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ERROR ESTIMATES AND BLOW-UP ANALYSIS OF

A FINITE-ELEMENT APPROXIMATION FOR THE

PARABOLIC-ELLIPTIC KELLER-SEGEL SYSTEM

WENBIN CHEN, QIANQIAN LIU, AND JIE SHEN

Abstract. The Keller-Segel equations are widely used for describing chemotaxis in biology.
Recently, a new fully discrete scheme for this model was proposed in [46], mass conservation,

positivity and energy decay were proved for the proposed scheme, which are important properties
of the original system. In this paper, we establish the error estimates of this scheme. Then, based
on the error estimates, we derive the finite-time blowup of nonradial numerical solutions under

some conditions on the mass and the moment of the initial data.
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1. Introduction.

Keller and Segel first proposed a nonlinear model in the 1970s to describe the
effect of cell aggregation in [27, 28]. A simplified Keller-Segel model in 2-D is given
by

∂u

∂t
=∆u− χ∇ · (u∇v), x ∈ Ω, t > 0,(1)

0 =∆v − v + αu, x ∈ Ω, t > 0,(2)

where Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω. The unknown
u = u(x, t) and v = v(x, t) represent the concentration of the organism and
chemoattractant respectively. The parameters χ, α are positive constants with χ
being the sensitivity of chemotaxis. The model is supplemented with initial condi-
tions

u(x, t = 0) = u0(x), v(x, t = 0) = v0(x), x ∈ Ω,

and no flux boundary conditions

∂u

∂n
− χu

∂v

∂n
= 0,

∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

where n denotes the unit outward normal vector to the boundary ∂Ω, ∂/∂n repre-
sents differentiation along n on ∂Ω.

A different version of the Keller-Segel model consists in replacing (2) by

(3)
∂v

∂t
= ∆v − v + αu, x ∈ Ω, t > 0.

The equation (1) describes the motion of the organism u. The term F = −∇u+
χu∇v is the flux, and the effect of diffusion −∆u and that of chemotaxis χ∇ ·
(u∇v) are competing for u to vary. The equation (2) describes the change in
concentration of the chemoattractant v, it is influenced by the diffusion and the
decay of the chemoattractant as well as the growth of the organism. In general,
the chemoattractant particles are much smaller than the organism particles, thus it
diffuses faster, which means that the diffusion of the chemoattractant will reach the
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equilibrium state in a relatively short time. The model (1)-(2) is called parabolic-
elliptic system. On the other hand, (1) with (3) is a parabolic-parabolic system.

The solution of the Keller-Segel model (1)-(2) has several well-known properties,
particularly, it may blow up in finite time. Various aspects and results for the
classical Keller-Segel model since 1970, along with some open questions, are sum-
marized in [25]. Positivity, mass conservation and energy dissipation of Keller-Segel
equations can be found in [35],[36],[47],[29] and [6], which plays an important role
to study the Keller-Segel system. Blanchet, Dolbeault and Perthame presented in
[3] a detail proof of the existence of weak solutions when the initial mass is below
the critical mass, above which any solution to the parabolic-elliptic systems blows
up in finite time in the whole Euclidean space. In [37], Nagai demonstrated the
finite-time blowup of nonradial solutions under some assumptions on the mass and
the moment of the initial data. As for the parabolic-parabolic systems, Blanchet
proved in [2] the optimal critical mass of the solutions in Rd with d ≥ 3. Wei proved
that for every nonnegative initial data in L1(R2), the 2-D Keller-Segel equation is
globally well-posed if and only if the total mass M ≤ 8π in [49].

Although the large time behavior of the solution of the Keller-Segel model (1)-
(2) has been well studied, there is still much to explore on the numerical side.
Since the Keller-Segel equations possess three important properties: positivity, mass
conservation and energy dissipation, it is preferable that numerical schemes can
preserve these properties at the discrete level. In [26], the existence of weak solutions
and upper bounds for the blow-up time for time-discrete (including the implicit
Euler, BDF and Runge-Kutta methods) approximations of the parabolic-elliptic
Keller-Segel models in the two-dimensional whole space are established. Liu, Li
and Zhou proposed a numerical method in [34] which preserves both positivity
and asymptotic limit, the proposed numerical method does not generate negative
density if initialized properly under a less strict stability condition. Saito and
Suzuki presented a finite difference scheme in [42] which satisfies the conservation
of a discrete L1 norm.

