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An efficient parallel algorithm for the time dependent incompressible Navier–Stokes 
equations is developed in this paper. The time discretization is based on a direction 
splitting method which only requires solving a sequence of one-dimensional Poisson type 
equations at each time step. Then, a spectral-element method is used to approximate 
these one-dimensional problems. A Schur-complement approach is used to decouple the 
computation of interface nodes from that of interior nodes, allowing an efficient parallel 
implementation. The unconditional stability of the full discretized scheme is rigorously 
proved for the two-dimensional case. Numerical results are presented to show that this 
algorithm retains the same order of accuracy as a usual spectral-element projection type 
schemes but it is much more efficient, particularly on massively parallel computers.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The alternating direction method was developed in the 1950s for solving elliptic and parabolic equations (cf. [14]). 
It received new attention recently due to its suitability for parallel computing. In particular, Guermond and Minev [3]
(see also [7]) proposed a direction splitting method which combines the pressure-stabilization method (cf. [17,8]) and the 
alternating direction technique for the time discretization of the incompressible Navier–Stokes equations. This scheme leads 
to a sequence of one-dimensional problems at each time step, making it very efficient and amenable for parallel computing. 
In [5] and [6], the authors implemented this direction splitting scheme with a finite difference method in space, and showed 
that the algorithm can achieve a high level of parallelism. In [1], the authors developed a direction splitting scheme with 
a hybrid (one domain) spectral method in space, and proved that the scheme is unconditional stable. However, the (one 
domain) spectral method is not suitable for massive parallel computers and for more general domains, so its applicability 
to large scale simulations is quite limited.

The main purpose of this paper is to develop a stable direction splitting scheme with a spectral-element discretization 
in space that allows for efficient parallel implementation and is applicable for more general domains. The construction 
of the stable full discretized scheme is by no means a trivial extension of the spectral method in [1]. In order to prove 
the unconditional stability, we have to construct a new spectral-element method for the velocity while using the classical 
spectral-element method for the pressure.

✩ This research is partially supported by National Natural Science Foundation of China (Grant numbers 11071203, 11371298 and 91130002).
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The spectral-element method (cf. [13]) combines advantages of the high-order accuracy of the spectral methods and 
the geometrical flexibility of the finite element methods. It has become a major tool in scientific computing, particularly 
for computational fluid dynamics (see, for instance, [2,10] and the references therein). However, well-developed parallel 
spectral-element codes such as NEK5000 (cf. [18]) and NekTar (cf. [9]) do not really take advantage of the situations where 
the domains are simple separable domains. We note, however, that an efficient parallel spectral-element algorithm for 
separable elliptic problems is developed in [11]. The algorithm is based on a matrix decomposition approach which reduces 
multi-dimensional problems to a sequence of one-dimensional problems. However, it requires the computation and storing 
of a very large eigenmatrix which limits the size of problems that it can handle. The method we propose in this paper will 
lead to, at each time step, a sequence of one dimensional problems that can be solved more efficiently in parallel and does 
not require storing a large eigenmatrix as required in [11].

The outline of the paper is as follows. In the next section we describe in detail the spectral-element direction splitting 
scheme. Then, we present a Schur-compliment approach for solving one-dimensional problems, and describe how to imple-
ment the whole algorithm in parallel in Section 3. We prove in Section 4 the unconditional stability of the full discretized 
scheme. Finally, we present some numerical results and discussions in Section 5.

2. Spectral-element direction splitting scheme

We consider the time-dependent Navier–Stokes equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
− ν�u + u · ∇u + ∇p = f , in Ω × (0, T ],

∇ · u = 0, in Ω × [0, T ],
u|∂Ω = 0, in [0, T ],
u|t=0 = u0, in Ω,

(2.1)

where ν is the kinematic viscosity coefficient, u and p are the velocity vector and the pressure, respectively. For the sake of 
simplicity, we shall restrict our attention in this paper to Ω = (0, R)d , d = 2, 3, although the method can be easily extended 
to other separable domains or more general domains consisting of unions of separable domains.

2.1. The direction splitting scheme

We consider the following direction splitting scheme proposed in [3].

Setting u0 = u|t=0, p− 1
2 = p|t=0 and φ− 1

2 = 0. Then, for n ≥ 0, we look for (ηn+1, un+1, pn+ 1
2 ) as follows:

• Predictor for velocity.

ξn+1 − un

�t
− ν�un + ∇p∗,n+ 1

2 + NL
(
un,un−1) = f n+ 1

2 , ξn+1
∣∣
∂Ω

= 0, (2.2)

where

p∗,n+ 1
2 = pn− 1

2 + φn− 1
2 ,

NL
(
un,un−1) = 3

2

(
un · ∇)

un − 1

2

(
un−1 · ∇)

un−1; (2.3)

• Direction splitting for velocity.

ηn+1 − ξn+1

�t
− 1

2
ν∂xx

(
ηn+1 − un) = 0, ηn+1

∣∣
x=0,R = 0,

ζn+1 − ηn+1

�t
− 1

2
ν∂yy

(
ζn+1 − un) = 0, ζn+1

∣∣
y=0,R = 0,

un+1 − ζn+1

�t
− 1

2
ν∂zz

(
un+1 − un) = 0, un+1

∣∣
z=0,R = 0; (2.4)

• Direction splitting for pressure.

ψn+ 1
2 − ∂xxψ

n+ 1
2 = −∇ · un+1

�t
, ∂xψ

n+ 1
2
∣∣
x=0,R = 0,

ϕn+ 1
2 − ∂yyϕ

n+ 1
2 = ψn+ 1

2 , ∂yϕ
n+ 1

2
∣∣

y=0,R = 0,

φn+ 1
2 − ∂zzφ

n+ 1
2 = ϕn+ 1

2 , ∂zφ
n+ 1

2
∣∣

z=0,R = 0; (2.5)
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• Pressure update.

pn+ 1
2 = pn− 1

2 + φn+ 1
2 − χν∇ ·

(
1

2

(
un+1 + un)), (2.6)

where the parameter χ ∈ (0, 1). The two-dimensional version of the algorithm is obtained by skipping the last substeps 
in (2.4) and (2.5) and setting un+1 = ηn+1, φn+ 1

2 = ϕn+ 1
2 , respectively.

We observe that each of the substeps in (2.4) and (2.5) are a sequence of one-dimensional elliptic problems. Therefore, 
the overall scheme is extremely efficient.

