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Abstract

We propose a new Lagrange multiplier approach to design unconditional energy stable schemes for gradient flows. The
new approach leads to unconditionally energy stable schemes that are as accurate and efficient as the recently proposed SAV
approach (Shen, Xu, and Yang 2018), but enjoys two additional advantages: (i) schemes based on the new approach dissipate
the original energy, as opposed to a modified energy in the recently proposed SAV approach (Shen, Xu, and Yang 2018);and
(ii) they do not require the nonlinear part of the free energy to be bounded from below as is required in the SAV approach. The
price we pay for these advantages is that a nonlinear algebraic equation has to be solved to determine the Lagrange multiplier.
We present ample numerical results to validate the new approach, and, as a particular example of challenging applications,
we consider a block copolymer (BCP)/coupled Cahn–Hilliard model, and carry out new and nontrivial simulations which are
consistent with experiment results.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Gradient flows play an important role in science and engineering as a large class of mathematical models which
can be described by PDEs in the form of gradient flow, some particularly interesting examples include: crystal
growth [1–3], solidification [4–6], tumor growth [7,8], thin film [9,10], liquid-vapor phase transformations [11,12],
fracture mechanics [13,14].

How to design efficient and energy stable numerical schemes for gradient flows has attracted much attention in
recent years, we refer to [15] for a up-to-date extensive review on this subject. In particular, the recent proposed
SAV approach [16–18], which is inspired by the IEQ approach [19] which in its turn is originated from a Lagrange
multiplier approach in [20,21], has proven to be very successful for a large class of gradient flows.

We briefly describe the SAV approach below. To fix the idea, we consider a system with total free energy in the
form

E(φ) =
∫
Ω

1
2
Lφ · φ + F(φ)dx, (1.1)
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where L is certain linear positive operator. Then a general gradient flow with the above free energy takes the
following form

φt = −Gµ,

µ =
δE(φ)

δφ
= Lφ + F ′(φ),

(1.2)

where G is a positive operator describing the relaxation process of the system.
Assuming

∫
Ω F(φ)dx > −C0 for some C0 > 0, we introduce a scalar auxiliary variable (SAV) r (t) =√∫

Ω F(φ)dx + C0 and rewrite (1.2) as

∂tφ = −Gµ, (1.3)

µ = Lφ +
r (t)√∫

Ω F(φ)dx + C
F ′(φ), (1.4)

rt = (
1
2

F ′(φ)√∫
Ω F(φ)dx + C

, φt ). (1.5)

The system (1.3)–(1.5), with the initial condition r (0) =
√∫

Ω F(φ|t=0)dx + C0 is equivalent to (1.2). Then, one can
construct semi-implicit schemes, by treating the linear terms implicitly and nonlinear terms explicitly in the above,
that are unconditionally energy stable schemes and require solving only decoupled linear systems with constant
coefficients at each time step. Hence they are very efficient.

However, the unconditional energy stability is with respect to a modified energy

Ẽ(φ, r ) =
∫
Ω

1
2
Lφ · φdx + r2,

not the original energy (1.1), and it requires
∫
Ω F(φ)dx to be bounded from below. A main purpose of this paper is

to introduce a new Lagrange multiplier approach which, in addition to the main advantages of the SAV approach,
leads to schemes which is unconditionally energy stable with the original energy and does not require the explicitly
treated part of the free energy to be bounded from below. Hence, it can be applied to a larger class of gradient flows.
The small price we pay for these additional advantages is that we need to solve a nonlinear algebraic equation for
the Lagrange multiplier whose cost is negligible compared with the main cost. We present ample numerical evident
to show that this new approach is an effective approach for gradient flows.

Another purpose of this paper is to apply the new Lagrange multiplier to an interesting applications, namely,
dynamics of block-Copolymers modeled by a coupled Cahn–Hilliard equations [22], and to present simulations, for
evolution of frustrated phases of block-Copolymers, which are consistent with experimental observation.

The reminder of this paper is structured as follows. In Section 2, we introduce the new Lagrange multiplier
approach for gradient flows, derive its stability property and develop a fast implementation procedure and present
numerical results to validate the new approach. In Section 3, we develop the new Lagrange multiplier approach
for gradient flows with multiple components. In Section 4, we describe an adaptive time stepping procedure.
In Section 5, we use the new approach to simulate evolution of frustrated phases of block-Copolymers. Some
concluding remarks are given in Section 6.

2. New Lagrange multiplier approach for gradient flows

We introduce below a new Lagrange multiplier approach for gradient flows.
As in the SAV approach, we introduce a scalar auxiliary function η(t), and reformulate the gradient flow (1.2)

as
∂φ

∂t
= −Gµ,

µ = Lφ + η(t)F ′(φ),
d
dt

∫
Ω

F(φ)dx = η(t)
∫
Ω

F ′(φ)φt dx.

(2.1)
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If we set the initial condition for η(t) to be η(0) = 1, then it is easy to see that the new system (2.1) is equivalent
to the original system (1.2), i.e., η(t) ≡ 1 in (2.1).

Note that unlike the SAV approach where r (t) is just an auxiliary variable, the role of η(t) here is to serve as a
Lagrange multiplier to enforce dissipation of the original energy. Indeed, taking the inner products of the first two
equations in the above with µ and −φt , respectively, summing up the results together with the third equation, we
obtain the original energy dissipative law:

d
dt

E(φ) = −(µ,Gµ). (2.2)

2.1. New schemes, their stability and efficient implementation

Similar to the SAV approach, we can construct efficient and accurate numerical schemes for (2.1). For example,
a second order scheme based on Crank–Nicolson is as follows:

φn+1
− φn

δt
= −Gµn+ 1

2 , (2.3)

µn+ 1
2 = Lφn+ 1

2 + F ′(φ⋆,n)ηn+ 1
2 , (2.4)

(F(φn+1)− F(φn), 1) = ηn+ 1
2 (F ′(φ⋆,n), φn+1

− φn), (2.5)

where F ′(φ⋆,n) = F ′( 3
2φn
−

1
2φn−1).