Some finite element methods are proposed in previous works. Saito presented a
finite element scheme for parabolic-elliptic systems in [43] that satisfies both posi-
tivity and mass conservation properties. Under some assumptions on the regularity
of solutions, the error estimates were established. Saito further constructed the
finite element methods to the parabolic-parabolic systems in [44] and derived error
analysis by using analytical semigroup theory. Gurusamy and Balachandran pro-
posed a finite element method for parabolic-parabolic systems and established the
existence of approximate solutions by using Schauder’s fixed point theorem in [23].
Further the error estimates for the approximate solutions in H1-norm were derived.

The discontinuous Galerkin methods can be also used to solve the Keller-Segel
equations. Epshteyn and Kurganov developed a family of new interior penalty
discontinuous Galerkin methods and proved error estimates for the proposed high-
order discontinuous Galerkin methods in [15]. Epshteyn and Izmirlioglu further
constructed a discontinuous Galerkin method for Keller-Segel model in [16] and
obtained fully discrete error estimates for the proposed scheme. In 2017, Li, Shu and
Yang applied the local discontinuous Galerkin (LDG) method to 2D Keller-Segel
chemotaxis model in [30], they improved the results upon [15] and gave optimal
rate of convergence under special finite element spaces before the blow-up occurs.
In 2019, Guo, Li and Yang constructed a consistent numerical energy and prove
the energy dissipation with the LDG discretization in [22].
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Another important numerical methods for Keller-Segel models are finite volume
methods since the positivity property can be naturally preserved. Filbet proposed
in [18] a finite volume scheme for the parabolic-elliptic system, and by assuming the
CFL condition χ∆tDT ,1 < 1 and the initial datum n0 ≥ a0 > 0, he proved existence
and uniqueness of the numerical solution by using the Browder fixed point theorem,
and showed that the numerical approximation converges to the exact solution under
some assumptions. In 2016, Zhou and Saito proposed a finite volume scheme in
[52], and established error estimates in Lp norm with a suitable p > 2 for the two
dimensional case under some regularity assumptions of solutions and admissible
mesh. By focusing on the radially symmetirc solution, they derived some a prior
estimates to study the blow-up phenomenon of numerical solution.

There have been growing interests in positivity-preserving analysis for gradient
flows with logarithmic energy potential. Some theoretical analysis of the positivity-
preserving property and the energy stability have been explored for these numerical
schemes for certain systems, such as Cahn-Hilliard systems in [7, 10, 11, 51, 12], the
Poisson-Nernst-Planck-Cahn-Hilliard systems in [41], the Poisson-Nernst-Planck
systems in [32], the thin film model without slope selection in [31] and a structure-
preserving, operator splitting scheme for reaction-diffusion systems in [33]. The
techniques of the higher order consistency analysis combined with rough error es-
timate and refined one have been presented in [32, 13, 14] which will be utilized in
the following to obtain the convergence analysis.

Recently, a new approach for constructing positivity preserving schemes was
proposed in [46]. The key for this approach is to write ∆u as ∇ · (u∇ log u) in
(1), and then use a convex splitting idea to construct mass conservative, bound
preserving, and uniquely solvable schemes for (1)-(2) and for (1)-(3). The main
purposes of this paper are to establish the convergence of the fully discrete scheme
proposed in [46], and to show the finite-time blowup of numerical solutions under
some conditions on the mass and moments of the initial data. More precisely, let
ukh be an approximation of u(·, kτ), where τ > 0 is the time step and k ∈ N. Let
θ = (u0, 1) be the initial mass, and Mk = (ukh, φ)h be the moment of ukh. Our first
goal is to establish the error estimates for the fully discrete scheme proposed in [46]
(cf. Theorem 6). Another important feature of the Keller-Segel system (1)-(2) is
that the solution may blow up in finite time under certain conditions on the initial
data. Our second goal is to show that the numerical solution will also blow up in
finite time under similar conditions on the initial data (cf. Theorem 15). Many
previous works (see [42, 43, 46]) show that the numerical solution seems to blow up
under large initial data by several numerical experiments. However, there is still
much to explore on the theoretical proof of blowup phenomenon besides the radial
numerical solution in [52] mentioned before.

