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Abstract. We present a fast and accurate numerical scheme for the approximation of the
primitive equations of the atmosphere. The temporal variable is discretized by using a special semi-
implicit scheme which requires only to solve a Helmholtz equation and a nonlocal Stokes problem
at each time step; the spatial variables are discretized by a spectral-Galerkin procedure with the
horizontal components of vectorial spherical harmonics for the horizontal variables and Legendre or
Chebyshev polynomials for the vertical variable. The new scheme has two distinct features: (i) it
is unconditionally stable given fixed physical parameters, and (ii) the Helmholtz equation and the
nonlocal Stokes problem which need to be solved at each time step can be decomposed into a sequence
of one-dimensional equations (in the vertical variable) which can be solved by a spectral-Galerkin
method with optimal computational complexity.
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1. Introduction. We consider in this article numerical approximations of the
primitive equations of the atmosphere, hereafter abbreviated PEs. Physical laws
governing the motion and states of the atmosphere can be described by the general
equations of hydrodynamics and thermodynamics. However, these equations are far
too complicated to be investigated both analytically and numerically; simplifications
from both the physical and mathematical points of view are thus inevitable. The
PEs are obtained from these general equations with the hydrostatic assumption; see
[28, 21, 14] for more detailed explanations. This assumption is legitimate to the first
order since the ratio between the vertical and horizontal scales is very small for the
large-scale atmosphere.

The PEs are considered the core equations of the atmosphere. Although the PEs
have been studied intensively, many important mathematical and numerical issues
related to the PEs still remain to be addressed. We refer to [14, 27] for some recent
mathematical analysis of PEs. The dynamics of the atmosphere and climate are
extremely rich and complicated, and their study involves many aspects of modeling,
mathematical and numerical analysis, and numerical simulations. We refer interested
readers to [26] for an up-to-date survey of problems and issues in climate sciences.

Although the latest version of the community climate model CCM3 developed by
the National Center for Atmospheric Research in Boulder, Colorado was built upon
the PEs with detailed physical parameterizations, it is still of interest to develop
a relatively simple general circulation model (GCM) using the PEs with simplified
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physical assumptions to study the essential dynamics of the atmosphere and climate.
On the other hand, further simplified models, such as quasi-geostrophic models, are
frequently used to study some important climate regimes and phenomena. The avail-
ability of a simple GCM model may be used to justify some features of these further
simplified models. Therefore, as a first step toward our long-range objective of better
understanding the phenomena of atmosphere and climate, in particular the large-scale
atmospheric variability on time scales of days to years, we will construct a fast and
accurate numerical scheme for the PEs with simplified physical assumptions.

Although there have been numerous numerical studies done for the PEs (see for
instance [12, 10, 25, 9, 20] and a nice review in [13]), there are some essential differences
between our scheme and those of others:

• We study directly the vectorial form of the PEs instead of using the diver-
gence and vorticity form of the PEs which are derived from differentiating
the vectorial PEs and which need to be supplemented with subtle boundary
conditions.
• With a special time discretization scheme, we need only to solve a standard

Helmholtz equation and a nonlocal Stokes problem at each time step. Us-
ing vectorial spherical harmonics, we are able to decompose the PEs into a
sequence of one-dimensional (in the vertical direction) two points boundary
value problems which can be solved by a new fast spectral-Galerkin method
[23, 24] using Legendre or Chebyshev polynomials.
• The new scheme is shown to be unconditionally stable for fixed physical pa-

rameters, i.e., the allowable time step is related only to the physical parame-
ters, but is not restricted by the spatial resolution.

Of course, we use simplified physical assumptions to handle the surface boundary
layers, but this is legitimate in the sense that they retain the essential dynamics of the
atmosphere and climate. Also, we do not take into account the humidity. However,
it is obvious that the humidity equation can be easily incorporated into our scheme
and that the more sophisticated (or realistic) viscosity involving the Richardson num-
ber does not introduce any essential difficulty so that it can be handled with slight
modifications.

This article is organized as follows. The nondimensional form of the PEs is de-
scribed in section 2. In section 3, we propose two special semi-implicit time discretiza-
tion schemes of the PEs. In section 4, we present a fast spectral-Galerkin method for
the Helmholtz equation and the nonlocal Stokes problem. Some concluding remarks
are given in section 5. For readers’ convenience, we provide a brief derivation of the
nondimensional form of the PEs in Appendix A, and we also gather some basic facts
about the scalar and vectorial spherical harmonics in Appendix B.

2. The primitive equations. With proper scaling (see Appendix A and [14, 15]
for more details), the nondimensional PEs read

∂v

∂t
+∇vv −W (v)

∂v

∂η
+

1
Ro

[
fk × v +∇φs +∇M

(
T

K2

)]
+ L1v = 0,(2.1)

α

[
∂T

∂t
+∇vT −W (v)

∂T

∂η

]
− 1
Ro

W (v)
K2

+ L2T = Q,(2.2)

div
∫ 1

0

vdη = 0,(2.3)
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with the initial condition

u ≡ (v, T ) = u0 = (v0, T0) at t = 0,(2.4)

and the boundary conditions
∂v

∂η
= γsv, ω = 0 and

∂T

∂η
= αs(T − Ts) at η = 0,

∂v

∂η
= 0, ω = 0 and

∂T

∂η
= 0 at η = 1.