Theorem 2.1. The Crank–Nicolson scheme (2.3)–(2.5), it satisfies the following energy dissipative law,

En+1
− En

δt
= −(Gµn+ 1

2 , µn+ 1
2 ), (2.6)

where En
=

1
2 (Lφn, φn)+

∫
Ω F(φn)dx.

Proof. Taking the inner products of (2.3) with µn+ 1
2 and of (2.4) with −φn+1

−φn

δt , and multiplying (2.5) with 1
δt ,

summing up the three relations, we obtain immediately the desired result. □

We now show how to solve scheme (2.3)–(2.5) efficiently. We derive from (2.3)–(2.4) that

φn+1

δt
+ GLφn+1

=
φn

δt
− GF ′(φ⋆,n)ηn+1/2. (2.7)

We define a linear operator χ by

χ (φ) := (
1
δt

I + GL)φ, (2.8)

and apply the operator χ−1 to both sides of Eq. (2.7) to get

φn+1
= χ−1

{
φn

δt
} + ηn+1/2χ−1

{−GF ′(φ⋆,n)}

:= pn+1
+ ηn+1/2qn+1,

(2.9)

with pn+1 and qn+1 being

pn+1
= χ−1

{
φn

δt
}, qn+1

= χ−1
{−GF ′(φ⋆,n)}. (2.10)

Now we plug φn+1 into Eq. (2.5) to obtain

(F(pn+1
+ ηn+1/2qn+1)− F(φn), 1)

= ηn+1/2(F ′(φ⋆,n), (pn+1
+ ηn+1/2qn+1)− φn).

(2.11)

The above equation is a nonlinear algebraic equation for ηn+1/2. The complexity of the nonlinear equation (2.11)
depends on F(φ), e.g., if F(φ) is the usual double well potential, i.e., F(φ) = 1

4 (φ2
−1)2, (2.11) will be a fourth-order

algebraic equation. In general, (2.11) has multiple solutions, but since we are looking for ηn+1/2 as an approximation
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to 1, we can use a Newton iteration with 1 as the initial condition, it will generally converge to a solution closer
to 1 (assuming δt is not too large).

To summarize, the algorithm consists of the following steps:

Step 1 Compute pn+1 and qn+1 from (2.10);

Step 2 Find ηn+1/2 by solving (2.11);

Step 3 Set φn+1
= pn+1

+ ηn+1/2qn+1, goto the next step.

Note that at each time step, we only need to solve two linear, constant coefficients equations in the Step 1, plus
a nonlinear algebraic equation in Step 2. Since the cost for solving the nonlinear algebraic equation is negligible
compared with the cost in Step 1, the new algorithm is essentially as efficient as the SAV approach.

Remark 2.1. We note that for the scheme (2.3)–(2.5), the original energy is dissipative, as opposed to the fact that
only a modified energy is dissipative in the SAV approach. Furthermore, our new Lagrange multiplier approach
does not require the free energy

∫
Ω F(φ)dx to be bounded from below. On the other hand, the new approach

requires solving a nonlinear algebraic equation for the Lagrange multiplier which brings some additional costs and
theoretical difficulties for its analysis.

For dissipative systems, it is usually better to use schemes based on backward difference formula (BDF). A
second-order scheme for (2.1) based on BDF can be constructed as follows:

3φn+1
− 4φn

+ φn−1

2δt
= −Gµn+1, (2.12)

µn+1
= Lφn+1

+ F ′(φ⋆,n)ηn+1, (2.13)
(3F(φn+1)− 4F(φn)+ F(φn−1), 1) = ηn+1(F ′(φ⋆,n), 3φn+1

− 4φn
+ φn−1), (2.14)

where F ′(φ⋆,n) = F ′(2φn
− φn−1).

Theorem 2.2. The scheme (2.12)–(2.14) satisfies the following energy dissipative law:

Ẽn+1
− Ẽn

= −δt(Gµn+1, µn+1)−
1
4

(L(φn+1
− 2φn

+ φn−1), φn+1
− 2φn

+ φn−1), (2.15)

where Ẽn
=

1
4 (Lφn, φn)+ (L(2φn

− φn−1), 2φn
− φn−1)+

∫
Ω

1
2 (3F(φn)− F(φn−1))dx.

Proof. Taking the inner product of Eq. (2.12) with µn+1, we obtain

(
3φn+1

− 4φn
+ φn−1

2δt
, µn+1) = −(Gµn+1, µn+1), (2.16)

Taking the inner product of Eq. (2.13) with 3φn+1
− 4φn

+ φn−1 and using the identity

(2a, 3a − 4b + c) = |a|2 − |b|2 + |2a − b|2 − |2b − c|2 + |a − 2b + c|2, (2.17)

we obtain
(µn+1, 3φn+1

− 4φn
+ φn−1) = (Lφn+1, 3φn+1

− 4φn
+ φn−1)

+ (F ′(φ⋆,n)ηn+1, 3φn+1
− 4φn

+ φn−1)

=
1
2
{(Lφn+1, φn+1)− (Lφn, φn)+ (L(2φn+1

− φn), 2φn+1
− φn)

− (L(2φn
− φn−1), 2φn

− φn−1)+ (L(φn+1
− 2φn

+ φn−1), φn+1
− 2φn

+ φn−1)}

+ ηn+1(F ′(φ⋆,n), 3φn+1
− 4φn

+ φn−1).