The rest of the paper is organized as follows. In Section 2, we recall some
properties of the classical Keller-Segel equations, including its finite-time blowup
behavior. In Section 3, we introduce the fully discrete scheme constructed in [46]
and carry out a rigorous error analysis. In Section 4, we show that the numerical
solution will blow up in finite time under suitable conditions on the initial data.

2. The Keller-Segel equations

In this section, we recall some properties for the Keller-Segel system (1)-(2)
with no flux boundary conditions. In addition, we assume the initial value u0 ∈
W 2,p(Ω), 1 < p <∞, and satisfies

u0 ≥ 0 and u0 ̸≡ 0, ∀x ∈ Ω.
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It was shown in [35] that there exist some T > 0 such that (1)-(2) is well posed in
the time interval [0, T ]. Moreover, it holds that

Theorem 1. The Keller-Segel system (1)-(2) satisfies the following properties:

(i) Positivity preserving:

u(x, t) > 0, v(x, t) > 0 on Ω× (0, T ].

In fact, it is a consequence of the strong maximum principle [8] .
(ii) Mass conservation:∫

Ω

u(x, t)dx =

∫
Ω

u0(x)dx, for all t > 0.

It is immediately follows from

d

dt

∫
Ω

u(x, t)dx =

∫
∂Ω

(
∂u

∂n
− u

∂v

∂n

)
dS = 0 .

As a consequence of (i) and (ii), we obtain the conservation of L1 norm,
namely

∥u(t)∥L1(Ω) = ∥u0∥L1(Ω).

(iii) Energy decay:

dF [u(t), v(t)]

dt
= −

∫
Ω

u|∇ · (log u− χv)|2dx ≤ 0,

where the free energy of (1)-(2) is defined by

F [u, v] =

∫
Ω

(
u(log u− 1)− χuv +

χ

2α
|∇v|2 + χ

2α
v2
)
dx .

The following result is shown in [37].

Lemma 2. [37] Let q ∈ Ω and 0 < r1 < r2 < dist(q, ∂Ω), where dist(q, ∂Ω) is the
distance between q and ∂Ω. Then there exist positive constants C1, C2 depending
only on r1, r2 and dist(q, ∂Ω) such that for t ∈ (0, T ],

d

dt

∫
Ω

u(x, t)Φ(x)dx

≤ 4

∫
Ω

u0(x)dx− αχ

2π

(∫
Ω

u0(x)dx

)2

+ C1

(∫
Ω

u0(x)dx

)(∫
Ω

u(x, t)Φ(x)dx

)
+ C2

(∫
Ω

u0(x)dx

)3/2(∫
Ω

u(x, t)Φ(x)dx

)1/2

,

where Φ(x) = ϕ(|x− q|) with

ϕ(r) =


r2 if 0 ≤ r ≤ r1,

a1r
2 + a2r + a3 if r1 < r ≤ r2,

r1r2 if r > r2,

where a1 = − r1
r2 − r1

, a2 =
2r1r2
r2 − r1

, a3 = − r21r2
r2 − r1

.

The finite-time blowup behavior is then proved using the above result.

Theorem 3. [37] Assume that
∫
Ω
u0(x)dx > 8π/(αχ), if

∫
Ω
u0(x)|x − q|2dx is

sufficiently small, then the solution (u, v) to (1)-(2) blows up in finite time.
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Moreover, the following pointwise estimates for v is established in [19]. An
application of the Neumann semigroup leads to

v(x, t) ≥
(∫ ∞

0

1

(4πt)
n
2
e−(t+

(diamΩ)2

4t )dt

)∫
Ω

u(x, t)dx

= ∥u0∥L1(Ω)

∫ ∞

0

1

(4πt)
n
2
e−(t+

(diamΩ)2

4t )dt,

for all x ∈ Ω, t ∈ (0, T ], whenever (u, v) solves (1)-(2) in Ω× (0, T ] for some T > 0.
In this paper, we assume that

u(x, t) ≥ ϵ0 for some ϵ0 > 0, (x, t) ∈ Ω× (0, T ].

