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We extend the definition of the classical Jacobi polynomials withindexes α,β >

−1 to allow α and/or β to be negative integers. We show that the general-
ized Jacobi polynomials, with indexes corresponding to the number of bound-
ary conditions in a given partial differential equation, are the natural basis
functions for the spectral approximation of this partial differential equation.
Moreover, the use of generalized Jacobi polynomials leads to much simplified
analysis, more precise error estimates and well conditioned algorithms.
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1. GENERALIZED JACOBI POLYNOMIALS

The classical Jacobi polynomials, denoted by J
α,β
n (x) (n � 0, α, β > −1)

(cf. [18]), have been used extensively in mathematical analysis and practical
applications, and play an important role in the analysis and implementa-
tion of spectral methods.

Recently, Shen [17] introduced an efficient spectral dual-Petrov-Galerkin
method for third and higher odd-order differential equations, and pointed
out that the basis functions used in [17], which are compact combina-
tions of Legendre polynomials, can be viewed as generalized Jacobi poly-
nomials with negative integer indexes, and their use not only simplified
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the numerical analysis for the spectral approximations of higher odd-order
differential equations, but also led to very efficient numerical algorithms.
In fact, the basis functions used in [16], which are compact combina-
tions of Legendre polynomials, can also be viewed as generalized Jacobi
polynomials with indexes α,β � −1. Furthermore, the special cases with
(α,β)= (−1,0), (−1,−1) have also been studied in [5, 10]. Hence, instead
of developing approximation results for each particular pair of indexes, it
would be very useful to carry out a systematic study on Jacobi polynomials
with general negative integer indexes which can then be directly applied to
other applications. It is with this motivation that we introduce in this paper
a family of generalized Jacobi polynomials/functions with indexes α, β ∈R.

Let ωα,β(x)=(1−x)α(1+x)β . We denote by L2
ωα,β (I ) (I :=(−1,1)) the

weighted L2 space with inner product:

(u, v)ωα,β :=
∫

I

u(x)v(x)ωα,β(x)dx, (1.1)

and the associated norm ‖u‖ωα,β = (u, u)
1
2
ωα,β . Two of the most important

properties of the classical Jacobi polynomials are: (i) they are mutually
orthogonal in L2

ωα,β (I ), i.e.,
∫

I

J α,β
n (x)J α,β

m (x)ωα,β(x)dx =0, ∀n �=m; (1.2)

and (ii) {Jα,β
n } satisfy the recursive relation:

∂xJ
α,β
n (x)=Cα,β

n J
α+1,β+1
n−1 (x), n�1, (1.3)

where C
α,β
n = 1

2 (n+α +β +1). The restriction “α,β >−1” was imposed so
that the weight function ωα,β ∈L1(I ).

We are interested in defining Jacobi polynomials with indexes α and/or
β �−1, referred hereafter as generalized Jacobi polynomials (GJPs), in such
a way that they satisfy some selected properties that are essentially relevant
to spectral approximations. In this work, we shall restrict our attention to
the cases when α and β are negative integers. The general cases are much
more involved and will be investigated separately in [11].

Let k, l ∈Z (the set of all integers), and define

J k,l
n (x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1−x)−k(1+x)−lJ
−k,−l
n−n0

(x), n0 :=−(k + l), if k, l �−1,

(1−x)−kJ
−k,l
n−n0

(x), n0 :=−k, if k �−1, l >−1,

(1+x)−lJ
k,−l
n−n0

(x), n0 :=−l, if k >−1, l �−1,

J
k,l
n−n0

(x), n0 :=0, if k, l >−1.

(1.4)
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An important fact is that the so-defined GJPs satisfy (1.2) and (1.3). It can
also be easily verified that {J k,l

n :n�n0} forms a complete orthogonal sys-
tem in L2

ωk,l (I ). Hence, we define

Q
k,l
N := span{J k,l

n0
, J

k,l
n0+1, . . . , J

k,l
N }, k, l ∈Z, (1.5)

and consider the orthogonal projection π
k,l
N : L2

ωk,l (I )→Q
k,l
N defined by

(u−π
k,l
N u, v

N
)ωk,l =0, ∀v

N
∈Q

k,l
N . (1.6)

For real numbers α,β and r ∈ N (the set of all nonnegative integers), we
define the space

Hr
ωα,β ,A

(I ) :={u :u is measurable on I and ‖u‖r,ωα,β ,A <∞}, (1.7)

equipped with the norm and semi-norm

‖u‖r,ωα,β ,A =
( r∑

k=0

‖∂k
xu‖2

ωα+k,β+k

) 1
2
, |u|r,ωα,β ,A =‖∂r

xu‖ωα+r,β+r ,

where ‖v‖2
ω = ∫

I
v2ωdx. Hereafter, we denote by c a generic positive con-

stant independent of any function and N , and use the expression A�B to
mean that there exists a generic positive constant c such that A� cB.