(2.18)

Combining (2.16),(2.18) and (2.14), and using

3F(φn+1)− 4F(φn)+ F(φn−1) = 3F(φn+1)− F(φn)− (3F(φn)− F(φn−1)),

we obtain the desired result. □



Q. Cheng, C. Liu and J. Shen / Computer Methods in Applied Mechanics and Engineering 367 (2020) 113070 5

Remark 2.2. Note that Ẽn defined in the above theorem is not exact in the form of original energy. But it is easy
to check that Ẽn is a second-order approximation of En

=
1
2 (Lφn, φn)+

∫
Ω F(φn)dx.

2.2. A modified version

a second order scheme based on Crank–Nicolson is as follows:
φn+1
− φn

δt
= −Gµn+ 1

2 , (2.19)

µn+ 1
2 = Lφn+ 1

2 + F ′(φ⋆,n)ηn+ 1
2 , (2.20)

(F(φ̄n+1)− F(φ̄n), 1) = ηn+ 1
2 (F ′(φ⋆,n), φn+1

− φn), (2.21)

where F ′(φ⋆,n) = F ′( 3
2φn
−

1
2φn−1) and φ̄n+1

= pn+1
+ qn+1 with pn+1, qn+1 being defined in (2.10).

The above scheme can be implemented in essentially the same fashion as the scheme (2.3)–(2.5), except that
ηn+ 1

2 can now be determined explicitly without using a Newton iteration, see the remark below.

Remark 2.3. Since it is expected that ηn+ 1
2 approaches the exact solution η(t) ≡ 1, we replaced ηn+ 1

2 by 1 in the
definition of φ̄n+1. Consequently, we can determine ηn+ 1

2 explicitly from (2.21), namely,

ηn+ 1
2 =
−(F ′(φ⋆,n), pn+1

− φn)±
√

(F ′(φ⋆,n), pn+1 − φn)2 + 4(F ′(φ⋆,n), qn+1)(F(φ̄n+1)− F(φ̄n), 1)
2(F ′(φ⋆,n), qn+1)

. (2.22)

We can easily establish the following result:

Theorem 2.3. The modified Crank–Nicolson scheme (2.19)–(2.21) satisfies the following energy dissipative law,

Ên+1
− Ên

δt
= −(Gµn+ 1

2 , µn+ 1
2 ), (2.23)

where Ên
=

1
2 (Lφn, φn)+

∫
Ω F(φ̄n)dx.

2.3. Numerical validations

We provide below some numerical tests to validate our new schemes.

2.3.1. Accuracy test
In this subsection, in order to test accuracy and convergence rate of scheme BDF2 and Crank–Nicolson in time.
We consider the Allen–Cahn (G = I ) and Cahn–Hillard equation (G = −∆) in the form

φt = −Gµ+ f,

µ = −∆φ +
1
ϵ2 φ(φ2

− 1),
(2.24)

with periodic boundary conditions. We choose a force function f such that the exact solution is

φ(x, y) = (
sin(2x) cos(2y)

4
+ 0.48)(1−

sin2(t)
2

),

and use 1282 Fourier-spectral modes in space so that the error is dominated by the time discretization error. In
Table 1 and Table 2, we present L∞ errors for both Allen–Cahn and Cahn–Hilliard equations at various time steps.
It is observed that both scheme BDF2 and CN achieve second order convergence rate in time (see Table 2).

Next we examine the energy stability. We take f = 0 in domain [0, 2π )2 and start with a random initial condition

φ(x, y) = 0.03+ 0.001 rand(x, y),

where rand(x, y) represents random data between [−1, 1]2. The energy curves are plotted for both Allen–Cahn
equation and Cahn–Hilliard equation with ϵ2

= 0.005 in Fig. 1. It is observed from this figure that the computed
energy for both cases decays with time.
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Table 1
Accuracy test: with given exact solution for Allen–Cahn equation and
ϵ2
= 0.02. The L∞ errors at t = 0.1 for the phase variables φ

computed by scheme BDF2 and Crank–Nicolson using various time
steps.

δt B DF2 Order C N Order

2× 10−3 1.11E(−5) – 5.31E(−6) −

1× 10−3 2.88E(−6) 1.94 1.38E(−6) 1.95
5× 10−4 7.31E(−7) 1.95 3.57E(−7) 1.98
2.5× 10−4 1.85E(−7) 1.95 9.23E(−8) 1.98
1.25× 10−4 4.64E(−8) 1.99 2.32E(−8) 1.99
6.25× 10−5 1.17E(−8) 1.98 5.86E(−9) 1.91
3.125× 10−5 2.93E(−9) 2.00 1.46E(−9) 2.00

Table 2
Accuracy test: with given exact solution for Cahn–Hilliard equation
and ϵ2

= 0.06. The L∞ errors at t = 0.1 for the phase variables φ

computed by scheme BDF2 and Crank–Nicolson using various time
steps.

δt B DF2 Order C N Order

2× 10−3 2.75E(−6) – 3.04E(−6) −

1× 10−3 6.92E(−7) 1.99 7.67E(−7) 1.98
5× 10−4 1.73E(−7) 2.00 1.92E(−7) 1.99
2.5× 10−4 4.36E(−8) 1.98 4.83E(−8) 1.99
1.25× 10−4 1.09E(−9) 2.00 1.20E(−8) 2.00
6.25× 10−5 2.72E(−9) 2.00 3.02E(−9) 1.99
3.125× 10−5 6.80E(−10) 2.00 7.57E(−10) 2.00

Fig. 1. Energy evolution of Allen–Cahn and Cahn–Hilliard equations by using Scheme BDF2 of new Lagrange multiplier approach with
time step δt = 10−5.

2.3.2. Molecular beam epitaxial without slope selection
As an example where the nonlinear functional is unbounded from below, we consider a model for molecular beam

epitaxial (MBE) without slope selection [23]. For this model, the total free energy is E(φ) =
∫
Ω

ϵ2

2 |∆φ|2+F(φ)dx ,
where the nonlinear potential is

F(φ) = −
1
2

ln(1+ |∇φ|2). (2.25)
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Fig. 2. The evolution of energy and η with time for MBE model without slope selection.

