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Abstract Numerical approximations of Cahn-Hilliard phase-field model for the two-phase
incompressible flows are considered in this paper. Several efficient and energy stable time
discretization schemes for the coupled nonlinear Cahn-Hilliard phase-field system for both
the matched density case and the variable density case are constructed, and are shown to
satisfy discrete energy laws which are analogous to the continuous energy laws.
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1 Introduction

The phase-field approach for multi-phase incompressible flows have attracted much attention
recently (cf. [11, 2, 16, 12, 15, 26] and the references therein). Since the phase-field (or diffusive
interface) model can be considered as an approximation to the sharp interface model, one
can use the gradient flow based on either the conserved Cahn-Hilliard dynamics (cf. [5]) or
the Allen-Cahn dynamics (cf. [1]) with a non-local Lagrange multiplier, leading to the Cahn-
Hilliard phase-field model and Allen-Cahn phase-field model, respectively. Both models, at
least in the matched density case, can be derived from an energetic variational approach. Thus,
they admit an energy law, making it possible to design numerical schemes which satisfy a
corresponding discrete energy law that automatically ensures their numerical stability (cf., for
instance, [7, 14, 3, 25]).

However, most of the analysis and simulation of the phase-field model for two-phase flows
have been restricted to the matched density case or with a Boussinesq approximation. The main
difficulty for two-phase flows with different density is that the standard phase-field model with
variable density does not admit an energy law, making it difficult to carry out mathematical
and numerical analysis. In a recent work (cf. [23]), the authors proposed a phase-field model
with variable density which admits an energy law, and constructed efficient and simple energy
stable time discretization schemes for the corresponding Allen-Cahn phase-field model.
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The main objective of this paper is to construct efficient and simple energy stable time dis-
cretization schemes for the Cahn-Hilliard phase-field model with matched density and variable
density. The main additional theoretical and numerical difficulty associated with the Cahn-
Hilliard model, as opposed to the Allen-Cahn model, is that the fourth-order spatial derivatives
are involved in the Cahn-Hilliard equation for the phase function. By using a mixed formu-
lation for the fourth-order Cahn-Hilliard phase equation and using the chemical potential to
reformulate the surface tension term in the momentum equation, we are able to extend the
results presented in [23] for the Allen-Cahn phase-field model to the Cahn-Hilliard phase-field
model.

The rest of the paper is organized as follows. In the next section, we present the Cahn-
Hilliard phase-field model for two-phase incompressible flows with matched density and variable
density. Then, in Section 3, we construct several efficient time discretization schemes for both
matched density and variable density cases, and show that they are unconditionally energy
stable. Some numerical results and discussions are presented in the last section.

2 Cahn-Hilliard Phase-Field Model

We consider a mixture of two immiscible, incompressible fluids in a confined domain Ω with
densities ρ1, ρ2 and viscosities μ1, μ2, respectively. To fix the idea, we assume 0 < ρ1 ≤ ρ2

and viscosities 0 < μ1 ≤ μ2. In order to identify the regions occupied by the two fluids, we
introduce a phase function φ such that

φ(x, t) =

{
1 fluid 1,
−1 fluid 2

(2.1)

with a thin smooth transition layer of thickness η connecting the two fluids so the interface
of the mixture can be described by Γt = {x : φ(x, t) = 0}. Let F (φ) = 1

4η2 (φ2 − 1)2 be the
Ginzburg-Landau double-well potential. Define the mixing energy functional as

W (φ,∇φ) =
∫

Ω

(1
2
|∇φ|2 + F (φ)

)
dx, (2.2)

which represents the competition between the hydro-philic and hydro-phobic properties of the
two-phase flow. We can then determine the dynamics of the phase function φ by the following
Cahn-Hilliard gradient flow (cf. [5, 11, 2, 16, 12, 15]):

φt + (u · ∇)φ + γΔw = 0,

w =
δW

δφ
= Δφ− f(φ),

(2.3)

where w is the so called chemical potential and γ is a mobility constant related to the relaxation
time scale and f(φ) = F ′(φ).

On the other hand, the momentum equation for the two-phase system takes the usual form:

ρ(ut + (u · ∇)u) = ∇ · τ, (2.4)

where the total stress τ = μD(u) − pI + τe with D(u) = ∇u+ ∇uT and τe is the extra elastic
stress induced by the interfacial surface tension. It can be shown, using the least-action-principle
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and the mixing energy functional defined above, that the momentum equation becomes:

ρ(ut + (u · ∇)u) = ∇ · (μD(u) − pI − λ(∇φ⊗∇φ)), (2.5)

where λ is the mixing energy density.
In the above, ρ and μ are slave variables defined by the linear average

ρ(φ) =
ρ1 − ρ2

2
φ+

ρ1 + ρ2

2
, μ(φ) =

μ1 − μ2

2
φ+

μ1 + μ2

2
. (2.6)