The convergence of the above scheme, in the absence of nonlinear terms, was studied in [7].

2.2. Two spectral-element methods for one-dimensional problems

We observe from the direction splitting scheme above that we have to solve, repeatedly at each time, the following 
one-dimensional Poisson type equation:

αu − β∂2
x u = f , x ∈ Λ = (0, R) (2.7)

with u(0) = u(R) = 0 or u′(0) = u′(R) = 0.
We partition the interval Λ into K non-overlapping subdomains Λk = (ak−1, ak), k = 1, 2, · · · , K , where 0 = a0 < a1 <

· · · < aK = R , and denote hk = ak − ak−1.
Let P N be the space of polynomials of degree less or equal than N . We define the spectral-element spaces

XN = {
uN ∈ C(Λ) : uN |Λk ∈ P N

(
Λk), k = 1,2, · · · , K

}
,

X0
N = {

uN ∈ XN : uN (0) = uN (R) = 0
}
,

PN = (P N)d, XN = (XN )d, X0
N = (

X0
N

)d
, (2.8)

where N denotes the integer pair (N, K ).
Let {xp, ωp}0≤p≤N be the set of Legendre–Gauss–Lobatto (LGL) points and weights on Ī = [−1, 1], and {xk

p, ωk
p}0≤p≤N be 

the set of mapped collocation points in Λk by {xp, ωp}0≤p≤N .
Let (·, ·) be the usual inner product in L2(Λ), and let (·, ·)N ,Λ = ∑K

k=1(·, ·)N ,Λk , where (·, ·)N ,Λk is the discrete inner 
product associated with the LGL quadrature on Λk:

(ϕ,ψ)N ,Λk =
N∑

p=0

ϕ
(
xk

p

)
ψ

(
xk

p

)
ωk

p, ∀ϕ,ψ ∈ XN . (2.9)

Then, the classical spectral-element method for (2.7) with u(0) = u(R) = 0 is as follows: Find uN ∈ X0
N , such that

b(uN , vN ) := α(uN , vN )N ,Λ + β(∂xuN , ∂x vN )N ,Λ = ( f , vN )N ,Λ, ∀vN ∈ X0
N . (2.10)

On the other hand, the classical spectral-element method for (2.7) with u′(0) = u′(R) = 0 reads: Find uN ∈ XN , such 
that

b(uN , vN ) := α(uN , vN )N ,Λ + β(∂xuN , ∂x vN )N ,Λ = ( f , vN )N ,Λ, ∀vN ∈ XN . (2.11)

Next, we describe a new spectral-element method for (2.7). The new method makes use an extension of the discrete 
derivative defined in the piecewise polynomial spaces, which will be crucial for the proof of the stability of the proposed 
scheme in Section 4. We start by introducing a modified derivative, which will be used to define the new spectral-element 
method. The modified derivative, denoted by ∂̃x , is defined as follows: for any vN ∈ XN , ∂̃x vN is the piecewise polynomial 
determined by, for all k = 1, . . . , K ,

∂̃x vN
(
xk

p

) =

⎧⎪⎨
⎪⎩

[
∂x vN

(
xk−1

N

)
ωk−1

N + ∂x vN
(
xk

0

)
ωk

0

]
/
(
ωk−1

N + ωk
0

)
, p = 0,

∂x vN
(
xk

p

)
, p = 1, . . . , N − 1,[

∂x vN
(
xk

N

)
ωk

N + ∂x vN
(
xk+1

0

)
ωk+1

0

]
/
(
ωk

N + ωk+1
0

)
, p = N,

(2.12)

with an obvious modification when k = 1 and k = K . In the above, the traditional derivative ∂x is defined on each element 
and discontinuous across the element interface points. On the other hand, the modified derivative ∂̃x at an element interface 
point is defined as a weighted average of the two values from the neighboring elements, and is continuous across the 
element interface.
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This new derivative has the following obvious properties:

∂̃x vN ∈ XN , if vN ∈ XN . (2.13)

∂̃x vN ≡ ∂x vN , if vN ∈ C1(Λ) ∩ XN . (2.14)

Some additional properties of ∂̃x are given below.

Lemma 2.1. The following identities hold:

(∂̃xuN , vN )N ,Λ = (∂xuN , vN )N ,Λ, ∀uN , vN ∈ XN ; (2.15)

(∂̃xuN , vN )N ,Λ = −(uN , ∂̃x vN )N ,Λ, ∀uN , vN ∈ X0
N ; (2.16)

−(
∂̃2

x uN , vN
)
N ,Λ

= (∂̃xuN , ∂̃x vN )N ,Λ, ∀uN , vN ∈ X0
N , (2.17)

where ∂̃2
x uN := ∂̃x(∂̃xuN).

Proof. (2.15) can be proved by a direct calculation.
For (2.16), by using (2.15) and the exactness of the Legendre–Gauss–Lobatto quadrature, we have, for all uN , vN ∈ X0

N ,

(∂̃xuN , vN )N ,Λ = (∂xuN , vN )N ,Λ = −(uN , ∂x vN )N ,Λ = −(uN , ∂̃x vN )N ,Λ.

(2.17) is a direct consequence of (2.16) and (2.13). �
Remark 2.1. Since in general ∂x vN /∈ XN , consequently,

(∂̃xuN , ∂̃x vN )N ,Λ �= (∂xuN , ∂x vN )N ,Λ, uN , vN ∈ XN ,

(∂̃xuN , ∂x vN )N ,Λ �= (∂xuN , ∂x vN )N ,Λ, uN , vN ∈ XN .

The new spectral-element method for (2.7) with u(0) = u(R) = 0 is: Find uN ∈ X0
N , such that

b̃(uN , vN ) := α(uN , vN )N ,Λ + β(∂̃xuN , ∂̃x vN )N ,Λ = ( f , vN )N ,Λ, ∀vN ∈ X0
N . (2.18)

In the next subsection, we shall use (2.11) and (2.18) to construct our direction splitting scheme. We will defer to the 
next section on how to solve the related linear systems.

2.3. A spectral-element method for the direction splitting scheme

While it is straightforward to discretize the direction splitting scheme (2.4)–(2.5) by using a finite difference method 
(cf. [3]), it requires special considerations if one wants to use a high-order spectral type method. In fact, in order to maintain 
the unconditional stability of the semi-discretized scheme, a hybrid spectral-collocation and spectral-Galerkin method was 
developed in [1]. In this paper, we construct the direction splitting scheme by using a spectral-element method for the 
spatial discretization based on the weak formulation with the LGL quadrature.