Since the Logarithmic potential is not bounded from below, one has to use a different energy splitting so that the
SAV approach can be applied [24]. However, our new approach can be directly applied since there is no requirement
of boundedness from below. More precisely, the L2 gradient flow with respect to the free energy above is

φt = −M
δE(φ)

δφ
= −M

(
ϵ2∆2φ + F ′(φ)

)
, (2.26)

with boundary conditions:

(i) φ is periodic with or (i i) ∂nφ|∂Ω = ∂n∆φ|∂Ω = 0, (2.27)

where n is the unit outward normal on the boundary ∂Ω . In the above, M is a mobility constant, and F ′(φ) =
∇ ·

(
∇φ

1+|∇φ|2

)
.

Then, a second-order scheme based on the new Lagrange multiplier approach is:

3φn+1
− 4φn

+ φn−1

2δt
+ M

(
ϵ2∆2φn+1

+ ηn+1 F ′(φ⋆,n)
)
= 0, (2.28)

ηn+1(F ′(φ⋆,n), 3φn+1
− 4φn

+ φn−1) = (3F(∇φn+1)− 4F(∇φn)+ F(∇φn−1), 1). (2.29)

Similarly as in the proof of Theorem 2.2, we can easily show that the above equation is unconditionally energy
stable. It is also clear that it can also be efficiently implemented.

We present in Fig. 2 the time evolutions of total energy and the Lagrange multiplier in domain [0, 2π ]2. The
initial condition is taken as a randomly perturbed concentration field as follows:

φ(t = 0) = 0.01 rand(x, y), (2.30)

where the rand(x, y) is a uniformly distributed random function in [−1, 1]2. One observes that the total energy
decays monotonically and that the values of the Lagrange multiplier are essentially one except at a few initial steps.
An example of the coarsening process is shown in Fig. 3.

3. Gradient flows with multiple components

As the SAV approach, the new Lagrange multiplier approach can be applied to gradient flows with multiple
components. As a particular example, we consider the following coupled non-local Cahn–Hilliard type system:

ut = Mu∆µu, (3.1)

µu = −ϵ2
u∆u + (u2

− 1)u + αv + βv2
+ 2γ uv, (3.2)

vt = Mv∆µv, (3.3)
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Fig. 3. The isolines of the numerical solutions of the height function φ and its Laplacian ∆φ for the model without slope selection with
random initial condition. For each subfigure, the left is φ and the right is ∆φ. Snapshots are taken at t = 2.5, 5, 10, 30, 50, 200, respectively.

µv = −ϵ2
v∆v + (v2

− 1)v + αu + 2βuv + γ u2
− σ∆−1(v − v), (3.4)

with boundary conditions

(i) periodic; or (i i) ∂nu|∂Ω = ∂n∆u|∂Ω = ∂nv|∂Ω = ∂n∆v|∂Ω = 0. (3.5)

The above system is introduced in [22] to model a blend of homopolymer and copolymer components. We defer
the physical description about the system to Section 5, and consider how to apply the new Lagrange multiplier
approach to solve it efficiently.

The system (3.1)–(3.4) can be interpreted as a gradient flow as follows

ut = Mu∆
δE(u, v)

δu
, (3.6)

vt = Mv∆
δE(u, v)

δv
, (3.7)

with the total free energy

E(u, v) =
∫
Ω

ϵ2
u

2
|∇u|2 +

ϵ2
v

2
|∇v|2 +W (u, v)+

σ

2
|(−∆)−

1
2 (v − v)|

2
dx, (3.8)

where

W (u, v) =
(u2
− 1)2

4
+

(v2
− 1)2

4
+ αuv + βuv2

+ γ u2v. (3.9)
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Indeed, one can easily check that

δE(u, v)
δu

= −ϵ2
u∆u +

δW
δu
= µu,

δE(u, v)
δv

= −ϵ2
u∆v +

δW
δv
− σ∆−1(v − v) = µv.

3.1. New schemes based on the Lagrange multiplier approach

We introduce a Lagrange multiplier η(t) and rewrite (3.6)–(3.7) as

ut = Mu∆µu, (3.10)

µu = −ϵ2
u∆u +

δW
δu

η(t), (3.11)

vt = Mv∆µv, (3.12)

µv = −ϵ2
u∆v +

δW
δv

η(t)− σ∆−1(v − v), (3.13)

d
dt

∫
Ω

W (u, v)dx = η(t)
∫
Ω

(
δW
δu

ut +
δW
δv

vt )dx. (3.14)

Taking the inner products of (3.10)–(3.13) with µu , ut , µv , vt , respectively, summing up the results along with
(3.14), we obtain the energy dissipation law

d
dt

E(u, v) = −Mu(∇µu,∇µu)− Mv(∇µv,∇µv).

As in the previous section, we can construct a second-order scheme for the above system as follows: assuming
that un−1, un and vn−1, vn are known, we find un+1 and vn+1 as follows:

3un+1
− 4un

+ un−1

2δt
= Mu∆µn+1

u , (3.15)

µn+1
u = −ϵ2

u∆un+1
+ (

δW
δu

)⋆,nηn+1, (3.16)

3vn+1
− 4vn

+ vn−1

2δt
= Mv∆µn+1

v , (3.17)

µn+1
v = −ϵ2

v∆vn+1
+ (

δW
δv

)⋆,nηn+1
− σ∆−1(vn+1

− v), (3.18)

(3W (un+1, vn+1)− 4W (un, vn)+W (un−1, vn−1), 1) (3.19)

= ηn+1
{((

δW
δu

)⋆,n, 3un+1
− 4un

+ un−1)+ ((
δW
δv

)⋆,n, 3vn+1
− 4vn

+ vn−1)},

where f ⋆,n
= 2 f n

− f n−1 for any function f , and the boundary conditions are given by (3.5).