The following theorem is a direct extension of the same result for
k, l >−1 (see, for instance [8, 10]; see also [5] for the special case k=0 and
l =−1) and can be proved in a similar fashion thanks to (1.2) and (1.3).

Theorem 1.1. Let k, l ∈Z. Then for any u∈Hr
ωk,l ,A

(I ), r ∈Z, r �1 and
0�µ� r,

‖πk,l
N u−u‖µ,ωk,l ,A �Nµ−r |u|r,ωk,l ,A. (1.8)

An important property of the GJPs is that for k, l ∈Z and k, l �1,

∂i
xJ

−k,−l
n (1)=0, i =0,1, . . . , k −1;

∂
j
x J−k,−l

n (−1)=0, j =0,1, . . . , l −1. (1.9)

Hence, {J−k,−l
n } are natural candidates as basis functions for PDEs with

the following boundary conditions:

∂i
xu(1)=ai, i =0,1, . . . , k −1;

∂
j
x u(−1)=bj , j =0,1, . . . , l −1. (1.10)
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For example, we can easily verify that

J−1,−1
n (x)=γ −1,−1

n (Ln−2(x)−Ln(x)), n�2, (1.11)

J−2,−2
n (x)=γ −2,−2

n (Ln−4(x)− 2(2n−3)

2n−1
Ln−2(x)+ 2n−5

2n−1
Ln(x)), n�4,

(1.12)

where Lk(x) is the Legendre polynomial of kth degree and γ
α,β
n are nor-

malization constants to be specified. We note that the right-hand sides
of (1.11) and (1.12) were exactly the basis functions used in [16] for
the second- and forth-order equations. However, the fact that they can
be identified as the GJPs J

−1,−1
n and J

−2,−2
n was not recognized there.

Since the GJPs satisfy all given boundary conditions of the underlying
problem,there is no need to construct special quadratures (which become
increasingly complicated as the order of the differential equations increase)
involving derivatives at end-points as in [12, 13] for third-order equations
and in [3] for fourth-order equations. Unlike in a collocation method, the
implementation for higher-order differential equations is cumbersome and
very ill-conditioned, and the analysis is very difficult and may not lead to
optimal error estimates (see [3] for an example on a fourth-order equa-
tion), as we shall demonstrate below, the spectral approximations using
GJPs lead to well-conditioned system, sparse for problems with constant
coefficients (cf. [16, 17]), that can be efficiently implemented. Furthermore,
using the GJPs greatly simplifies the analysis and leads to more precise
error estimates.

2. SPECTRAL-GALERKIN METHODS FOR EVEN-ORDER
EQUATIONS

We consider the following 2mth order linear equation:

u(2m)(x)+
2m−1∑
k=0

b2m−k(x)u(k)(x)=f (x), in I,

u(k)(±1)=0, 0�k �m−1. (2.1)

We introduce the bilinear form associated with (2.1):

am(u, v)= (∂m
x u, ∂m

x v)+ (−1)m(∂m−1
x u, ∂m

x (b1v))

+(−1)m−1(∂m−1
x u, ∂m−1

x (b2v))+· · ·+ (b2mu, v), ∀u, v ∈Hm(I).

(2.2)
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Let ‖ ·‖m and | · |m denote the norm and semi-norm in Hm(I) and Hm
0 (I ),

respectively. As usual, we assume that the bilinear form is continuous and
elliptic in Hm

0 (I ), i.e.,

|am(u, v)| � C0|u|m|v|m, ∀u, v ∈Hm
0 (I ), (2.3a)

am(u,u) � C1|u|2m, ∀u∈Hm
0 (I ). (2.3b)

Let PN be the space of all polynomials of degree less than or equal
to N and VN :=PN ∩Hm

0 (I ). The spectral-Galerkin approximation to (2.1)
is: Find uN ∈VN such that

am(uN, vN)= (f, vN), ∀vN ∈VN. (2.4)

