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We develop a special phase field/diffusive interface method to model the nuclear 
architecture reorganization process. In particular, we use a Lagrange multiplier approach 
in the phase field model to preserve the specific physical and geometrical constraints for 
the biological events. We develop several efficient and robust linear and weakly nonlinear 
schemes for this new model. To validate the model and numerical methods, we present 
ample numerical simulations which in particular reproduce several processes of nuclear 
architecture reorganization from the experiment literature.
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1. Introduction

In the nuclei of eukaryotes, DNA molecule wraps around histones and form nucleosomes, which is further packaged into 
chromatin fiber and integrated to form chromosomes [12,24,32,8].

Chromatin fibers can be divided into transcriptionally inactive and condensed region, called heterochromatin, and 
transcriptionally active and more accessible region, called euchromatin. The position, structure and configuration of het-
erochromatin and euchromatin regions are closely related to gene expression. For instance, it has been observed that the 
volume of cell nucleus is a main determinant of the overall landscape of chromatin folding [16,18,17]. The distribution and 
configuration of heterochromatin and euchromatin [33,6], as well as protein-mediated specific interactions among genomic 
elements [28,34] determine the spatial architecture of chromatin. In conventional nuclear architecture, heterochromatin is 
enriched at the nuclear periphery and around nucleoli. However, in inverted nuclear architecture, heterochromatin is mostly 
located at the center of the nucleus, while euchromatin is enriched at the nuclear periphery (cf. Fig. 6).

In [31,32], Solovei et al. demonstrated that different types of nuclear architecture were associated with different mam-
malian lifestyles, such as diurnal versus nocturnal. The convention nuclear architecture is transformed into the inverted 
nuclear architecture in mouse retina rod cells [31,32]. The reorganization process is accompanied by the relocation of chro-
mosomes from positions enriched at nuclear periphery, and the recreation of a single heterochromatin cluster into the 
inverted architecture. The difference of nuclear structure is partially attributed to the activity of lamin B, lamin A and en-
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velope proteins [27,31,32,22,36]. Moreover, the rate of conversion of heterochromatin to euchromatin can also be controlled 
by volume constraints of the nucleus.

Recently several mathematical models using the phase field approach [23,24,30] have been introduced to study the 
mechanism of generation of different nuclear architectures, including the size and shape of the nucleus, the rate of con-
version of heterochromatin to euchromatin. These models usually include the minimization of total energy with various 
relevant geometric constraints. A common method to preserve such constraints is through extra penalty terms introduced 
in the energy functionals in models [23,24]. The drawback of such methods is the presence of the large penalty param-
eters which results in a stiff reorganization systems of nuclear architecture, leading to significant challenge in simulation 
and analysis. This is especially problematic in situations when the volume of chromosome must be enforced during the 
reduction of nuclear size and reorganization of nuclear architectures.

The Lagrange multiplier approach is commonly used for constrained gradient dynamic systems [11,10,9,19,39,38,37,4]. In 
this paper, we introduce a new Lagrange multiplier approach [3,5,35] to enforce the geometric constraints such as the vol-
ume constraints for both chromosome and heterochromatin. When the volumes of each chromosome and heterochromatin 
are preserved as constants, the reaction-diffusion system with the Lagrange multipliers leads to a constrained gradient flow 
dynamics which satisfies an energy dissipation law. We develop several numerical schemes for nuclear architecture system 
with Lagrange multipliers. One is a weakly nonlinear scheme which preserves the volume constraints but requires solving a 
set of 2 × 2 nonlinear algebraic systems for the Lagrange multipliers, the second is a purely linear scheme which approxi-
mates the volume constraints to second order and only requires solving linear systems with constant coefficient. These two 
schemes, while being numerically efficient, do not satisfy a discrete energy law. Hence, we construct the third scheme which 
is also weakly nonlinear but is unconditionally energy stable. However, this scheme requires solving a nonlinear algebraic 
system of 2N + 1 (where N is the number of chromosomes in the nucleus) equations which may require smaller time steps 
to be well posed. One can choose to use one of these schemes in different scenarios. In our numerical simulations, we use 
the first scheme to control the volumes to targeted values exactly, then we switch to the second scheme which is more 
efficient. We can use the third scheme if we want to make sure that the scheme is energy dissipative.

For validation purpose, we present several simulations results which are consistent with those observed in the ex-
periments. We also demonstrate that our model and schemes are efficient and robust for investigating various nuclear 
architecture reorganization processes.

The paper is organized as follows: in Section 2, we present our phase field model for nuclear architecture reorganization 
by using a Lagrange multiplier approach. We chose suitable energy functionals to capture the most important interac-
tions and constraints of various biological elements, and introduce Lagrange multipliers to capture the specific geometric 
constraints for the biological process. In Section 3, we develop efficient linear and weakly nonlinear time discretization 
schemes for the phase field model developed earlier. We present numerical results using the proposed schemes in Sec-
tion 4, and compare them with the existing experimental literature and previous works. Finally we conclude the paper with 
more discussions of our methods and results in Section 5.

2. A phase field model for nuclear architecture reorganization (NAR)

To study the nuclear architecture reorganization (NAR) process, we employ a phase field/diffusive interface method. 
To start with this approach, the total nucleus is defined by a phase (labeling) function φ0 such that φ0 = 0 and φ0 = 1
respectively for the interior and exterior regions of the nucleus (Fig. 2). For a ellipsoid shape domain, we can define

φ0(x, y, t) = 1

2
(1 − tanh(

√
x2

r2
x (t)

+ y2

r2
y(t)

− 1

√
2ε

)), (2.1)

where ε is the interfacial (transitional domain) width, rx(t) and ry(t) describe the ellipse shape of the nucleus. Similarly, 
we will introduce phase functions ψ to describe the heterochromatin region and φ = (φ1, φ2, · · · , φN) to describe each 
individual chromosome region, where N represents the total number of chromosomes in the nucleus (Fig. 2). In particular, 
we will choose N = 8 chromosomes for drosophila and N = 46 chromosomes for human. In addition to the heterochromatin 
region, the rest of chromosome region is the euchromatin region. These are the order parameter/phase field functions that 
will be used to determined the final nuclear architecture.