Theorem 3.1. The numerical scheme (3.15)–(3.19) is unconditional energy stable in the sense that

En+1
− En

δt
≤ −(Mu∥∇µn+1

u ∥ + Mv∥∇µn+1
v ∥

2), (3.20)

where

En+1
=

∫
Ω

ϵ2
u

2
|∇un+1

|
2
+

ϵ2
v

2
|∇vn+1

|2+
1
2

(
3W (un+1, vn+1)−W (un, vn)

)
+

σ

2
|(−∆)−

1
2 (vn+1

− vn+1)|
2
dx.

Proof. Taking the inner products of (3.15) and (3.17) with µn+1
u and µn+1

v , respectively, we find

(
3un+1

− 4un
+ un−1

2δt
, µn+1

u ) = −Mu∥∇µn+1
u ∥

2, (3.21)

(
3vn+1

− 4vn
+ vn−1

2δt
, µn+1

v ) = −Mv∥∇µn+1
v ∥

2. (3.22)
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Taking the inner products of (3.16) and (3.18) with 3un+1
− 4un

+ un−1 and 3vn+1
− 4vn

+ vn−1, respectively, and
using the identity (2.17), we find

(µn+1
u , 3un+1

− 4un
+ un−1) =

ϵ2
u

2
{(∥∇un+1

∥
2
− ∥2∇un+1

−∇un
∥

2)

− (∥∇un
∥

2
− ∥2∇un

−∇un−1
∥

2)+ ∥∇un+1
− 2∇un

+∇un−1
∥

2
}

+ ((
δW
δu

)⋆,nηn+1, 3un+1
− 4un

+ un−1),

and

(µn+1
v , 3vn+1

− 4vn
+ vn−1) =

ϵ2
v

2
{(∥∇vn+1

∥
2
− ∥2∇vn+1

−∇vn
∥

2)

− (∥∇vn
∥

2
− ∥2∇vn

−∇vn−1
∥

2)+ ∥∇vn+1
− 2∇vn

+∇vn−1
∥

2
}

+ ((
δW
δv

)⋆,nηn+1, 3vn+1
− 4vn

+ vn−1).

Combing the above relations and using (3.19), we obtain the desired result. □

Next, we describe how to solve this coupled system (3.15)–(3.19) efficiently. We first eliminate µu and µv to
rewrite Eqs. (3.15)–(3.16) and (3.17)–(3.18) as

3un+1

2δt
+ Muϵ

2
u∆

2un+1
=

4un
− un−1

2δt
+ Mu∆(

δW
δu

)⋆,nηn+1, (3.23)

3vn+1

2δt
+ Mvϵ

2
v∆

2vn+1
=

4vn
− vn−1

2δt
+ Mv∆(

δW
δv

)⋆,nηn+1. (3.24)

Define two linear operators

χuu := (
3

2δt
+ Muϵ

2
u∆

2)u, χvv := (
3

2δt
+ Mvϵ

2
v∆

2)v,

with boundary conditions specified in (3.5), and apply χ−1
u and χ−1

v to Eqs. (3.23) and (3.24), respectively, we
obtain

un+1
= χ−1

u {
4un
− un−1

2δt
+ Mu∆(

δW
δu

)⋆,nηn+1
}.

:= pn
u + ηn+1qn

u ,

(3.25)

vn+1
= χ−1

v {
4vn
− vn−1

2δt
+ Mv∆(

δW
δv

)⋆,nηn+1
}

:= pn
v + ηn+1qn

v .

(3.26)

where

pn
u = χ−1

u {
4un
− un−1

2δt
}, qn

u = χ−1
u {Mu∆(

δW
δu

)⋆,n},

pn
v = χ−1

v {
4vn
− vn−1

2δt
}, qn

v = χ−1
v {Mv∆(

δW
δv

)⋆,n}.
(3.27)

Then plugging un+1 and vn+1 in (3.25)–(3.26) into (3.19), we obtain a nonlinear algebraic equation for ηn+1:

(
δW
δu

)⋆,nηn+1, 3(pn
u + ηn+1qn

u )+ ((
δW
δv

)⋆,nηn+1, 3(pn
v + ηn+1qn

v ))

− (3W (pn
u + ηn+1qn

u , pn
v + ηn+1qn

v ), 1) = g⋆,n,

(3.28)

where g⋆,n represents all known explicit terms.
Since W (u, v) is a polynomial of degree four for u and v, we find that (3.28) is a nonlinear algebraic equation

of degree four for ηn+1, which can be easily solved by using a Newton iteration with 1 as the initial condition. To
summarize, the new Lagrange multiplier algorithm for the coupled Cahn–Hilliard system consists of the following
steps:
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Table 3
Accuracy test: with given exact solution for the coupled model (3.1)-
(3.4). The L∞ errors at t = 0.1 for the phase variables u and v

computed by the scheme based on BDF2 using various time steps.

δt u Order v Order

4× 10−3 9.87E(−6) − 8.29E(−6) −

2× 10−3 2.46E(−6) 2.00 2.07E(−6) 2.00
1× 10−3 6.16E(−7) 1.99 5.17E(−7) 2.00
5× 10−4 1.54E(−7) 2.00 1.29E(−7) 2.00
2.5× 10−4 3.85E(−8) 1.99 3.23E(−8) 1.99
1.25× 10−4 9.63E(−9) 1.99 8.07E(−9) 1.99
6.25× 10−5 2.40E(−9) 2.00 2.01E(−9) 2.00

Table 4
Accuracy test: with given exact solution for the coupled model (3.1)-
(3.4). The L∞ errors at t = 0.1 for the phase variables u and v

computed by the scheme based on Crank–Nicolson using various time
steps.