Let us denote πm
N =π

−m,−m
N . We note immediately that

(∂m
x (πm

N u−u), ∂m
x vN)= (−1)m(πm

N u−u, ∂2m
x vN)

= (−1)m(πm
N u−u,ωm,m∂2m

x vN)ω−m,−m =0, ∀vN ∈VN, (2.5)

which is a consequence of (1.6) and the fact that ωm,m∂2m
x vN ∈ VN. In

other words, πm
N is simultaneously the orthogonal projector associated

with (·, ·)ω−m,−m and (∂m
x ·, ∂m

x ·). Thanks to the above property and Theo-
rem 1.1, one can prove using a rather standard procedure the following
result (cf. [11] for details):

Theorem 2.1. If u ∈ Hm
0 (I ) ∩ Hr

ω−m,−m,A
(I ),m,µ, r ∈ Z,1 � m � r and

0�µ�m, then

‖u−uN‖µ �Nµ−r |u|r,ω−m,−m,A. (2.6)

Remark 2.1. The above result is more precise than the best error
estimate

‖u−uN‖m �Nm−r‖u‖r , 0�m� r, (2.7)

which could have obtained by using the Hm
0 −orthogonal projection results

in [4]. Since |u|r,ω−m,−m,A = ‖∂r
xu‖ωr−m,r−m and r � m, the result (2.6) is

sharper than (2.7). In particular, Theorem 2.1 can be used to derive
improved error estimates for solutions with singularities at the end points.
As an example, let

u(x)= (1−x)γ v(x), v ∈C∞(I ), γ >
1
2
, x ∈ I, (2.8)
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be a solution of (2.1) with m = 1. On can check that for any ε > 0, u ∈
H

2γ+1−ε

ω0,0,A
(I ), but when measured in the standard Sobolev norm, we only

have u∈Hγ+ 1
2 −ε(I ). Hence, Theorem 2.1 with m=1 implies that

‖u−uN‖1 �Nε−2γ , (2.9)

while the usual analysis (cf. [3]) only leads to

‖u−uN‖1 �Nε−γ+ 1
2 . (2.10)

Although the estimate (2.9) has been established before by other means
(see, for instance, [2, 7, 1, 6] among others), the approach using GJPs is
straightforward and can be directly carried over to higher-order equations.

Matrix form of (2.4):
In view of the homogeneous boundary conditions satisfied by J

−m,−m
k ,

we have

VN = span{J−m,−m
2m

,J
−m,−m
2m+1 , . . . , J

−m,−m
N }.

Using the facts that ωm,m∂2m
x J

−m,−m
l ∈Vl and J

−m,−m
k is orthogonal to Vl

if k > l, we find that

(∂m
x J

−m,−m
k , ∂m

x J
−m,−m
l ) = (−1)m(J

−m,−m
k , ∂2m

x J
−m,−m
l )

= (J
−m,−m
k ,ωm,m∂2m

x J
−m,−m
l )ω−m,−m =0.

(2.11)

By symmetry, the same is true if k < l. Hence, we can properly scale
φk(x) :=J

−m,−m
k such that

(∂m
x φk, ∂

m
x φl)= δkl .

Hence, by setting

fk = (f,φk), uN =
N∑

l=2m

ûlφl, akl =am(φl, φk), A= (akl)2m�k,l�N,

f = (f2m,f2m+1, . . . , fN)T , u = (û2m, û2m+1, . . . , ûN )T ,

the matrix system associated with (2.4) becomes Au= f . Thanks to (2.3a)–
(2.3b), we have

C0‖u‖2
l2

=C0|uN |2m �am(uN,uN)= (Au,u)l2 �C1|uN |2m =C1‖u‖2
l2
,

(2.12)
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which implies that cond(A) � C1/C0 and is independent of N . It can be
easily shown that A is a sparse matrix with bandwidth 2m + 1 if {bj (x)}
are constants.

3. SPECTRAL DUAL-PETROV-GALERKIN METHODS FOR
ODD-ORDER EQUATIONS

We consider the following (2m+1)th-order linear equation:

(−1)m+1u(2m+1) +Sm(u)+γ u=f, in I,

u(k)(±1)=u(m)(1)=0, 0�k �m−1, (3.1)

where Sm(u) is a linear combination of u(j), 1 � j � 2m − 1. Note that a
semi-implicit time discretization of the KdV-type equations will lead to
(3.1).

