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under rectangular meshes and certain conditions of f. In addition, we establish optimal
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Nonlinear eigenvalue problems

1. Introduction

Eigenvalue problems appear in many mathematical models for scientific and engineering applications, such as the cal-
culation of the vibration modes of a mechanical structure in the framework of nonlinear elasticity, the Gross-Pitaevskii
equation describing the steady states of Bose-Einstein condensates [16,2-4], and the Hartree-Fock and Kohn-Sham equa-
tions used to calculate ground state electronic structures of molecular systems in quantum chemistry and materials science
[6,15,18].

However, most of the existing analysis for eigenvalue approximations are concerned with linear eigenvalue problems
[1], and there are relatively few results concerning approximation of nonlinear eigenvalue problems [20,19,7,9-11,14], and
most of them are based on finite element methods with an exception in [7,8] where an error estimate for Fourier spectral
method to a periodic nonlinear eigenvalue problem is derived. To the best of our knowledge, there has no report on high
order numerical methods for non-periodic nonlinear eigenvalue problems. Thus, the aim of this paper is to develop and
analyze a spectral Galerkin method for a nonlinear elliptic eigenvalue problem. In particular, we shall extend the error
estimates established in [7] for eigenvalues and eigenfunctions for periodic case with Fourier approximation to non-periodic
case with polynomial approximation. We also describe an efficient implementation of the spectral-Galerkin method and
present some numerical experiments to validate our analysis and to demonstrate the effectiveness of our algorithm.

* Corresponding author.
E-mail addresses: anjing@csrc.ac.cn, aj154@163.com (J. An), shen7@purdue.edu (J. Shen), zmzhang@csrc.ac.cn, zzhang@math.wayne.edu (Z. Zhang).

https://doi.org/10.1016/j.apnum.2018.04.012
0168-9274/© 2018 IMACS. Published by Elsevier B.V. All rights reserved.



2 J. An et al. / Applied Numerical Mathematics 131 (2018) 1-15

The rest of this paper is organized as follows. In the next section, some preliminaries needed in this paper are presented.
In §3, the error estimates of approximate eigenvalues and eigenfunctions are analyzed. In §4, we describe the details for an
efficient implementation of the algorithm and we present several numerical experiments to demonstrate the accuracy and
efficiency of our method. In addition, we give some concluding remarks.

2. Preliminaries

Following [7], we consider in this article a particular class of nonlinear eigenvalue problems arising in the study of
variational models of the form

inf{E(v): v € X, /vzdx:l}, (2.1)
Q

where X = H(l)(Q) with  being a bounded domain, and the energy functional E is of the form

E(v)= %a(v, v) + %/F(vz(x))dx (2.2)
Q
with
a(u,v)=/(AVu)-Vvdx+/Vuvdx. (2.3)
Q Q

We make the following assumptions:

A(x) is symmetric, and A € (L°(2))4%¢; (2.4)
Ja>0s.t.eTAXE > alg)? forallé e RY and x € ; (2.5)
Ve L2(Q); (2.6)
F € C'([0, +00),R) N C%((0, +00),R) and F” > 0 on (0, 4+-00); (2.7)
J0<g<2andCeRy s.t. |F' ()| <CA+t?)Vt>0; (2.8)
F”(t), F"(t) bounded in [0, +00). (2.9)
In order to simplify the notation, we let f(t) = F/(t), and @ = v2. We can then reformulate (2.1) as
inf{G(w) : wzo,ﬂex,/wzl}, (2.10)
Q
where
G(w) = %a(«/@, Vo) + %/F(w)dx.
Q

It is shown in [7] that, under assumptions (2.4)-(2.8), (2.10) has a unique solution wp and (2.1) has exactly two solutions:
u = /wy and —u. Moreover, E is Giteaux differentiable on X for all v € X, E’'(v) = A,v with

Ay = —div(AV) + V + f(v?)
being a self-adjoint operator on L2(). Thus, the function u is a solution of the Euler-Lagrange equation
(Ayu —u, v)x x =0, Vv e X (2.11)

for some A € R.
We assume that {Xy} is a sequence of approximation spaces for X such that

lim min |u—vN| g =0. (2.12)
N—)OOVN€XN

Then the discrete variational approximation of (2.1) is:

inf{E(vy): v € XN, /v,%, =1}. (213)
Q
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Problem (2.13) has at least one minimizer uy, which satisfies

(Ayyun — ANUN, VN)x7, x =0, YVN € XN, (2.14)

for some Ay € R.
3. Error estimates

We will establish our main results in this section. We start with a basic error analysis for general approximation spaces,
and then derive improved error estimates for the Legendre-Galerkin approximation.