3. The fully discrete scheme and error estimates

In this section, we describe the fully discrete scheme in [46] for (1)-(2), construct
the error equations and establish the error estimates.

We now give a precise description of our finite element space Xh. Given a
triangulation T for Ω, we let Zh consists of all the vertices excluding those where
Dirichlet boundary conditions are prescribed. We define Xh to be the finite element
space spanned by the piecewise linear continuous functions based on T . Let e be
a triangle of the triangulation T , and Pe,i, i = 1, 2, 3 be its vertices, we define the
quadrature formula

Qe(f) =
1

3
area(e)

3∑
i=1

f(Pe,i) ≈
∫
e

fdx.

We recall that [48]

|Qe(f)−
∫
e

fdx| ≤ Ch2
∑
|α|=2

∥Dαf∥L1(e).

We then define the discrete inner product in Xh by

(u, v)h =
∑
e∈T

Qe(uv),

the corresponding norm is defined by ∥ · ∥L2
h
. We have the following estimates in

[48] for the quadrature error.

Lemma 4. Let ϵh(·, ·) = (·, ·)h − (·, ·) denote the quadrature error, then we have

|ϵh(u, v)| ≤ Ch2∥∇u∥L2(Ω)∥∇v∥L2(Ω), ∀ u, v ∈ Xh.

Applying Lemma 4, the norm ∥ · ∥L2
h
has the following property

∥∇u∥L2
h(Ω) = ∥∇u∥L2(Ω), ∀ u ∈ Xh.(4)

Let Ih : C(Ω) → Xh be the Lagrange interpolation operator, which has the
approximation property [4] that for all g ∈ H2(Ω) ∩H1

0 (Ω),

(5) ∥Ihg − g∥L2(Ω) ≤ Ch2∥g∥H2(Ω) and ∥∇(Ihg − g)∥L2(Ω) ≤ Ch∥g∥H2(Ω).

The fully discrete scheme proposed in [46] for (1)-(2) is to find (uk+1
h , vk+1

h ) ∈
Xh ×Xh such that for all (φ,ψ) ∈ Xh ×Xh,(

∂ukh, φ
)
h

+
(
ukh∇

(
Ih log u

k+1
h

)
,∇φ

)
h
− χ

(
ukh∇vkh,∇φ

)
h
= 0,(6)

(∇vk+1
h ,∇ψ) + (vk+1

h , ψ)− α(uk+1
h , ψ)h = 0.(7)
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Here, the (·, ·) represents the usual L2 inner product, the (·, ·)h is the discrete inner
product defined above, and ∂ukh is the forward Euler difference quotient approxi-
mating to ∂tu(t

k) defined by

∂ukh =
uk+1
h − ukh

τ
.

In this setting, the authors in [46] proved the following.

Lemma 5. [46] The numerical scheme (6)-(7) has the following properties:

(i) Unique solvability:

The scheme (6)-(7) has a unique solution (uk+1
h , vk+1

h ) ∈ Xh ×Xh.

(ii) Positivity preserving: If uk > 0, then uk+1 > 0.
(iii) Mass conservation:

(uk+1
h , 1)h = (ukh, 1)h = (u0h, 1)h,

It is immediately derived by taking φ = 1 in (6).
(iv) Energy decay:

F̃ k+1 − F̃ k ≤ −τ
(
ukh∇(Ih(log u

k+1
h − χvkh)),∇(Ih(log u

k+1
h − χvkh))

)
h
≤ 0,

where the discrete energy of (6)-(7) is defined by

F̃ k[u, v] = (ukh(log u
k
h − 1), 1)h − χ(ukh, v

k
h)h +

χ

2α
∥∇vkh∥2 +

χ

2α
∥vkh∥2.

We denote by (u, v) the exact solution pair to the original equations (1)-(3),
and all the upper bounds for the exact solution are denoted as C. We set uk =
u(tk), v

k = v(tk), and denote

eku := uk − ukh, ekv := vk − vkh, ∀k ∈ N.

The following theorem is the main result of this section.