(2.5)

Some explanations are in order.
• The unknown functions are the horizontal velocity v, the temperature func-

tion T , and the surface geopotential function φs. Note that a function defined
only on the surface of the sphere is denoted by adding a subscript s to the
function name.
• The domain for the space variables (θ, ϕ, η) is the nondimensional pseudospa-

tial domain

D = S2 × (0, 1)

with S2 being the unit sphere. Here θ stands for the colatitude, ϕ the longi-
tude, and η the nondimensional pressure (see Appendix A).
• The operator M, its adjoint (in the L2 sense) M∗, and the operator W are

defined by

Mψ(η) =
∫ η

0

ψdη′, M∗ψ(η) =
∫ 1

η

ψdη′, W (v) = −divM∗v.(2.6)

• The two linear elliptic operators L1 and L2 are defined by
L1 = − 1

Re1
∆− 1

Re2

∂

∂η

(
K1

∂

∂η

)
,

L2 = − 1
Rt1

∆− 1
Rt2

∂

∂η

(
K1

∂

∂η

)
.

(2.7)

• The operators ∇, ∇v ≡ v · ∇, div, and ∆ are horizontal differential operators
in spherical coordinates on S2.
• α, Ro, Re1, Re2, Rt1, and Rt2 are given positive constants; K1, K2, γs, and
αs are given positive functions; f , Ts, Q, and the initial data u0 = (v0, T0)
are given functions; k is the unit vector in the vertical direction.

More details on the derivation of the nondimensional PEs and the physical mean-
ings of the various quantities are given in Appendix A.

The mathematical analysis of the PEs, including the existence, uniqueness, and
long-term behavior of the solutions, was previously conducted in [14] and [27]. In
particular, the authors proved the existence of global (in time) weak solutions for
arbitrary L2 initial data, as well as the existence and uniqueness of global (in time)
strong solutions with small data.

3. Special semi-implicit time discretization schemes. We construct below
a special semi-implicit discretization scheme for the PEs. Let ∆t be the time step,
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un = (vn, T n) and φns be the approximate solutions to (v, T ) and φs at time t = n∆t.
We use K̄1, ᾱs, and γ̄s to denote the following positive numbers:

K̄1 =
1
2

[
max
S2

K1 + min
S2

K1

]
,

γ̄s =
1
2

[
max
S2

γs + min
S2

γs

]
,

ᾱs =
1
2

[
max
S2

αs + min
S2

αs

]
,

(3.1)

and we denote by L̄1 and L̄2 the following two linear constant-coefficient operators
associated with the linear operators L1 and L2:

L̄1 = − 1
Re1

∆− K̄1

Re2

∂2

∂η2
,

L̄2 = − 1
Rt1

∆− K̄1

Rt2

∂2

∂η2
.

(3.2)

We can now write our first-order semi-implicit scheme for the PEs (2.1)–(2.5) as
follows.

Scheme 3.1. Let u0 = (v0, T0). When (vj , φjs, T j) (j = 0, 1, . . . , n) are known,
we define (vn+1, φn+1

s , T n+1) as the solution of the following linear system:

vn+1 − vn
∆t

+
1
Ro

[
fk × vn +∇φn+1

s +∇M
(
T n

K2

)]
(3.3)

+∇vnvn −W (vn)
∂vn

∂η
+ L̄1v

n+1 =
1
Re2

∂

∂η

[
(K1 − K̄1)

∂vn

∂η

]
,

α

[
T n+1 − T n

∆t
+∇vnT n −W (vn)

∂T n

∂η

]
− 1
Ro

W (vn)
K2

(3.4)

+L̄2T
n+1 = Qn +

1
Rt2

∂

∂η

[
(K1 − K̄1)

∂T n

∂η

]
,

div
∫ 1

0

vn+1dη = 0,(3.5)

with the following boundary conditions:

∂vn+1

∂η
= γ̄sv

n+1 − (γ̄s − γs)vn for η = 0,

∂T n+1

∂η
= ᾱsT

n+1 − (ᾱs − αs)T n − αsTs for η = 0,

∂vn+1

∂η
= 0,

∂T n+1

∂η
= 0 for η = 1.

(3.6)

A few remarks are in order:
• To facilitate the numerical computation, terms involving nonconstant coeffi-

cients K1, γs, and αs are split up into an implicit part with constant
coefficients and an explicit part with nonconstant coefficients. This treatment
will enable us to decompose (3.4)–(3.6) into a sequence of one-dimensional
problems (see the next section) while preserving the stability of the scheme.



NUMERICAL SCHEME FOR PRIMITIVE EQUATIONS OF ATMOSPHERE 723

• (vn+1, φn+1
s ) and T n+1 in Scheme 3.1 are decoupled. More precisely, at each

time step, we need only to solve a generalized nonlocal Stokes problem for
(vn+1, φn+1

s )

1
∆t

vn+1 + L̄1v
n+1 +

1
Ro
∇φn+1

s = fn1 in S2 × (0, 1),

div
∫ 1

0

vn+1dη = 0 in S2,∫
S2
φn+1
s dA = 0,

(3.7)

and a standard Helmholtz equation for T n+1

α

∆t
T n+1 + L̄2T

n+1 = fn2 in S2 × (0, 1),(3.8)

subject to the boundary conditions in (3.6) and with fn1 and fn2 depending
only on functions of the previous time step. Since the solution (vn+1, φn+1

s )
of the first two equations in (3.7) is unique only up to a constant for φn+1

s ,
we added the constraint, the third equation in (3.7), for φn+1

s to determine
uniquely this function.

