discrete counterparts in the form of lemma
4.1 and lemma 4.2.

4. Error estimates for the time discrete case

Let us first introduce some notations. For any sequence φ0, φ1, . . ., we set

δtφ
k = φk − φk−1, δttφ

k = δt(δtφk), δtttφ
k = δt(δttφk),

and

(4.1)

ek = u(tk)− uk, ẽk = u(tk)− ũk,

ψk = p(tk+1)− pk, qk = p(tk)− pk.

The main result in this paper is:

Theorem 4.1. Provided the solution to (3.2) is smooth enough in time and space, the
solution (uk, ũk, pk) to (3.3)-(3.6) satisfies the estimates:

‖eδt‖l2(L2(Ω)d) + ‖ẽδt‖l2(L2(Ω)d) . δt2,

‖eδt‖l2(H1(Ω)d) + ‖ẽδt‖l2(H1(Ω)d) + ‖qδt‖l2(L2(Ω)) . δt
3
2 .
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The remainder of this section is devoted to the proof of the above theorem. The proof
of Theorem 4.1 will be carried out through a sequence of estimates presented below.

4.1. Stability and a priori estimate on ‖∇· ũk‖. We first establish a result similar to
that of Lemma 3.1.

Lemma 4.1. Under the hypotheses of theorem 4.1, we have

‖∇·ũδt‖l∞(L2(Ω)) . δt3/2,

‖δtẽδt − δteδt‖l2(L2(Ω)d) . δt5/2.

Proof. The proof of this lemma follows the same principle as that we used in Section
3 for the time continuous version of the algorithm. The critical step here consists in
working with the time increments δtek+1 and δtẽ

k+1, which corresponds to taking the
inner product of the time derivative of (3.23) with ∂te.

Let us first write the equations that control the time increments of the errors. We
define

(4.2) Rk = ∂tu(tk)−
3u(tk)− 4u(tk−1) + u(tk−2)

2δt
.

Then, for k ≥ 2, we have

(4.3)

3δtẽk+1 − 4δtek + δte
k−1

2δt −∆δtẽk+1 +∇δtψk = δtR
k+1,

δ̃te
k+1|Γ = 0,

and

(4.4)

 3
2δtδte

k+1 +∇(δtqk+1 +∇·ẽk+1) = 3
2δtδtẽ

k+1 +∇(δtψk +∇·ẽk),

δte
k+1 · n|Γ = 0,

We take the inner product of (4.3) with 4δt δtẽk+1 to get

2(δtẽk+1, 3δtẽk+1 − 4δtek + δte
k−1) + 4δt‖∇δtẽk+1‖2 + 4δt(δtẽk+1,∇δtψk)(4.5)

= 4δt(δtek+1, δtR
k+1) ≤ 2δt‖δtek+1‖2 + 2δt‖δtRk+1‖2.

The treatment of the first term is quite technical but similar to that in [7]. For the
readers’ convenience, we show the details below. We denote

I =2(δtẽk+1, 3δtẽk+1 − 4δtek + δte
k−1)

=6(δtẽk+1, δtẽ
k+1 − δte

k+1) + 2(δtẽk+1 − δte
k+1, 3δtek+1 − 4δtek + δte

k−1)

+2(δtek+1, 3δtek+1 − 4δtek + δte
k−1),

and denote by I1, I2 and I3 the three terms in the right hand side. Using the following
algebraic identities

2(ak+1, ak+1 − ak) = |ak+1|2 + |ak+1 − ak|2 − |ak|2,(4.6)

2(ak+1, 3ak+1 − 4ak + ak−1) = |ak+1|2 + |2ak+1 − ak|2 + |δttak+1|2(4.7)

−|ak|2 − |2ak − ak−1|2,
we derive

I1 = 3‖δtẽk+1‖2 + 3‖δtek+1 − δtẽ
k+1‖2 − 3‖δtek+1‖2,

I3 = ‖δtek+1‖2 + ‖2δtek+1 − δte
k‖2 + ‖δtttek+1‖2 − ‖δtek‖2 − ‖2δtek − δte

k−1‖2.
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Owing to (4.4) and using the fact that ek ∈ H, we derive the following equality:

3
2δt

I2 = 2(∇δt(qk+1 − ψk) +∇∇·δtẽk+1, 3δtek+1 − 4δtek + δte
k−1) = 0.