Theorem 6. Assume u0 ∈ W 2,p(Ω)(1 < p < ∞) and the exact solution pair
(u, v) is smooth enough for a fixed final time T > 0. Then, provided τ and h are
sufficiently small and under the mild mesh-sizes requirement τ ≤ Ch, we have the
following error estimates

∥emu ∥L2
h(Ω) + ∥emv ∥H1

h(Ω) + (τ
m−1∑
k=0

∥∇ek+1
u ∥2L2

h(Ω))
1/2 ≤ C(τ + h), ∀m ∈ N,

where tm = mτ ≤ T , C > 0 is independent of τ and h.

The proof for this theorem will be carried out with a sequence of procedures that
we describe below.

Remark 7. The mesh-sizes requirement τ ≤ Ch in Theorem 6 is proposed to obtain
a higher order consistency analysis via a perturbation argument, which is needed to
get the separation property and the W 1,∞ bound for the numerical solution.

3.1. Higher order consistent approximation to (6)-(7). In this subsection,
we apply the perturbation argument method in [32] to the finite element scheme to
construct f1, f2, f3 such that

û := u+ hf1 + h2f2 + h3f3,

is consistent with the given numerical scheme (6)-(7) at the order O(h4). The
following lemma is used to construct f1, f2, f3 and the proof is given in Appendix.
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By applying a perturbation argument, a higher order O(h4) consistency is sat-
isfied for û, which is needed to obtain the separation property and a W 1,∞ bound
for the numerical solution.

Lemma 8. Suppose that τ ≤ Ch and u is smooth enough, then there exist bounded
smooth functions f1, f2, f3, such that û = u+ hf1 + h2f2 + h3f3 satisfies(

∂ûk, φ
)
h
+
(
ûk∇Ih log ûk+1,∇φ

)
h
− χ

(
ûk∇Ahûk,∇φ

)
h
= ⟨Rk(û), φ⟩,(8)

for all φ ∈ Xh, k ∈ N, where Ah = α(−∆h + I)−1Qh and ⟨·, ·⟩ denotes the duality
product satisfying

|⟨Rk(ûk), φ⟩| ≤ Ch4∥φ∥H1 ,(9)

where C depends on the regularity of the solution u.

Remark 9. Under the conditions that the exact solution u ≥ ϵ0 for some ϵ0 > 0,
and h is sufficiently small, we obtain that

(10) û ≥ ϵ0
2
.

Since the correction functions fj , j = 1, 2, 3 only depend on the exact solution u,
they are bounded in W 1,∞ norm. Then, we can obtain the following W 1,∞ bound
for û:

(11) ∥ûk∥W 1,∞ ≤ C, ∀k ≥ 0.

3.2. A rough error estimate. In this subsection, we derive the strict separa-
tion property and a uniform W 1,∞ bound for the numerical solution. Define an
alternative error function:

ũk := Ihû
k − ukh, ∀k ∈ N.

Subtracting the numerical scheme (6) from the consistency estimate (8) implies
that

(12) (∂ũk, φ)h = −(ũk∇Vku + ukh∇µ̃ku,∇φ)h + ⟨Rk, φ⟩,
where

Vku := Ih log û
k+1 − χAhû

k,

µ̃ku := Ih log û
k+1 − Ih log u

k+1
h − χAhũ

k.

Since Vku only depends on the exact solution, we can assume

(13) ∥Vku∥W 2,∞ ≤ C.

Lemma 10. The numerical solutions of the scheme (6)-(7) have the strict separation
property and a uniform W 1,∞ bound:

ukh ≥ ϵ0
4
, ∥ukh∥W 1,∞ ≤ C∗,

for all 0 ≤ k ≤ T/τ , where ϵ0 and C∗ are positive constants.

Proof. We shall first make the following assumption at the previous time step:

(14) ∥ũk∥2 ≤ C(τ15/4 + h15/4).

Then, we will demonstrate that such an assumption will be recovered at the next
time step.

Using the inverse inequality and τ ≤ Ch, we obtain a W 1,∞ bound for the
numerical error functions:

(15) ∥ũk∥∞ ≤ C∥ũk∥2
h

≤ C(τ15/4 + h15/4)

h
≤ C(τ11/4 + h11/4) ≤ 1,
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∥∇ũk∥∞ ≤ C∥ũk∥∞
h

≤ C(τ11/4 + h11/4)

h
≤ C(τ7/4 + h7/4) ≤ 1.