For the general phase field approaches, the configuration and distribution of various regions are the consequence of 
minimizing a specific energy functional in terms of the above phase field functions, which takes into all considerations of 
the coupling and competition between different domains, as well as the relevant geometry constraints.

In the NAR models [24,23], the free energy for chromosome and heterochromatin had been chosen to include

E0(φ,ψ) =
N∑

m=1

∫
�

ε2
φ

2
|∇φm|2 + g(φm)dx +

∫
�

ε2
ψ

2
|∇ψ |2 + g(ψ)dx, (2.2)

where εφ and εψ measure the interfacial thickness corresponding to φ and ψ , � is the computational domain, and g(φ) =
1
4 φ2(1 − φ)2 is the double well potential which possess the local minima at φ = 0 and φ = 1 (see [29]). This part of free 
energy represents the competition and coupling between various chromosome and heterochromatin regions.
2



Q. Cheng, P. Delafrouz, J. Liang et al. Journal of Computational Physics 449 (2022) 110808
Fig. 1. The function h(φ) = φ3(10 − 15φ + 6φ2).

Next we will consider the following geometric constraints for all these regions that are biologically relevant to our 
application [1,7]:

1. All chromosomes are restricted within the cell nucleus region;
2. Heterochromosome of each chromosome stays within the chromosome;
3. Between all chromosomes, due to the excluded volume effects, do not self-cross or cross each other.

These constraints could be incorporated into the model by introducing three extra terms in the free energy:

E1(φ,ψ) = β0

N∑
m=1

∫
�

h(φ0)h(φm)dx

︸ ︷︷ ︸
1

+βψ

∫
�

[1 −
N∑

m=1

h(φm)]h(ψ)dx

︸ ︷︷ ︸
2

+ βφ

∑
m �=n

∫
�

h(φn)h(φm)dx

︸ ︷︷ ︸
3

,

(2.3)

where β0, βψ and βφ are three positive constants which indicate the intensities of domain territories, and h(φ) is used for 
the induction of driving interface between φ = 0 and φ = 1 while keeping the local minima 0 and 1 fixed during dynamic 
process. The required conditions for h(φ) are

h(0) = 0, h(1) = 1, h′(0) = h′(1) = h′′(0) = h′′(1) = 0. (2.4)

The lowest degree polynomials satisfying the above conditions is h(φ) = φ3(10 − 15φ + 6φ2), see Fig. 1.
Due to the expression of LBR and lamin A/C in the nuclear envelope, interactions between heterochromatin and the 

nuclear envelope play an important role in nuclear architecture reorganization process. For this purpose, another term was 
introduced in the free energy to describe the interactions [32]:

E2(φ0,ψ) = γ

∫
�

∇h(φ0) · ∇h(ψ)dx, (2.5)

where γ is the affinity constant, and γ > 0 implies the heterochromatin will locate at the nuclear periphery, while γ = 0
leads to the lack of heterochromatin and nuclear envelope interactions due to the absence of LBR or lamin A/C. More 
precisely, E2 represents the intensity of affinity between nuclear function φ0 and heterochromatin region function ψ .

2.1. NAR model with Lagrange multipliers

In the general nuclear reorganization process, often one needs to take into account more geometric constraints. In par-
ticular, we shall include the following constraints in our model:

4. The nuclear space is fully occupied by chromosomes;
3
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Fig. 2. Using description from [24]. Phase functions φm and ψ on 1D and domain diagram on 2D. Blue region is the nuclear domain formulated by φ0. 
Green regions are chromosome territories for m = 1, 2, · · · , N defined by φm . Red region is the heterochromatin domain defined by ψ . (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

5. Heterochromatin is converted from/to euchromatin within each chromosome.

Notice that our approach could be extended to more general situations, especially related to those of item 4.
Our approach here is to introduce Lagrange multipliers to guarantee the constraints 4, 5 in the following NAR model 

with the total free energy

E(φ0,φ,ψ) = E0 + E1 + E2. (2.6)

The corresponding Allen-Cahn type gradient flow [25,3,13,2,15,14,21,40] with respect to the above energy and the con-
straints 4 and 5 take the form:

∂φm

∂t
= −M

{ δE

δφm
− λmh′(φm) − ηmh′(φm)h(ψ)

}
, m = 1,2, · · · , N, (2.7)

∂ψ

∂t
= −M

{ δE

δψ
−

N∑
m=1

ηmh(φm)h′(ψ)
}
, (2.8)

Vm(t) =
∫
�

h(φm)dx, vm(t) =
∫
�

h(φm)h(ψ)dx, m = 1,2, · · · , N, (2.9)

where we choose Vm to satisfy

N∑
m=1

Vm(t) =
∫
�

h(φ0)dx. (2.10)

Parameter M is mobility constant, Vm(t) and vm(t) (m = 1, 2, · · · , N) represent volumes of chromosome and heterochro-
matin, respectively. From (2.9), the volume of chromosome can be contracted or expanded to a given volume by using our 
model. The volumes of m-th chromosome and heterochromatin in the m-th chromosome at time t during nuclear reor-
ganization (growth or inversion) stage are enforced by the Lagrange multipliers λm(t), ηm(t) (m = 1, 2, · · · , N) (2.9). The 
boundary conditions can be one of the following two types

(i) periodic; or (ii) ∂nφm|∂� = ∂nψ |∂� = 0, (2.11)

where n is the unit outward normal on the boundary ∂�.
Let V̄m and v̄m be, respectively, the target volumes for each chromosome and heterochromatin in each chromosome, 

ρm(t) = vm(t)/Vm(t) can be interpreted as the heterochromatin conversion rate during nuclear architecture reorganization 
process. We assume that they will reach the target values at time t = t0 and then stay there according to:
4
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Vm(t) =
{

Vm(0) + (V̄m+δ1m)t
t+α1e−α2t , 0 ≤ t ≤ t0

V̄m, t ≥ t0
;

vm(t) =
{

vm(0) + (v̄m+δ2m)t
t+α1e−α2t , 0 ≤ t ≤ t0

v̄m, t ≥ t0
,

(2.12)

where δ1m and δ2m are determined by Vm(t0) = V̄m and vm(t0) = v̄m . And αi (i = 1, 2) are suitable positive constants 
related to the time scale. Similarly, we assume that rx(t) and ry(t) evolve according to

rx(t) =
{

rx(0) + (r̄x+δ3)t
t+α1e−α2t , 0 ≤ t ≤ t0

V̄m, t ≥ t0
;

ry(t) =
{

ry(0) + (r̄ y+δ4)t
t+α1e−α2t , 0 ≤ t ≤ t0

v̄m, t ≥ t0
,

(2.13)

where δ3 and δ4 are determined by rx(t0) = r̄x and ry(t0) = r̄ y with r̄x and r̄ y being the targeted axis lengths for the ellipse 
enclosing the nucleus.