Combining all the results above, we obtain

3‖δtẽk+1‖2− 3‖δtek+1‖2 + 3‖δtek+1 − δtẽ
k+1‖2 + ‖δtek+1‖2(4.8)

+ ‖2δtek+1 − δte
k‖2 − ‖δtek‖2 − ‖2δtek − δte

k−1‖2 + ‖δtttek+1‖2

+ 4δt‖∇δtẽk+1‖2 + 4δt(δtẽk+1,∇δtψk) = 4δt(δtek+1, δtR
k+1).

By taking the square of (4.4), multiplying the result by 4
3δt

2 and integrating over the
domain we have

3‖δtek+1‖2+
4δt2

3
‖∇(δtqk+1 +∇·ẽk+1)‖2 = 3‖δtẽk+1‖2(4.9)

+4δt(δtẽk+1,∇(δtψk +∇·ẽk)) +
4δt2

3
‖∇(δtψk +∇·ẽk)‖2.

The last two terms in the above relation can be bounded as follows.
The term 4δt(δtẽk+1,∇δtψk) cancels out with the same term in (4.8). Integrating by

parts and using (4.6),

4δt(δtẽk+1,∇∇·ẽk) = −4δt(∇·(ẽk+1 − ẽk),∇·ẽk)

= 2δt(‖∇·ẽk‖2 − ‖∇·ẽk+1‖2 + ‖∇·δtẽk+1‖2).
(4.10)

The term 2δt‖∇·δtẽk+1‖2 can be controlled by 4δt‖∇δtẽk+1‖2 in (4.8), since owing to the
identity (2.2), we have

(4.11) ‖∇δtẽk+1‖2 = ‖∇ × δtẽ
k+1‖2 + ‖∇·δtẽk+1‖2.

For ‖∇(δtψk +∇·ẽk)‖2, we have

‖∇(δtψk +∇·ẽk)‖2 =‖∇(δtqk +∇·ẽk) +∇δttp(tk+1)‖2

≤
(
cδt2 + ‖∇(δtqk +∇·ẽk)‖

)2
≤c δt4 + 2cδt2‖∇(δtqk +∇·ẽk)‖+ ‖∇(δtqk +∇·ẽk)‖2

≤c δt4 + cδt(δt2 + ‖∇(δtqk +∇·ẽk)‖2) + ‖∇(δtqk +∇·ẽk)‖2

≤c δt3 + (1 + cδt)‖∇(δtqk +∇·ẽk)‖2.

(4.12)

Combining the relations (4.8–4.12), we arrive to:

3‖δt(ek+1 − ẽk+1)‖2 + ‖δtek+1‖2 + ‖2δtek+1 − δte
k‖2 + ‖δtttek+1‖2

+ 2δt‖∇δtẽk+1‖2 + 2δt‖∇·ẽk+1‖2 +
4
3
δt2‖∇(δtqk+1 +∇·ẽk+1)‖2

≤ cδt5 + 2δt‖δtek‖2 + (1 + cδt)
4
3
δt2‖∇(δtqk +∇·ẽk)‖2

+ ‖δtek‖2 + ‖2δtek − δte
k−1‖2 + 2δt‖∇·ẽk‖2 + 2δt‖δtRk+1‖2.
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Finally, applying the discrete Gronwall lemma to the above relation and taking into
account the initial estimates (3.12–3.16), we obtain

δt‖∇·ẽk+1‖2 + ‖δtek+1‖2 + ‖2δtek+1 − δte
k‖2 +

k∑
l=2

‖δtel+1 − δtẽ
l+1‖2

+ δt

k∑
l=2

‖∇δtẽl+1‖2 + δt2‖∇(δtqk+1 +∇·ẽk+1)‖2

≤ c
(
δt4 + δt‖∇·ẽ2‖2 + ‖δte2‖2 + ‖2δte2 − δte

1‖2 + δt2‖∇(δtq2 +∇·ẽ2)‖2
)

+ c δt

k∑
l=2

‖δtRl+1‖2 ≤ c δt4 + δt

k∑
l=2

‖δtRl+1‖2 . δt4.