Because the leading differential operator in (3.1) is not symmetric, it
is natural to use a dual-Petrov-Galerkin method, in which the trial func-
tions satisfy the underlying boundary conditions of the differential equa-
tions, and the test functions fulfill the corresponding “dual” boundary
conditions [17]. More precisely, for a given m�1, we define

V =
{
u∈Hm+1(I ) : u(k)(±1)=0, 0�k �m−1, u(m)(1)=0

}
,

and the “dual” space:

V ∗ =
{
u∈Hm+1(I ) : u(k)(±1)=0, 0�k �m−1, u(m)(−1)=0

}
.

Setting VN =V ∩PN and V ∗
N =V ∗ ∩PN, the dual-Petrov-Galerkin approx-

imation to (3.1) is: Find uN ∈VN such that

−(∂m+1
x uN, ∂m

x vN)+ (Sm(uN), vN)+γ (uN, vN)= (f, vN), ∀vN ∈V ∗
N. (3.2)

Thanks to the homogeneous boundary conditions built in VN and V ∗
N , we

observe from the definitions of GJPs that

VN =Q
−m−1,−m
N := span{J−m−1,−m

2m+1 , J
−m−1,−m
2m+2 , . . . , J

−m−1,−m
N },

V ∗
N =Q

−m,−m−1
N := span{J−m,−m−1

2m+1 , J
−m,−m−1
2m+2 , . . . , J

−m,−m−1
N }.

(3.3)

For example, one can verify that

J−2,−1
n (x) = γ −2,−1

n (Ln−3(x)− 2n−3
2n−1

Ln−2(x)

−Ln−1(x)+ 2n−3
2n−1

Ln(x)), n�3, (3.4)
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J−1,−2
n (x) = γ −1,−2

n (Ln−3(x)+ 2n−3
2n−1

Ln−2(x)

−Ln−1(x)− 2n−3
2n−1

Ln(x)), n�3.

(3.5)

Note that for any vN ∈ VN, we have ω−1,1vN ∈ V ∗
N. Hence, we can

rewrite the formulation (3.2) into the following weighted spectral-Galerkin
form: Find uN ∈VN such that

bm(uN,uN) : = −(∂m+1
x uN,ω1,−1∂m

x (ω−1,1vN))ω−1,1 + (Sm(uN), vN)ω−1,1

+γ (uN, vN)ω−1,1 = (f, vN)ω−1,1 , ∀vN ∈VN. (3.6)

As demonstrated below, the dual-Petrov-Galerkin formulation (3.2) is pref-
erable in numerical implementation, while the weighted Galerkin scheme
(3.6) is more convenient for numerical analysis.

The following “coercivity” property ensures that (3.2) is well-posed.

Lemma 3.1.

−(∂m+1
x u, ∂m

x (uω−1,1))

= (2m+1)

∫
I

(
∂m
x

( u

1−x

))2
dx, ∀u∈VN =Q

−m−1,−m
N . (3.7)

Proof. For any u∈VN, we set u= (1 − x)� with �∈Q
−m,−m
N−1 . Then

integrating by parts yields that

−(∂m+1
x u, ∂m

x (uω−1,1))

=−((1−x)∂m+1
x �− (m+1)∂m

x �, (1+x)∂m
x �+m∂m−1

x �)

=−1
2

∫
I

∂x{(∂m
x �)2}(1−x2)dx + (m+1)

∫
I

(∂m
x �)2(1+x)dx

+m(m+1)

2

∫
I

∂x{(∂m−1
x �)2}dx +m

∫
I

∂m
x �∂x((1−x)∂m−1

x �)dx

=−
∫

I

(∂m
x �)2xdx + (m+1)

∫
I

(∂m
x �)2(1+x)dx

+m

∫
I

(∂m
x �)2(1−x)dx − m

2

∫
I

∂x{(∂m−1
x �)2}dx

= (2m+1)

∫
I

(∂m
x �)2dx = (2m+1)

∫
I

(
∂m
x

( u

1−x

))2
dx.
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3.1. Error Estimates

Lemma 3.2. Let π̃m
N :=π

−m−1,−m
N be the orthogonal projection defined

in (1.6). Then

(∂m+1
x (π̃m

N u−u), ∂m
x vN)=0, ∀u∈V, vN ∈V ∗

N, (3.8)

(∂m+1
x (π̃m

N u−u),ω1,−1∂m
x (ω−1,1vN))ω−1,1 =0, ∀u∈V, vN ∈VN. (3.9)

Proof. By the definition (1.6), for any vN ∈V ∗
N ,

(∂m+1
x (π̃m

N u−u), ∂m
x vN)= (−1)m+1(π̃m

N u−u,ωm+1,m∂2m+1
x vN)ω−m−1,−m =0.