To fix the idea, we shall only consider the three-dimensional case. We first subdivide Ω into K 3 equal-size subdomains 
Ω = ⋃

1≤i, j,k≤K Ωi jk . Each subdomain Ωi jk will be mapped to the reference domain Ω̂ = (−1, 1)d .

Let Σ̂ be the set of LGL points in Ω̂ , i.e., Σ̂ = {(xp, yq, zr) : 0 ≤ p, q, r ≤ N} where {yp = zp = xp}0≤p≤N . We denote the 
set of mapped collocation points in Ωi jk by Σi jk . Then, the set of all collocation points on Ω is

Σall =
⋃

1≤i, j,k≤K

Σi jk =
⋃

1≤i, j,k≤K

{(
xi

p, y j
q, zk

r

) : 0 ≤ p,q, r ≤ N
}
.

The set of all interior collocation points on Ω is denoted by

Σ0
all =

⋃
1≤i, j,k≤K

Σi jk =
⋃

1≤i, j,k≤K

{(
xi

p, y j
q, zk

r

) : 1 ≤ p,q, r ≤ N − 1
}
.

Denote the spectral-element approximation space by

YN = {
u ∈ C(Ω) : u|Ωi jk ∈ P N(Ωi jk), 1 ≤ i, j,k ≤ K

}
,

Y 0
N = {u ∈ YN : u|∂Ω = 0},

YN = (YN )d, Y0
N = (

Y 0
N

)d
. (2.19)
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We define the interpolation operator IN : C(Ω) → YN by

(IN f )(x) = f (x), ∀x ∈ Σall. (2.20)

We propose a spectral-element method for (2.4)–(2.5) based on a weak formulation with LGL quadrature.

We initialize the algorithm by setting u0
N = IN u0, p

− 1
2
N = IN p0, φ− 1

2
N = 0.

• Predictor for velocity.
We start by computing a predictor for the velocity, using a spectral element approach with the 3D-LGL quadrature: Find 
ξn+1
N ∈ Y0

N s.t.

(
ξn+1
N − un

N
�t

,vN
)
N ,Ω

+ ν
(∇̃un

N , ∇̃vN
)
N ,Ω

+ (∇p
∗,n+ 1

2
N ,vN

)
N ,Ω

+ (
NLn+1(un

N ,un−1
N

)
,vN

)
N ,Ω

= (
f n+ 1

2 ,vN
)
N ,Ω

, ∀vN ∈ Y0
N , (2.21)

where (·, ·)N ,Ω is the 3D-LGL quadrature defined on Σall , ∇̃ := (∂̃x, ̃∂y, ̃∂z)
T , and

p
∗,n+ 1

2
N (x) = p

n− 1
2

N (x) + φ
n− 1

2
N (x),

NLN
(
un
N ,un−1

N
) = 3

2

(
un
N · ∇̃)

un
N − 1

2

(
un−1
N · ∇̃)

un−1
N , ∀x ∈ Σall. (2.22)

• Direction splitting for velocity.
We now propose a direction splitting using the one-dimensional spectral element approach proposed in Subsection 2.2.
For each q, r = 0, 1, · · · , N and j, k = 1, · · · , K , find ηn+1

N (·, y j
q, zk

r ) ∈ X0
N , s.t.

(
ηn+1
N − un

N
�t

(·, y j
q, zk

r

)
,vN (·)

)
N ,Λ

+ 1

2
ν
(
∂̃x

(
ηn+1
N − un

N
)(·, y j

q, zk
r

)
, ∂̃xvN (·))N ,Λ

=
(

ξn+1
N − un

N
�t

(·, y j
q, zk

r

)
,vN (·)

)
N ,Λ

, ∀vN ∈ X0
N ; (2.23)

For each p, r = 0, 1, · · · , N and i, k = 1, · · · , K , find ζn+1
N (xi

p, ·, zk
r ) ∈ X0

N , s.t.

(
ζn+1
N − ηn+1

N
�t

(
xi

p, ·, zk
r

)
,vN (·)

)
N ,Λ

+ 1

2
ν
(
∂̃y

(
ζn+1
N − un

N
)(

xi
p, ·, zk

r

)
N ,Λ

, ∂̃yvN (·))N ,Λ
= 0,

∀vN ∈ X0
N ; (2.24)

For each p, q = 0, 1, · · · , N and i, j = 1, · · · , K , find un+1
N (xi

p, y j
q, ·) ∈ X0

N , s.t.

(
un+1
N − ζn+1

N
�t

(
xi

p, y j
q, ·

)
,vN (·)

)
N ,Λ

+ 1

2
ν
(
∂̃z

(
un+1
N − un

N
)(

xi
p, y j

q, ·
)
, ∂̃zvN (·))N ,Λ

= 0,

∀vN ∈ X0
N . (2.25)

• Direction splitting for pressure.
As for the velocity, we perform the direction splitting for the pressure as follows:

For each q, r = 0, 1, · · · , N and j, k = 1, · · · , K , find ψn+ 1
2

N (·, y j
q, zk

r ) ∈ XN , s.t.

(
ψ

n+ 1
2

N
(·, y j

q, zk
r

)
, wN (·))N ,Λ

+ (
∂xψ

n+ 1
2

N
(·, y j

q, zk
r

)
, ∂x wN (·))N ,Λ

=
(

−∇ · un+1
N (·, y j

q, zk
r )

�t
, wN (·)

)
N ,Λ

, ∀wN ∈ XN ; (2.26)

For each p, r = 0, 1, · · · , N and i, k = 1, · · · , K , find ϕn+ 1
2

N (xi
p, ·, zk

r ) ∈ XN , s.t.

(
ϕ

n+ 1
2

N
(
xi

p, ·, zk
r

)
, wN (·))N ,Λ

+ (
∂yϕ

n+ 1
2

N
(
xi

p, ·, zk
r

)
, ∂y wN (·))N ,Λ

= (
ψ

n+ 1
2

N
(
xi

p, ·, zk
r

)
, wN (·))N ,Λ

, ∀wN ∈ XN ; (2.27)
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For each p, q = 0, 1, · · · , N and i, j = 1, · · · , K , find φn+ 1
2

N (xi
p, y j

q, ·) ∈ XN , s.t.