The desired results are now direct consequences of the above inequality. �

Remark 4.1. From the last inequality in the proof, we observe the remarkable fact that the
bound ‖∇·ũδt‖l2(L2(Ω)) ≤ δt3/2 still holds even if we replace the second-order BDF2 time
stepping in (3.3) by the first-order backward Euler time stepping (i.e. Rk+1 ∼ O(δt)).

4.2. Error estimates. We start with a result similar to that sated in Lemma 3.2.

Lemma 4.2. Under the hypotheses of theorem 4.1, we have

‖ẽδt‖l2(L2(Ω)d) . δt2.

Proof. From (3.6), we can write

(4.13) uk+1 = ũk+1 − 2δt
3
∇(pk+1 − pk +∇·ũk+1).

Substituting the above relation in (3.3) and considering the error equation, we obtain

(4.14)
3ẽk+1 − 4ẽk + ẽk−1

2δt
−∇2ẽk+1 +∇γk+1 = Rk+1,

where ∇γk+1 represents all the gradient terms in the error equation and Rk+1 is defined
in (4.2).

As in the time continuous case, we make use of the inverse Stokes operator. By taking
the inner product of (4.14) with 4δtS(ẽk+1) and using the identity (4.7), we obtain

|ẽk+1|2? + |2ẽk+1 − ẽk|2?+|δttẽk+1|2? + 4δt(∇S(ẽk+1),∇ẽk+1)

= 4δt(Rk+1, S(ẽk+1)) + |ẽk|2? + |2ẽk − ẽk−1|2?.

Thanks to Lemma 2.1 and the fact that ek+1 is in H,

4δt(∇S(ẽk+1),∇ẽk+1) ≥ 2δt‖ẽk+1‖2 − cδt‖ẽk+1 − ek+1‖2.

Owing to (2.6), we have

4δt(Rk+1, S(ẽk+1)) ≤ cδt‖Rk+1‖2
−1 + δt‖ẽk+1‖2.

As a result, we obtain

|ẽk+1|2? + |2ẽk+1 − ẽk|2? + |δttẽk+1|2? + δt‖ẽk+1‖2 ≤ cδt‖Rk+1‖2
−1 + cδt‖ẽk+1 − ek+1‖2

+ |ẽk|2? + |2ẽk − ẽk−1|2?.
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Applying the discrete Gronwall lemma and using the initial estimates (3.12), (3.15) and
Lemma 2.2, we infer

‖ẽδt‖2
l2(L2(Ω)d) ≤ c‖ẽδt − eδt‖2

l2(L2(Ω)d) + δt4.

The desired result is now an easy consequence of lemma 4.1. �

The key for obtaining improved estimates on ‖ẽδt‖l2(H1(Ω)d) and ‖qδt‖l2(L2(Ω)) is to
derive an improved estimate on 1

2δt(3δtẽ
k+1 − 4δtẽk + δtẽ

k−1).
For any sequence of functions φ0, φ1, . . ., we set Dtφ

k+1 = 1
2(3φk+1 − 4φk + φk−1).

Lemma 4.3. Under the hypotheses of theorem 4.1, we have

‖(Dtẽ)δt‖l2(L2(Ω)d) . δt5/2.

Proof. We use the same argument as for the proof of the L2-estimate but we use it on
the time increment δtẽk+1. For k ≥ 2 we have

3δtẽk+1 − 4δtẽk + δtẽ
k−1

2δt
−∇2δtẽ

k+1 +∇δtγk+1 = δtR
k+1.

By taking the inner product of the above relation with 4δtS(δtẽk+1) and repeating the
same arguments as in the previous lemma, we obtain

|δtẽk+1|2?+|2δtẽk+1 − δtẽ
k|2? + |δtttẽk+1|2? + δt‖δtẽk+1‖2

≤ cδt‖δtRk+1‖2 + cδt‖δtẽk+1 − δte
k+1‖2 + |δtẽk|2? + |2δtẽk − δtẽ

k−1|2?.

Applying the discrete Gronwall lemma, and using the initial estimates (3.12), (3.15) and
Lemma 4.1, we obtain

‖δtẽδt‖2
l2(L2(Ω)d) ≤ c‖δtẽδt − δteδt‖2

l2(L2(Ω)d) + |δtẽ2|2? + |2δtẽ2 − δtẽ
1|2?

+ cδt‖δtRk+1‖2 . δt5.