Remark 2.1. In [24], a penalty approach is introduced to satisfy the physical constraints 4 and 5 by adding the following to 
the free energy:

E2(φ,ψ) = α0[
∫
�

[1 − h(φ0)]dx −
N∑

m=1

Vm(t)]2

︸ ︷︷ ︸
4

+αV

N∑
m=1

[Vm(t) − V̄m(t)]2

︸ ︷︷ ︸
5

+ αv

N∑
m=1

[vm(t) − v̄m(t)]2

︸ ︷︷ ︸
6

,

(2.14)

where α0, αV , αv are three positive penalty parameters. The volume of m-th chromosome Vm(t) and volume of heterochro-
matin in m-th chromosome are defined in (2.9). A disadvantage of the penalty approach is large penalty parameters are 
needed for accurate approximation of the physical constraints, and may lead to very stiff systems that are difficult to solve 
numerically. The Lagrange multiplier approach that we use here can enforce these non-local constraints exactly and is free 
of penalty parameters. Furthermore, the NAR model (2.7)-(2.10) based on the Lagrange multiplier approach can control ex-
actly the growth rate of volume for different compartments during the nuclear reorganization (growth or inversion). But 
the uniqueness and existence of solution using Lagrange multiplier approach is much more involved for general nonlinear 
physical constraints, for example, system (2.7)-(2.10). Numerically, we can find a suitable solution using a sufficiently small 
time step.

Remark 2.2. In the phase field approaches, there are many ways to represent the volume of each individual domain. For 
instance, the volume of each chromosome denoted by Vm(t) and their corresponding heterochromatin domain volume 
vm(t) could be computed by the integrals 

∫
�

φmdx and 
∫
�

ψdx. However this representation may have disadvantages in 
the minimizing procedure, especially for the penalty methods used in [23,24,30], due to its linearity with respect to the 
phase functions. One way to overcome this is to use the polynomial function h(φ) = φ3(10 − 15φ + 6φ2) (see Fig. 1) for 
the computation of the volumes for different chromosome regions. Since h(φ) is an increasing function with respect to φ in 
the interval [0, 1] with h(0) = 0 and h(1) = 1. One can adapt Vm = ∫

�
h(φ)dx and 

∫
�

h(φm)h(ψ)dx for the volume of m-th 
chromosome and heterochromatin in m-th chromosome.

Let (·, ·) be the inner product in L2(�), and ‖ ·‖ be the associated norm in L2(�). The constrained NAR model (2.7)-(2.10)
with (2.12) can be interpreted as a L2 gradient system which implies phase separations will happen for t ≥ t0.

Theorem 2.1. The constrained NAR model (2.7)-(2.10) with (2.12) satisfies the following energy dissipation law

d

dt
E(φ0,φ,ψ) = − 1

M
(

N∑
‖∂tφm‖2 + ‖∂tψ‖2), ∀t ≥ t0. (2.15)
m=1

5
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Proof. Taking the inner product of (2.7) with ∂tφm , we obtain

− 1

M
‖∂φm

∂t
‖2 = (

δE

δφm
, ∂tφm) − λm(h′(φm), ∂tφm)

− ηm(h′(φm)h(ψ), ∂tφm).

(2.16)

Taking the inner product of (2.8) with ∂tψ , we obtain

− 1

M
‖∂ψ

∂t
‖2 = (

δE

δψ
, ∂tψ) −

N∑
m=1

ηm(h(φm)h′(ψ), ∂tψ). (2.17)

We derive from (2.9) that

(h′(φm), ∂tφm) = d

dt

∫
�

h(φm)dx = d

dt
V̄m = 0. (2.18)

Similarly, we obtain

(h′(φm)h(ψ), ∂tφm) + (h(φm)h′(ψ), ∂tψ) = d

dt

∫
�

h(φm)h(ψ)dx = d

dt
v̄m = 0. (2.19)

Summing up (2.16) for m = 1, 2, · · · , N , combining it with (2.17)-(2.19) and using equality

N∑
m=1

(
δE

δφm
, ∂tφm) + (

δE

δψ
, ∂tψ) = d

dt
E(φ0,φ,ψ), (2.20)

we obtain the desired energy dissipation law (2.15). �
3. Numerical schemes

In this section, we construct several efficient time discretization schemes based on the Lagrange multiplier approach 
[3,5] for the phase field NAR model (2.7)-(2.10). For the sake of simplicity, for any function f , we denote f n,† = 2 f n − f n−1, 
f n,� = 3

2 f n − 1
2 f n−1 and f n+ 1

2 = f n+1+ f n

2 .
We split the total energy into a quadratic part and the remaining part as follows:

E(φ0,φ,ψ) = ( N∑
m=1

∫
�

ε2
φ

2
|∇φm|2dx +

∫
�

ε2
ψ

2
|∇ψ |2dx

) + Ẽ(φ0,φ,ψ),

where Ẽ is

Ẽ(φ0,φ,ψ) =β0

N∑
m=1

∫
�

h(φ0)h(φm)dx + βψ

∫
�

[1 −
N∑

m=1

h(φm)]h(ψ)dx

+ βφ

∑
m �=n

∫
�

h(φn)h(φm)dx +
N∑

m=1

∫
�

g(φm)dx +
∫
�

g(ψ)dx

+ γ

∫
�

∇h(φ0) · ∇h(ψ)dx.

(3.1)

Once the volume of nucleus 
∫
�

h(φ0)dx is given, volumes of each chromosome territory can be set up accordingly so that 
the constraint (2.10) can be satisfied automatically.