3.1. Basic error analysis

Let u be the unique positive solution of (2.1) and let uy be a minimizer of the discrete problem (2.13). Since if uy is
a minimizer of (2.13), so is —uy, we can assume that (uy, u) > 0. We also introduce the bilinear form E”(u) defined on
X x X by

(B, whx = (Awv. whx + 2 [ £/l vw, 31)
Q
By using the same arguments as in the proof of Lemma 1 in [7], we can obtain the following Lemma:

Lemma 3.1. Under assumptions (2.4)-(2.9) and (2.12), there exist 8 > 0 and M € R. such that for all v € X,

0 < ((Au — MV V)x x < M|v[F,.

BlIVIG, < ((E"@) —2)v, v)x x <M|v|F,.
And there exists y > 0 such that for all N > 0,

Y llun — ullfy, < ((Ay — 1)Uy — ), (uy —u))x x- (34)
Lemma 3.2. Under assumptions (2.4)-(2.9) and (2.12), it holds that

lim |luy —ullg1 =0. (3.5)
N—oo

Proof. Following [7], we can derive from the definition E(u) that
1 1
E(un) — E(w) = E(AuuN» UN) X' X — E(Auw u)xr x

1
+3 / Fd) — Fw?) — fu?)wh —u?)
Q

((Ay — M) (un — ), (Un — W) xr x

_— N =

+ E/F(u,z\,) —FW?) — fw? @3 —u?).
Q
From (3.4) and the convexity of F, we have

14
ECun) — E@) > 2 llu — ullf,.
Let myu € Xy be such that

lu —nullyr =min{|ju — vy (g1, vy € XN}

We deduce from (2.12) that wyu converges to u in X when N — oco. The functional E being strongly continuous on X, then
when N — oo we have

2 2
lun —ullf < ;(E(uN) —EWw) = ;(E(mvu) —Ew)—0.

Thus, we have

lim |luy —ulljn=0. O
N—oo
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From Lemma 3.2 we know that there exist N7 > 0 such that for all N > Nq,

1
lunlia <2l lluy —ullg < 5 (3.6)

Let @ =R UQy, and 21 N Qy =@, such that Vx € Q1,u(uy —u) >0 and Vx € Q,, u(uy —u) <0.
Since

f@W) — fw? = fEH Wy —u?),

where é,%, is between uﬁ and u?, and f’(t) locally bounded in [0, +o0) and f'(t) > 0 on (0, +oc), then from (3.6) there
exist non-negative constant ay, 8y and M > 0 such that oy <M, By <M and

/Zf’(fs,%)uz(u(uw —u))=aw/u(uw —u),

931 Q2
/ 2f'(ERut (u(uy — ) = By / u(uy —u).
92 Q2

Theorem 1. Under assumptions (2.4)-(2.7), (2.9) and (2.12), it holds
AN = Al < C(llun — ull% + lluy — ull2), (3.7)
lun —ullypr <C min vy —ully;
VNEXN
In addition, if an < BN, we have
AN — Al < Clluy —ul?, (3.9)

where C is a constant independent of N.