The desired result follows from the above and the fact that 2Dtẽ
k+1 = 3δtẽk+1−δtẽk. �

We are now in position to prove the remaining claims from Theorem 4.1.

Lemma 4.4. Under the hypotheses of theorem 4.1, we have

‖eδt‖l2(H1(Ω)d) + ‖ẽδt‖l2(H1(Ω)d) + ‖qδt‖l2(L2(Ω)) . δt
3
2 ,

Proof. We start from the reformulated relation (3.7). Using (3.6), we have

∇×∇×uk+1 = ∇×∇×ũk+1 = −∇2ũk+1 +∇∇·ũk+1.

Thus, the error equation corresponding to (3.7) and (3.6) can be written as a non-
homogeneous Stokes system for the couple (ẽk+1, qk+1 +∇·ẽk+1):

(4.15)

{
−∇2ẽk+1 +∇(qk+1 +∇·ẽk+1) = hk+1,

∇·ẽk+1 = gk+1, ẽk+1|Γ = 0,

where

hk+1 = Rk+1 − 3ek+1 − 4ek + ek−1

2δt
,

gk+1 = −2δt
3
∇2(pk+1 − pk +∇·ẽk+1).

(4.16)
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Thanks to Lemma 4.1, we have

(4.17) ‖gk+1‖ = ‖∇·ẽk+1‖ . δt
3
2 , ∀k.

Since ek = PH ẽ
k, so we have

‖3ek+1 − 4ek + ek−1

2δt
‖ ≤ ‖3ẽk+1 − 4ẽk + ẽk−1

2δt
‖ =

1
δt
‖Dtẽ

k+1‖.

Hence, we have

(4.18) ‖hk+1‖−1 ≤ ‖Rk+1‖−1 + ‖3ek+1 − 4ek + ek−1

2δt
‖−1 ≤ ‖Rk+1‖−1 +

1
δt
‖Dtẽ

k+1‖−1.

Now, we apply the following standard stability result for non-homogeneous Stokes sys-
tems [18] to (4.15),

(4.19) ‖ẽk+1‖1 + ‖(qk+1 +∇·ẽk+1)‖ . ‖hk+1‖−1 + ‖gk+1‖.
Thanks to (4.17), (4.18) and Lemma 4.3, we derive

‖ẽδt‖l2(H1(Ω)d) . δt
3
2 .

Then, from
‖qk+1‖ ≤ ‖qk+1 +∇·ẽk+1‖+ ‖∇·ẽk+1‖,

we derive
‖qδt‖l2(L2(Ω)) . δt

3
2 .

We conclude by using the fact that ‖PHv‖1 . ‖v‖1 for all v ∈ H1
0 (Ω)d (cf. Remark I.1.6

in [18]). �

Thus, all the bounded stated in Theorem 4.1 have been proved.

5. Numerical results and discussions

5.1. Numerical results with a spectral approximation. Let us consider first a
square domain Ω = (−1, 1)2 with Dirichlet boundary conditions on the velocity. We
have implemented the second-order pressure-correction scheme in standard and rota-
tional forms with a Legendre-Galerkin approximation [14]. Denoting by PN the space of
polynomials of degree less or equal than N , we approximate the velocity and the pressure
in PN × PN and PN−2 respectively.

We take the exact solution (u, p) of the linearized (at u = 0) Navier-Stokes equations
to be

u(x, y, t) = π sin t(sin 2πy sin2 πx,− sin 2πx sin2 πy),

p(x, y, t) = sin t cosπx sinπy.
Then the source term f is given by f = ut −∆u +∇p. In the computations below, we
take N = 48 so that the spatial discretization errors are negligible compared with the
time discretization errors.

In Figure 1, we plot pressure error field at t = 1 for a typical time step, and in Figure
2, we represent errors on pressure and velocity measured in various norms as functions
of the time step δt.

We note on Figure 1 that for the standard form of the algorithm, a numerical boundary
layer appears on the two boundaries {(x, y) : x ∈ (−1, 1), y = ±1} where the exact
pressure is such that ∂p

∂~n 6= 0 ( ∂p
∂~n = 0 on the other two boundaries). For the rotational

form, there is no numerical boundary layer, but we observe large spikes at the four corners
of the domain. These observations suggest that the divergence correction in the rotational
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Figure 1. Pressure error field at time t = 1 in a square: left, standard
form; right, rotational form.