Scheme 3.1 is only first-order accurate in time. However, one can also construct
a second-order semi-implicit scheme with similar properties. To this end, we denote

RHS1n = −∇vnvn +W (vn)
∂vn

∂η
− 1
Ro

[
fk × vn +∇M

(
T n

K2

)]
,(3.9)

RHS2n = Qn +
1
Rt2

∂

∂η

[
(K1 − K̄1)

∂T n

∂η

]
(3.10)

−α
[
∇vnT n −W (vn)

∂T n

∂η

]
+

1
Ro

W (vn)
K2

,

BD1n = (γ̄s − γs)vn,(3.11)
BD2n = (ᾱs − αs)T n + αsTs.(3.12)

Then, a second-order semi-implicit scheme can be written as follows.
Scheme 3.2.

1
2∆t

(3vn+1 − 4vn + vn−1) + L̄1v
n+1 +

1
Ro
∇φn+1

s(3.13)

= (2RHS1n −RHS1n−1),
1

2∆t
(3T n+1 − 4T n + T n−1) + L̄2T

n+1 = (2RHS2n −RHS2n−1),(3.14)

div
∫ 1

0

vn+1dη = 0,(3.15)

with the boundary conditions

∂vn+1

∂η
= γ̄sv

n+1 − (2BD1n −BD1n−1) for η = 0,

∂T n+1

∂η
= ᾱsT

n+1 − (2BD2n −BD2n−1) for η = 0,

∂vn+1

∂η
= 0,

∂T n+1

∂η
= 0 for η = 1.

(3.16)
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It is obvious that at each time step Scheme 3.2 also leads to a nonlocal Stokes
problem and a Helmholtz equation. We emphasize that for fixed physical parame-
ters these schemes are unconditionally stable. More precisely, it can be shown and
is verified by preliminary numerical results that for fixed physical parameters, and
assuming the existence of the strong solution in the time interval (0, τ ], there exists
∆tc such that for all ∆t ≤ ∆tc and n ≤ τ

∆t − 1,

‖vn+1 − v((n+ 1)∆t)‖L2(D) + ‖T n+1 − T ((n+ 1)∆t)‖L2(D) ≤ C(∆t)α,

where α = 1 for Scheme 3.1 and α = 2 for Scheme 3.2. Therefore, when Schemes
3.1 and 3.2 are further approximated by any appropriate spatial discretization, the
allowable time step will be related only to the physical parameters, but not restricted
by the spatial resolution.

4. A fast and accurate spectral approximation of the nonlocal Stokes
problem. We recall that after time discretization, one needs only to solve a nonlocal
Stokes problem and a Helmholtz equation. This section is devoted to constructing a
fast and accurate approximation to these equations.

Since the numerical approximation of the Helmholtz equation is standard, we
consider in this section only the numerical approximation for the generalized nonlocal
Stokes problem 

av − b∆v − e∂
2v

∂η2
+∇φs = f in S2 × (0, 1),

div
∫ 1

0

vdη = 0 in S2,∫
S2
φsdA = 0.

(4.1)

The boundary conditions for (4.1) are the same as those given for the horizontal
velocity in the primitive equations, namely,

∂v

∂η
= 0 at η = 1,

∂v

∂η
= γv − vs at η = 0.

(4.2)

Here, a b, e, and γ are given positive constants; f and vs are given functions.
It is proved in [14] that there exists a unique solution (v, φs) to the nonlocal

Stokes boundary value problem (4.1)–(4.2). In this section, we propose a spectral
approximation for (4.1)–(4.2).

4.1. Decomposition via spherical harmonics and error analysis. Let Y`,m
(` = 0, 1, . . . , |m| ≤ `) be the usual scalar spherical harmonics (see Appendix B for its
definition). Then, C`,m = λ

−1/2
l curl Y`,m and G`,m = λ

−1/2
l ∇Y`,m form the basis of

the horizontal components of the vectorial spherical harmonics (see Appendix B for
details). Hence, we have formally the following spectral expansion of the horizontal
vector field v and external forcing f :

v =
∞∑
`=1
|m|≤`

[
v`,mg (η)G`,m(θ, ϕ) + v`,mc (η)C`,m(θ, ϕ)

]
,
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where v`,mg (η), v`,mc (η) ∈ C1 are complex, continuously differentiable functions of η.
Note that the constant terms (corresponding to ` = 0) are excluded in the expansions
to eliminate the arbitrary constants. The vector field v is naturally decomposed into
the nonrotational part vg and nondivergent part vc with

vg =
∞∑
`=1
|m|≤`

v`,mg (η)G`,m(θ, ϕ),

vc =
∞∑
`=1
|m|≤`

v`,mc (η)C`,m(θ, ϕ).

(4.3)

To fix the notation, we expand also the external forcing term f = fg + fc with

fg =
∞∑
`=1
|m|≤`

f `,mg (η)G`,m(θ, ϕ),

fc =
∞∑
`=1
|m|≤`

f `,mc (η)C`,m(θ, ϕ).

(4.4)

Since the geopotential function φs is independent of η, we have

φs(θ, ϕ) =
∞∑
`=1
|m|≤`

φ`,ms Y`,m(θ, ϕ).

We also write

vs =
∞∑
`=1
|m|≤`

[
v`,msg G`,m + v`,msc C`,m

]
.