δt u Order v Order

4× 10−3 3.69E(−6) − 3.03E(−6) −

2× 10−3 9.80E(−7) 1.91 8.01E(−7) 1.92
1× 10−3 2.50E(−7) 1.97 2.04E(−7) 1.97
5× 10−4 6.32E(−8) 1.98 5.15E(−8) 1.98
2.5× 10−4 1.60E(−8) 1.98 1.30E(−8) 1.98
1.25× 10−4 3.98E(−9) 2.00 3.24E(−9) 2.00
6.25× 10−5 9.34E(−10) 2.09 7.77E(−10) 2.00

Step 1 Compute pn
u , qn

u , pn
v and qn

v from (3.27);

Step 2 Solve equation (3.28) to obtain ηn+1;

Step 3 Update un+1 and vn+1 with (3.23) and (3.24), and goto the next step.

The main cost of the scheme (3.15)–(3.19) at each time step is in Step 1 where one needs to solve four linear,
constant coefficient fourth-order equations. Hence, the scheme is very efficient.

3.2. Numerical validations

We will first present some numerical results to validate the stability and the accuracy of the scheme (3.15)–(3.19)
using a Fourier spectral method with 1282 modes in the spatial domain Ω = [0, 2π )2.

We first test the accuracy with a manufactured exact solution given by

u(x, y, t) = (
sin(2x) sin(2y)

4
+ 0.48)(1−

sin2(t)
2

),

v(x, y, t) = (
sin(2x) sin(2y)

4
+ 0.48)(1−

sin2(t)
2

).

We set the parameters to be

ϵu = 0.075 ϵv = 0.075 σ = 10 α = −0.1 β = −0.1 γ = 0.

In Tables 3 and 4, we list the L∞ errors at t = 0.1 of phase variables u and v with various time steps by using
new schemes based on BDF2 and Crank–Nicolson. We observe that both schemes have second-order convergence
rate in time.

Next, we examine the energy dissipation and accuracy using a realistic simulation. Since excessively small time
steps may be needed to obtain accurate results using the scheme (3.15)–(3.19), we construct a “stabilized” version
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Fig. 4. Evolution of the free energy using the stabilized scheme with various time steps.

based on the following splitting of free energy:

E(u, v) =
∫
Ω

ϵ2
u

2
|∇u|2 +

ϵ2
v

2
|∇v|2 +

Su

2
|u|2 +

Sv

2
|v|2x

+

∫
Ω

W (u, v)−
Su

2
|u|2 −

Sv

2
|v|2 +

σ

2
|(−∆)−

1
2 (v − v)|

2
dx,

(3.29)

where W (u, v) is given in (3.9) and Su, Sv ≥ 0 are stabilizing constants.
Setting W̃ (u, v) = W (u, v)− Su

2 |u|
2
−

Sv

2 |v|
2, the “stabilized” version of the scheme (3.15)–(3.19) corresponding

to the above splitting is:

3un+1
− 4un

+ un−1

2δt
= Mu∆µn+1

u , (3.30)

µn+1
u = −ϵ2

u∆un+1
+ Suun+1

+ (
δW̃
δu

)⋆,nηn+1, (3.31)

3vn+1
− 4vn

+ vn−1

2δt
= Mv∆µn+1

v , (3.32)

µn+1
v = −ϵ2

v∆vn+1
+ Svv

n+1
+ (

δW̃
δv

)⋆,nηn+1
− σ∆−1(vn+1

− v), (3.33)

(3W̃ (un+1, vn+1)− 4W̃ (un, vn)+ W̃ (un−1, vn−1), 1) (3.34)

= ηn+1
{((

δW̃
δu

)⋆,n, 3un+1
− 4un

+ un−1)+ ((
δW̃
δv

)⋆,n, 3vn+1
− 4vn

+ vn−1)}.

Obviously, we can prove that the above scheme is also unconditionally energy stable as in Theorem 2.2, and can
be efficiently implemented as the scheme (3.15)–(3.19). Note that the choice of stabilized constants does not affect
the energy stability but it does impact on the accuracy, so its choice is a delicate matter: being too small will not
provide enough stabilization while being too large will lead to over dissipation.

We take uniformly distributed random functions in [−1, 1]2 with zero mean as initial conditions, and set the
parameters to be

ϵu = 0.05 ϵv = 0.05 σ = 10 α = −0.1 β = 0.75 γ = 0, (3.35)

and the stabilized constants are Su = Sv = 1.
We plot in Fig. 4 evolution of the total energy computed with different time steps. We observe that all energies

decay with time as expected. For δt = 8 × 10−4, 4 × 10−4, 2 × 10−4, 10−4, the four energy curves essentially
coincide. However, significant differences appear with δt = 2 × 10−3 and δt = 8 × 10−3. So in order to achieve
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good accuracy for numerical simulations, we should choose δt ≤ 8× 10−4. Note that the required time step would
be much smaller without the stabilization, i.e., Su = Sv = 0.

4. Adaptive time stepping

A main advantage of unconditional energy stable numerical schemes is that one can combine them with an
adaptive time stepping so that their efficiency can be further improved. This has been demonstrated with many
examples for the SAV approach [17]. We can also combine an adaptive time stepping strategy with the new Lagrange
multiplier approach.

Since it is more difficult to devise an adaptive time stepping for the scheme based on BDF2, we construct below
a second-order scheme with variable time steps based on a second-order Crank–Nicolson scheme. To fix the idea,
we take the coupled problem (3.1)–(3.4) as an example.