Here, we used the fact that for any vN ∈ V ∗
N,ωm+1,m∂2m+1

x vN ∈ VN. Since
for any vN ∈ VN, we have ω−1,1vN ∈ V ∗

N . Hence, (3.9) is a direct conse-
quence of (3.8).

The above lemma indicates that π
−m−1,−m
N is simultaneously orthogo-

nal projectors with respect to two bilinear forms.
To simplify the presentation, we only consider the case

Sm(u)= (−1)mδ u(2m−1), (3.10)

(where δ is a non-negative constant) since other linear terms with deriva-
tives lower than 2m−1 can be treated similarly. In this case, we can con-
clude from Lemma 3.1 and the Lax-Milgram Lemma that (3.6) admits a
unique solution when γ > 0 and δ � 0. Furthermore, we can derive from
Poincaré inequality that there exists C2 >0 such that

(2m+1)

∫
I

(
∂m
x

( uN

1−x

))2
dx � bm(uN,uN)

� C2(2m+1)

∫
I

(
∂m
x

( uN

1−x

))2
dx, ∀uN ∈VN.

(3.11)

Let us denote êN = π̃m
N u−uN and eN =u−uN = (u− π̃m

N u)+ êN .

Lemma 3.3. Let γ, δ >0. For u∈V ∩Hr
ω−m−1,−m,A

(I ) with integer r �
m+1, we have

‖∂m
x ((1−x)−1êN )‖2 +‖∂m−1

x ((1−x)−1êN )‖2

+‖êN‖2
ω−1,1 �N2(m−r−1)|u|2

r,ω−m−1,−m,A
. (3.12)
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Proof. Since for any vN ∈ VN,ω−1,1vN ∈ V ∗
N ⊂ V ∗, we have from

(3.1)–(3.10) and (3.6) that

−(∂m+1
x eN ,ω1,−1∂m

x (ω−1,1vN))ω−1,1 − δ(∂m
x eN ,ω1,−1∂m−1

x (ω−1,1vN))ω−1,1

+γ (eN , vN)ω−1,1 =0, ∀vN ∈VN. (3.13)

Taking vN = êN in the above relation, we obtain from (3.9) that

−(∂m+1
x êN ,ω1,−1∂m

x (ω−1,1êN ))ω−1,1 − δ(∂m
x êN ,ω1,−1∂m−1

x (ω−1,1êN ))ω−1,1

+γ ‖êN‖2
ω−1,1 =−δ(∂m

x (π̃m
N u−u),ω1,−1∂m−1

x (ω−1,1êN ))ω−1,1

+γ (π̃m
N u−u, êN )ω−1,1 . (3.14)

We get from (1.8) that

|(π̃m
N u−u, êN )ω−1,1 | � ‖π̃m

N u−u‖ω−1,1‖êN‖ω−1,1

� ‖π̃m
N u−u‖ω−m−1,−m‖êN‖ω−1,1

� ε‖êN‖2
ω−1,1 + c

4ε
N−2r |u|2

r,ω−m−1,−m,A
. (3.15)

Setting êN = (1−x)φ̂ with φ̂∈Q
−m,−m
N−1 , we find by integration by parts that

∫
I

(∂m
x (ω−1,1êN ))2dx =

∫
I

(∂m
x ((1+x)φ̂))2dx

� 2
∫

I

(∂m
x φ̂)2(1+x)2dx +2m2

∫
I

(∂m−1
x φ̂)2dx

� 8‖∂m
x φ̂‖2 +2m2‖∂m−1

x φ̂‖2

= 8‖∂m
x ((1−x)−1êN )‖2 +2m2‖∂m−1

x ((1−x)−1êN )‖2.