Now inserting these expansions into (4.1)–(4.2), we find that the nonlocal Stokes
problem (4.1)–(4.2) is decomposed into two sets of one-dimensional boundary value
problems: (a+ bλ`)v`,mc − ed

2v`,mc
dη2

= f `,mc ,

(v`,mc )′(1) = 0, (v`,mc )′(0) = γv`,mc (0)− v`,msc ;
(4.5)


(a+ bλ`)v`,mg − e

d2v`,mg
dη2

+ φ`,ms = f `,mg ,∫ 1

0

v`,mg (η′)dη′ = 0,

(v`,,mg )′(1) = 0, (v`,mg )′(0) = γv`,mg (0)− v`,msg .

(4.6)

Then, we have only to solve the following two prototypical problems.
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The first is a standard one-dimensional Helmholtz equation{
αu − uxx = f(x), x ∈ (−1, 1) ≡ I,
a±u(±1) + b±ux(±1) = β±,

(4.7)

and the second is a nonlocal one-dimensional elliptic equation
αu − uxx + γ = f(x), x ∈ I,∫ 1

−1

u(x)dx = 0,

a±u(±1) + b±ux(±1) = β±.

(4.8)

Since the nonhomogeneous boundary conditions (β± 6= 0) can be easily handled by
subtracting from the solution a simple function satisfying the boundary conditions,
we shall consider only the case with β± = 0.

It is well known (see, for instance, [8]) that (4.7) has a unique solution if

a2
− + b2− 6= 0, a−b− ≤ 0; a2

+ + b2+ 6= 0, a+b+ ≥ 0.

The above is verified by (4.5) since γ > 0. Similarly, we can easily show that (4.8)
has a unique solution under the above conditions by eliminating γ and the integral
condition in (4.8).

Let us first consider the approximation of (4.7).
Let PN be the space of all polynomials of degree ≤ N and

XN = {u ∈ PN : a±u(±1) + b±ux(±1) = 0} .

We denote

(u, v)w =
∫ 1

−1

uvwdx,

where w ≡ 1 in the Legendre case and w = (1−x2)−1/2 in the Chebyshev case. Then
the spectral-Galerkin approximation for (4.7) (with β± = 0) is as follows.

Find uN ∈ XN such that

α(uN , v)w − (u′′N , v)w = (f, v)w ∀ v ∈ XN .(4.9)

Remark 4.1. In actual implementation (see section 4.2 below), f in (4.9) should
be replaced by INf ∈ PN which is the polynomial interpolation of f at the Legendre or
Chebyshev Gauss–Lobatto points. We note that in the Legendre case, the scheme can
be accelerated by using the interpolation operator IN based on the Chebyshev Gauss–
Lobatto points thanks to the availability of a fast transform between the Chebyshev
and Legendre polynomials (cf. [1] and [24]).

Hereafter, ‖ · ‖s,ω is used to denote the weighted Sobolev norm in Hs
ω(I) (cf. [5]),

and the expression “AN . BN” means that there exists a constant C independent of
N such that “AN ≤ C BN .”

It is evident that the approximation (4.9) is spectrally accurate. More precisely,
we have the following result.

Theorem 4.1. Let u and uN be, respectively, the solution of (4.7) with β± = 0
and (4.9) with ω ≡ 1. Then

‖u− uN‖1 . N1−s‖f‖s−2 ∀s ≥ 2.
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Remark 4.2. Here and below, we establish only the error estimates for the case
ω ≡ 1. These results can be extended in a straightforward manner to the case of
Chebyshev weight with Dirichlet boundary conditions, i.e., b± = 0 in (4.7)–(4.8).
We believe that similar results hold for the case of Chebyshev weight with mixed
boundary conditions; however, the actual proof is much more involved and hence will
not be addressed here.

The following technical lemma is needed for the proof of Theorem 4.1. Note that
the result in Lemma 4.1 is well known in the special case when b± = 0 (see [5]).

Lemma 4.1. Let

X = {u ∈ H2
ω(I) : a±u(±1) + b±ux(±1) = 0}, XN = X ∩ PN .

We have

inf
φN∈XN

‖φ− φN‖ν,ω . Nν−s‖φ‖s,w ∀φ ∈ X ∩Hs
ω(I), s ≥ 2, 0 ≤ ν ≤ 2.

Proof. Let H(1;x) be the Hermite polynomial (of degree 3) such that

H(1; 1) = 1, H ′(1; 1) = 0, H(1;−1) = H ′(1;−1) = 0,

and let Ĥ(1;x) be such that

Ĥ(1; 1) = 0, Ĥ ′(1; 1) = 1, Ĥ(1;−1) = Ĥ ′(1;−1) = 0.

Similarly, we define H(−1;x) and Ĥ(−1;x). Then for φ ∈ X ∩Hs
ω(I), we set

φ̃(x) =φ(x)− φ(1)H(1;x) − φ(−1)H(−1;x)

− φ′(1)Ĥ(1, x)− φ′(−1)Ĥ(−1;x).
(4.10)

By construction, we have

φ̃(±1) = φ̃′(±1) = 0 and consequently φ̃ ∈ H2
0,ω(I).

Furthermore, we derive from (4.10) that

‖φ̃‖s,ω . ‖φ‖s,ω + |φ(1)|+ |φ(−1)|+ |φ′(1)|+ |φ′(−1)|
. ‖φ‖s,ω ∀s ≥ 2.