A combination of the above with (11), we get a W 1,∞ bound for ukh at the previous
time step:

∥ukh∥∞ ≤ ∥ûk∥∞ + ∥ũk∥∞ ≤ C + 1 ≤ C∗,

∥∇ukh∥∞ ≤ ∥∇ûk∥∞ + ∥∇ũk∥∞ ≤ C + 1 ≤ C∗.

Because of (15), taking τ and h sufficiently small, we have

∥ũk∥∞ ≤ C(τ11/4 + h11/4) ≤ ϵ0
4
.

Then the strict separation property is valid for ukh:

(16) ukh ≥ ûk − ∥ũk∥∞ ≥ ϵ0
4
.

Taking φ = τ µ̃ku in (12) leads to

(17) (ũk+1, µ̃ku)h + τ(ukh∇µ̃ku,∇µ̃ku)h = (ũk, µ̃ku)h − τ(ũk∇Vku ,∇µ̃ku)h + τ⟨Rk, µ̃ku⟩.

Now we deal with the left hand side of (17). To proceed the first term on the left
hand side of (17), using the Hölder inequality, we have

(18)

(ũk+1, µ̃ku)h =(ũk+1, Ih log û
k+1 − Ih log u

k+1
h )h + (ũk+1,−χAhũk)h

≥ (ũk+1,
1

ζ
ũk+1)h − C∥ũk+1∥2∥ũk∥2

≥ 1

C∗ ∥ũ
k+1∥22 −

1

C∗ ∥ũ
k+1∥22 − C∥ũk∥22

= −C∥ũk∥22,

where ζ lies between ûk+1 and uk+1
h . As for the second term on the left hand side

of (17), using the strict separation property of the numerical solution (16), we have

(19) (ukh∇µ̃ku,∇µ̃ku)h ≥ ϵ0
4
∥∇µ̃ku∥22.

Next, we deal with the right hand side of (17). We apply the Hölder inequality and
the Young inequality:

(20) |(ũk, µ̃ku)h| ≤ ∥ũk∥2∥µ̃ku∥2 ≤ C∥ũk∥2∥∇µ̃ku∥2 ≤ 6C

ϵ0τ
∥ũk∥22 +

ϵ0τ

24
∥∇µ̃ku∥22.

An application of the Cauchy-Schwarz inequality and (13) leads to

| − (ũk∇Vku ,∇µ̃ku)h| ≤ ∥ũk∇Vku∥2∥∇µ̃ku∥2 ≤ ∥∇Vku∥∞∥ũk∥2∥∇µ̃ku∥2

≤ 6C

ϵ0
∥ũk∥22 +

ϵ0
24

∥∇µ̃ku∥22.

Using the inequality (9), we have

(21) |⟨Rk, µ̃ku⟩| ≤ Ch4∥∇µ̃ku∥2 ≤ 6C

ϵ0
h8 +

ϵ0
24

∥∇µ̃ku∥22.

Substitution of (18)-(21) into (17) leads to

ϵ0
4
τ∥∇µ̃ku∥22 − C∥ũk∥22 ≤ 6C

ϵ0τ
∥ũk∥22 +

6Cτ

ϵ0
∥ũk∥22 +

6C

ϵ0
h8τ +

ϵ0τ

8
∥∇µ̃ku∥22.

Then we have

(22) ∥∇µ̃ku∥2 ≤ C(τ11/4 + h11/4).
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Again, taking φ = ũk+1 − ũk in the error equation (12) leads to

(23) ∥ũk+1 − ũk∥2 ≤ τ

(
∥∇ · (ũk∇Vku)∥2 + ∥∇ · (ukh∇µ̃ku)∥2 +

1

h
∥Rk∥H−1

)
.