(
φ

n+ 1
2

N
(
xi

p, y j
q, ·

)
, wN (·))N ,Λ

+ (
∂zφ

n+ 1
2

N
(
xi

p, y j
q, ·

)
, ∂z wN (·))N ,Λ

= (
ϕ

n+ 1
2

N
(
xi

p, y j
q, ·

)
, wN (·))N ,Λ

, ∀wN ∈ XN . (2.28)

• Pressure update.

Find p
n+ 1

2
N ∈ YN , s.t.

(
p

n+ 1
2

N ,qN
)
N ,Ω

= (
p

n− 1
2

N ,qN
)
N ,Ω

+ (
φ

n+ 1
2

N ,qN
)
N ,Ω

− 1

2
χν

(∇ · (un+1
N + un

N
)
,qN

)
N ,Ω

, ∀qN ∈ YN . (2.29)

The above spectral element direction splitting scheme results in a sequence of one-dimensional problems (2.11), for the 
velocity components, and (2.18) for the pressure. The different choice of spectral-element methods used here appears to be 
necessary to establish the stability of the overall scheme.

3. Parallel spectral element method

We describe below a parallel implementation of the spectral-element direction splitting scheme presented in the previ-
ous section.

3.1. Schur-compliment approach for one-dimensional spectral-elements

We first describe a fast algorithm for solving the classical spectral-element systems (2.10) and (2.11).
We first consider (2.10) and construct a set of basis functions for X0

N . Transform the subdomain Λk to the reference 
domain Λ̂ = (−1, 1) with

x̂k := x̂k(x) = 2

hk
x − ak + ak−1

hk
, ∀x ∈ Λk,

and denote

V̊ k
N := P N

(
Λk) ∩ H1

0

(
Λk), k = 1,2, · · · , K .

Then, a set of ortho-normal basis in H1
0(Λk) for V̊ k

N , k = 1, 2, · · · , K , is (cf. [15]):

φk
j (x) =

{ 1√
4 j+6

(L j(x̂k) − L j+2(x̂k)), x ∈ Λk,

0, others,
j = 0,1, · · · , N − 2, (3.1)

where L j(x) is the Legendre polynomial of degree j. Clearly,

V̊ k
N = span

{
φk

0(x),φk
1(x), · · · , φk

N−2(x)
}
, k = 1,2, · · · , K .

We define the space consisting of all interior basis functions:

X̊N = {
v; v |Λk ∈ V̊ k

N ,k = 1,2, · · · , K
}
.

For the basis functions at the nodes {a j}K−1
j=1 , we define

ϕk(x) =
⎧⎨
⎩

1
2 (L0(x̂k) + L1(x̂k)), x ∈ Λk,

1
2 (L0(x̂k+1) − L1(x̂k+1)), x ∈ Λk+1,

0, otherwise.

(3.2)

It is then clear that

X0
N = X̊N ⊕ span{ϕ1,ϕ2, · · · ,ϕK−1}.

With this set of basis functions, the system (2.10) leads to a coupled linear system. We shall now use the Schur-
compliment procedure to decouple the computation of interface nodes from the interior nodes.
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• Pre-computation: We construct the orthogonal complement of the space X̊N with respect to the bilinear form b(·, ·).
Let ϕ̊1, ϕ̊2, · · · , ϕ̊K−1 ∈ X̊N be the solutions of the following problems:

b(ϕ̊k, v̊N ) = −b(ϕk, v̊N ), ∀v̊N ∈ X̊N , k = 1,2, · · · , K − 1. (3.3)

Then, by construction, we have

b(ϕ̊k + ϕk, vN ) = 0, ∀vN ∈ X̊N . (3.4)

Hence, setting Θk = ϕ̊k + ϕk , k = 1, 2, · · · , K − 1, we find that the orthogonal complement, in the sense of (3.4), of X̊N
in XN is given by X̊⊥

N = span{Θ1, Θ2, · · · , ΘK−1}.
Next, we compute the Schur-complement matrix S with S jk = b(Θk, Θ j) for 1 ≤ j, k ≤ K − 1. Since supp(ϕk) =
Λk ∪ Λk+1, it is clear from (3.3) that supp(ϕ̊k) = Λk ∪ Λk+1. Hence, we have supp(Θk) = Λk ∪ Λk+1 which indicates 
that S is a symmetric tridiagonal matrix.

• Step 1: Find the values at the nodes {a j}K−1
j=1 by solving the following Schur-complement problem:

K−1∑
k=1

b(Θk,Θ j)uN (ak) = ( f ,Θ j), j = 1,2, · · · , K − 1. (3.5)

Note that the above is equivalent to a matrix system with the symmetric tridiagonal matrix S .
• Step 2: Solve a sequence of subproblem in Λk for k = 1, 2, · · · , K .

Find ůN ∈ X̊N , such that

b(ůN , v̊N ) = ( f , v̊N ), ∀v̊N ∈ X̊N . (3.6)

We now derive the matrix system of (3.6) using the basis functions constructed above. We denote

ůN (x)|Λk =
N−2∑
i=0

ûk
i φ

k
i (x), Uk = (

ûk
1, ûk

2, · · · , ûk
N−2

)T ;

F k = (
f k
1 , f k

2 , · · · , f k
N−2

)T
with f k

j = (
f , φk

i

)
Λk ;

Ak = (
Ak

ji

)
0≤i, j≤N−2 with Ak

ji = (
φk

i
′
, φk

j
′)

Λk ;
Bk = (

Bk
ji

)
0≤i, j≤N−2 with Bk

ji = (
φk

i , φ
k
j

)
Λk . (3.7)

Plugging the expansion for ůN in (3.6) and taking v̊N = ϕk
j , we obtain the following linear systems:

(
αBk + β Ak)Uk = F k, k = 1,2, · · · , K . (3.8)

It is clear that the matrices Bk (resp. Ak) are proportional to the 1-D mass matrix B (resp. stiffness matrix A) on the 
unit interval, and by the orthogonality of the Legendre polynomials, it can be easily verified that Ak is diagonal and Bk

is tridiagonal [15].
• Step 3: The solution of (2.10) is obtained through the expression

uN = ůN +
K−1∑
k=1

uN (ak)Θk.