(4.11)

Let Π2,0
N be the orthogonal projector from H2

0,ω(I) onto H2
0,ω(I)∩PN with respect

to the inner product (u′′, v′′)ω . It is proven in [3] that

‖φ̃−Π2,0
N φ̃‖ν,ω . Nν−s‖φ̃‖s,ω ∀φ̃ ∈ H2

0,ω(I) ∩Hs
ω(I), 0 ≤ ν ≤ 2, s ≥ 2.(4.12)

We now define

BNφ = Π2,0
N φ̃+ φ(1)H(1;x) + φ(−1)H(−1;x)

+ φ′(1)Ĥ(1;x) + φ′(−1)Ĥ(−1;x).
(4.13)

Then by (4.10), we have

φ−BNφ = φ̃−Π2,0
N φ̃,

(BNφ)(±1) = φ(±1), (BNφ)′(±1) = φ′(±1).
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Hence, BNφ ∈ XN . Therefore, thanks to (4.11) and (4.12), we have

inf
φN∈XN

‖φ− φN‖ν,ω ≤ ‖φ−BNφ‖ν,ω = ‖φ̃−Π2,0
N φ̃‖ν,ω

. Nν−s‖φ̃‖s,ω . Nν−s‖φ‖s,ω ∀s ≥ 2.
(4.14)

Proof of Theorem 4.1. From (4.7) and (4.9), we find (cf. [6] for the Chebyshev
case)

‖u− uN‖21 . α(u− uN , u− uN)− ((u − uN)′′, u− uN)
= α(u− uN , u−BNu)− ((u − uN)′′, u−BNu)
. α‖u− uN‖‖u−BNu‖+ ‖u−BNu‖1‖u− uN‖1.

Therefore, thanks to (4.14) and the regularity of (4.7), we have

‖u− uN‖1,ω . ‖u−BNu‖1,ω . N1−s‖u‖s,ω . N1−s‖f‖s−2,ω.

The proof of Theorem 4.1 is then complete.
We now consider the approximation of (4.8) (with β± = 0) whose (weighted)

variational formulation is the following: Find (u, γ) ∈ X ×R (where X = H1
0,ω) such

that

α(u, v)w − (u′′, v)w + γ

∫ 1

−1

vwdx = (f, v)w ∀v ∈ X,∫ 1

−1

udx = 0.
(4.15)

The spectral-Galerkin approximation for (4.15) is the following: Find (uN , γN ) ∈
XN × R such that

α(uN , v)w − (u′′N , v)w + γN

∫ 1

−1

vwdx = (f, v)w ∀v ∈ XN ,∫ 1

−1

uNdx = 0.
(4.16)

Theorem 4.2. Let (u, γ) and (uN , γN) be, respectively, the solution of (4.15) and
(4.16) with ω ≡ 1. Then

‖u− uN‖1 + |γ − γN | . N1−s‖f‖s−2 ∀s ≥ 2.

Proof. The formulation (4.15)–(4.16) with ω ≡ 1 is reminiscent of, although
much simpler than, a spectral-Galerkin approximation of the Stokes problem (see, for
instance, [4]). Thus, we can adopt the abstract setting for the Stokes problem (for
the case of the Chebyshev weight, the abstract setting in [2] should be used).

Let us denote

a(u, v) = α(u, v)− (u′′, v), u, v ∈ X,

b(v, q) = q

∫ 1

−1

vdx, v ∈ X, q ∈ R.
(4.17)
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Then (4.15) and (4.16) with ω ≡ 1 can be cast into the following mixed formulations,
respectively.

Find (u, γ) ∈ X × R such that

a(u, v) + b(v, γ) = (f, v)ω ∀v ∈ X,
b(u, q) = 0 ∀q ∈ R;

(4.18)

find (uN , γN ) ∈ XN × R such that

a(uN , v) + b(v, γN ) = (f, v)ω ∀v ∈ XN ,

b(uN , q) = 0 ∀q ∈ R.
(4.19)

Thus, according to the abstract theory for the mixed formulation (see, for instance,
[4]), we need only to prove the following inf-sup condition:

sup
v∈XN

b(v, q)
‖v‖1

≥ β|q| ∀q ∈ R.(4.20)

Let us choose a, b such that

φ0(x) = L0(x) + aL1(x) + bL2(x) ∈ X,

where Li(x) is the ith degree Legendre polynomial. Then, by taking v = φ0 or −φ0

in (4.20), the condition (4.20) is satisfied with

β =
|
∫ 1

−1 φ0dx|
‖φ0‖1

=
2
‖φ0‖1

.(4.21)

Therefore, Theorem 4.2 is then a direct consequence of Lemma 4.1 and of Theorem
4.2.5 in [4].

We are now in a position to define the spectral approximation of (v, φs) defined
in (4.1)–(4.2). For 1 ≤ |m| ≤ ` ≤ M , let {v`,mc,N , v

`,m
g,N , φ

`,m
s,N} be the spectral-Galerkin

approximation (as defined in (4.9) and (4.16) with ω ≡ 1) of {v`,mc , v`,mg , φ`,ms } in
(4.5)–(4.6). We define the approximation of (v, φs) as follows:

vN,M =
M∑
`=1

∑
|m|≤`

v`,mc,N (γ)C`,m(θ, ϕ) + v`,mg,N (γ)G`,m(θ, ϕ),

φsN,M =
M∑
`=1

∑
|m|≤`

φ`,ms,NY`,m(θ, ϕ).