Proof. We shall first prove (3.7).
Since Xy C H&(Q), we derive from (2.1), (2.11), (2.13) and (2.14) that Ay > X. On the other hand, by direct calculation,
we have

AN — A = (Ayyun, Un)x x — (Ayll, U)xr x

=a(uN,uN)—a(u,u)Jr/f(u,z\,)u,zv—/f(uz)u2
Q Q
=a(uN—u,uN—u)+2a(u,uN—u)+/f(u?v)U%,—/f(uz)u2

=a(uy — uuN—u)+2A/u(uN—u)— /f(u Ju(uy — u)

/f(uN)uN /f(uz)u

2
=a(uy —u,uy —u) — Alluy —ullj;

-2 / fwPuuy —u)+ / fawiyud — / fwu?
Q Q Q

= ((Au — M) (un —u), Uy — W)y x + /u%,(f(u%o — f?)).
Q

We estimate below the two terms in the last line.
Since

uf (u% — u?) = Qu? + 2uuy +u) (uy — u)? 4 2u3 (uy — u),

we have



J. An et al. / Applied Numerical Mathematics 131 (2018) 1-15 5

/ ud (f@Wd) — fw?)dx= / f1ER)(2u? + 2uuy + ud) (uy — u)?dx
Q Q

+2/f/(g§,)u3(uN — u)dx.
Q

The above two terms can be estimated as follows:

/ f1E) Qu? + 2uuy + u?) (uy — u)?dx
Q

<Cll@? +uf) @y — w2 luy — ull2

< C(lu*y — w2 + lluf @y — wlp2)lluy — ull 2

< C(lullfslun —ullgs + lun6llun — ulle)lluy — ul 2

< CNullZallun — ullg +4cullF llun — ullg)lluy — ull2
<Clluy — ul[gillun —ul2

2
= Clluy —ully,

Z/f/(éﬁ)u%uw —w)dx < CllullFs luy — ull 2
Q

3,113
< Clullyolluy —ullz < Clluy — ullf2.
Therefore, we have

/u?v(f(u?v) — f@W?)dx < Clluy — ull2; + llun — ullj2),
Q

where cg is the Sobolev constant in ||v||;6 <cgllv|ly1, Vv € X. Therefore, we obtain (3.7).
Next, we will evaluate the H'-norm of the error uy — u. We first notice that for all vy € Xy,
lun —ullgr < lun — VNIlgt + lVN — Ul (3.10)

From (3.3) of Lemma 3.1 we have

lun = vz < B7H(E" @) — M) (un — VN). (UN — VN))xr.x
=BH(E" () — M) (un — ), (un — VM) x'.x
+ B H(E" () — ) (U — V), (UN — VN))x'.x-

We proceed below in three steps.
Step 1: Estimation of ((E”(u) — A)(uy —u), (UN — VN)) X’ x-
Since

((E"(u) — M) (uy —u), (UN — VN))x7. X

=- / (fWdun — fhHun —2f @u?(un — w)(uy — vy)dx
Q

+ (AN — )»)/UN(UN — vy)dx,
Q

we only need to estimate [,(f(uf)un — f?)uy —2f W?)u?(uy —u))(uy — vy)dx and [o, un(uy — vy)dx.
For all vy € Xy such that |[vy|;2 =1, we have

1
/uN(uN —vy)dx=1-— /UNVNdX= EIIUN —vnllZ.
Q Q

In addition, we have
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| / (f@dun — fFHun —2f @Hu?(un — w)(uy — vy)dx|

Q

< / |f/ (&R (un +wuy — 2f @ u)(uy —u)| - luy — vyldx
Q

< / (P& un + wuy — 2 Eu? +2f Eu?
Q

—2f W u?)(uy —u)| - luy — vyldx

< / |(f'ER) (un — w)(un + 2u) — 2u*(f'ER) — /W) (un — w)l - Juy — vildx
Q
< / |/ (&R (un — w)(un + 2u) — 2u® f7(ER) ER — u®)) (uy — u)| - Juy — vyldx
Q
< /(|f’(sﬁ,)(uN +2u)(un — W)l + 12u? fERDER — u®))) - lun — ul - Juy — vildx
Q
< /(|f’<s£><uw +2u)(uy — W) + [2u? [ ER) W — u?)]) - luy — ul - Juy — vyldx
Q
< / (f'ED @y +2u)| + 120 f(ERD N + W) - (un — w)? - Juy — vyldx
Q
< c/(|uN +2u| + U (uy +u))) - (uy —u)? - Juy — vnldx,
Q

where &2, is between &2 and u?. Since for all N > N; and all vy € Xy,
/|uN +2ul - (uy —u)® - Juy — vyldx
Q