Indeed, for all vN ∈ X0
N , there exist v̊N ∈ X̊N and v⊥

N ∈ X̊⊥
N such that vN = v̊N + v⊥

N , and consequently

b(uN , vN ) = b

(
ůN +

K−1∑
k=1

uN (ak)Θk, v̊N + v⊥
N

)

= b(ůN , v̊N ) + b
(
ůN , v⊥

N
) +

K−1∑
k=1

uN (ak)b(Θk, v̊N ) +
K−1∑
k=1

uN (ak)b
(
Θk, v⊥

N
)

= ( f , v̊N ) + (
f , v⊥

N
) = ( f , vN ).

In the above, we have used the fact that b(ůN , v⊥
N ) = 0 and b(Θk, v̊N ) = 0 due to the orthogonality. Thus ůN +∑K−1

k=1 uN (ak)Θk is the solution of (2.10).
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In summary, after pre-computing the orthogonal complement of X̊N and the Schur-complement matrix, then for each 
right hand side f , the above algorithm decomposes the problem (2.10) into a set of local problems (3.6) in each subinterval 
which can be solved independently and in parallel, and a global tridiagonal Schur-complement problem (3.5).

To deal with (2.11), we just need to replace X0
N by XN , and add two more basis functions related to the nodes a0 and ak

as follows:

ϕ0(x) =
{

1
2 (L0(x̂1) − L1(x̂1)), x ∈ Λ1,

0, otherwise,

ϕK (x) =
{

1
2 (L0(x̂K ) + L1(x̂K )), x ∈ ΛK ,

0, otherwise.

The above procedure can be directly extended to (2.18). We only need to replace the bilinear form b(·, ·) by b̃(·, ·). Since 
the orthogonality of the basis functions {φk

j , j = 0, 1, . . . , N − 2}, defined in (3.1), is no longer valid for b̃(·, ·), it is more 
convenient to use the Lagrangian nodal basis for V̊ k

N .

3.2. Parallel implementation

As demonstrated in [3], the scheme (2.4)–(2.6) with a finite difference discretization is extremely well suited for par-
allel computation. We are going to see next that, by using the spectral-element methods described above, the scheme 
(2.21)–(2.29) is equally well-suited for parallel computation.

We take the 3-D case with K 3 subdomains as an example, and describe a parallel algorithm using Message Passing 
Interface (MPI) on K 3 processors.

We associate each subdomain Ωi jk with a processor P (i, j,k) , for all 1 ≤ i, j, k ≤ K , and store the right-hand side function 
values f i jk

pqr and solution values uijk
pqr with 0 ≤ p, q, r ≤ N on the processor P (i, j,k) .

The Schur-complement in the x-, y- and z-direction will be stored in P (1, j,k) , P ( j,1,k) , and P ( j,k,1) , respectively for each 
j, k = 1, · · · K .

Since, at each time step, our direction splitting method leads to a sequence of one dimensional sub-problems, we only 
need to discuss the parallel implementation for the one-dimensional equation (2.10).

In order to reduce communications, we decompose the nodal basis functions ϕk , defined in (3.2), as ϕk = ϕl
k + ϕr

k with

ϕl
k(x) =

{
1
2 (L0(x̂k) + L1(x̂k)), x ∈ Λk,

0, otherwise,
(3.9)

and

ϕr
k(x) =

{
1
2 (L0(x̂k+1) − L1(x̂k+1)), x ∈ Λk+1,

0, otherwise.
(3.10)

Accordingly, we set Θ l
k = ϕ̊k + ϕl

k and Θr
k = ϕ̊k+1 + ϕr

k .
We now summarize the parallel algorithm for (2.10) on K processors below.
Pre-computation: Compute the matrices Bk , Ak in (3.7) on the k-th processor, k = 1, 2, · · · , K . Fix the first processor as 

the main processor, construct and store the Schur-complement matrix S , with S jk = b(Θk, Θ j) for 1 ≤ j, k ≤ K − 1, on this 
processor.

Then for each right-hand side function f , we perform:

• Step 1: Compute the data ( f , Θ l
k) and ( f , Θr

k−1) on the k-th processor and send it to the first processor where the 
Schur-complement is stored. Then, solve the Schur-complement problem on the first processor:

K−1∑
k=1

b(Θk,Θ j)uN (ak) = (
f ,Θ l

j

) + (
f ,Θr

j

) = ( f ,Θ j), j = 1,2, · · · , K − 1. (3.11)

Send uN (ak−1), uN (ak) back to the k-th processor.
• Step 2: On each processor k, compute F k defined in (3.7), and solve (3.8) to get the solution at the interior of Λk , ůk

N . 
Finally, we obtain the solution in Λk by setting uk

N = ůk
N + uN (ak−1)Θ

r
k−1 + uN (ak)Θ

l
k on each processor.

Note that the total amount of communications for solving each one-dimensional sub-problem consists of receiving/send-
ing two values from/to each processor to/from the first processor. So the algorithm is well suited for parallel computation.

4. A proof of stability

To simplify the presentation, we shall only consider the two-dimensional case and show that the full discretized scheme 
without the no-linear term and with f = 0 and χ = 0 is unconditionally stable.



Author's personal copy

74 L. Chen et al. / Applied Numerical Mathematics 84 (2014) 66–79

We will need some more notations. We define the bilinear form

aN (pN ,qN ) = (pN ,qN )N + (∇pN ,∇qN )N + (∂xy pN , ∂xyqN )N , ∀pN ,qN ∈ YN , (4.1)

and the associated norm ‖ · ‖AN := aN (·, ·)1/2. It is obvious that:

aN (·, ·) is symmetric, and ‖∇qN ‖N ≤ ‖ · ‖AN , ∀qN ∈ YN . (4.2)

We define the difference operator δ by

δp
n+ 1

2
N := p

n+ 1
2

N − p
n− 1

2
N , δ2 p

n+ 1
2

N := p
n+ 1

2
N − 2p

n− 1
2

N + p
n− 3

2
N ,

and use ūN to denote the sequence whose generic term is ūn+ 1
2

N := 1
2 (un+1
N + un

N ).
Without the no-linear term and with f = 0 and χ = 0, the scheme (2.21)–(2.29) in the two-dimensional case reads:

• Direction splitting for velocity.
Find ξn+1

N ∈ Y0
N , s.t.