3.1. A weakly nonlinear volume preserving scheme

Note that in the first stage, we need to increase the volumes Vm(t) and vm(t) to the targeted values V̄m and v̄m according 
to (2.12), respectively. Hence, we shall first construct below a volume preserving scheme which allows us to achieve this 
goal. More precisely, a second order scheme based on the Lagrange multiplier approach is as follows:
6
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φn+1
m − φn

m

δt
= −M(−ε2

φ�φ
n+ 1

2
m

+ (
δ Ẽ

δφm
)n,� − λ

n+ 1
2

m h′(φn,�
m ) − η

n+ 1
2

m h′(φn,�
m )h(ψn,�)), m = 1, · · · , N, (3.2)

ψn+1 − ψn

δt
= −M(−ε2

ψ�ψn+ 1
2 + (

δ Ẽ

δψ
)n,� −

N∑
m=1

η
n+ 1

2
m h(φn,�

m )h′(ψn,�)), (3.3)

Vm(tn+1) =
∫
�

h(φn+1
m )dx, m = 1, · · · , N, (3.4)

vm(tn+1) =
∫
�

h(φn+1
m )h(ψn+1)dx, m = 1, · · · , N. (3.5)

Below we show how to efficiently solve the coupled scheme (3.2)-(3.5). Writing

φn+1
m = φn+1

1,m + λ
n+ 1

2
m φn+1

2,m + η
n+ 1

2
m φn+1

3,m , (3.6)

in (3.2), collecting all terms without (λn+1
m , ηn+1

m ), with λn+1
m or with ηn+1

m , we find that, for m = 1, 2, · · · , N , (φn+1
i,m , i =

1, 2, 3) can be determined from the following decoupled linear systems:

φn+1
1,m − φn

m

δt
= −M(−ε2

φ�φ
n+ 1

2
1,m + (

δ Ẽ

δφm
)n,�); (3.7)

φn+1
2,m

δt
= −M(−ε2

φ�φ
n+ 1

2
2,m − h′(φn,�

m )); (3.8)

φn+1
3,m

δt
= −M(−ε2

φ�φ
n+ 1

2
3,m − h′(φn,�

m )h(ψn,�)). (3.9)

Then, writing

ψn+1 = ψn+1
1 +

N∑
m=1

η
n+ 1

2
m ψn+1

2,m , (3.10)

in (3.3), we find that ψn+1
1 and (ψn+1

2,m , m = 1, 2, · · · , N) can be determined from the following decoupled linear systems:

ψn+1
1 − ψn

δt
= −M(−ε2

ψ�ψ
n+ 1

2
1 + (

δ Ẽ

δψ
)n,�); (3.11)

ψn+1
2,m

δt
= −M(−ε2

ψ�ψ
n+ 1

2
2,m + h(φn,�

m )h′(ψn,�)). (3.12)

We observe that the above systems are all linear Poisson-type equation with constant coefficients so they can be efficiently 
solved.

Once we have obtained (φn+1
i,m , i = 1, 2, 3) and ψn+1

i,m , i = 1, 2), we plug (3.6)-(3.10) into (3.4)-(3.5) to obtain a 2 × 2

nonlinear algebraic system for (λn+1
m , ηn+1

m ). For δt sufficiently small, this nonlinear algebraic system admits real solutions 
that be solved with an iterative method at negligible cost.

In summary, the scheme (3.2)-(3.5) can be efficiently implemented as follows.

• Solve ψn+1
1 from (3.11).

• For m = 1, · · · , N:
– solve (φn+1

i,m , i = 1, 2, 3) from (3.7)-(3.9) and ψn+1
2,m from (3.12);

– determine the Lagrange multipliers (λn+1
m , ηn+1

m ) from the coupled nonlinear algebraic system (3.4)-(3.5);
– update φn+1

m using (3.6).
• Update ψn+1 using (3.10).
7
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3.2. A linear scheme

In practice, the scheme (3.2)-(3.5) should be used if we want to exactly preserve the volume dynamics of chromosome 
and heterochromatin. A disadvantage of the scheme (3.2)-(3.5) is that we need to solve a nonlinear algebraic system which 
may require small time steps. To accelerate the simulation, we construct below a linear scheme for system (2.7)-(2.10)
which is more efficient but only approximately preserve the volume dynamics.

To this end, we reformulate (2.7)-(2.10) into the following equivalent system:

∂φm

∂t
= −M

( − ε2
φ�φm + δ Ẽ

δφm
− λmh′(φm) − ηmh′(φm)h(ψ)

)
, m = 1, · · · , N, (3.13)

∂ψ

∂t
= −M

( − ε2
ψ�ψ + δ Ẽ

δψ
−

N∑
m=1

ηmh(φm)h′(ψ)
)
, (3.14)

V ′
m(t) =

∫
�

h′(φm)∂tφmdx, m = 1, · · · , N, (3.15)

v ′
m(t) =

∫
�

h′(φm)h(ψ)∂tφm + h(φm)h′(ψ)∂tψdx, m = 1, · · · , N. (3.16)

Note that the last two relations are obtained by taking the time derivative of Vm and vm in (2.9).
A second-order linear scheme for the new system (3.13)-(3.16) is as follows:

φn+1
m − φn

m

δt
= −M

( − ε2
φ�φ

n+ 1
2

m + (
δ Ẽ

δφm
)n,�

− λ
n+ 1

2
m h′(φn,�

m ) − η
n+ 1

2
m h′(φn,�

m )h(ψn,�)
)
, m = 1, · · · , N, (3.17)

ψn+1 − ψn

δt
= −M

( − ε2
ψ�ψn+ 1

2 + (
δ Ẽ

δψ
)n,� −

N∑
m=1

η
n+ 1

2
m h(φn,�

m )h′(ψn,�)
)
, (3.18)

Vm(tn+1) − Vm(tn) =
∫
�

h′(φn,�
m )(φn+1

m − φn
m)dx, m = 1, · · · , N, (3.19)

vm(tn+1) − vm(tn) =
∫
�

h′(φn,�
m )h(ψn,�)(φn+1

m − φn
m)

+ h(φn,�
m )h′(ψn,�)(ψn+1 − ψn)dx, m = 1, · · · , N. (3.20)

The above coupled scheme can be solved in essentially the same fashion as the scheme (3.2)-(3.5). In fact, setting

φn+1
m = φn+1

1,m + λ
n+ 1

2
m φn+1

2,m + η
n+ 1

2
m φn+1

3,m , (3.21)

in (3.17), we find that for m = 1, 2, · · · , N , (φn+1
i,m , i = 1, 2, 3) are still determined from (3.7)-(3.9). Then, writing

ψn+1 = ψn+1
1 +

N∑
m=1

η
n+ 1

2
m ψn+1

2,m , (3.22)

in (3.18), we find that ψn+1
1 and (ψn+1

2,m , m = 1, 2, · · · , N) are also determined from (3.11)-(3.12). Once we have obtained 
(φn+1

i,m , i = 1, 2, 3) and ψn+1
i,m , i = 1, 2), we plug (3.21)-(3.22) into (3.19)-(3.20) to obtain a 2 × 2 linear algebraic system for 

(λn+1
m , ηn+1

m ) that can be solved explicitly. In summary, the scheme (3.17)-(3.20) can be efficiently implemented as follows.