< llun + 2ull 2| (un — WUy — Vi) ;2

< (lunllgz + 2lull2)llun — ull?sllun — valie

< (Cllunligs +2lull2) lun — ull?slluy — valls

< (Cegllunllyt + 2lull2)Rllun — ull2; luy — vallm
< (2Ccsllullyr +2llull2)cgllun — ullZ llun — vl
<Clluy —ul: llun — vy,

and

/|u2<uN +u)| - (uy —u)? - Juy — vnldx
Q

<y + Wl 2liy —w?@y — vl 2

< (lwPun 2 + 121 2) [y — w)* un — va) 2

< (lullfslunlis + lulo)luy — ullZslluy — vl

< calulZ llunllg + lul3 ) luy — ull?slluy — valls
<cQ@IulZy + ul D llun — ull2; lun — vl
<Cllun —ullfllun — vall

we derive from (3.7) that
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[((E"(u) — M) (un — u), (unN — VN))x7 x|

2 2 2
= Cllun —ullgpllun = vNllgr + (lun —ullf + llun —ull)llun — vallg)-

Step 2: Estimation of ((E”(u) — A)(u — VN), (UN — VN)) X, X-
By direct calculations, we find

and

[{Ay(u —VN),UN — VN) x7 x|

< I/(—diV(AV(u — V) + V(U —vN) + F?) (U —vy))(un — vn)dx|
Q
< I/(AV(U —VN)V(un — VN) + V(U — vy) (N — vN) + @)@ — vy)) (un — v)dx|
Q
<AL= IVW = vl 2 IVun — va)li2 + / [V(u—vn)(uy — vy)|dx
Q

+ / |f W?)(u — vn)(un — vn)ldx
Q

<Al llu = vNllg llun — vl + 1V 2@ — va) Uun — vN) [l 2

+ 1 f @l llu — vyl luny — vall2

< IAll=llu = VN llgillun — VN llgt + CIV 2l (u — vN) (un — V) I3

+ 1 f @l llu — vl lun — vall 2

<Al llu = vnllgillun — vNllgr + CIVII2llu — v llgsllun — vNllgs

+ I F @) el = vnllzlluny = valie

<l Allrellu — vnllgrllun — vallgs + CIV Il = vl luy — vl
+ 1 f @ lellu = vallzlluny = val 2

< (I1Allz + CNVII2 + 11 f @)l — vl luy — vl

<Cllu=vnligtllun = vy,

2/|f’<u2>u2(u vy — v~>|dx+x/|(u — V) — vi)ldx
Q Q

2
iC/Iu (u—vNn)(un — vy)ldx +Allu — vl 2llun — vNllj2
Q
2 3 3 2
<Clullie( [ (u—vNn)2(un —VN)2dx)3 +A[lu — VNI2llun — VNIl2
Q
21050112
<Ccgllullyillu = vl llun — vallgs + Allu — vl 2lluy — vl 2
302
< Cegliulliillu — vnllpzllun — vl +Alu — VNl g lun — VN g
34112
< (Cegllullyn +Mllu — vNllgrllun — vl

<Cllu—vnligtllun —vNIlg1-

Therefore, we have

((E"(u) = M) (u = vN), (un — V) x, x|

< [{(Ay(u — vN), un — V) xr x| + 2/|f’<u2>u2(u — vN)(un — vN)ldx
Q

—H»/I(u —VN) Uy — v)IdX < Cllu — Ny llun — VNIl
Q
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Step 3: Estimation of ||uy — ul[y1.
From Step 1 and Step 2, we have

2

lun — vnlig = Cllun —ullg +llu — vNlig
2

+ (lun —ullf + llun —ull2)llun — vllgo)-

We derive from (3.5) and (3.6) that there exist N, > Ny such that for all N > N,
1
C(nuN—unil+||uN—u||Lz)sy<5 (3.11)