(
ξn+1
N − un

N
�t

,vN
)
N ,Ω

+ ν
(∇̃un

N , ∇̃vN
)
N ,Ω

+ (∇p
∗,n+ 1

2
N ,vN

)
N ,Ω

= 0, ∀vN ∈ Y0
N (4.3)

with

p
∗,n+ 1

2
N (x) = 2p

n− 1
2

N (x) − p
n− 3

2
N (x), ∀x ∈ Σall;

For each q = 0, 1, · · · , N and j = 1, · · · , K , find ηn+1
N (·, y j

q) ∈ X0
N , s.t.

(
ηn+1
N − un

N
�t

(·, y j
q
)
,v1,N (·)

)
N ,Λ

+ 1

2
ν
(
∂̃x

(
ηn+1
N − un

N
)(·, y j

q
)
, ∂̃xv1,N (·))N ,Λ

=
(

ξn+1
N − un

N
�t

(·, y j
q
)
,v1,N (·)

)
N ,Λ

, ∀v1,N ∈ X0
N ; (4.4)

For each p = 0, 1, · · · , N and i = 1, · · · , K , find un+1
N (xi

p, ·) ∈ X0
N , s.t.

(
un+1
N − ηn+1

N
�t

(
xi

p, ·),v2,N (·)
)
N ,Λ

+ 1

2
ν
(
∂̃y

(
un+1
N − un

N
)(

xi
p, ·), ∂̃yv2,N (·))N ,Λ

= 0,

∀v2,N ∈ X0
N . (4.5)

• Direction splitting for pressure.

For each q = 0, 1, · · · , N and j = 1, · · · , K , find ψn+ 1
2

N (·, y j
q) ∈ XN , s.t.

(
ψ

n+ 1
2

N
(·, y j

q
)
,q1,N (·))N ,Λ

+ (
∂xψ

n+ 1
2

N
(·, y j

q
)
, ∂xq1,N (·))N ,Λ

=
(

−∇ · un+1
N (·, y j

q)

�t
,q1,N (·)

)
N ,Λ

, ∀q1,N ∈ XN ; (4.6)

For each p = 0, 1, · · · , N and i = 1, · · · , K , find ϕn+ 1
2

N (xi
p, ·) ∈ XN , s.t.

(
φ

n+ 1
2

N
(
xi

p, ·),q2,N (·))N ,Λ
+ (

∂yφ
n+ 1

2
N

(
xi

p, ·), ∂yq2,N (·))N ,Λ

= (
ψ

n+ 1
2

N
(
xi

p, ·),q2,N (·))N ,Λ
, ∀q2,N ∈ XN . (4.7)

• Pressure update.

Find p
n+ 1

2
N ∈ YN , s.t.

(
p

n+ 1
2

N ,qN
)
N ,Ω

= (
p

n− 1
2

N ,qN
)
N ,Ω

+ (
φ

n+ 1
2

N ,qN
)
N ,Ω

, ∀qN ∈ YN . (4.8)

The following lemma can be proved by using essentially the same arguments as in Lemma 3.1 of [1].
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Lemma 4.1. The pressure φn+ 1
2

N ∈ YN (Ω) given by the splitting scheme (4.6)–(4.7) satisfies:

aN
(
φ

n+ 1
2

N ,qN
) =

(
−∇ · un+1

N
�t

,qN
)
N ,Ω

, ∀qN ∈ YN (Ω), (4.9)

where aN (·, ·) is defined in (4.1).

Our main theoretical result is the following:

Theorem 4.1. The solution to (4.3)–(4.8) with f = 0 and χ = 0 is unconditionally stable and satisfies the following dissipative law for 
all n ≥ 0:(∥∥un+1

N
∥∥2
N + �tν

2

∥∥∇̃un+1
N

∥∥2
N + �t2

∥∥p
n+ 1

2
N

∥∥2
AN + �t2ν2

4

∥∥∂̃xyun+1
N

∥∥2
N

)
+ �tν

2

∥∥∇̃(
un+1
N + un

N
)∥∥2
N

≤
(∥∥un

N
∥∥2
N + �tν

2

∥∥∇̃un
N

∥∥2
N + �t2

∥∥p
n− 1

2
N

∥∥2
AN + �t2ν2

4

∥∥∂̃xyun
N

∥∥2
N

)
.

Proof. For any v2,N (y) ∈ X0
N , multiplying (4.4) by v2,N (y j

q), then performing the LGL quadrature in the y-direction yield: 
∀vN ∈ Y0

N ,(
ηn+1
N − un

N
�t

,vN

)
N ,Ω

+ ν

2

(
∂̃x

(
ηn+1
N − un

N
)
, ∂̃xvN

)
N ,Ω

=
(

ξn+1
N − un

N
�t

,vN
)
N ,Ω

. (4.10)

Then combining (4.10) and (4.3) leads to

−ν

2

(
∂̃x

(
ηn+1
N + un

N
)
, ∂̃xvN

)
N ,Ω

− ν
(
∂̃yun

N , ∂̃yvN
)
N ,Ω

− (∇p
∗,n+ 1

2
N ,vN

)
N ,Ω

=
(

ηn+1
N − un

N
�t

,vN
)
N ,Ω

, ∀vN ∈ Y0
N . (4.11)

Similarly, for any v1,N (x) ∈ X0
N , multiplying (4.5) by v1,N (xi

p) ∈ X0
N , and performing the LGL quadrature in the x-direction 

yield: ∀vN ∈ Y0
N ,(

un+1
N − ηn+1

N
�t

,vN
)
N ,Ω

+ 1

2
ν
(
∂̃y

(
un+1
N − un

N
)
, ∂̃yvN

)
N ,Ω

= 0. (4.12)

Summing (4.12) with (4.11) gives

−ν

2

(
∂̃x

(
ηn+1
N + un

N
)
, ∂̃xvN

)
N ,Ω

− ν

2

(
∂̃y

(
un+1
N + un

N
)
, ∂̃yvN

)
N ,Ω

− (∇p
∗,n+ 1

2
N ,vN

)
N ,Ω

=
(

un+1
N − un

N
�t

,vN
)
N ,Ω

, ∀vN ∈ Y0
N . (4.13)

Now we subtract (4.13) from (4.11) to obtain(
ηn+1
N ,vN

)
N ,Ω

= (
un+1
N ,vN

)
N ,Ω

+ �tν

2

(
∂̃y

(
un+1
N − un

N
)
, ∂̃yvN

)
N ,Ω

, ∀vN ∈ Y0
N . (4.14)