• Solve ψn+1
1 from (3.11).

• For m = 1, · · · , N:
– solve (φn+1

i,m , i = 1, 2, 3) from (3.7)-(3.9) and ψn+1
2,m from (3.12);

– determine the Lagrange multipliers (λn+1
m , ηn+1

m ) from the coupled linear algebraic system (3.19) and (3.20);
– update φn+1

m using (3.6).
• Update ψn+1 using (3.10).

Note that the scheme (3.17)-(3.20) is well posed for any time step.
8
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Remark 3.1. Since the computational cost of solving the nonlinear algebraic system is negligible compared with solving 
PDEs, the cost of solving the linear scheme (3.17)-(3.20) is essentially the same as the approach used in [20,26] for the 
Allen-Cahn equation with linear physical constraints.

3.3. A weakly nonlinear energy stable scheme

Note that the schemes (3.2)-(3.5) and (3.17)-(3.20) are not guaranteed to be energy dissipative. Below we modify the 
scheme (3.2)-(3.5) slightly to construct a weakly nonlinear but energy stable scheme with essentially the same computa-
tional cost for t ≥ t0 when volumes of each chromosome Vm(t) and heterochromatin vm(t) become constants.

The idea is to introduce another Lagrange multiplier to enforce the energy dissipation. To this end, we introduce another 
Lagrange multiplier R(t) and expand the system (3.13)-(3.16) for t ≥ t0 as

∂φm

∂t
= −M

( − ε2
φ�φm + R(t)

δ Ẽ

δφm
− λmh′(φm) − ηmh′(φm)h(ψ)

)
, m = 1, · · · , N, (3.23)

∂ψ

∂t
= −M

( − ε2
ψ�ψ + R(t)

δ Ẽ

δψ
−

N∑
m=1

ηmh(φm)h′(ψ)
)
, (3.24)

∫
�

h(φ0
m)dx =

∫
�

h(φm)dx, m = 1, · · · , N, (3.25)

∫
�

h(φ0
m)h(ψ0)dx =

∫
�

h(φm)h(ψ)dx, m = 1, · · · , N, (3.26)

d

dt
Ẽ = R(t)

N∑
m=1

(
δ Ẽ

δφm
, ∂tφm) + R(t)(

δ Ẽ

δψ
, ∂tψ) (3.27)

+
N∑

m=1

{(h(φm)h′(ψ), ∂tψ) + (h′(φm)h(ψ), ∂tφm)}.

Remark 3.2. Since volumes of each chromosome Vm = ∫
�

h(φ0
m)dx and heterochromatin vm = ∫

�
h(φ0

m)h(ψ0)dx are con-

stants for t ≥ t0, we have 
N∑

m=1
{(h(φm)h′(ψ), ∂tψ) + (h′(φm)h(ψ), ∂tφm)} = 0 for t ≥ t0. This zero term is critical for construct-

ing energy stable schemes.

Then, a second-order energy stable scheme based on system (3.23)-(3.27) can be constructed as follows.

φn+1
m − φn

m

δt
= −M

( − ε2
φ�φ

n+ 1
2

m

+ Rn+ 1
2 (

δ Ẽ

δφm
)n,� − λ

n+ 1
2

m h′(φn,�
m ) − η

n+ 1
2

m h′(φn,�
m )h(ψn,�)

)
, m = 1, · · · , N, (3.28)

ψn+1 − ψn

δt
= −M

( − ε2
ψ�ψn+ 1

2 + Rn+ 1
2 (

δ Ẽ

δψ
)n,� −

N∑
m=1

η
n+ 1

2
m h(φn,�

m )h′(ψn,�)
)
, (3.29)

∫
�

h(φ0
m)dx =

∫
�

h(φn+1
m )dx, m = 1, · · · , N, (3.30)

∫
�

h(φ0
m)h(ψ0)dx =

∫
�

h(φn+1
m )h(ψn+1)dx, m = 1, · · · , N, (3.31)

Ẽn+1(φn+1
m ,ψn+1, φ0) − Ẽn(φn

m,ψn, φ0) = Rn+ 1
2

N∑
m=1

((
δ Ẽ

δφm
)n,�, φn+1

m − φn
m)

+ Rn+ 1
2 ((

δ Ẽ
)n,�,ψn+1 − ψn) + (h′(φn,�

m ),φn+1
m − φn

m)

δψ

9
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+
N∑

m=1

{(h(φn,�
m )h′(ψn,�),ψn+1 − ψn) + (h′(φn,�

m )h(ψn,�), φn+1
m − φn

m)}. (3.32)

The above scheme is coupled and weakly nonlinear as (3.30)–(3.32) lead to a system of nonlinear algebraic equations for 
the Lagrange multipliers. The scheme can be efficiently solved as follows:

For m = 1, 2, · · · , N , setting

φn+1
m = φn+1

1,m + λ
n+ 1

2
m φn+1

2,m + η
n+ 1

2
m φn+1

3,m + Rn+ 1
2 φn+1

4,m , (3.33)

in (3.28)-(3.29), we find that φn+1
2,m and φn+1

3,m are determined again by (3.8)-(3.9), while φn+1
1,m and φn+1

4,m can be determined 
by

φn+1
1,m − φn

m

δt
= −M(−ε2

φ�φ
n+ 1

2
1,m ); (3.34)

and

φn+1
4,m

δt
= −M(−ε2

φ�φ
n+ 1

2
4,m + (

δ Ẽ

δφm
)n,�). (3.35)