(3.16)

This fact with (1.8) leads to (for ε >0)

|(∂m
x (π̃m

N u−u), ∂m−1
x (ω−1,1êN ))|= |(∂m−1

x (π̃m
N u−u), ∂m

x (ω−1,1êN ))|
�‖∂m−1

x (π̃m
N u−u)‖ω−2,−1‖∂m

x (ω−1,1êN )‖ω2,1

�‖∂m−1
x (π̃m

N u−u)‖ω−m−1,−m‖∂m
x (ω−1,1êN )‖

� 4ε

m2
‖∂m

x ((1−x)−1êN )‖2 + ε‖∂m−1
x ((1−x)−1êN )‖2

+cm2

ε
N2(m−r−1)|u|2

r,ω−m−1,−m,A
. (3.17)

Finally, applying (3.7) to the left-hand side of (3.14), we obtain the desired
result from the above estimates with a suitably small ε.
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Theorem 3.1. Let u and uN be the solutions of (3.1)–(3.10) and (3.6),
respectively. If u∈V ∩Hr

ω−m−1,−m,A
(I ), then for γ, δ>0, m, r ∈N, m�1 and

r �m+1,

‖∂m
x ((1−x)−1(u−uN))‖ω1,0 +N‖∂m−1

x ((1−x)−1(u−uN))‖
+N‖u−uN‖ω−1,1 �Nm−r |u|r,ω−m−1,−m,A. (3.18)

Proof. For any v ∈V, a direct calculation yields

∂m
x ((1−x)−1v(x))=

m∑
j=0

m!
j !

(1−x)j−m−1∂
j
x v(x). (3.19)

By the Hardy’s inequality (see [9]), we derive that for d <1,

∫
I

v2(x)(1−x)d−2dx �
∫

I

(∂xv(x))2(1−x)ddx, (3.20)

provided that v(1)=0 and the right side of the inequality is finite. Thanks
to the homogeneous boundary conditions built in V, we have from the
above inequality that

∫
I

(∂
j
x v(x))2(1−x)2j−2m−1dx �

∫
I

(∂
j+1
x v(x))2(1−x)2j−2m+1dx � · · ·

�
∫

I

(∂m
x v(x))2(1−x)−1dx, 0� j �m−1. (3.21)

Therefore, by (1.8), (3.19) and (3.21),

‖∂m
x ((1−x)−1(π̃m

N u−u))‖2
ω1,0 �

m∑
j=0

∫
I

(∂
j
x (π̃m

N u−u))2(1−x)2j−2m−1dx

�‖∂m
x (π̃m

N u−u)‖2
ω−1,0 �N2(m−r)|u|2

r,ω−m−1,−m,A
. (3.22)

Similarly, we have

‖∂m−1
x ((1−x)−1(π̃m

N u−u))‖2 �
m−1∑
j=0

∫
I

(∂
j
x (π̃m

N u−u))2(1−x)2j−2mdx

�‖∂m−1
x (π̃m

N u−u)‖2
ω−2,0 �‖∂m−1

x (π̃m
N u−u)‖2

ω−2,−1

�N2(m−r−1)|u|2
r,ω−m−1,−m,A

. (3.23)

Moreover, by (1.8),

‖π̃m
N u−u‖ω−1,1 �‖π̃m

N u−u‖ω−m−1,−m �N−r |u|r,ω−m−1,−m,A. (3.24)
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Hence, a combination of (3.12) and (3.22)–(3.24) leads to the desired
result.

Remark 3.1. For the sake of simplicity, the first two terms of our esti-
mates in (3.18) were expressed in terms of ∂

j
x ((1−x)−1(u−uN)). It is possi-

ble to obtain optimal estimates in terms of ∂
j
x (u−uN) by using Hardy-type

inequalities (see Theorems 2.2 and 3.2 in [17] for examples with m= 1 and
m=2, respectively). However, this process could be tedious for m>2.

Remark 3.2. Using an argument similar to that in the even case, one
can show that the linear system associated with (3.2) is well-conditioned
(see [17] for a proof in the case m=1).

4. NUMERICAL RESULTS

We present below some numerical results to illustrate the efficiency
of the proposed spectral methods using generalized Jacobi polynomials as
basis functions. We shall only consider the odd-order equations since the
implementations of even-order equations are similar and simpler. We first
describe how to deal with variable coefficients, and make a comparison
with the collocation method based on special quadratures involving deriv-
atives at end-points (see [3, 12, 13] for third- and/or fourth-order equa-
tions). Then we apply our method to a fifth-order KdV-type equation.

4.1. Problems with Variable Coefficients

As an example, we consider the following problem:

(−1)m+1u(2m+1) +Fm(u)=f, in I,

u(k)(±1)=u(m)(1)=0, 0�k �m−1, (4.1)

where

Fm(u)=
2m∑
k=0

ak(x)u(k)(x) (4.2)

and {ak}2m
k=0 are given functions on Ī .