Figure 2. Convergence rates on the pressure in a square: dashed lines
for the standard formulation, and solid lines for the rotational formulation.

form, which leads to consistent approximate pressure Neumann boundary conditions,
successfully cured the numerical boundary layer problem. However, the large errors
at the four corners degrade the global convergence rate of the pressure approximation.
Indeed, we observe on Figure 2 that the pressure approximation from the rotational
formulation is not fully second-order accurate, though it is significantly more accurate
than that calculated using the standard formulation. We also note that the rotational
formulation does not yield any improvement on the approximation of the velocity in the
L2-norm.

To better understand why there are localized large errors at the corners of the domain,
we have also implemented the standard and rotational forms of the pressure-correction
scheme in a periodic channel Ω = (0, 2π) × (−1, 1). We assume that the solution is
periodic in the x direction and that the velocity is subject to a Dirichlet boundary
condition at y = ±1. We choose the same exact solution (u, p) as given above, and we
use a Fourier-Legendre spectral approximation with 48×49 modes guaranteeing that the
spatial discretization errors are negligible compared with the time discretization errors.
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In Figure 3, we show the pressure error field at t = 1 for a typical time step, and in
Figure 4, we plot the errors on the velocity and on the pressure as functions of δt.

Figure 3. Error field on pressure at time t = 1 in a channel: left; stan-
dard form, right, rotational form.

Figure 4. Convergence rates on the pressure in a periodic channel: left,
standard form; right, rotational form.

We observe that the pressure error from the standard formulation still exhibits nu-
merical boundary layers, whereas the pressure error from the rotational formulation is
now smooth everywhere. Moreover, the rate of convergence on the pressure from the
rotational formulation is now fully second-order.

The main difference between the problem set in the square domain and that set in
the periodic channel is that the former has corner singularities while the latter does not.
Thus, it becomes evident that the large errors occurring at the corners of the square
domain are due to the lack of smoothness of the domain. However, why the corner
singularity affects the convergence rate for a smooth solution is still not well understood.
This conclusion is confirmed by the numerical experiments using mixed finite elements
reported in the next section.
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5.2. Numerical results with P2/P1 finite elements. To further assess the accuracies
of the standard and rotational formulations, we have also carried out convergence tests
using using P2/P1 finite elements.

To avoid using an exceedingly refined mesh to guarantee that the spatial discretization
error is negligible compared with the time discretization error on a wide range of time
steps, we use the following analytical solution

u =sin(x+ t) sin(y + t)

v =cos(x+ t) cos(y + t)

p =sin(x− y + t),

which is somewhat smoother than the one used to test the spectral approximation.
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Figure 5. Convergence rates in a square: dashed line for the standard
formulation; solid line for the rotational formulation

The domain considered to perform the convergence tests is the square (0, 1)2. We
used a P2/P1 mesh composed of 14774 elements (7548 P1 nodes and 29869 P2 nodes)
corresponding to the average mesh size h = 1/80. In figure 5, we show the error on the
velocity in the L2-norm and that on the pressure in the L2-norm and L∞-norm. The
error are measured at time t = 1. The conclusions are essentially the same as that from
the tests with the spectral approximation. The rate on the velocity is clearly second
order, and the rotational formulation does not significantly improve the accuracy on the
velocity, though the error produced is systematically lower than that from the standard
formulation. Concerning the pressure, the convergence rates on the errors in the L2-
norm are slightly lower than second order for both forms of the algorithm, the rotational
form systematically producing better results though. The slight saturation of the errors
for very small time steps is due to the spatial interpolation error that becomes visible.
For the L∞-norm, the convergence rates are obviously different. It is about 3/2 for the
rotational formulation and first order for the standard formulation, the departure from
first order for small time steps being due to non-uniform inverse estimates as we have
verified that the position of departure moves to the left when the mesh is refined.
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We show in figure 6 the error fields on the pressure at time t = 1 for δt = 0.00625. As
for the spectral approximation, we note that the rotational form of the algorithm yields
a pressure field that is free of numerical boundary layer, whereas a boundary layer is
clearly visible on the pressure field obtains by means of the standard algorithm. We note
also that large errors are still present at the corners of the domain for both formulations.
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To clarify the effect of the smoothness of the boundary on the error on the pressure, we
have tested the two methods on the circular domain Ω = {(x, y);