1
Cllun — ullg =V <3 (3.12)

where y is a constant independent of N.
Thus, from (3.10) for all N > N, we have

luy —ullgr <Cmin vy —ullg. (313)
VNEXN,IVNIl2=1

We let u?\, be a minimizer of the following minimization problem

min ||[vy —ullg1.
VNEXN

We know from (2.12) that u?\, converges to u in H! when N — oo. In addition, we have

u0
N
min v —ullg < l—5~— —ullg
VNEXN, VNIl 2=1 Iy Nl 2
0 lu ?VHH 0
<lluy —ullg + 1T — lluyll2]
u$ Il 2
0 llu N“H 0
<lluy —ullyr + —g—lluy —ull;2
u$ Il 2
u 1l
<+ —5—)lluy —ullg
u$ Il 2
U1l
=+ —5-—) min vy —ufy.
luRll2 ~ vneXn
For N > N, > N1, we have
0 1
lufy = ullr < un = ully < 5
1
uf —ulle < lluy —ully < 3

Then we have
0 0 1
lunllgr < lluy —ullgs + llullg < 5t lull g
Since
0 0 1 0
T=|lull2 < luy —ullz + lluyll2 < 3 + lluyll2,

then we have

1
0
lunllz = 5.

N

Then we can get

pp I ),
11,2

Thus, (3.8) is proved.
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Finally, if oy < Bn, then we have

/ 2f/ (EButuun —uw) = / 2/ (Eput uun —w) + / 2f' (EDHu* (u(uy —u))

Q Q1 1953

zaw/u(uN—U)+ﬁN/U(uN—u)

931 Q)
fﬂw(/u(uw—u)Jr/u(uN—u))
Q1 Q9

1
=ﬂN/u<uN )= Bulun — .

Q

Then from (3.2) in Lemma 3.1, we obtain (3.9). O

Remark 3.1. The optimal eigenvalue error estimate (3.9) is proved without additional smoothness assumption but with the
assumption ay < By which is not easy to verify. However, the numerical results in §5 indicates that this optimal eigenvalue
error estimate holds, at least for the tested cases.

3.2. Error estimates for Legendre—Galerkin method

The error estimates in Theorem 1 is proved under very general assumptions on the approximation space. In this
subsection, we shall fix Q = I¢ (d=1,2,3) with I =(—1,1), and consider the Legendre-Galerkin approximation with
Xy =Pn(I% N H}(1%) where Py stand for the set of all polynomials of at most degree N in each direction. Then (2.12)
is obviously satisfied.

We define the projection operator 7713,'0 : Hé(ld) — Xy by

(Vg u —u), Vv) =0, veXy,

and recall the following result (cf. Remark 2.16 of [5]):
Lemma 3.3. Let r € No withr > 1. If f € H}(I%) N H" (1), then, for N > 1,

1,0 —
||f — Ty f||H1(1d) <CN r ”f“Hr(Id)’

where C is a constant independent of N.
Combining the above results with those in Theorem 1, we derive immediately the following:
Theorem 2. Under assumptions (2.4)-(2.7) and (2.9), ifu € H}(I%) N H™(1%), then form > 1, N > 1, we have

AN = Al < CNT™Hju gm, (3.14)
lun — g < CNT™Fju gm; (3.15)

In addition, if an < BN, we have

AN — Al < CN2CMED (u 2 4 Jlul|gm), (3.16)

where C is a constant independent of N.
4. Implementation details and numerical results

In this section, we present an efficient implementation of the Legendre-Galerkin method for (2.14), and present some
numerical experiments to validate our error analysis.
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4.1. Implementation of the Legendre-Galerkin method