Note that both functions ηn+1
N and un+1

N + �tν
2 ∂̃y(un+1

N − un
N ) are continuous piecewise polynomials of degree ≤ N with 

respect to x, and vanishing at the two sides x = 0, R . Thus from (4.14), we obtain(
ηn+1
N (x, ·),v2,N

)
N ,Λ

= (
un+1
N (x, ·),v2,N

)
N ,Λ

+ �tν

2

(
∂̃y

(
un+1
N (x, ·) − un

N (x, ·)), ∂̃yv2,N
)
N ,Λ

, ∀x ∈ Λ, ∀v2,N ∈ X0
N , (4.15)

where (·, ·)N ,Λ means 1D-LGL quadrature in the y-direction.
Taking the second derivative of both sides of (4.15) with respect to x, then rewriting back the resulting equation into the 

weak form by using Lemma 2.1, we get(
∂̃xη

n+1
N (x, ·), ∂̃xvN

)
N ,Λ

= (
∂̃xun+1

N (x, ·), ∂̃xvN
)
N ,Λ

+ �tν

2

(
∂̃xy

(
un+1
N (x, ·) − un

N (x, ·)), ∂̃xyvN
)
N ,Λ

, ∀vN ∈ Y0
N . (4.16)
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Now we plug (4.16) into (4.13) to get(
un+1
N − un

N
�t

,vN
)
N ,Ω

+ ν
(∇̃ū

n+ 1
2

N , ∇̃vN
)
N ,Ω

+ (∇p
∗,n+ 1

2
N ,vN

)
N ,Ω

+ �tν2

4

(
∂̃xy

(
un+1
N − un

N
)
, ∂̃xyvN

)
N ,Ω

= 0, ∀vN ∈ Y0
N . (4.17)

Taking vN = un+1
N in (4.17), then using the identity, 2(a − b, a) = ‖a‖2 + ‖a − b‖2 − ‖b‖2, we find

∥∥un+1
N

∥∥2
N + ∥∥un+1

N − un
N

∥∥2
N + �tν

2

(∥∥∇̃un+1
N

∥∥2
N + ∥∥∇̃(

un+1
N + un

N
)∥∥2
N

)
+ 2�t

(∇p
∗,n+ 1

2
N ,un+1

N
)
N + �t2ν2

4

∥∥∂̃xyun+1
N

∥∥2
N + �t2ν2

4

∥∥∂̃xy
(
un+1
N − un

N
)∥∥2
N

= ∥∥un
N

∥∥2
N + �tν

2

∥∥∇̃un
N

∥∥2
N + �t2ν2

4

∥∥∂̃xyun
N

∥∥2
N . (4.18)

On the other hand, from (4.9) and (4.3), the function p
n+ 1

2
N − p

n− 1
2

N ∈ YN (Ω) satisfies: for n ≥ 0,

aN
(

p
n+ 1

2
N − p

n− 1
2

N ,qN
) = − 1

�t

(∇ · un+1
N ,qN

)
N , ∀qN ∈ YN (Ω). (4.19)

Taking qN = 2�t2 p
∗,n+ 1

2
N := 2�t2(2p

n− 1
2

N − p
n− 3

2
N ) in the above, and using the fact that aN (·, ·) is symmetric, we have

−2�t
(∇ · un+1

N , p
∗,n+ 1

2
N

)
N

= 2�t2aN
(
δp

n+ 1
2

N ,2p
n− 1

2
N − p

n− 3
2

N
)

= 2�t2aN
(
δp

n+ 1
2

N , p
n+ 1

2
N

) + 2�t2aN
(
δp

n+ 1
2

N ,−δp
n+ 1

2
N + δp

n− 1
2

N
)

= �t2(∥∥p
n+ 1

2
N

∥∥2
AN − ∥∥p

n− 1
2

N
∥∥2

AN + ∥∥δp
n− 1

2
N

∥∥2
AN − ∥∥δ2 p

n+ 1
2

N
∥∥2

AN
)
. (4.20)

Next we seek to bound the term ‖δ2 p
n+ 1

2
N ‖2

AN . Applying the time increment operator δ to (4.19) and taking qN = �tδ2 p
n+ 1

2
N

in the resulting equation, we obtain

�t
∥∥δ2 p

n+ 1
2

N
∥∥2

AN = −(∇ · (un+1
N − un

N
)
, δ2 p

n+ 1
2

N
)
N

= (
un+1
N − un

N ,∇δ2 p
n+ 1

2
N

)
N

≤ ∥∥un+1
N − un

N
∥∥N ∥∥∇δ2 p

n+ 1
2

N
∥∥N .

Then by using the coercivity (4.2), we obtain

�t
∥∥∇δ2 p

n+ 1
2

N
∥∥2
N ≤ ∥∥un+1

N − un
N

∥∥N ∥∥∇δ2 p
n+ 1

2
N

∥∥
AN ,

which furthermore results in

�t2
∥∥δ2 p

n+ 1
2

N
∥∥2

AN ≤ ∥∥un+1
N − un

N
∥∥2
N .

Inserting this bound into (4.20) gives

�t2(∥∥p
n+ 1

2
N

∥∥2
AN + ∥∥δp

n− 1
2

N
∥∥2

AN − ∥∥p
n− 1

2
N

∥∥2
AN

) ≤ ∥∥un+1
N − un

N
∥∥2
N − 2�t

(∇ · un+1
N , p

∗,n+ 1
2

N
)
N .

Then, combining the above estimate with (4.18), noticing that(∇ · un+1
N , p

∗,n+ 1
2

N
)
N = −(∇p

∗,n+ 1
2

N ,un+1
N

)
N ,

and dropping some unnecessary positive terms, we arrive at

∥∥un+1
N

∥∥2
N + �tν

2

∥∥∇̃un+1
N

∥∥2
N + �t2

∥∥p
n+ 1

2
N

∥∥2
AN + �t2ν2

4

∥∥∂̃xyun+1
N

∥∥2
N + �tν

2

∥∥∇̃(
un+1
N + un

N
)∥∥2
N

≤ ∥∥un
N

∥∥2
N + �tν

2

∥∥∇̃un
N

∥∥2
N + �t2

∥∥p
n− 1
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Thus the proof is completed. �
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Fig. 5.1. Velocity (left) and pressure (right) error in L2-norm as a function of �t .