(4.22)

The following result indicates that our approximation is spectrally accurate and has
optimal convergence rate.

Theorem 4.3. Let {v, φs} be the solution of (4.1)–(4.2) and {vN,M , φsN,M} be
the spectral approximation defined in (4.22). Then

‖v − vN,M‖H1(D) + ‖φs − φsN,M‖L2(S2)

. (N1−s +M1−s)(‖v‖Hs(D) + ‖φs‖Hs−1(S2))

. (N1−s +M1−s)(‖f‖Hs−2(D) + ‖vs‖Hs−1(S2)),
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where D = S2 × (−1, 1).
Proof. Let ψ =

∑∞
`=1

∑
|m|≤`

(
ψ`,mc C`,m(θ, ϕ) + ψ`,mg G`,m(θ, ϕ)

)
be a function on

the unit sphere S2. We define the orthogonal projector P sM by

P sMψ =
M∑
`=1

∑
|m|≤`

(
ψ`,mc C`,m(θ, ϕ) + ψ`,mg G`m(θ, ϕ)

)
.

It can be shown by using a standard procedure (see [7]) that

‖ψ − psMψ‖Hν(S2) .Mν−s‖ψ‖Hs(S2) for 0 ≤ ν ≤ 1 ≤ s.(4.23)

Now we write the solution v of (4.1) as

v(γ, θ, ϕ) =
∞∑

j,`=1

∑
|m|≤`

(
vj,`,mc C`,m(θ, ϕ)φj(γ) + vj,`,mg G`,m(θ, ϕ)φj(γ)

)
,

where φj(γ) = pj(γ) + ajpj+1(γ) + bjpj+2(γ) satisfies the boundary conditions (4.2).
We then define the projection operator ΠN,M by

ΠN,Mv =
N∑
j=0

M∑
`=1

∑
|m|≤`

(
vj,`,mc C`,m(θ, ϕ) + vj,`,mg G`,m(θ, ϕ)

)
φj(γ).

By using Lemma 4.1 and (4.23), we have

‖v −ΠN,Mv‖Hν(Ω) . (Nν−s +Mν−s)‖v‖Hs(Ω), 0 ≤ ν ≤ 1 ≤ s.

Theorem 4.3 is then a consequence of the above estimates and the following regularity
result for (4.1)–(4.2) (cf. [14]):

‖v‖Hs(Ω) + ‖φs‖Hs−1(S2) . ‖f‖Hs−2(Ω) + ‖vs‖Hs−1(S2).

4.2. Fast spectral-Galerkin solvers. According to the above presentation, we
have only to solve a sequence of one-dimensional equations (4.5) and (4.6) at each
time step. We present below two fast solvers with optimal computational complexity
for these equations.

We consider first the spectral-Galerkin approximation (4.9) for (4.7).
Let pi(x) be either the Legendre or Chebyshev polynomial; we set

φi(x) = pi(x) + aipi+1(x) + bipi+2(x), i = 0, 1, 2, . . .(4.24)

such that

a±φi(±1) + b±φ
′
i(±1) = 0.

It is shown in [24] that {ai, bi} in (4.24) can be determined uniquely. Therefore, we
have

XN = span{φ0, φ1, . . . , φN−2}.
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Setting

aij = −(φ′′j , φi)w, A = (aij), uN =
N−2∑
i=0

xiφi(x),

bij = (φj , φi)w , B = (bij), fi = (INf, φi)w,

x̄ = (x0, x1, . . . , xN−2)T , f̄ = (f0, f1, . . . , fN−2)T ,

(4.25)

then (4.9) (with f replaced by INf) is equivalent to the linear system

(αB +A)x̄ = f̄ .(4.26)

Thanks to the orthogonal properties of Legendre and Chebyshev polynomials,
we see that B is symmetric and has only five nonzero diagonals. We recall that
in the Legendre case A is diagonal [22], and in the Chebyshev case A is a special
upper-triangular matrix such that (4.26) can be solved in O(N) operations [23].

The equations in (4.16) can be treated in a similar fashion. Indeed, consider first
the Legendre case (w ≡ 1). Setting

YN = span{φ1, φ2, . . . , φN−2},

then we have ∫ 1

−1

u(x)dx = 0 ∀u ∈ YN .

Therefore, let

Ã = (aij)i,j=1,...,N−2, B̃ = (bij)i,j=1,...,N−2

and

x̄ = (x1, x2, . . . , xN−2)T , f̄ = (f1, f2, . . . , fN−2)T ,

where aij , bij , xi, fi are defined in (4.25). Then, (4.16) (with ω ≡ 1 and f replaced by
INf) reduces to the following linear system:

(αB̃ + Ã)x̃ = f̃ ,

which can be solved efficiently since Ã is diagonal and B̃ is penta-diagonal.
In the Chebyshev case, (4.16) cannot be easily decoupled so we will solve it as a

coupled system. Setting

uN =
N−2∑
i=0

xiφi(x), wi =
∫ 1

−1

φi(x)dx,

w̄ = (w0, w1, . . . , wN−2)T , h̄ = (2, 0, . . . , 0)T ,

x̂ = (x0, x1, . . . , xN−2, γN )T , f̂ = (f0, f1, . . . , fN−2, 0)T ,

(4.27)

then (4.16) is equivalent to [
αB +A h̄
w̄T 0

]
x̂ = f̂ .(4.28)