A stabilized second-order Crank–Nicolson scheme with variable time step is as follows: assuming that un−1, un

and vn−1, vn are known, set an =
δtn

δtn−1
and δtn = tn+1

− tn , we solve un+1 and vn+1 as follows:

un+1
− un

δtn
= Mu∆µ

n+ 1
2

u , (4.1)

µ
n+ 1

2
u = −ϵ2

u∆un+ 1
2 + Suun+ 1

2 + (
δW̃
δu

)⋆,nηn+ 1
2 , (4.2)

vn+1
− vn

δtn
= Mv∆µ

n+ 1
2

v , (4.3)

µ
n+ 1

2
v = −ϵ2

v∆vn+ 1
2 + Svv

n+ 1
2 + (

δW̃
δv

)⋆,nηn+ 1
2 − σ∆−1(vn+ 1

2 − v), (4.4)

ηn+ 1
2 ((

δW̃
δu

)⋆,n, un+1
− un)+ ((

δW̃
δv

)⋆,n, vn+1
− vn)

= (W̃ (un+1, vn+1)− W̃ (un, vn), 1), (4.5)

where f n+ 1
2 =

1
2 ( f n+1

+ f n) and f ⋆,n
= (1+ an

2 ) f n
−

an
2 f n−1 for any function f .

The above scheme can also be efficiently implemented as the scheme (3.15)–(3.19), and the following result can
be easily established.

Theorem 4.1. The scheme (4.1)–(4.5) is unconditional energy stable in the sense that

En+1
− En

δtn
= −(Mu∥∇µ

n+ 1
2

u ∥
2
+ Mv∥∇µ

n+ 1
2

v ∥
2), (4.6)

where En+1
=

∫
Ω

ϵ2
u
2 |∇un+1

|
2
+

ϵ2
v

2 |∇vn+1
|
2
+W (un+1, vn+1)+ σ

2 |(−∆)−
1
2 (vn+1

− vn+1)|
2
dx.

Then we use the following algorithm to choose time steps adaptively.

Algorithm for adaptive time stepping:

Given Solutions at time steps n and n − 1; parameters tol and ρ, and the preassigned minimum
and maximin allowable time steps δtmin and δtmax.
Step 1: Compute un+1

1 , vn+1
1 by a first-order Lagrange multiplier scheme with δtn .

Step 2: Compute un+1
2 , vn+1

2 by adaptive Crank–Nicolson scheme (4.1)–(4.5) with δtn .

Step 3: Calculate en+1 = max{ ∥u
n+1
2 −un+1

1 ∥

∥un+1
2 ∥

,
∥vn+1

2 −vn+1
1 ∥

∥vn+1
2 ∥

}.

Step 4: if en+1 > tol, then
Recalculate time step δtn ← max{δtmin, min{Adp(en+1, δtn), δtmax}}.

Step 5: goto Step 1
Step 6: else

Update time step δtn+1 ← max{δtmin, min{Adp(en+1, δtn), δtmax}},
Step 7: endif



14 Q. Cheng, C. Liu and J. Shen / Computer Methods in Applied Mechanics and Engineering 367 (2020) 113070

Fig. 5. First: evolution of the free energy with uniform time steps and adaptive time stepping; Second: evolution of the time steps with
adaptive time stepping; Third: evolution of the Lagrange multiplier η with adaptive time stepping.

where Adp(e, τ ) is a suitable function, e.g., [25,26]:

Adp(e, τ ) = ρ(
tol
e

)
1
2 τ. (4.7)

As an example, we used the above adaptive scheme with Su = Sv = 5 to solve the coupled Cahn–Hilliard
equations with the following parameters

ϵu = 0.075 ϵv = 0.075 σ = 10 α = −0.23 β = 0.5 γ = 0. (4.8)

In the first figure of Fig. 5, we plot the energy curves with uniform time step sizes δt = 10−2, δt = 10−5 and with
adaptive time steps. It is observed that the curve by adaptive time stepping coincides with the reference curve by
δt = 10−5, while the curve with larger time step 10−2 deviates from the reference curve. In the second figure, we
present the evolution of adaptive time steps and observe that a wide range of time steps are used with the largest
time step almost two-order of magnitude larger than the smallest time step. In the last figure, we plot evolution of
the Lagrange multiplier η, and observe that η oscillates around 1 but remains to be positive.
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Fig. 6. Experimental results and simulations at various temperature.
Source: Taken from [28].

5. Numerical simulations of block copolymers

In this section, we consider the coupled non-local Cahn–Hilliard system (3.1)–(3.4) introduced in [22] to describe
the dynamics of block copolymers. The unknowns are u and v where u describes macrophase separation into
homopolymer and copolymer domains, while v describes the microphase separation within the copolymer domain;
parameters Mu and Mv are mobility constants that control the speed at which order parameters u and v change;
ϵu represents the interfacial width while ϵv is a parameter related to the temperature; and α, β, γ, σ are modeling
parameters. The phase parameter σ represents a long range interaction that is needed to obtain particles with a fine
structure, such as ellipsoids. The coupling parameter α causes symmetry-breaking between microphase separated
domains and by changing its value we are able to control the interaction between the confined copolymer and the
confining surface. The coupling parameter β affects the free energy depending of the sign of u. γ plays a similar
role as α and is always taken to be zero in our simulations.

Three-dimensional simulations based on the coupled BCP model have produced very interesting phenomena
which are also observed in experiments [22,27]. For example, Fig. 6 presented in [27] shows that the model can
correctly capture the dynamical transformation of striped ellipsoids into onion like shapes as interfacial width
decreases which corresponds to temperature increase. However, simple semi-implicit numerical schemes used
in [22,27] for the above system lead to severe time step constraints in certain parameter regimes, so they are very
expensive to run, particularly in three dimension.

We present below several two-dimensional numerical simulations for the coupled non-local Cahn–Hilliard system
(3.1)–(3.4) by using the stabilized scheme (4.1)–(4.5) with adaptive time stepping. In all simulations, we take the
uniformly distributed random function in [−1, 1]2 as the initial condition.

