
Coarsening dynamics of the convective Cahn-Hilliard equation
and faceted crytal growth

The coarsening dynamics of a faceted vicinal crystalline surface growing into
its melt by attachment kinetics is considered. The convective Cahn-Hilliard
equation (CCH) is derived as a small amplitude expansion of such surface evo-
lutions restricted to 1-D morphologies. It takes the form

qt − εqqx =
(
Ŵ ′(q)− qxx

)
xx

, (CCH)

where the local surface slope q(x, t) serves as the order parameter, subscripts
denote partial derivative with respect to time t and space x respectively, and ′

denotes the q-derivative. The effective free energy Ŵ (q) takes the form of a sym-
metric double well with minima at q = ±1, thereby capturing the anisotropy of
the crystal surface energy. Also, the dimensionless small parameter ε multiply-
ing the convective term qqx is a dimensionless measure of the growth strength.

A sharp interface theory for CCH is derived through a matched asymptotic
analysis. The theory predicts a nearest neighbor interaction between two non-
symetrically related phase boundaries (kink and anti-kink), whose characteris-
tic separation LM grows as coalescing kink/anti-kinks annihilate one another.
Theoretical predictions on the resulting (skew-symetric) coarsening dynamical
system CDS include

• The characteristic length LM ∼ t1/2, provided LM is appropriately small
with respect to the Peclet length scale LP .

• Binary coalescence of phase boundaries is impossible

• Ternary coalescence may only occur through the kink-ternary interaction;
two kinks meet an anti-kink resulting in a kink.

Direct numerical simulations performed on both CDS and CCH confirm each of
these predictions.

Last, a linear stability analysis of CDS identifies a pinching mechanism as
the dominant instability, which in turn leads to kink-ternaries. We propose a
self-similar period-doubling pinch ansatz as a model for the coarsening process,
from which an analytical coarsening law for the characteristic length scale LM
emerges. It predicts both the scaling constant c of the t1/2 regime, i.e., LM
= c t1/2 , as well as the crossover to logarithmically slow coarsening as LM
crosses LP . Our analytical coarsening law stands in good qualitative agreement
with large scale numerical simulations that have been performed on CCH.
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