Now we estimate the first term on the right hand side of (23). Using the Young
inequality, we have

(24)

∥∇ · (ũk∇Vku)∥2 ≤ ∥ũk∆Vku∥2 + ∥∇ũk∇Vku∥2
≤ ∥∆Vku∥∞∥ũk∥2 + ∥∇Vku∥∞∥∇ũk∥2
≤ C(∥ũk∥2 + ∥∇ũk∥2)

≤ C(τ11/4 + h11/4),

where (14) has been used in the last inequality. For the second term on the right
hand side of (23), we have

(25)

∥∇ · (ukh∇µ̃ku)∥2 ≤ ∥∇ukh∇µ̃ku∥2 + ∥ukh∆µ̃ku∥2
≤ ∥∇ukh∥∞∥∇µ̃ku∥2 + ∥ukh∥∞∥∆µ̃ku∥2
≤ C∗(∥∇µ̃ku∥2 + ∥∆µ̃ku∥2)

≤ C(τ7/4 + h7/4),

where (22) and the inverse inequality have been used in the last inequality. Substi-
tution of (24)-(25) and (9) into (23) leads to

∥ũk+1 − ũk∥2 ≤ C(τ11/4 + h11/4).

Then, we can obtain a rough estimate for ũk+1:

∥ũk+1∥2 ≤ ∥ũk+1 − ũk∥2 + ∥ũk∥2 ≤ C(τ11/4 + h11/4).

An application of the inverse inequality and τ ≤ Ch implies that

∥ũk+1∥∞ ≤ C∥ũk+1∥2
h

≤ C(τ7/4 + h7/4) ≤ 1,

∥∇ũk+1∥∞ ≤ C∥ũk+1∥∞
h

≤ C(τ3/4 + h3/4) ≤ 1.

We take τ and h sufficiently small such that

∥ũk+1∥∞ ≤ C(τ7/4 + h7/4) ≤ ϵ0
4
.

A combination of above with (10) leads to the strict separation property:

uk+1
h ≥ ûk+1 − ∥ũk+1∥∞ ≥ ϵ0

4
.

In addition, we can obtain the following W 1,∞ bound for the numerical solution uh
at time step tk+1:

∥uk+1
h ∥∞ ≤ ∥ûk+1∥∞ + ∥ũk+1∥∞ ≤ C + 1 ≤ C∗,

∥∇uk+1
h ∥∞ ≤ ∥∇ûk+1∥∞ + ∥∇ũk+1∥∞ ≤ C + 1 ≤ C∗,

which completes the proof. �
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3.3. Proof of Theorem 6. In this subsection, we shall make use of the strict
separation property and the uniformW 1,∞ bound for the numerical solution derived
in the above to prove Theorem 6.

We recall the following inverse estimate in [4, p.111, Lemma 4.5.3].

Lemma 11. Given a quasi-uniform triangulation T on domain Ω ⊂ Rn, and Xh be
a finite-dimensional subspace of W l,p(K)∩Wm,q(K), where 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞
and 0 ≤ m ≤ l. Then there exists a positive constant C such that for all u ∈ Xh,
we have

∥u∥W l,p(K) ≤ Chm−l+n/p−n/q∥u∥Wm,q(K),

where C is independent of u.

We will also use the following discrete Gronwall inequality in [45, 50].

Lemma 12. Assume that τ > 0, B > 0, {ak}, {bk}, {γk} are non-negative sequences
such that

am + τ
m∑
k=1

bk ≤ τ
m−1∑
k=1

γkak +B, m ≥ 1.

Then

am + τ

m∑
k=1

bk ≤ Bexp

(
τ

m−1∑
k=1

γk

)
, m ≥ 1.

A weak formulation of (1)-(2) is

(ut, φ) + (∇u,∇φ)− χ(u∇v,∇φ) = 0, ∀φ ∈ H1
0 (Ω),(26)

(∇v,∇ψ) + (v, ψ) = α(u, ψ), ∀ψ ∈ H1
0 (Ω).(27)

Substituting Ihu(t) into (26) at t = tk+1, we have

(28)

(
∂Ihu

k, φ
)
h
+
(
∇Ihuk+1, ∇φ

)
h
− χ

(
Ihu

k∇vk, ∇φ
)
h

=
(
∂uk − uk+1

t , φ
)
+
(
∂Ihu

k − ∂uk, φ
)
+
(
∇(Ihu

k+1 − uk+1), φ
)

+ χ
(
(uk − Ihu

k)∇vk, φ
)
+ χ

(
uk+1∇vk+1 − uk∇vk, φ

)
+
(
∂Ihu

k, φ
)
h
−
(
∂Ihu

k, φ
)
+
(
∇Ihuk+1,∇φ

)
h
−
(
∇Ihuk+1,∇φ

)
+ χ

(
Ihu

k∇vk,∇φ
)
− χ

(
Ihu

k∇vk,∇φ
)
h

:=I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 := R1,

where R1 represents the truncation error. Similarly, substituting Ihu(t), Ihv(t) into
(27) at t = tk leads to

(∇Ihvk, ∇ψ) + (Ihv
k, ψ) =α(Ihu

k, ψ) + (∇(Ihv(tk)− vk), ψ)(29)

+ (Ihv
k − vk, ψ) + α(uk − Ihu

k, ψ).