On the other hand, setting

ψn+1 = ψn+1
1 +

N∑
m=1

η
n+ 1

2
m ψn+1

2,m + Rn+ 1
2 ψn+1

3 , (3.36)

in (3.28)-(3.29), we find that ψn+1
2,m is still determined by (3.12), while ψn+1

1 and ψn+1
3 can be determined by

ψn+1
1 − ψn

δt
= −M(−ε2

ψ�ψ
n+ 1

2
1 ); (3.37)

and

ψn+1
3

δt
= −M(−ε2

ψ�ψ
n+ 1

2
3 + (

δ Ẽ

δψ
)n,�). (3.38)

Finally, we plug (3.33) and (3.36) into (3.30)-(3.32) to obtained a coupled nonlinear algebraic system of 2N + 1 equations 

for (λn+ 1
2

m , ηn+ 1
2

m , m = 1, 2, · · · , N) and Rn+ 1
2 . Hence, compared with the scheme (3.2)-(3.5), (3.28)-(3.32) involves a slightly 

more complicated nonlinear algebraic system which may require small time steps to have suitable solutions.
In summary, we can determine φn+1

m and ψn+1 as follows:

• Solve (φn+1
1,m , φn+1

2,m , φn+1
3,m , φn+1

4,m ) and ψn+1
2,m for m = 1, 2, · · · , N from (3.8)-(3.9), (3.12) and (3.34)-(3.35), and solve 

(ψn+1
1 , ψn+1

3 ) from (3.37)-(3.38).

• Solve (λn+ 1
2

m , ηn+ 1
2

m , m = 1, 2, · · · , N) and Rn+ 1
2 from the coupled nonlinear system (3.30)-(3.32).

• Update φn+1
m (m = 1, 2, · · · , N) and ψn+1 from equations (3.33) and (3.36).

Theorem 3.1. Let (φn+1
m , ψn+1, λn+1

m , ηn+1
m , Rn+1) be the solution of (3.28)-(3.32) with (2.12). Then the following energy dissipation 

law is satisfied unconditionally:

En+1 − En

δt
≤ −M(

N∑
m=1

‖φn+1
m − φn

m

δt
‖2 + ‖ψn+1

m − ψn
m

δt
‖2), ∀n ≥ t0/δt (3.39)

where the energy En+1 is defined as

En+1 =
N∑

m=1

ε2
φ

2
‖∇φn+1

m ‖2 + ε2
ψ

2
‖∇ψn+1‖2 + Ẽn+1. (3.40)

Proof. Note that for n ≥ t0/δt , we have Vm(tn) = V̄m and vm(tn) = v̄m .
10
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Taking inner product of equation (3.28) with − 1
M

φn+1
m −φn

m
δt , we obtain

− 1

M
‖φn+1

m − φn
m

δt
‖2 = −ε2

φ(�φ
n+ 1

2
m ,

φn+1
m − φn

m

δt
)

+ (Rn+ 1
2 (

δ Ẽ

δφm
)n,�,

φn+1
m − φn

m

δt
) − λ

n+ 1
2

m (h′(φn,�
m ),

φn+1
m − φn

m

δt
)

− η
n+ 1

2
m (h′(φn,�

m )h(ψn,�),
φn+1

m − φn
m

δt
).

(3.41)

Taking inner product of equation (3.29) with − 1
M

ψn+1−ψn

δt , we derive

− 1

M
‖ψn+1 − ψn

δt
‖2 = −ε2

ψ(�ψn+ 1
2 ,

ψn+1 − ψn

δt
)

+ Rn+ 1
2 ((

δ Ẽ

δψ
)n,�,

ψn+1 − ψn

δt
) −

N∑
m=1

η
n+ 1

2
m (h(φn,�

m )h′(ψn,�),
ψn+1 − ψn

δt
).

(3.42)

On the other hand, we have

(�φ
n+ 1

2
m ,

φn+1
m − φn

m

δt
) = − 1

2δt
(‖∇φn+1

m ‖2 − ‖∇φn
m‖2), (3.43)

and

(�ψn+ 1
2 ,

ψn+1 − ψn

δt
) = − 1

2δt
(‖∇ψn+1‖2 − ‖∇ψn‖2). (3.44)

Summing up equations (3.41) for m = 1, 2, · · · , N and combined with equation (3.43), we obtain

− 1

M

N∑
m=1

‖φn+1
m − φn

m

δt
‖2 − 1

M
‖ψn+1 − ψn

δt
‖2 =

N∑
m=1

{
− ε2

φ(�φ
n+ 1

2
m ,

φn+1
m − φn

m

δt
)

+ (Rn+ 1
2 (

δ Ẽ

δφm
)n,�,

φn+1
m − φn

m

δt
) − λ

n+ 1
2

m (h′(φn,�
m ),

φn+1
m − φn

m

δt
)

− η
n+ 1

2
m (h′(φn,�

m )h(ψn,�),
φn+1

m − φn
m

δt
)
}

− ε2
ψ(�ψn+ 1

2 ,
ψn+1 − ψn

δt
)

+ Rn+ 1
2 ((

δ Ẽ

δψ
)n,�,

ψn+1 − ψn

δt
) −

N∑
m=1

η
n+ 1

2
m (h(φn,�

m )h′(ψn,�),
ψn+1 − ψn

δt
).

(3.45)

Using (3.29), (3.31) and combining (3.41)–(3.44), equation (3.45) reduces to

− 1

M

N∑
m=1

‖φn+1
m − φn

m

δt
‖2 − 1

M
‖ψn+1 − ψn

δt
‖2 =

N∑
m=1

ε2
φ

2δt
(‖∇φn+1

m ‖2 − ‖∇φn
m‖2)

+ ε2
ψ

2δt
(‖∇ψn+1‖2 − ‖∇ψn‖2) + Ẽn+1(φn+1

m ,ψn+1, φ0) − Ẽn(φn
m,ψn, φ0).

(3.46)

Finally, from (3.46) we arrive at the desired result. �
4. Numerical simulations

In this section, we consider the application of nuclear architecture reorganization system (2.7)-(2.10) to model drosophila 
nucleus with 8 chromosomes and human nucleus with 46 chromosomes. We present numerical simulations to explore 
the mechanisms underlying the reorganization process. The default computational domain is � = [−π, π)2 and (2, 2.9) is 
chosen to be the x-diameter and y-diameter of an elliptic nucleus which is located in the center of domain �. We use a 
Fourier spectral method in space with 2562 modes, coupled with the three time discretization schemes presented in the 
last section. When presenting the simulations results, nucleus is depicted in white, chromosome territories in green, and 
heterochromatin in red (see Fig. 4).