Since (αB + A)x̄ = f̄ can be solved in O(N) operations by a special Gaussian
elimination process, we see that (4.28) can also be solved in O(N) operations by the
same process.
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5. Concluding remarks. We have presented a fast and accurate numerical
method for the approximation of the primitive equations of the atmosphere with
simplified model physics. The method was based on a special semi-implicit time
discretization scheme which requires us to solve a Helmholtz equation and the nonlocal
Stokes problem with constant coefficients at each time step. Thanks to the orthogonal
properties of vectorial spherical harmonics, we were able to decompose the nonlocal
Stokes problem (and the Helmholtz equation) into a sequence of one-dimensional
equations in the vertical variable. We then proposed a fast spectral-Galerkin method
using Legendre or Chebyshev polynomials for solving these one-dimensional equations
with optimal computational complexity. We emphasize that this scheme is extremely
efficient since we need only to deal with, at each time step, linear systems which
can be solved by a direct (without iterations) method with optimal computational
complexity. A drawback of this scheme is that the use of spherical harmonics entails
expensive transformations which are needed for computing the nonlinear terms with
the transform method [19, 17]. However, this situation may be improved with the
recent contribution of [11] on accelerating spherical harmonics transforms.

In addition to the superior efficiency and accuracy of the spatial approximation,
the fully discretized scheme is unconditionally stable from a numerical analysis point
of view for fixed physical parameters, thanks to the implicit treatment of the linear
elliptic terms in the PEs. We would like to point out that this unconditional stability
should be viewed with caution in practical situations, for the scheme is only stable for
∆t less than a certain critical time step ∆tc which is related to the physical parameters.
However, it does imply in particular that grid refinement can be performed without
reducing the time step.

The construction of a fast and accurate numerical scheme is only a first step to-
ward our long-range objective of better understanding the phenomena of atmosphere
and climate. The scheme is currently being implemented to simulate various atmo-
spheric phenomena including, in particular, the interannual variability of the global
atmosphere; numerical results and their interpretations, which are beyond the scope
of this paper, will be presented elsewhere.

Appendix A. Nondimensionalization of the PEs. In this section, we briefly
describe the derivation of the nondimensional PEs (2.1)–(2.5) from the PEs below
which are given in a p-coordinate system (θ, ϕ, p), where θ is the colatitude (0 ≤ θ ≤
π), ϕ is the longitude (0 ≤ ϕ ≤ 2π), and p is the pressure (see [14, 21, 28]):

∂v

∂t
+∇vv + ω

∂v

∂p
+ 2Ω cos θ k × v +∇φ+ L̃1v = 0,

∂φ

∂p
+
RT

p
= 0,

R2

c2

[
∂T

∂t
+∇vT + ω

∂T

∂p

]
− Rω

p
+ L̃2T = Q̃,

div v +
∂ω

∂p
= 0.

(A.1)

• The space domain is given by

M̃ = S̃2 × (p0, P ) ,

where S̃2 is the two-dimensional sphere with radius a, representing the surface
of the earth, p0 is the pressure on top of the atmosphere, and P is the pressure
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on the surface of the earth. We assume that P and p0 are constants. The
positive constant R is the gas constant, g the gravitational constant, and Ω
the angular velocity of the earth.
• The unknown functions are the horizontal wind velocity v, the vertical ve-

locity ω in the pressure coordinates, the temperature function T, and the
geopotential φ.
• The linear differential operators L̃1 and L̃2 are defined by

L̃1v = −µ1∆v − ν1
∂

∂p

(( gp
RT̄

)2 ∂v

∂p

)
,

L̃2T = −µ2∆T − ν2
∂

∂p

(( gp
RT̄

)2 ∂T

∂p

)
,

where µi and νi (i = 1, 2) are (positive) viscosity coefficients.
• The operators ∇, ∇v, ∆ are horizontal differential operators in spherical

coordinates on S̃2.
• The given function T̄ ∈ C∞([p0, P ]) is determined by

c2 = R

(
RT̄

cp
− p∂T̄

∂p

)
= const.(A.2)

The function T̄ can be considered as the mean profile of the temperature
function averaged on the isobaric surface, and the constant c is a stability
constant. We refer to [14, 15] for more detailed explanations about T̄ and c2.

The boundary conditions for the PEs are given by


∂v

∂p
= −γ̃sv, ω = 0,

∂T

∂p
= α̃s(T̃s − T ) at p = P,

∂v

∂p
= 0, ω = 0,

∂T

∂p
= 0 at p = p0.

(A.3)

We consider the typical horizontal length scale L = a and a reference horizontal
velocity U , and we set


v = v′U, ω =

(P − p0)U
a

ω′, T =
aUΩ
R

T ′,

φ = aUΩφ′,

t =
a

U
t′, p = P − (P − p0)η,

(A.4)
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f = 2 cos θ, Ro =
U

aΩ
,

α =
a2Ω2

c2
, Q =

Q̃a2Ω
U2R

,

1
Re1

=
µ1

aU
,

1
Re2

=
P 2ν1ag

2

(P − p0)2UR2T̄ 2
0

,

1
Rt1

=
µ2aΩ2

UR2
,

1
Rt2

=
(

P

P − p0

)2
a3Ω2ν2g

2

T̄ 2
0R

2U,
,

K2(η) =
P

P − p0
− η, K1(η) =

(
pT̄0

P T̄

)2

,

T̄0 =
aUΩ
R

.