To solve (4.1)–(4.2) numerically, we apply the dual-Petrov-Galerkin
method with numerical integrations. For this purpose, let

(u, v)N =
N∑

j=0

u(xj )v(xj )ωj , ∀u, v ∈C(Ī ),
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be the discrete inner product associated with the Legendre–Gauss–Lobatto
quadrature. We recall that

(u, v)N = (u, v), ∀uv ∈P2N−1. (4.3)

The dual-Petrov-Galerkin method with numerical integrations to (4.1)–
(4.2) is to find uN ∈VN such that

−(∂m+1
x uN, ∂m

x vN)N + (Fm(uN), vN)N = (f, vN)N , ∀vN ∈V ∗
N. (4.4)

Here, the spaces VN and V ∗
N are defined in (3.3) with m = 2. Hence,

using the same notations as in Section (3) and setting

pkl = (Fm(�l ),Ψk)N , P = (pkl)2m+1�k,l�N,

the linear system (4.4) becomes

(I +P)u = f . (4.5)

It can be shown, as in Section 3, that the above linear system is well con-
ditioned under some mild conditions on Fm. Since the action of P upon
a vector u can be evaluated in O(N2) operations without explicit knowl-
edge of P , one can solve (4.5) in O(N2) operations by using a conjugate
gradient type iterative method.

As a comparison, we compare the dual-Petrov-Galerkin method with
a properly formulated collocation method which involves full matrix with
large condition numbers (of order N2k for kth order problem) and suf-
fers from significant roundoff errors when N and especially k are large,
as to be shown below. We note that although one can build effective
preconditioners using finite difference or finite element approximations for
the collocation matrices of order two or four (cf. [14]), there is no effective
preconditioner for collocation matrices of odd-order.

As an example, we consider the following fifth-order equation:

u(5) +a1(x)u′ +a0(x)u=f, in I, u(±1)=u′(±1)=u′′(1)=0. (4.6)

Note that the collocation method is based on a special quadrature formula
involving derivatives at end-points. More precisely, let {xj }N−4

j=1 be the zeros

of the Jacobi polynomial J
2,3
N−4(x). We recall the quadrature rule (see [12]):

∫ 1

−1
f (x)dx ∼

N−4∑
j=1

f (xj )ωj +
2∑

µ=0

f (µ)(1)ω
(µ)
+ +f (−1)ω

(0)
− +f ′(−1)ω

(1)
− ,
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where {ωj } and {ω(µ)
± } are quadrature weights. This formula is exact for

all polynomials with degree �2N −4. Let D(k) be the kth-order differenti-
ation matrix associated with the interior collocation points {xj }N−4

j=1 . Then
the system corresponding to the collocation scheme for (4.6) becomes

(
D(5) +A1D

(1) +A0

)
uc = fc,

where Ak = diag(ak(x1), . . . , ak(xN−4)), k = 0,1 and uc = (u(x1),

. . . , u(xN−4))
T (likewise for fc).

We now make a comparison between the two methods. Let us first
look at the conditioning of the systems. In Table I, we list the condition
numbers of the matrices resulting from the collocation method (COL) and
the generalized Jacobi spectral method (GJS).

We see that for various a0(x) and a1(x), the condition numbers of the
GJS systems are all small and independent of N, while those of the COL
systems increase like O(N10).

Next, we examine the effect of roundoff errors. We take a0(x)=10e10x

and a1(x) = sin(10x), and let u(x) = sin3(8πx) be the exact solution of
(4.6). The L2−errors of two methods against various N are depicted in
Fig. 1. We observe that the effect of roundoff errors is much more severe
in the collocation method.

Finally, we emphasize that in a collocation method, the choice of the
collocation points (the quadrature nodes) should be in agreement with
underlying differential equations and boundary conditions. For instance,
the Gauss–Lobatto points are not suitable for equations of order � 3 (cf.
[13]). However, in a spectral-Galerkin method, the use of quadrature rules
is merely to evaluate the integrals, so the usual Legendre–Gauss–Lobatto
quadrature works in this case.

Table I. Condition Numbers of COL and GJS

a0 =0 a0 =10 a0 =50 a0 =100x a0 =10e10x

N Method a1 =0 a1 =0 a1 =1 a1 =50 a1 = sin(10x)

16 COL 3.30E+05 3.77E+05 4.46E+05 2.49E+05 4.09E+05
16 GJS 1.00 1.07 1.42 1.62 33.05
32 COL 2.70E+08 2.78E+08 3.36E+08 1.37E+08 8.22E+08
32 GJS 1.00 1.07 1.42 1.62 33.05
64 COL 2.58E+11 2.64E+11 4.43E+11 8.11E+10 1.37E+11
64 GJS 1.00 1.07 1.42 1.62 33.05

128 COL 2.05E+14 2.10E+14 2.39E+14 1.86E+14 2.64E+14
128 GJS 1.00 1.07 1.42 1.62 33.05
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Fig. 1. L2−errors of COL and GJS.