First, we test the convergence rate for proposed linear scheme and weakly nonlinear schemes. Then we study the con-
ventional architectures with affinity and without affinity. Finally, we explore the mechanisms underlying the reorganization 
process and the pattern formation of chromatin, e.g., the effect of nucleus size and shape and different phase parameters.
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Fig. 3. Convergence rate of linear scheme (3.17)-(3.20) and weakly nonlinear scheme (3.28)-(3.32) with fixed nucleus.

Fig. 4. The parameters for nuclear reorganization process: β0 = 5
3 , βφ = 8

3 , βψ = 8
3 with γ = 0.02 for positive affinity and γ = 0 for zero affinity. Interface 

parameters are ε2
φ = 0.01, ε2

ψ = 0.05. V̄m = Nuclear Volume
N and v̄m = Vm × 0.23 where m = 8 for drosophila nucleus. Volume growth rate parameters α1 = 1, 

α2 = 10 in (2.12).

4.1. Convergence test

We first test the convergence rate for the linear scheme (3.17)-(3.20) and the weakly nonlinear scheme (3.28)-(3.32)
with fixed nucleus. The phase parameters are set to be ε2

φ = 0.01, ε2
ψ = 0.05, β0 = 5

3 , βφ = 1, βψ = 2
3 and γ = 0. The initial 

condition is chosen as the case of (b) in Fig. 4 with Affinity > 0. The reference solutions are obtained with a very small 
time step δt = 10−6 using the linear scheme (3.17)-(3.20). We plot maxN

m=1 ‖φm − φm,Ref ‖L∞ and ‖ψ − ψRef ‖L∞ in Fig. 3. 
Second order convergence rate is observed for both schemes.
12
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Fig. 5. Evolutions of mean volume of chromosome and heterochromation V̄ (t) =
∑N

i=1 Vm
N , v̄(t) =

∑N
i=1 vm

N with respect to time for nuclear reorganization 
process with affinity γ = 0.02.

4.2. Affinity test and conventional architecture with fixed nucleus

For the convenience of comparing our numerical simulations with the experimental results. In Fig. 6, we depict con-
ventional architecture and inverted architecture from [31]. Red parts are heterochromatin regions and green parts are 
euchromatin regions.

We now demonstrate the conventional architecture for drosophila nucleus with 8 chromosomes. The initial condition 
is given in Fig. 4 where an elliptic nucleus are generated by function φ0(x, y) = 1

2 (1 − tanh(

√
x2+y2/1.452−2√

2ε
)). The 8 chro-

mosomes are initialized by tanh-like functions: 1
2 [1 − tanh( r√

2ε
)] with centers at (0, 2.5), (−1, 1.4), (−0.3, −0.5), (1, −1),

(0, 0.6), (1, 1.3), (0, −2.5), (−1, −0.8). The x-diameter and y-diameter are (0.2, 0.4) for each elliptic nucleus. A smaller el-
lipse with x-diameter and y-diameter as (0.05, 0.1) in each chromosome is set to be heterochromatin territory. The affinity 
between heterochromatin and the nuclear envelope is controlled by the parameter γ . A positive affinity value indicates a 
tethering of heterochromatin to LBR or lamin A/C on the nuclear envelope. To demonstrate that the conventional architec-
ture is obtained with the positive affinity, we choose γ = 0.02 and γ = 0 and plot in Fig. 4 numerical results by using 
the weakly nonlinear scheme (3.2)-(3.5). We observe from Fig. 4 that heterochromatin domains are fused with adjacent 
heterochromatin. When affinity = 0 heterochromatin accumulates at the territories between chromosomes. But there is no 
interaction with the region of the nuclear envelope. With a positive affinity, heterochromatin is observed to be distributed 
almost homogeneously along the nuclear envelope, indicating the formation of the conventional architecture. Our numerical 
simulations indicate that the affinity plays important roles in forming the conventional architecture, and that the expression 
of LBR and lamin A/C is essential to generate the conventional architecture. These numerical results are consistent with the 
experiment results in [31], see Fig. 6.

In Fig. 5, we plot the dynamics of mean volume of chromosome V̄ (t) =
∑N

i=1 Vm
N and heterochromatin v̄(t) =

∑N
i=1 vm

N . 
From Fig. 5, the volumes of chromosome and heterochromain are well preserved by using our weakly nonlinear schemes 
(3.2)-(3.5).

4.3. Inverted architecture and reorganization process

In this subsection, we study the architecture reorganization process with fixed nucleus. First, we examine whether the 
increase of heterochromatin conversion rate and the absence of affinity between the nuclear envelope and heterochromatin 
are necessary for the induction of the single hetero-cluster in the inverted architecture. We fix the heterochromatin con-
version rate ρm = vm

Vm
for m = 1, 2, · · · , N , and set γ = 0. From the first row of Fig. 7, it is observed that affinity between 

heterochromatin and nuclear envelope vanishes gradually. Finally, four clusters of heterochromatin are formed at t = 50
13
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Fig. 6. Rod nuclear architecture: experimental observations from [31]. Red represents heterochromatin, blue represents euchromatin.

when the conversion rates are fixed for all m. We then examine the case with an increasing conversion rate ρm(t) described 
by

ρm(t) = ρm(0) + ρ̄mt

t + α1e−α2t
, (4.1)

where α1 = 150 and α2 = 0.3. In our simulations, we set the increased conversion rate to be ρ̄m = {(0.35, 0.4, 0.4, 0.35, 0.15,

0.15, 0.35, 0.35)} and ρ̄m = {(0.35, 0.4, 0.4, 0.45, 0.15, 0.15, 0.35, 0.45)} for the second and third rows in Fig. 7, and set the 
affinity parameter to be γ = 0. We observe from the second and third rows of Fig. 7 that a single cluster of heterochromatin 
is formed which implies the inverted architecture. Next we keep the affinity between the nuclear and the nuclear envelope 
unchanged at γ = 0.02, and increase the conversion rate ρm for m = 1, 2, · · · , N . We observe from the fourth row of Fig. 7
that the affinity between nuclear envelope and heterochromatin are present all the time, and the heterochromatin grows on 
each chromosome territory gradually during architecture reorganization process.