To fix the idea, we consider the boundary conditions

u|∂Ω = 0,
∂φ

∂n

∣∣∣
∂Ω

= 0,
∂w

∂n

∣∣∣
∂Ω

= 0. (2.7)

Hence, the Cahn-Hilliard phase equation (2.3) and the momentum equations (2.5) with the
boundary condition (2.7), together with the incompressibility constraint

∇ · u = 0, (2.8)

form a complete system for (u, p, φ, w) with ρ and μ given by (2.6).
In the case of matched density, namely ρ1 = ρ2 = ρ, it is well-known that the Cahn-Hilliard

phase-field system (2.3)-(2.8)-(2.5) admits the following energy law (cf., for instance, [15]):

d
dt

∫
Ω

(1
2
ρ|u|2 +

λ

2
|∇φ|2 + λF (φ)

)
dx = −

∫
Ω

(μ
2
|D(u)|2 + λγ|∇w|2

)
dx. (2.9)

However, for the case of variable density, namely, ρ1 �= ρ2, the above no longer holds. Therefore,
it is proposed in [23] to replace (2.5) by the modified momentum equation

σ(σu)t + (ρu · ∇)u+
1
2
∇ · (ρu)u−∇ · μD(u) + ∇p+ λ∇ · (∇φ⊗∇φ) = 0, (2.10)

where σ =
√
ρ. Note that (2.5) and (2.10) are identical if we assume that the density ρ satisfies

the mass conservation

ρt + ∇ · (ρu) = 0, (2.11)

which is obviously true if ρ is a constant, but do not necessarily hold near the interface if ρ1 �= ρ2

and ρ is determined by (2.6).
The main advantage of the new formulation is that the modified Cahn-Hilliard phase-field

system (2.3)-(2.8)-(2.10) now admits the following energy law (cf. [23]):

d
dt

∫
Ω

(1
2
|σu|2 +

λ

2
|∇φ|2 + λF (φ)

)
dx = −

∫
Ω

(μ
2
|D(u)|2 + λγ|∇w|2

)
dx. (2.12)

3 Energy Stable Time Discretizations and Their Stability Analysis

In this section, we study time discretizations of the new phase-field model introduced in the
last section. The goal is to construct time discretization schemes which satisfy a discrete energy
law similar to the continuous cases (2.9) and (2.12) and are easy to solve in practice.

In [23], we have studied a phase-field model with the Allen-Cahn phase equation instead
of the Cahn-Hilliard phase equation in (2.3), and constructed several energy stable numerical
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schemes. In this paper, we shall consider the time discretization of the Cahn-Hilliard phase-field
system with matched density (2.3)-(2.8)-(2.5) and with different density (2.3)-(2.8)-(2.10).

Let us first reformulate these systems into equivalent forms which are more convenient for
numerical approximation.

While the Cahn-Hilliard equation does not satisfy the maximum principle, it has been shown
in [4] that for a truncated potential F (φ) with quadratic growth at infinities, the maximum norm
of the solution for the Cahn-Hilliard equation is bounded. Therefore, it has been a common
practice to consider the Cahn-Hilliard equation with a truncated double-well potential F (φ)
(cf. [13, 6]). Since we expect that φ takes value in the interval [−1, 1], we can replace F (φ) by

F (φ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
η2

(φ− 1)2, φ > 1,

1
4η2

(φ2 − 1)2, φ ∈ [−1, 1],

1
η2

(φ+ 1)2, φ < −1.

(3.1)

Then, setting f(φ) = F ′(φ), we have

max
φ∈R

|f ′(φ)| ≤ 2
η2
. (3.2)

Accordingly, we set

φ̂ =

{
φ, |φ| ≤ 1,
sign(φ), |φ| > 1,

(3.3)

and use it to update the variable density and viscosity by

ρ(φ) =
ρ1 − ρ2

2
φ̂+

ρ1 + ρ2

2
, μ(φ) =

μ1 − μ2

2
φ̂+

μ1 + μ2

2
. (3.4)

It is clear that ρ and μ as defined above are such that 0 < ρ1 ≤ ρ(φ) ≤ ρ2 and 0 < μ1 ≤ μ(φ) ≤
μ2.