5.1. Annealing of block copolymer

Annealing of block copolymers is an important process in reconfiguration of nanoparticles as in the morpholog-
ical transformation of ellipsoids with striped lamellae [27]. The coupled Cahn–Hilliard equations (3.1)–(3.4) can
correctly describe the process of annealing block copolymers [22,27]. This model make it possible to numerically
simulate a variety of experimental conditions involving nanoparticles undergoing a heating process.

In our numerical simulations, we assume that a block copolymer particle is immersed in an external medium,
which could be a homopolymer, a solvent, or water. To fix the idea, we shall consider the external medium as the
homopolymer, with the order parameter u = −1 representing the homopolymer rich domain and u = 1 representing
the BCP-rich domain, along with a smooth transitional layer of thickness ϵu . The order parameter v describes
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Fig. 7. Dynamical evolution of the phase variables u, v for the Coupled-BCP model with parameters in (5.1).

Fig. 8. Experimental results of annealing process at various temperature presented in [28].

micro separation inside the BCP domain which also acquires values from interval [−1, 1] with the end points
corresponding to A-type BCP and B-type BCP. The heating process starts at a given temperature T which in turn
depends on the interface width ϵv as T ∝ 1

ϵ2
v

.
In the first simulation, we set the parameters in (3.1)–(3.4) to be

ϵu = 0.075 ϵv = 0.05 σ = 10 α = 0.1 β = −0.75 γ = 0. (5.1)

Fig. 7 shows the morphological transformations at different times. During the phase transformation, the order
parameters u and v vary in a complicated manner. However at t = 2 which essentially reached the steady state,
it is observed that v exhibits locally striped shapes, with the yellow bulk presenting A-BCP particles and blue
bulk representing the B-BCP particles. The steady state morphology resembles the striped ellipsoid shape in the
experimental results depicted in Fig. 8.

In the second simulation presented in Fig. 9, we used the following set of parameters

ϵu = 0.05 ϵv = 0.05 σ = 10 α = −0.1 β = 0.75 γ = 0. (5.2)

Note in particular that we switched the sign of α. We observed similar configurations as in Fig. 7.
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Fig. 9. Dynamical evolution of the phase variables u, v for the coupled-BCP model with parameters in (5.2).

Fig. 10. The 2D dynamical evolution of the phase variable u, v for the Coupled-BCP model with parameters in (5.3).

5.2. Annealing process at higher temperature

To offer some insight into how the interaction between copolymer segments changes with temperature. We
increased the temperature T , by decreasing the interfacial width ϵv , in the third simulation with the parameters

ϵu = 0.035 ϵv = 0.01 σ = 10 α = −0.23 β = −0.5 γ = 0. (5.3)

Fig. 10 shows various stages of morphology transformation at different times, where u represents the confined
surface for BCP particles while v describes the dynamic process of morphological transformation for BCP particles.
In the final stage, some striped ellipsoids are formed, similar to the experimental results of annealing in water
depicted in Fig. 8.

To show how confined BCPs behave dynamically when the parameters are changed except ϵv , we set phase
parameters as

ϵu = 0.03 ϵv = 0.01 σ = 10 α = 0.33 β = −0.5 γ = 0. (5.4)
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Fig. 11. The 2D dynamical evolution of the phase variable u, v for the Coupled-BCP model with parameters in (5.4).

Fig. 11 gives another type of morphology transformations at various stages. There are some striped ellipsoids and
transformation shapes at time t = 0.01, 0.05, 0.1, 0.5 which can also observed from Fig. 8.

It is interesting to note that our two-dimensional numerical simulations captured some of the configuration
shapes observed in the experiments as well as in three-dimensional simulations of [27]. Since our two-dimensional
simulation can be performed with very little computational cost, compared with three-dimensional simulations using
less effective schemes, it is hoped that we can use this computational tool to fine tune modeling parameters to better
understand the nature of the annealing process.

6. Concluding remarks

We proposed in this paper a new Lagrange multiplier approach for general gradient flows. The new approach
shares most of the nice features with the SAV approach, such as, it leads to at least second-order unconditionally
energy stable schemes which can be efficiently solved with similar computational cost as the SAV approach. It
also offers two additional advantages: (i) it does not require that the integral of nonlinear functional in the free
energy to be bounded from below, and (ii) it dissipates the original energy. On the other hand, the new Lagrange
approach requires solving a nonlinear algebraic equation with negligible additional computational cost. but it may
fail to converge when the time step is large and leads to additional difficulty in its convergence and error analysis.

We presented ample numerical results to validate the stability, efficiency and accuracy of these schemes. It is
found that as long as the time steps are within a reasonable range which is required for accuracy, the Newton’s
iteration with one as initial condition for the nonlinear algebraic equation for the Lagrange multiplier always
converges in a few steps and the solution is always close to one, which is the exact solution.

The new Lagrange multiplier approach should be considered as an alternative for the SAV approach. In cases the
integral of nonlinear functional in the free energy is not bounded from below or it is difficult to find a lower bound
or it is desirable to have a strictly monotonic decreasing energy in the original form, the new Lagrange Multiplier
approach should be used.

Although we considered only time-discretized schemes in this paper, the stability results here can be carried over
to any consistent finite dimensional Galerkin type approximations since the proofs are all based on a variational
formulation with all test functions in the same space as the trial functions.

We also presented two-dimensional numerical simulations for the coupled BCP model by using our new
Lagrangian multiplier scheme with adaptive time stepping, and were able to capture some of the configuration
shapes observed in the experiments as well as in three-dimensional simulations of [27].

We only provided stability proofs for proposed schemes in this paper. The error analysis for these schemes is
nontrivial due to the nonlinear nature of this approach, and cannot be done with a similar procedure as in [29] for
the original SAV approach. This will be a subject of future endeavor.
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