(A.5)

Substituting (A.4)–(A.5) into (A.1) and dropping all primes in the resulting equa-
tions, we obtain the following nondimensional PEs in the nondimensional pseudospa-
tial domain M = S2 × (0, 1):[

∂v

∂t
+∇vv − ω

∂v

∂η

]
+

1
Ro

[fk × v +∇φ] + L1v = 0,(A.6)

α

[
∂T

∂t
+∇vT − ω

∂T

∂η

]
− 1
Ro

ω

K2
+ L2T = Q,(A.7)

div v − ∂ω

∂η
= 0,(A.8)

∂φ

∂η
=

T

K2
,(A.9)

where L1 and L2 are defined in (2.7). The nondimensional boundary conditions are
∂v

∂η
= γsv, ω = 0,

∂T

∂η
= αs(T − Ts) at η = 0,

∂v

∂η
= 0, ω = 0,

∂T

∂η
= 0 at η = 1.

(A.10)

Here αs, γs, vs, Ts are the nondimensional forms of α̃s, γ̃s, ṽs, and T̃s. Integrating the
diagnostic equations (A.8)–(A.9) and taking into account (2.5) (ω = 0 at η = 1), we
find 

ω = W (v) = − div M∗v,

div
∫ 1

0

vdη = 0,

φ = φs +M
(
T

K2

)
,

(A.11)

where M and its adjoint (in the L2 sense) M∗ are defined in (2.6). In (A.11), the
function φs, depending only on θ and ϕ, is the unknown value of φ = gz at the isobar
p = P (η = 0). We then obtain (2.1)–(2.3) by substituting (A.11) into (A.6)–(A.9).
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Appendix B. Spherical harmonics.

B.1. Scalar spherical harmonics. We first recall the definition of scalar spher-
ical harmonics. Readers are referred to [8] or [18] for more details. For any ` = 0, 1, . . . ,
and 0 ≤ m ≤ `, we define

Y`,m(θ, ϕ) = Θ`,m(θ)eimϕ,

Θ`,m(θ) =
[

(2`+ 1)(`−m)!
4π(`+m)!

]1/2

P`,m(cos θ),

where P`,m is the associated Legendre function defined by

P`,m(µ) = (−1)m(1− µ2)m/2
dm

dµm
P`(µ).

Here P`(µ) is the `th Legendre polynomial. Then we define Y`,−m(θ, ϕ) (m > 0) by

Y`,−m(θ, ϕ) = (−1)m[Y`,m(θ, ϕ)]∗, (∗ being the conjugate transpose operator).

Here are some basic properties of the scalar spherical harmonics:
• {Y`,m|` = 0, 1, . . . , |m| ≤ `} forms an orthonormal basis of L2(S2). Conse-

quently, for all f ∈ L2(S2), we have
f(θ, ϕ) =

∞∑
`=0

∑
|m|≤`

f `,mY`,m(θ, ϕ),

f `,−m = (−1)m(f `,m)∗,

f `,m ∈ C1,

(B.1)

and the L2-norm of f is given by

|f | =

 ∞∑
`=0

∑
|m|≤`

|f `,m|2
1/2

.

• {Y`,m|` = 0, 1, . . . , |m| ≤ `} are complex eigenfunctions of the Laplace–
Beltrami operator on S2, i.e.,{

−∆Y`,m = λ`Y`,m,

λ` = `(`+ 1).
(B.2)

Therefore it is evident that for any f with expansion (B.2) and sufficient regularity,

|(−∆)αf |2 =
∞∑
`=0

∑
|m|≤`

λ2α
` |f `,m|2.

The eigenvalue λ` has multiplicity 2l+ 1.
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B.2. Vectorial spherical harmonics. For any ` = 0, 1, . . . , and |m| ≤ `, we
define {

G`,m = λ
−1/2
` ∇Y`,m,

C`,m = λ
−1/2
` curlY`,m.

(B.3)

By the Hodge decomposition, for any s ∈ R1, we have

Hs(TS2) = ∇Hs+1(S2)⊕ curlHs+1(S2).

Hence it is easy to see that (cf. [16]) {G`,m, C`,m|` = 0, 1, . . . , |m| ≤ `} forms an
orthonormal basis of L2(TS2). In particular, for any vector field v ∈ L2(TS2), we
have 

v =
∞∑
`=0

∑
|m|≤`

[v`,mg G`,m + v`,mc C`,m],

v`,−mg = (−1)m(v`,mg )∗, v`,−mc = (−1)m(v`,mc )∗.

(B.4)

Moreover, the L2-norm of v is given by

|v|2 =
∞∑
`=0

∑
|m|≤`

[|v`,mg |2 + |v`,mc |2].

Furthermore, since the Laplace–Beltrami operators for vectors and functions com-
mute with the gradient and curl operators, it is easy to show that {G`,m, C`,m|` =
0, 1, . . . , and |m| ≤ `} are a complete set of eigenfunctions of the Laplacian. Namely,{

−∆G`,m = λ`G`,m,

−∆C`,m = λ`C`,m.
(B.5)

For any v ∈ D ((−∆)α), we also have

|(−∆)αv|2L2 =
∞∑
`=0

∑
|m|≤`

λ2α
m [|v`,mg |2 + |v`,mc |2].

Note that the definition (B.3) is used in [16] and that {G`,m, C`,m} are in fact the
horizontal components of the standard vectorial spherical harmonics.
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