Next, we use the identity

∇ · (∇φ⊗∇φ) = Δφ∇φ +
1
2
∇|∇φ|2, (3.5)

and to derive

∇p+ λ∇ · (∇φ⊗∇φ) = ∇
(
p+

1
2
λ|∇φ|2 + λF (φ)

)
+ λw∇φ. (3.6)

Therefore, if we define the modified pressure as p̃ = p + 1
2λ|∇φ|2 + λF (φ) and still denote it

by p for simplicity, we can rewrite the system (2.3)-(2.8)-(2.5) for the matched density case
(assuming ρ1 = ρ2 = 1 for simplicity) as

φt + u · ∇φ+ γΔw = 0, (3.7a)

w − Δφ+ f(φ) = 0, (3.7b)

ut + (u · ∇)u −∇ · μD(u) + ∇p+ λw∇φ = 0, (3.7c)

∇ · u = 0, (3.7d)
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with μ given by (3.4). Similarly, the system (2.3)–(2.8)–(2.10) for the variable density case can
be rewritten as

φt + u · ∇φ = −γΔw, (3.8a)

w = Δφ− f(φ), (3.8b)

σ(σu)t + (ρu · ∇)u+
1
2
∇ · (ρu)u−∇ · μD(u) + ∇p+ λw∇φ = 0, (3.8c)

∇ · u = 0, (3.8d)

where σ =
√
ρ with ρ and μ are given by (3.4).

In this section, we design numerical algorithms which admit an energy law and overcome
three main difficulties associated with this coupled nonlinear system, namely, (i) the nonlinear
coupling of the velocity, pressure and the phase function; (ii) the stiffness associated with the
interfacial width η; (iii) the pressure solver with large density ratio.

3.1 The case of matched density

In this case, it is relatively easy to construct an efficient, energy stable scheme. The following
is a first-order scheme for the system (3.7) based on the pressure-correction projection method
(cf. [8, 22]) with a stabilized treatment for the Cahn-Hilliard phase equation (cf. [24]).

Given initial conditions u0 and φ0, we compute (φn+1, wn+1, ũn+1, un+1, pn+1) for n ≥ 0 by

1
δt

(φn+1 − φn) + (ũn+1 · ∇)φn + γΔwn+1 = 0, (3.9a)

wn+1 +
1
η2

(φn+1 − φn) − Δφn+1 + f(φn) = 0, (3.9b)

∂nφ
n+1|∂Ω = 0, ∂nw

n+1|∂Ω = 0; (3.9c)

⎧⎨⎩
ũn+1 − un

δt
+ (un · ∇)ũn+1 −∇ · μnD(ũn+1) + ∇pn + λwn+1∇φn = 0,

ũn+1|∂Ω = 0
(3.9d)

with μn = μ1−μ2
2 φ̂n + μ1+μ2

2 ; and⎧⎪⎪⎪⎨⎪⎪⎪⎩
un+1 − ũn+1

δt
+ ∇(pn+1 − pn) = 0,

∇ · un+1 = 0,
n · un+1|∂Ω = 0.

(3.9e)

Remark 3.1 As in [24], a stabilizing term 1
η2 (φn+1 − φn) is introduced in the second

equation of (3.9a). This term introduces an additional consistency error of order γδt
η2 φ

′(ξ)
which is of the same order as the error introduced by the explicit treatment of f(φ).

It is also clear that a second-order version can be easily constructed.

Remark 3.2 At each time step, the above scheme involves a weakly coupled linear system
for (φn+1, wn+1, ũn+1). In fact, if we replace ũn+1 by ũn in (3.9a), then (φn+1, wn+1) and ũn+1

are decoupled and can be obtained separately by solving two elliptic equations/systems.
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We show below that the above scheme admits a discrete energy law.

Theorem 3.1 The scheme (3.9) is unconditionally stable and satisfies the following discrete
energy law:

‖un+1‖2
L2 + δt2‖∇pn+1‖2

L2 + λ‖∇φn+1‖2
L2 + 2λ(F (φn+1), 1) + μ1δt‖D(ũn+1)‖2

L2

≤ ‖un‖2
L2 + δt2‖∇pn‖2

L2 + λ‖∇φn‖2
L2 + 2λ(F (φn), 1).

Proof First of all, notice that

2δt(μnD(ũn+1),∇ũn+1) = δt‖√μnD(ũn+1)‖2
L2 ≥ μ1δt‖D(ũn+1)‖2

L2 . (3.10)

Hence, taking the inner product of (3.9d) with 2δtũn+1, we derive

‖ũn+1‖2
L2 − ‖un‖2

L2 + ‖ũn+1 − un‖2
L2 + μ1δt‖D(ũn+1)‖2

L2

+ 2λδt(wn+1∇φn, ũn+1) ≤ 0. (3.11)

Taking the inner product of (3.9e) with 2δt∇pn, we obtain

δt2(‖∇pn+1‖2
L2 − ‖∇pn‖2

L2 − ‖∇pn+1 −∇pn‖2
L2) = 2δt(ũn+1,∇pn). (3.12)

On the other hand, we derive from (3.9e) that

δt2‖∇pn+1 −∇pn‖2
L2 = ‖ũn+1 − un+1‖2

L2, (3.13)

and

‖un+1‖2
L2 + ‖un+1 − ũn+1‖2

L2 = ‖ũn+1‖2
L2 . (3.14)

