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Abstract-The classical projection method and its variants have been widely used in practice be- 
cause of their efficiency. However, to the author’s knowledge, rigorous error analyses for those schemes 
are still not available. We consider in this paper two projection schemes in semi-discretized form for 
the Navier-Stokes equations, and for these schemes we provide error estimates for the velocity as well 
as for the pressure. 

I. INTRODUCTION 

We consider the time dependent Navier-Stokes equations: 

$$--Au+(u.V)u+Vp=f, V(Z,t) in &=Qx [O,T], 

div ti = 0, V (Z,t) in &, 
(l-1) 

where R is an open bounded domain in Rd (d=2 or 3) with a sufficiently smooth boundary I’. 
The initial condition is: u(v, t) = uc, and for the sake of simplicity, we consider the homogeneous 
boundary condition: u(t)lr = 0, V t E [O,T]. 

In (l.l), the velocity u and the pressure p are coupled together by the incompressibility con- 
dition “divu = 0,” which makes the equations difficult to solve numerically. In the late 60’s, 
Chorin [l] and Temam [2] constructed the so called projection method (or fractional step method) 
which decoupled the velocity and the pressure. A semi-discretized version of the projection 
method can be written as follows: 

i 

i(gn+l _ u”) - uAfi*+’ + (u” . V)ii”+’ = f(tn+& 

iin+ Ir = 0, 
(1.2) 

i 

i(U 
n+l _ fin+‘) + vp+l = 0, 

divu”+i-0 - , (1.3) 

u”+l . n’lp = 0, 

where Ic is the size of time step, tn+l = (n + l)lc and ii is the outward normal. 
Applying the divergence operator to (1.3), one can easily verify that (1.3) is equivalent to 

Adntl = ~ Idivfi”+i, &#J*+l 
rIr. = 0; un+r = CL”+1 - IcvcP+‘. (1.3’) 

Hence, the velocity and the pressure in (1.2)-(1.3) are totally decoupled. (1.2)-(1.3) is known 
as a projection scheme because uln+l is actually the projection of P+’ in L2(Q)d onto the space 
H = {u E L2(Q)d : div u = 0, u. n’jp = 0). 
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One immediately notices that dn+’ in (1.3’) is subject to the homogeneous Neumann boundary 
condition which is not necessarily satisfied by the exact pressure. Therefore, it is by no means 
obvious that (1.2)-(1.3) provides a consistent approximation to (1.1). Nevertheless, Chorin [l] 
and Temam [2] were still able to prove the convergence of P+’ and @+I towards u(t,+l) in 
appropriate norms. The scheme (or its variants) has been widely used in practice because of 
its efficiency, and it is believed that the scheme provides some sort of first order approximations 
to (1.1). Several higher order schemes of projection type have been proposed as well (see [3,4,5]). 

Chorin [l] proved that the rate of convergence of the scheme, with a finite difference space 

discretization, was at least O(k*). Th e author and Temam [6] proposed a more complicated frac- 

tional step scheme, providing a better pressure approximation, and proved its rate of convergence 

to be at least O(k+). Orszag et al. [4] analyzed the scheme applied to a one-dimensional linear 
model, i.e., the two-dimensional Stokes equations with Dirichlet boundary condition in one direc- 

tion and periodical boundary condition in the other. They used normal mode analyses to show 
that for this simple model case, the rate of convergence of the scheme was O(k). However, to the 
author’s knowledge, there is still no rigorous error analysis confirming the first order accuracy 
for fully nonlinear equations (1.1) with Dirichlet boundary condition. 

Using the classical energy method, we have derived precise error estimates for (1.2)-(1.3) (see 
Theorem 1 below). We have also analyzed an improved projection scheme and obtained precise 
error estimates for it as well. Our results are summarized in the next section. For detailed proofs, 
we refer to Shen [7]. 

2. MAIN RESULTS 

To simplify the presentation, we assume that the data {Q, f, R} and (in some case) the solution 
{u,p} are sufficiently smooth (we refer to Shen [7] for detailed assumptions). 

To classify the precision of time discretization schemes, we use the following: 

DEFINITION. {fk} is a weakly order CY approximation off in X over [O,T] if 3c depending on T 

and f such that 
T/k 

k c Ilfk(t;k’) - f(tik’)l& 5 ck2Q; 
n=O 

{fk} is a strongly order a approximation off in X over [O,T] if 3c depending on T and f such 

that 

O<yt;,k Ilfk(6ak') - f (t;k),ll$ < ck2Y - - 

where tik’ = nk. 

For the classical projection scheme (1.2)-(1.3), we have: 

THEOREM 1. Both P+l and @+l are weakly first order approximations to u(t,+l) in L2(Q)d, 
and @‘+l as well 9s (I - kvA)4”+’ are weakly order 3 approximations to p(t,,+l) in L2(fl)/R. 

Namely, 3c depending only on {v, ~0, f, !2,T} such that 

T/k-l 

k c { Ilen+‘& + lle”+ll&} 5 ck’, 
n=O 

k ‘5’ { Il4n+l 
- r&+dll& + ll(I - k44”+’ - dtn+dll~o,~ > 5 ck, 

n=O 

where en+l = u(t,+I) - un+l, En+’ = u(tntl) - iP1. 

Notice that despite the incompatible Neumann boundary condition, $“+l is still an approxima- 
tion to p(&+l) as accurate as (I - kvA)4 n+l. Notice also that the error estimates in Theorem 1 

for the velocity as well as for the pressure are most likely of optimal order. Hence, in order to 
get comparable accuracy as a conventional coupled scheme, which is strongly first order for the 
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velocity, we have to modify the scheme. In the process of the proof (see [7]), we notice that 

the lack of pressure gradient term in (1.2) prevents us from obtaining strongly first order error 
estimate. Therefore, a natural modification is the following: 

#iii”+1 _ u”) - vAZ+l + (un . V)fiin+l + Vq5” = f(tn+1), 

Gn+llr = 0, 
(2.1) 

*(@+I - iw) + qp+1- 4”) = 0, 

div u”+’ = 0, 

Un+l . n’lr = 0, 

(2.2) 

where (Y can be any constant 2 1 and q5O is arbitrary. 
It is easy to see that this scheme is numerically as efficient as (1.2)-(1.3) and we expect that 

it provides better approximations. In fact, we can prove the following improved error estimates. 

THEOREM 2. Both Gjn+l and Untl are strongly first order approximations to u(t,+.l) in L2(Q)d, 

mn+41 as weakly first order approximations to U(t,.+.l) in H’(Q)d. qY’+‘, as well as 

4 - IcvA(qf9+’ - qSn), are weakly first order approximations to p(t,+l) in L2(Q)/R. Namely, 

REMARKS. We derive from (2.2) that 

which is again not satisfied by the exact pressure. However, we were still able to prove that 

4 n+l was a weakly first order approximation to the pressure despite the incompatible Neumann 
boundary condition. 

It is interesting to observe that the choice of Q (as long as Q 1 1) and I$’ does not affect the 
precision of the first order scheme (2.1)-(2.2). 

The results in Theorem 2 indicate that the scheme (2.1)-(2.2) has the same order of accuracy as 
a conventional coupled scheme. We recall that the scheme (2.1)-(2.2) is much easier to implement 
and it consumes less CPU time than a conventional coupled scheme. 

In a further coming paper [8], we shall study several second order projection schemes and 
provide error estimates for them as well. 
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