Fig. 5.2. Velocity (left) and pressure (right) error in L2-norm as a function of N for several K .

5. Numerical results and discussions

We present below some numerical experiments to verify the stability, accuracy and the parallel efficiency of the proposed 
scheme with the fixed parameter χ = 0.5.

Example 5.1 (Time accuracy, spectral accuracy, and parallel efficiency in 2-D). We consider the 2D time-dependent Navier–Stokes 
equations (2.1) with the exact solution:{

u(x, y) = π sin t
(
sin2 πx sin 2π y,− sin 2πx sin2 π y

)
,

p(x, y, t) = sin t cosπx sinπ y.
(5.1)

First we investigate the time accuracy, i.e., the direction splitting error. We plot, in Fig. 5.1, the L2-velocity errors (the left 
figure) and the L2-pressure errors (the right figure) at T = 1 w.r.t. �t in log–log scale, with several different (N, K ) large 
enough such that the spatial discretization errors are negligible compared with the time discretization errors. The figures 
show that our algorithm is of second order accuracy in the L2-norm for the velocity and 1.7 order accuracy in the L2-norm 
for the pressure. These results are clearly consistent with Theorem 3.1 [3], which concluded that the splitting error is of 
second order for the velocity and one half order for pressure in L2-norm respectively.

Then we investigate the space accuracy by checking the convergence behavior of numerical solutions with respect to the 
polynomial degrees N . We plot, in semi-log scale, the L2-velocity errors in Fig. 5.2 (left) and the L2-pressure errors (right) 
at T = 1 with �t = 0.0001 for several different K . As expected, the errors show an exponential decay, since in this semi-log 
representation one observes that the error variations are linear versus the degrees of polynomial N .
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Fig. 5.3. Divergence of the computed solution with N = 16, K = 3, �t = 0.0001 at t = 1.

Table 5.1
Parallel performance: CPU time (in second) and parallel efficiency per time step.

N 32 64 128 256

# procs running
time

parallel
efficiency

running
time

parallel
efficiency

running
time

parallel
efficiency

running
time

parallel
efficiency

1 × 1 0.001691 − 0.006879 − 0.03710 − 0.2225 −
4 × 4 0.001934 0.8714 0.007587 0.9066 0.03934 0.9410 0.2342 0.9500
8 × 8 0.002185 0.7736 0.007923 0.8681 0.04027 0.9192 0.2366 0.9403

16 × 16 0.003064 0.5517 0.009535 0.7214 0.04080 0.9095 0.2414 0.9218
32 × 32 0.004842 0.3491 0.01212 0.5675 0.04804 0.7724 0.2653 0.8386

We plot, in Fig. 5.3, the divergence of the computed solution at t = 1. One observes that the error of the divergence at 
the subdomain interfaces and domain boundary is noticeably larger but the overall error of the divergence is satisfactorily 
small.

Before we move to the parallel efficiency, note that we used both P N for the velocity and pressure approximation. It is 
well-known that P N × P N does not satisfy the inf–sup condition for the Stokes problem. While this choice does not affect 
the stability for the splitting/projection schemes and convergence rate for the velocity, it does affect the convergence rate 
when �t is very small, we refer to [4] (cf. also [1]) for additional discussion in this regard.

Finally we examine the parallel efficiency of the scheme. We report in Table 5.1 the parallel efficiency in weak scaling. 
Here the weak scaling means that the problem size assigned to each processor stays constant and additional processors 
are used to solve a larger total problem. One observes from Table 5.1 that as we increase N , polynomial degrees in each 
direction of each subdomain, the parallel efficiency increases; and as we increase the number of processors (so the number 
of subdomains), the parallel efficiency decreases slightly.

Example 5.2 (Parallel efficiency in 3-D). We now consider the 3-D case with the following exact solution:⎧⎪⎪⎨
⎪⎪⎩

u(x, y, z, t) = π sin t

⎛
⎝ sin2 πx sin 2π y sin 2π z

sin 2πx sin2 π y sin 2π z
−2 sin 2πx sin 2π y sin2 π z

⎞
⎠ ,

p(x, y, z, t) = sin t cosπx cosπ y sinπ z.

(5.2)

In Table 5.2, we report the parallel efficiency in weak scaling for the three dimensional case. One observes essentially 
the same behaviors as in the two dimensional case with a slightly decreased parallel efficiency.

6. Summary

We developed a spectral-element direction splitting scheme for the incompressible Navier–Stokes equations, and pre-
sented an efficient parallel implementation. Our numerical results indicated that the proposed scheme enjoys the same 
accuracy as the (one-domain) spectral direction splitting scheme in [1], while achieving a high level of parallel efficiency in 
weak scaling for both two and three dimensional problems.
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Table 5.2
Parallel performance: CPU time (in second) and parallel efficiency in 3-D.

N 16 32 64 128

# procs running
time

parallel
efficiency

running
time

parallel
efficiency

running
time

parallel
efficiency

running
time

parallel
efficiency

1 × 1 × 1 0.01667 − 0.1141 − 1.0305 − 11.2867 −
4 × 4 × 4 0.02058 0.8101 0.1326 0.8608 1.3743 0.7498 13.8449 0.8152
6 × 6 × 6 0.02478 0.6729 0.1417 0.8057 1.4103 0.7307 14.2834 0.7902
8 × 8 × 8 0.02865 0.5819 0.1575 0.7247 1.4643 0.7037 15.1162 0.7467

10 × 10 × 10 0.03090 0.5396 0.1647 0.6929 1.4736 0.6992 16.7231 0.6749

We believe that the method presented in this paper have great potential for large scale CFD simulations. It can also 
be extended to treat multiphase flows and/or complex fluids for which the Navier–Stokes solver plays an important role. 
Consider, for example, the Allen–Cahn or Cahn–Hilliard Navier–Stokes phase-field models for the two-phase incompressible 
and immiscible flows (cf. [16,12]), where the governing system consists of an Allen–Cahn or Cahn–Hilliard phase equation 
and Navier–Stokes equations coupled together by the transport term in the phase equation and the surface tensional term 
in the momentum equation. If we use a semi-implicit time discretization where all linear terms are treated implicitly and 
all nonlinear terms explicitly, it leads to a sequence of second-order Poisson type equations1 to solve at each time step. 
Hence, the parallel algorithm presented in this paper can be directly applied.
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