Combining the above inequalities, we find

‖un+1‖2
L2 − ‖un‖2

L2 + ‖ũn+1 − un‖2
L2 + μ1δt‖D(ũn+1)‖2

L2

+ δt2(‖∇pn+1‖2
L2 − ‖∇pn‖2

L2) + 2λδt(wn+1∇φn, ũn+1) ≤ 0. (3.15)

Next, taking the inner product of (3.9a) with −2λδtwn+1, we have

−2λ(φn+1 − φn, wn+1) − 2λδt(ũn+1∇φn, wn+1) + 2λγδt‖∇wn+1‖2
L2 = 0, (3.16)

and taking the inner product of (3.9b) with 2λ(φn+1 − φn),

2λ(wn+1, φn+1 − φn) +
2λ
η2

‖φn+1 − φn‖2
L2

+ λ(‖∇φn+1‖2
L2 − ‖∇φn‖2

L2 + ‖∇φn+1 −∇φn‖2
L2) + 2λ(f(φn), φn+1 − φn) = 0. (3.17)

For the last term in (3.17), we use the Taylor expansion

F (φn+1) − F (φn) = f(φn)(φn+1 − φn) +
f ′(ξn)

2
(φn+1 − φn)2. (3.18)
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Combining (3.15), (3.16), (3.17) and (3.18), we obtain

‖un+1‖2
L2 − ‖un‖2

L2 + ‖ũn+1 − un‖2
L2 + μ1δt‖D(ũn+1)‖2

L2

+ δt2(‖∇pn+1‖2
L2 − ‖∇pn‖2

L2) + 2λγδt‖∇wn+1‖2
L2 +

2λ
η2

‖φn+1 − φn‖2
L2

+ λ(‖∇φn+1‖2
L2 − ‖∇φn‖2

L2 + ‖∇φn+1 −∇φn‖2
L2 + 2λ(F (φn+1) − F (φn), 1)

≤ λ(f ′(ξn)(φn+1 − φn), φn+1 − φn) ≤ 2λ
η2

‖φn+1 − φn‖2
L2.

We can then conclude from the above inequality.

3.2 The case of variable density

In this case, there are at least two additional difficulties when compared with the matched
density case. First, it is not easy to construct a second-order scheme based on a pressure-
correction formulation (cf. [9]). Second, the subsystem to determine a pressure approximation
if often an elliptic equation with 1

ρ as variable coefficient, making it difficult to solve when the
density ratio is large.

We shall first construct first and second-order schemes based on a gauge-Uzawa formulation
(cf. [17, 19, 24]). These schemes require solving a pressure elliptic equation with 1

ρ as variable
coefficient. Then, we construct schemes based on a pressure-stabilized formulation (cf. [20, 22,
8, 10]) which only require solving a pressure Poisson equation.

3.2.1 Schemes based on a gauge-Uzawa formulation

We construct below a first-order gauge-Uzawa scheme for the phase-field model (3.8).
Given initial conditions φ0, s0 = 0, u0. We compute (φn+1, ũn+1, un+1, sn+1) for n ≥ 0 by

1
δt

(φn+1 − φn) + (ũn+1 · ∇)φn + γΔwn+1 = 0,

wn+1 +
1
η2

(φn+1 − φn) − Δφn+1 + f(φn) = 0,

∂nφ
n+1|∂Ω = 0, ∂nw

n+1|∂Ω = 0;

(3.19a)

σn+1σ
n+1ũn+1 − σnun

δt
+ ρn(un · ∇)ũn+1 +

1
2
(∇ · (ρnun))ũn+1

−∇ · μn+1D(ũn+1) + μ1∇sn + λwn+1∇φn = 0,

ũn+1|∂Ω = 0

(3.19b)

with

ρn+1 =
ρ1 − ρ2

2
φ̂n+1 +

ρ1 + ρ2

2
, μn+1 =

μ1 − μ2

2
φ̂n+1 +

μ1 + μ2

2
, σn+1 =

√
ρn+1;

and

−∇ ·
( 1
ρn+1

∇ψn+1
)

= ∇ · ũn+1,

∂nψ
n+1|∂Ω = 0;

(3.19c)
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un+1 = ũn+1 +
1

ρn+1
∇ψn+1, (3.19d)

sn+1 = sn −∇ · ũn+1. (3.19e)

Remark 3.3 In the above scheme, sn is the so called gauge variable, and a proper pressure
approximation is [19]:

pn+1 = −ψ
n+1

δt
+ μ1s

n+1. (3.20)

Remark 3.4 Similar to (3.9), the above scheme involves a weakly coupled system for
(φn+1, wn+1, ũn+1) and an elliptic equation with density as variable coefficient for the pseudo-
pressure “ψn+1”.