4.2. Application to a Fifth-Order KdV Equation

As an example of application, we consider the initial value fifth-order
KdV equation:

∂tU +γU∂xU +ν∂3
xU −µ∂5

xU =0, U(x,0)=U0(x). (4.7)

For γ �=0 and µν >0, it has the following exact solution (cf. [15])

U(x, t)=η0 +A sech4
(
κ(x − ct −x0)

)
, (4.8)

where x0, η0 are arbitrary constants, and

A= 105ν2

169µγ
, κ =

√
ν

52µ
, c=γ η0 + 36ν2

169µ
. (4.9)

Since U(x, t)→η0 exponentially as |x|→∞, we may approximate the ini-
tial value problem (4.7) by an initial boundary value problem imposed in
(−L,L) as long as the soliton does not reach the boundary x =L. Since
non-homogeneous boundary conditions can be easily lifted, we only need
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to consider the problem (4.7) in (−L,L) with the boundary conditions:
U(±L, t)=U ′(±L, t)=U ′′(L, t)=0.

Setting

y = x/L, u(y, t)=U(x, t), u0(y)=U0(x),

µ̄ = µ/L5, ν̄ =ν/L3, γ̄ =γ /L,

the problem of interest becomes

∂tu+ γ̄ u∂yu+ ν̄∂3
yu− µ̄∂5

yu=0, y ∈ I, t ∈ (0, T ],

u(y,0)=u0(y), u(±1, t)=u′(±1, t)=u′′(1, t)=0. (4.10)

Let τ be the size of the time step, and define

tk =kτ, vk =v(·, tk), v̂k+1 = 1
2

(
v(·, tk+1)+v(·, tk−1)

)
.

The fully discrete Crank–Nicolson leap-frog dual-Petrov-Galerkin scheme
is to find uk+1

N ∈VN such that

1
2τ

(uk+1
N −uk−1

N , vN)+ ν̄(∂yû
k+1
N , ∂2

y vN)− µ̄(∂3
y ûk+1

N , ∂2
y vN)

=−γ̄ (uk
N∂yu

k
N , vN), ∀vN ∈V ∗

N, (4.11)

where the “dual” spaces VN and V ∗
N are defined in (3.3) with m=2. Hence,

at each time step, one only needs to solve the following fifth-order equa-
tion (with constant coefficients):

−
(
ûk+1

N

)(5) + ν̄

µ̄

(
ûk+1

N

)(3) + 1
τ µ̄

ûk+1
N =F(uk

N ,uk−1
N ). (4.12)

We consider the problem (4.7)–(4.9) with

µ=γ =1, ν =1.1, η0 =0, x0 =−10.

In the computation, we take L=50,N =120 and τ =0.001. In Fig. 2,
we plot the pointwise maximum errors against various N at t =1,50,100.

It is clear from the figure that the convergence rate behaves like e−cN .
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Fig. 2. Maximum error versus N at t =1,50,100.

5. CONCLUDING REMARKS

We considered a special case (i.e., with α,β being negative integers) of
the generalized Jacobi polynomials and its application to spectral-Galerkin
methods. It is shown that GJPs are natural basis functions for spectral
approximations of differential equations with boundary conditions that
can be automatically satisfied by the corresponding GJPs. This is espe-
cially convenient for high-order differential equations for which it is diffi-
cult to design a suitable finite difference, finite element or collocation-type
methods due to the many boundary conditions involved. Unlike in a col-
location method for which special quadratures involving derivatives at the
end points need to be developed, the implementations using GJPs are sim-
ple and straightforward. Moreover, the use of GJPs leads to much simpli-
fied analysis, more precise error estimates and well conditioned algorithms.
The extension to rectangular multidimensional domains is straightforward
using tensor product.



Guo, Shen, and Wang

ACKNOWLEDGMENTS

The work of B.-Y. Guo is supported in part by NSF of China, N.
10471095, and The Shanghai Leading Academic Discipline Project N.T0401.
The work of J.S. is partially supported by NFS grant DMS-0311915.

REFERENCES
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