From equation (2.11) and the constraint ||u|\%2 =1, we obtain an equivalent nonlinear eigenvalue problem
—div(AVu) + Vu+ f@?)u=au, |u|?, =1 in Q, (41)
ulgqe =0. (4.2)
The weak form of (4.1) and (4.2) is: Find (u, 1) € X x R such that
(AVu,Vv)+ (Vu,v) + (f(uz)u, v)=A(u,v), VYvelX, (4.3)
lull?, =1. (4.4)
Then the discrete form of (4.3) and (4.4) is: Find (un, An) € Xy x R such that
(AVuN, VVN) + (Vun, vn) + (f f)un, v) = An(Un, VN), YV € XN, (4.5)
lunli?, =1.
To solve the above nonlinear eigenvalue problem, we use the Picard iteration as follows:
-1
(AVUR, VyN) + (Vug, va) + (F(uy HHug, va) = AR uR, va), Yy € X, (4.7)
luf 12, =1, (4.8)

with initial guess determined by

(AVUR, VVN) + (VuR, va) = AR Uy, vN), YV € X, (4.9)
fuf 2, =1. (4.10)
To simplify the presentation, we shall only consider the two-dimensional case although higher-dimensional case can be
dealt with similarly. Let ¢y = Lg(X) — Lgy2(x) (k=0,1,---, N —2), where Ly (x) denotes the Legendre polynomial of degree k.
Then, we have Xy = span{p;(x)@;(y),i,j=0,1,---,N =2} [17].
We write
N-2
upy =Y uf i@ (411)
i,j=0

Then, we can reduce (4.7)-(4.8) and (4.9)-(4.10) to generalized eigenvalue problems:

(S+M(V) +M@P~")a? = A{Ba, p=1,2,---, (412)

and

(S +M(V))i® = Ay Bi°, (413)

respectively, where the stiff matrix S and mass matrix B are sparse [17]. The matrices M(V) and M(@P~!) are in gen-
eral full but their matrix-vector product (M(V))v and M(iiP~1)¥v can be efficiently computed by using a pseudo-spectral
approach. Since only a few smallest eigenvalues are mostly interesting in real applications, it is most efficient to solve
(4.12) (resp. (4.13)) using iterative eigen solvers such as shifted inverse power method (cf., for instance, [12]) which requires
solving, repeatedly for different righthand side f (resp. f),

(S+M(V) +M(@P~1)) — rapB)uP = f (resp. ((S+M(V)) — raoB)u® = f), (4.14)
where gy (resp. Aqo) is some approximate value for the eigenvalue AZ (resp. A%). The above system can be efficiently

solved by the Schur-complement approach, we refer to [13] for a detailed description on a related problem. In summary,
the approximate eigenvalue problem (4.12) (resp. (4.13)) can be solved very efficiently.

4.2. Numerical experiments

We now perform some numerical tests to compute eigenvalues and eigenfunctions of (3.14)-(3.16). All numerical tests
are performed using MATLAB 2015b.
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Table 4.1
Numerical approximation to A; for different N and L in 1D.
N L=10 L=15 L=20 L=25
10 2.038315754257193 2.038315754334226 2.038315754334225 2.038315754334222
15 2.038315716117307 2.038315716190542 2.038315716190543 2.038315716190548
20 2.038315716123191 2.038315716196435 2.038315716196433 2.038315716196430
25 2.038315716123191 2.038315716196430 2.038315716196430 2.038315716196434
102
10
10
108
g
m
10710
10712
1071
10716 I I I I I I
6 8 10 12 14 16 18 20
N

—*— L=15

N

Fig. 2. The error figure of Hu401 — uhl |l;2 for different N and L in 1D.

4.2.1. One dimensional case

We take A= 1, V(x) = 3x%, f(u?) = |ul?> and @ =[-1,1] as our first example. Numerical results for the first eigenvalue
with different N and iteration step L are listed in Table 4.1. Since the exact eigen-pairs are unknown, we computed the
reference solution, A .1 and the associated numerical eigenfunction uk n.1» With N =40 and iteration step L = 30.