We have the following result for the scheme (3.19).

Theorem 3.2 The scheme (3.19) is unconditionally stable and satisfies the following dis-
crete energy law:

‖σn+1ũn+1‖2
L2 + μ1δt‖sn+1‖2

L2 + λ‖∇φn+1‖2
L2 + 2λ(F (φn+1), 1)

+ δt(2λγ‖∇wn+1‖2
L2 + μ1‖∇ũn+1‖2

L2)

≤ ‖σnũn‖2
L2 + μ1δt‖sn‖2

L2 + λ‖∇φn‖2
L2 + 2λ(F (φn), 1).

Proof Taking the inner product of (3.19b) with 2δtũn+1, using (3.10), we obtain

‖σn+1ũn+1‖2
L2 − ‖σnun‖2

L2 + ‖σn+1ũn+1 − σnun‖2
L2 + μ1δt‖D(ũn+1)‖2

L2

+ 2μ1δt(∇sn, ũn+1) + 2λδt(wn+1∇φn, ũn+1) ≤ 0. (3.21)

Using (3.19d) and (3.19e), we obtain

(σnun, σnun) = (ρnun, un) =
(
ρn

(
ũn +

1
ρn

∇ψn
)
, un

)
= (ρnũn, un)

=
(
ρnũn, ũn +

1
ρn

∇ψn
)

= ‖σnũn‖2
L2 +

(
un − 1

ρn
∇ψn,∇ψn

)
= ‖σnũn‖2

L2 −
∥∥∥ 1
σn

∥∥∥2

L2
, (3.22)

and

2μ1δt(∇sn, ũn+1) = 2μ1δt(sn,−∇ · ũn+1) = 2μ1δt(sn, sn+1 − sn)

= μ1δt(‖sn+1‖2
L2 − ‖sn‖2

L2 − ‖sn+1 − sn‖2
L2)

= μ1δt(‖sn+1‖2
L2 − ‖sn‖2

L2) − μ1δt‖∇ · ũn+1‖2
L2. (3.23)

It is easy to check by integration by parts that

‖D(u)‖2
L2 = ‖∇u‖2

L2 + ‖∇ · u‖2
L2, ∀u ∈ H1

0 (Ω)d. (3.24)

Hence, we have

μ1‖∇ · ũn+1‖2
L2 + μ1‖∇ũn+1‖2

L2 = ‖√μ1D(ũn+1)‖2
L2 ≤ ‖

√
μn+1D(ũn+1)‖2

L2 . (3.25)
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Combining the above inequalities, we find

‖σn+1ũn+1‖2
L2 − ‖σnũn‖2

L2 +
∥∥∥ 1
σn

∥∥∥2

L2
+ ‖σn+1ũn+1 − σnun‖2

L2

+ μ1δt(‖sn+1‖2
L2 − ‖sn‖2

L2) + δtμ1‖∇ũn+1‖2
L2 + 2λδt(wn+1∇φn, ũn+1) ≤ 0.

Taking the inner product of (3.19a) with −2λδtwn+1, (3.19b) with 2λ(φn+1 − φn) and using
the same procedure as in the proof of Theorem 3.1, we obtain

‖σn+1ũn+1‖2
L2 − ‖σnũn‖2

L2 +
∥∥∥ 1
σn

∇ψn
∥∥∥2

+ ‖σn+1ũn+1 − σnun‖2
L2 + δtμ1‖∇ũn+1‖2

L2

+ μ1δt(‖sn+1‖2
L2 − ‖sn‖2

L2) + 2λδtγ‖∇wn+1‖2
L2

+ λ(‖∇φn+1‖2
L2 − ‖∇φn‖2

L2 + ‖∇φn+1 −∇φn‖2
L2)

+ 2λ(F (φn+1) − F (φn), 1) ≤ 0.

We can then conclude from the above inequality.

Remark 3.5 A formally second-order scheme can be constructed by combining the second-
order scheme in [19] and the approach for the phase equation in (3.19) as follows:

For the sake of simplicity, we shall denote, for any sequence {ak}, a∗,k+1 = 2ak − ak−1.