√
x2 + y2 ≤ 0.5}, using

the same analytical solution as before and h = 1/80. We show in Figure 7 the error field
on the pressure for δt = 0.0125 at t = 2. A numerical boundary layer is clearly visible on
the entire boundary for the pressure calculated by means of the standard formulation, but
the error is uniformly small for the pressure calculated using the rotational formulation.
This test confirms that the smoothness of the boundary has a very important impact on
the quality of the approximation offered by the rotational formulation.
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Figure 7. Error field on pressure: left, standard formulation; right, ro-
tational formulation.
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This point is made even more clear in Figure 8. In the left graph of the figure, we
show the convergence rates on the velocity in the L2-norm and that on the pressure in
the L2-norm and L∞-norm, the error being measured at time t = 2. The convergence
rates are all second order for the rotational formulation, whereas this is not the case for
the standard one. In the graph on the right of the figure, we compare the convergence
rates on the pressure in the L∞-norm for the rotational formulation only, one series of
computation being made on the square and the other on the circle. It is clear that the
errors calculated on the circular domain are O(δt2), whereas those calculated on the
square are only about O(δt3/2).

Wed Feb  6 15:49:18 2002

0.0001 0.001 0.01 0.1 1
1.0×10−7

1.0×10−6

1.0×10−5

1.0×10−4

1.0×10−3

1.0×10−2

1.0×10−1

1.0×100 

 

 

 

0.0001 0.001 0.01 0.1 1
1.0×10−7

1.0×10−6

1.0×10−5

1.0×10−4

1.0×10−3

1.0×10−2

1.0×10−1

1.0×100

Pressure : L_infty norm
Pressure : L_2 norm    
Velocity : L_2 norm    
Rotational formulation 
Standard formulation   

Slope 2

Slope 2

Wed Feb  6 15:44:56 2002

0.0001 0.001 0.01 0.1 1
1.0×10−5

1.0×10−4

1.0×10−3

1.0×10−2

1.0×10−1

1.0×100 

 

 

 

0.0001 0.001 0.01 0.1 1
1.0×10−5

1.0×10−4

1.0×10−3

1.0×10−2

1.0×10−1

1.0×100

Pressure, L_infty norm : Circle
Pressure, L_infty norm : Square

Slope 1.6

Slope 2

Figure 8. Left: convergence rates on a circular domain; dashed line for
the standard formulation; solid line for the rotational formulation. Right:
comparison of convergence rates on pressure in L∞-norm; solid line for
the circular domain; dashed line for the square.

5.3. Discussions on the convergence rates of the pressure approximations.
There exist in the literature a substantial number of works dedicated to numerical
and theoretical investigations on the convergence rates of the pressure using pressure-
correction schemes. For the standard form, first-order error estimates on the pressure
are established in [12, 15] for the semi-discrete case and in [6] for the fully discrete case.
These results are valid in fairly general domains such as convex polygons. In [4], E and
Liu, using asymptotic analysis in a periodic channel, obtained for the standard formu-
lation a first-order error estimate on the pressure in the L∞-norm. All these results are
consistent with the claim of Strikwerda and Lee in [16] that the pressure approximation
in the standard formulation can be at most first-order accurate. This claim is based on
a normal mode analysis in the right half plane.

In [1], Brown, Cortez and Minion showed, using a normal mode analysis in a periodic
channel, that the pressure approximation in the rotational formulation is second-order
accurate. This is consistent with our numerical results in a periodic channel as well,
but unfortunately, this result does not hold for general domains as is evidenced by our
numerical results. Therefore, it appears that the convergence rate of 3

2 we established
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here for the pressure approximation in rotational form is the best possible for general
domains.
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pas fractionnaires ii. Arch. Rat. Mech. Anal., 33:377–385, 1969.

[18] R. Temam. Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam,
1984.

[19] L. J. P. Timmermans, P. D. Minev, and F. N. Van De Vosse. An approximate projection scheme for
incompressible flow using spectral elements. Int. J. Numer. Methods Fluids, 22:673–688, 1996.

[20] J. van Kan. A second-order accurate pressure-correction scheme for viscous incompressible flow.
SIAM J. Sci. Stat. Comput., 7:870–891, 1986.