We plot the error graphs of numerical approximations to the first eigenvalues A; and the associated eigenfunction
uq with different N and L in Fig. 1 and Fig. 3, respectively. In addition, in order to compare the convergence rates of
lu — u,L\,_1||iI1 and |ju1 — uf 4|2, we also plot the error graphs of ||u‘318’1 uf 42 and ||u401 u,L\HH W/ luzd = uk i
for the first eigenvalue in Fig. 2, 4. We see from Table 4.1 and Fig. 1 that numerical eigenvalues achieve ﬁfteen digit accuracy
with N > 20 and L > 15. We know from Fig. 1 that the numerical results are in agreement with the theoretical results, i.e.,
achieve spectral accuracy. From Fig. 4, the convergence rate of ||u; — u,L\H ”iﬂ is higher than that of ||u; — uLN‘l |;2. However,
we know from Fig. 1 and Fig. 3 that the convergence rates of |Af ; — A1] and [luf ,

—uy||%, are almost the same, which
show that correctness of optimal error estimation in Theorem 1.
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Fig. 3. The error figure of [|u3) | — uf , ||f_’1 for different N and L in 1D.
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Fig. 4. The error figure of [[u3) | —uk 111, /llul] ; —uk ;2 for different N and L in 1D.

Remark 4.1. For the non-periodic case, the numerical method in reference [7] is mainly based on the finite element dis-
cretization. The numerical method in this paper is based on spectral Galerkin approximation, thus, when the solution is
smooth enough, the numerical solutions have spectral accuracy. In addition, we can observe from the numerical results in
this paper that the numerical solutions have spectral accuracy. Compared with the numerical results in reference [7], the
accuracy of the numerical solution in this paper is much higher in the same degree of freedom.

4.2.2. Two dimensional case

We take A= 1E, V(x1,x) = 3(x +x3), f(u?) = [ul?> and @ =[-1,1]? as our second example, where E is the identity
matrix. Numerical results for the first eigenvalue with different N and iteration step L are listed in Table 4.2. Since the exact
eigen-pairs are unknown, we computed the reference solution, )\LNJ and the associated numerical eigenfunction u,L\H, with
N =40 and iteration step L = 30.

We also plot the error graphs of numerical approximations to the first eigenvalue A; and the associated eigenfunction u1
with different N and L in Fig. 5 and Fig. 6, respectively. We see from Table 4.2 and Fig. 5 that numerical eigenvalues achieve
at least thirteen-digit accuracy with N > 15 and L > 12. We know from Fig. 5 that the numerical results are in agreement
with the theoretical results, i.e., achieve spectral accuracy. However, we know from Fig. 5 and Fig. 6 that the convergence
rates of |A,L\,’1 — 1] and ||u,L\L1 —uq ||f{1 are almost the same, which also show that correctness of optimal error estimation in
Theorem 1. In order to further demonstrate the convergence of the approximate eigenfunctions, we plot the graphs of the
first eigenfunction with N =15 and L = 18 in Fig. 7 and the graphs of the first reference eigenfunction with N =40 and
L =30 in Fig. 8, respectively.



J. An et al. / Applied Numerical Mathematics 131 (2018) 1-15

T
—*—L=12
—*—-1=18

—x— L=24
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Fig. 6. The error figure of [|u}) | —uf , ||f1'1 for different N and L in 2D.

Table 4.2

Numerical approximation to A; for different N and L in 2D.
N L=6 L=12 L=18 L=24
10 3.150223951725874 3.150224069249848 3.150224069249997 3.150224069249999
15 3.150223942247921 3.150224059885169 3.150224059885314 3.150224059885318
20 3.150223942247918 3.150224059885197 3.150224059885376 3.150224059885364
25 3.150223942247905 3.150224059885206 3.150224059885377 3.150224059885364
30 3.150223942247945 3.150224059885078 3.150224059885060 3.150224059885223

4.3. Summary

13

We considered numerical approximations and error estimates for a nonlinear elliptic eigenvalue problem. Spectral ac-
curacy error bounds are established for numerical eigenvalues and eigenfunctions. Numerical tests demonstrate that the
method achieves high accuracy with relatively small number of unknowns. To simplify the analysis, we have restricted our
analysis to rectangle and cubic domains. However, the approach presented in this paper can be extended to more general

domains by using spectral-element method.
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Fig. 7. The graphs of the first eigenfunction with N =15 and L =18 in 2D.
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Fig. 8. The graphs of the first eigenfunction with N =40 and L =30 in 2D.
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