3φn+1 − 4φn + φn−1

2δt
+ (ũn+1 · ∇)φ∗,n+1 + γΔwn+1 = 0,

wn+1 +
1
η2

(φn+1 − 2φn + φn−1) − Δφn+1 + 2f(φn) − f(φn−1) = 0,

∂nφ
n+1|∂Ω = 0, ∂nw

n+1|∂Ω = 0;

(3.26a)

ρn+1 3ũn+1 − 4un + un−1

2δt
+ ρn+1(u∗,n+1 · ∇)ũn+1 +

1
2
(∇ · (ρn+1u∗,n+1))ũn+1

−∇ · μn+1D(ũn+1) + ∇pn + μ1∇sn + λwn+1∇φn = 0,

ũn+1|∂Ω = 0

(3.26b)

with

ρn+1 =
ρ1 − ρ2

2
φ̂n+1 +

ρ1 + ρ2

2
, μn+1 =

μ1 − μ2

2
φ̂n+1 +

μ1 + μ2

2
;

−∇ ·
( 1
ρn+1

∇ψn+1
)

= ∇ · ũn+1

∂nψ
n+1|∂Ω = 0;

(3.26c)

and

un+1 = ũn+1 +
1

ρn+1
∇ψn+1,

sn+1 = sn −∇ · ũn+1,

pn+1 = pn − 3
2δt

ψn+1 + μsn+1.

(3.26d)
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3.2.2 Schemes based on a pressure-stabilization formulation

We now construct schemes based on the pressure-stabilization formulation (cf., for instance,
[20, 22, 18, 8]), namely, the divergence free condition is replaced by

∇ · u− δΔpt = 0, (3.27)

where δ is a small parameter.
Inspired by the schemes presented in [10, 23], we propose the following first-order scheme.
Given initial conditions φ0, p0 = 0, u0. We compute (φn+1, un+1, pn+1) for n ≥ 0 by

φn+1 − φn

δt
+ (un+1 · ∇)φn + γΔwn+1 = 0, (3.28a)

wn+1 +
1
η2

(φn+1 − φn) − Δφn+1 + f(φn) = 0, (3.28b)

∂nφ
n+1|∂Ω = 0, ∂nw

n+1|∂Ω = 0; (3.28c)

and
1
2 (ρn+1 + ρn)un+1 − ρnun

δt
+ ρn(un · ∇)un+1 +

1
2
(∇ · (ρnun))un+1

−∇ · μn+1D(un+1) + ∇(2pn − pn−1) + λwn+1∇φn = 0,

un+1|∂Ω = 0

(3.28d)

with

ρn+1 =
ρ1 − ρ2

2
φ̂n+1 +

ρ1 + ρ2

2
, μn+1 =

μ1 − μ2

2
φ̂n+1 +

μ1 + μ2

2
;

and

Δ(pn+1 − pn) =
ρ1

δt
∇ · un+1,

∂np
n+1|∂Ω = 0.

(3.28e)

Remark 3.6 The above scheme involves a weakly coupled system for (φn+1, wn+1, un+1)
and a Poisson equation for the pressure increment. So this scheme is computationally more
efficient than (3.19), particularly when the density ratio is large. On the other hand, the above
scheme does not lead to a divergence-free approximation while (3.19) does.

Theorem 3.3 The scheme (3.28) is unconditionally stable and satisfies the following dis-
crete energy law:

‖σn+1un+1‖2
L2 +

δt2

ρ1
‖∇pn+1‖2

L2 + λ‖∇φn+1‖2
L2 + 2λ(F (φn+1), 1)

+ δt(2λγ‖∇wn+1‖2
L2 + ‖

√
μn+1D(un+1)‖2

L2)

≤ ‖σnun‖2
L2 +

δt2

ρ1
‖∇pn‖2

L2 + λ‖∇φn‖2
L2 + 2λ(F (φn), 1).

Proof Taking the inner product of (3.28d) with 2δtun+1, using the identity(1
2
(ρn+1 + ρn)un+1 − ρnun, 2un+1

)
= ‖σn+1un+1‖2

L2 − ‖σnun‖2
L2

+ ‖σn(un+1 − un)‖2
L2 (3.29)
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and (3.10), we derive

‖σn+1un+1‖2
L2 − ‖σnun‖2

L2 + ‖σn(un+1 − un)‖2
L2 + δt‖

√
μn+1D(un+1)‖2

L2

+ 2δt(pn+1 − 2pn + pn−1,∇ · un+1)

− 2δt(pn+1,∇ · un+1) + 2λδt(wn+1∇φn, un+1) = 0. (3.30)

Taking the inner product of (3.28e) with 2δt2

ρ1
(pn+1−2pn+pn−1) and with − 2δt2

ρ1
pn+1 separately,

we obtain

− δt2

ρ1
(‖∇(pn+1 − pn)‖2

L2 − ‖∇(pn − pn−1)‖2
L2 + ‖∇(pn+1 − 2pn + pn−1)‖2

L2)

= 2δt(∇ · un+1, pn+1 − 2pn + pn−1), (3.31)

and

δt2

ρ1
(‖∇pn+1‖2

L2 − ‖∇pn‖2
L2 + ‖∇(pn+1 − pn‖2

L2) = −2δt(∇ · un+1, pn+1). (3.32)