The numerical simulations from Fig. 7 indicate that increase of heterochromatin conversion rate and the absence of 
affinity between nuclear envelope and heterochromatin are sufficient for the formation of the inverted architecture during 
the nuclear architecture reorganization process, which are with the previous results in [24]. We plot the evolution of energy 
in Fig. 8 for the examples (a)-(d) in Fig. 7. We observe from Fig. 8 that the total energy decays monotonically which is 
consistent with the theoretical result.

4.4. Reduced nuclear size and the reorganization process

In this subsection, we focus on the architecture reorganization process with reduced nuclear shape, and assess whether 
the nuclear shape is an indispensable condition for the induction of a single cluster inverted architecture.

We introduce two sigmoid functions to describe the x-radius and y-radius of nuclear shape.

rx(t) = rx(0) + r̄xt

t + α1e−α2t
; ry(t) = ry(0) + r̄ yt

t + α3e−α4t
, (4.2)

where r̄x and r̄ y are the decreasing rate of nuclear size and α1, α2, α3 and α4 are four positive constants which controls 
the decreasing scale with respect to time. We consider that the nucleus shape will decrease to be a circular or an elliptical 
shape with time evolution, and investigate how the nuclear size and shape influence the nuclear architecture reorganization 
process. The parameters of decreasing scale are α1 = α3 = 1 and α2 = α4 = 0.01. Numerical results are computed by the 
linear scheme (3.28)-(3.32) with δt = 10−4. We also increase the volume of each chromosome Vm and volume of hete-
rochromatin in each chromosome vm with time. Snapshots at t = 0, 0.05, 1, 5 are depicted for different nuclear pattern in 
14
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Fig. 7. The parameters for nuclear reorganization process: β0 = 5
3 , βφ = 1, βψ = 2

3 with γ = 0 for zero affinity. Interface parameters are ε2
φ = 0.001 and 

ε2
ψ = 0.005. V̄m = Nuclear Volume

N and v̄m = Vm × 0.23 where m = 8 and time step δt = 10−2 with fixed nucleus.

Fig. 9. It is observed from Fig. 9 that both circular or elliptical shape will eventually achieve the one cluster inverted archi-
tecture, similar to the experimental observations in Fig. 6. The second row of Fig. 9 displays chromosome territories of the 
first row. So the nuclear size or shape are not indispensable condition for the nuclear architecture reorganization process.

4.5. Inverted architecture reorganization for human beings

In the previous subsections, we only considered 8 chromosomes for drosophila, and find that the deformation of nuclear 
size and shape are not sufficient conditions for the nuclear architecture conversion. The absence of both LBR and lamin 
A/C expression γ = 0 and the increase of heterochromatin rate are indispensable for inverted nuclear architecture. Now we 
explore the nuclear architecture with 46 chromosomes for human beings. We also compute the numerical results by using 
the linear scheme (3.17)-(3.20) with δt = 10−3 and examine the effect of affinity in Fig. 10. It is observed from Fig. 10 that 
heterochromatin is shown to be distributed along the nuclear envelope with γ = 0.02 with 46 chromosome. However the 
15
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Fig. 8. Evolution of total energy with respective to time for nuclear reorganization process (a)-(d) in Fig. 7.

Fig. 9. Decreased Nucleus with parameters (β0, βφ, βψ ) = ( 50
3 , 50, 50

3 ). Interface width are ε2
φ = 0.01 and ε2

ψ = 0.05. V̄m = Nuclear volume/m and v̄m =
Vm × [0.23], where m = 8.

heterochromatin accumulates at the territories between chromosome instead of in the region of nuclear envelope with γ =
0. In Fig. 11, we decrease nuclear shape and eliminate the affinity of nuclear envelope, while increasing the heterochromatin 
conversion rate, and we observe that one cluster inverted architecture is formed at t = 2 which can be observed from 
experimental results for other mammalian species in Fig. 6.
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Fig. 10. Fixed Nucleus with parameters (β0, βφ,βψ ) = ( 5
3 ,1, 2

3 ) and γ = (0,0.02) where m = 46. Interface width ε2
φ = 0.01 and ε2

ψ = 0.01.

Fig. 11. Decreased nucleus with parameters (β0, βφ,βψ ) = ( 5
3 ,1, 2

3 ) and γ = 0 where m = 46. Interface width ε2
φ = 0.01 and ε2

ψ = 0.01.

5. Concluding remarks

Specific features of nuclear architecture are closely related to the functional organization of the nucleus. Within nucleus, 
chromatin consists of two forms, heterochromatin and euchromatin. The conventional nuclear architecture is observed when 
heterochromatin is enriched at nuclear periphery, and it represents the primary structure in the majority of eukaryotic cells, 
including the rod cells of diurnal mammals. In contrast to this, the inverted nuclear architecture is observed when the 
heterochromatin is distributed at the center of the nucleus, which occurs in the rod cells of nocturnal mammals. The 
conventional architecture can transform into the inverted architecture during nuclear reorganization process.

We developed in this paper a new phase field model with Lagrange multipliers to simulate the nuclear architecture reor-
ganization process. Introducing Lagrange multipliers enables us to preserve the specific physical and geometrical constraints 
for the biological events. We developed several efficient time discretization schemes for the constrained gradient system. 
One is a full linear scheme which can only preserve volume constrains with second order accuracy, but it is very easy to 
solve. The other two are weakly nonlinear scheme which can exactly preserve non-local constraints, and one of them is also 
unconditionally energy stable. The price we pay for the exact preservation of geometric constraints is that we need to solve 
a nonlinear algebraic system for the Lagrange multipliers, which can be solved at negligible cost but may require the time 
step to be sufficiently small. These time discretization schemes can be used with any consistent Galerkin type discretization 
in space.

We presented several simulations using our proposed schemes for drosophila and human beings with 8 chromosomes 
and 46 chromosomes. Our results indicate that the increase of heterochromatin conversion rate and the absence of affinity 
between nuclear envelope and heterochromatin are sufficient for the formation of the inverted architecture during the 
nuclear architecture reorganization process, while nuclear size and shape are not indispensable for the formation of the 
single hetero-cluster inverted architecture.
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