Adding the above two equalities together, we have

2δt(pn+1 − 2pn + pn−1,∇ · un+1) − 2δt(pn+1,∇ · un+1)

=
δt2

ρ1
(‖∇pn+1‖2

L2 − ‖∇pn‖2
L2) +

δt2

ρ1
‖∇(pn − pn−1)‖2

L2

− δt2

ρ1
‖∇(pn+1 − 2pn + pn−1)‖2

L2 . (3.33)

Taking the difference of (3.28e) at step n+ 1 and step n, we derive

δt2

ρ1
‖∇(pn+1 − 2pn + pn−1)‖2

L2 ≤ ρ1‖un+1 − un‖2
L2 ≤ ‖σn(un+1 − un)‖2

L2 . (3.34)

Combining the above inequalities together, we derive

‖σn+1un+1‖2
L2 − ‖σnun‖2

L2 + δt‖
√
μn+1D(un+1)‖2

L2

+
δt2

ρ1
(‖∇pn+1‖2

L2 − ‖∇pn‖2
L2) +

δt2

ρ1
‖∇(pn+1 − pn)‖2

L2

+ 2λδt(wn+1∇φn, un+1) ≤ 0. (3.35)

Finally, taking the inner product of (3.28a) with −2λδtwn+1, (3.28b) with 2λ(φn+1 − φn) and
using the same procedure as in the proof of Theorem 3.1, we obtain

‖σn+1un+1‖2
L2 − ‖σnun‖2

L2 + δt‖
√
μn+1D(un+1)‖2

L2

+
δt2

ρ1
(‖∇pn+1‖2

L2 − ‖∇pn‖2
L2) +

δt2

ρ1
‖∇(pn+1 − pn)‖2

L2

+ 2λγδt‖∇wn+1‖2
L2 + λ(‖∇φn+1‖2

L2 − ‖∇φn‖2
L2 + ‖∇φn+1 −∇φn‖2

L2)

+ 2λ(F (φn+1) − F (φn), 1) ≤ 0.

Remark 3.7 We can construct a second-order version of the scheme (3.28) by combining
the approaches for the phase equation in (3.28) and for the velocity-pressure in [10]. As before,
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we still denote, for any sequence {ak}, a∗,k+1 = 2ak − ak−1. Then, a second-order version of
(3.28) reads

3φn+1 − 4φn + φn−1

2δt
+ (un+1 · ∇)φ∗,n+1 + γΔwn+1 = 0,

wn+1 +
1
η2

(φn+1 − 2φn + φn−1) − Δφn+1 + 2f(φn) − f(φn−1) = 0,

∂nφ
n+1|∂Ω = 0, ∂nw

n+1|∂Ω = 0;

(3.36a)

ρn+1

2δt
(3un+1 − 4un + un−1) + ρn+1(∇ · u∗,n+1)un+1 −∇ · μn+1D(un+1)

+ ∇
(
pn +

4
3
ψn − 1

3
ψn−1

)
+ λwn+1∇φn = 0,

un+1|∂Ω = 0

(3.36b)

with

ρn+1 =
ρ1 − ρ2

2
φ̂n+1 +

ρ1 + ρ2

2
, μn+1 =

μ1 − μ2

2
φ̂n+1 +

μ1 + μ2

2
;

and

Δψn+1 =
3ρ1

2δt
∇ · un+1,

∂nψ
n+1|∂Ω = 0,

pn+1 = pn + ψn+1 − μn+1∇ · un+1.

(3.36c)

4 Numerical Results and Discussions

We present in this section some numerical experiments using the schemes constructed in the
last section.

Let us first describe briefly our spatial discretization which is based on the Legendre-Galerkin
method (cf. [21]). We use the inf-sup stable (PN , PN−2) pair for the velocity and pressure (or
the gauge or pseudo-pressure), and PN for the phase function φ and the chemical potential w.

The time discretization schemes constructed in the last section all lead to a weakly coupled
system for the velocity, the phase function and the chemical potential, and an elliptic equation
for the pressure. In order to take full advantage of the fast spectral Poisson solvers, we decouple
the weakly coupled system by using a lagged velocity for the convective term in the equation
for the phase function. Therefore, at each time step, we need to solve an elliptic equation for
the velocity u, a system of two elliptic equations for (φ,w), and an elliptic equation or a Poisson
equation (depending on which scheme to use) for the pressure p. The non-constant coefficient
elliptic problems will be solved by using a preconditioned conjugate gradient (PCG) method
with a suitable constant-coefficient problem as preconditioner (cf. [21]).

4.1 Example 1: a lighter bubble rising in a heavier medium

We consider the situation where a lighter bubble (with density ρ1 and dynamic viscosity
μ1) initially inside a heavier medium (with density ρ2 and dynamic viscosity μ2) confined in a
rectangular domain Ω = (0, d) × (0, 3

2d).
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The equations are non-dimensionalized by using the following scaled variables:

t̂ =
t

t0
, ρ̂ =

ρ

ρ0
, x̂ =

x

d0
, û =

u

u0
, (4.1)

where

t0 =

√
d
g
, d0 = d; u0 =

√
dg, ρ0 = min(ρ1, ρ2). (4.2)

The dimensionless form of (3.8) with an extra gravitational force ρg in the momentum equation,
after we omit the ̂ from the notation, is

φt + (u · ∇)φ+ γw = 0, (4.3a)

w − Δφ+
φ(φ2 − 1)

η2
= 0, (4.3b)

σ(σu)t + (σ2u · ∇)u+
1
2
∇ · (σ2u)u−∇ · (μ∇u) + ∇p+ λw∇φ = ρg, (4.3c)

∇ · u = 0 (4.3d)

with

ρ(φ) =
ρ̃1 − ρ̃2

2
φ+

ρ̃1 + ρ̃2

2
, σ(φ) =

√
ρ(φ), μ(φ) =

μ̃1 − μ̃2

2
φ+

μ̃1 + μ̃2

2
.

In the above, ρ̃1 = ρ1
ρ0

, ρ̃2 = ρ2
ρ0

, μ̃1 = μ1

(ρ0d
3
2 g

1
2 )

, μ̃2 = μ2

(ρ0d
3
2 g

1
2 )

.

We set the initial velocity to be zero and initial phase function given by

φ(x, t = 0) = −tanh
(r − 1

4d
η0

)
, (4.4)

where r is the distance from the center of the bubble to the point and η0 is the diffusive
interfacial width.

We consider first the case where ρ1 and ρ2 are not too far apart that we can use the following
Boussinesq approximation for (4.3):

φt + u · ∇φ+ γΔw = 0,

w − Δφ+ f(φ) = 0,

ρ0(ut + (u · ∇)u+ ∇p−∇ · (μD(u)) + λw∇φ) = −g(2ρ0 + ρ1 + ρ2) − gφ(ρ1 − ρ2),

∇ · u = 0.

(4.5)

In the first example, we set ρ0 = 1, ρ1−ρ2 = −1 and g = (10, 0)t, μ = 1, λ = 0.001, γ = 2×10−8

and η0 = η = 0.02d. In Figure 1, we plot the interface contour of {φ : φ(x) = 0} at several
different times obtained by using the scheme (3.9) with a grid size of 2572. These results are
qualitatively consistent with the results presented in [23] where the Allen-Cahn, instead of the
Cahn-Hilliard, phase-field model is used. Note that while both the Allen-Cahn and Cahn-
Hilliard phase field models are legitimate approximations to the sharp interface model, their
transient histories (with fixed relaxation constants γ) can differ due to the different relaxation
time scales in the two models.
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Figure 1 Example 1: snapshots of interfaces contours of φ at t = 1, 3, 5, 7, 9, 10.

4.2 Example 2: an air bubble rising in water

The second example we consider is an air bubble rising in water. The physical parameters
are ρ1 = 1.161 and ρ2 = 995.65 with μ1 = 0.0000186, μ2 = 0.0007977. We set d = 0.005, g =
9.8, λ = 0.001, γ = 2 × 10−8 and η0 = η = 0.02d. In this case, the Boussinesq approximation
is no longer valid so we solve the system (4.3) directly by using the schemes (3.19) and (3.28).
We use a grid size of 2572 and time step size of δt = 0.0001.
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(a) Interfaces at different time snapshots t = 0.5, 1, 1.5, 2, 2.5, 3.
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Figure 2 Example 2: snapshots at t = 0.5, 1, 1.5, 2, 2.5, 3.

In Figure 2, we plot a comparison of the level sets {φ : φ = 0} by the two schemes at different
times. We observe that the two schemes produce visually identical results. Once again, the
results are qualitatively similar to those in [23] produced by a Allen-Cahn phase-field model.
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4.3 Summary

We considered the numerical approximation of Cahn-Hilliard phase-field model for the two-
phase incompressible flows in this paper.

We constructed several efficient and energy stable time discretization schemes for the coupled
nonlinear Cahn-Hilliard phase-field system for both the matched density case and the variable
density case. At each time step, these schemes all reduce to a weakly coupled system for the
velocity u, phase function φ and chemical potential w, and an elliptic or Poisson equation for
the pressure p. Thus, existing elliptic solvers can be efficiently adopted.

We also carried out numerical experiments which validated the Cahn-Hilliard phase-field
model with matched and variable densities and the proposed numerical schemes.

We note that while we have only considered the semi-discretization in time, the proofs are
all based on a variational formualtion, so they can be in principle extended to consistent full
discretizations with Galerkin finite elements or Galerkin-spectral methods.
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