We rewrite the numerical scheme (6) as

(30)

(
∂ukh, φ

)
h
+
(
∇uk+1

h ,∇φ
)
h
− χ

(
ukh∇vkh,∇φ

)
h

=
(
ukh∇(I − Ih) log u

k+1
h ,∇φ

)
h
+
(
(uk+1
h − ukh)∇ log uk+1

h ,∇φ
)
h

:=I9 + I10 := R2.

We split the error functions as

eku = uk − ukh = (uk − Ihu
k) + (Ihu

k − ukh) := ρku + σku,

ekv = vk − vkh = (vk − Ihv
k) + (Ihv

k − vkh) := ρkv + σkv .
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Then using the property of the interpolation (5), we have

(31)
∥ρku∥L2(Ω) + h∥∇ρku∥L2(Ω) ≤ Ch2∥u∥H2(Ω),

∥ρkv∥L2(Ω) + h∥∇ρkv∥L2(Ω) ≤ Ch2∥v∥H2(Ω).

Subtracting the numerical scheme formulation (30) and (7) from the weak form
(28) and (29), we obtain the following error equations:(

∂σku, φ
)
h
+
(
∇σk+1

u , ∇φ
)
h = I11 +R1 −R2,(32)

(∇σkv , ∇ψ) + (σkv , ψ) = α(σku, ψ)− αϵh(u
k
h, ψ) + (∇(Ihv − v), ψ)(33)

+ (Ihv − v, ψ) + α(u− Ihu, ψ),

for all φ,ψ ∈ Xh, k ≥ 1, where R1, R2 are defined before and I11 is defined as
follows

I11 = χ
(
Ihu(tk)∇vk − ukh∇vkh, ∇φ

)
h
.

Taking φ = σk+1
u in (32) leads to

(34)
1

2τ

(
∥σk+1

u ∥2L2
h
− ∥σku∥2L2

h
+ ∥σk+1

u − σku∥2L2
h

)
+ ∥∇σk+1

u ∥2L2
h
= I11 +R1 −R2.

Now we estimate the terms on the right-hand side of (35). For the first term
I11, applying the Cauchy-Schwarz inequality and the Young inequality yields

(35)

|I11| = |χ
(
σku∇vk + ukh∇ekv , ∇σk+1

u

)
h
|

≤ ∥σku∇vk∥L2
h(Ω)∥∇σk+1

u ∥L2
h(Ω) + ∥ukh∇ekv∥L2

h(Ω)∥∇σk+1
u ∥L2

h(Ω)

≤ C∥σku∥2L2
h(Ω) +

1

20
∥∇σk+1

u ∥2L2
h(Ω) + C∥∇ekv∥2L2

h(Ω).

In order to estimate ∥∇ekv∥2L2
h(Ω)

above, taking ψ = σkv in (33) and applying Lemma

4 leads to

∥∇σkv∥2L2(Ω) + ∥σkv∥2L2(Ω) ≤ α∥σku∥L2(Ω)∥σkv∥L2(Ω) + Ch2∥∇ukh∥L2(Ω)∥∇σkv∥L2(Ω)

+ Ch∥v∥H2(Ω)∥σkv∥L2(Ω) + Ch2∥u∥H2(Ω)∥σkv∥L2(Ω)

≤ C∥σku∥2L2(Ω) + ∥σkv∥2L2(Ω) +
1

2
∥∇σkv∥2L2(Ω) + Ch2,

where the property of the interpolation has been used in the first inequality. Thus
we obtain the following estimate for ∥∇σkv∥L2(Ω):

∥∇σkv∥2L2(Ω) ≤ C∥σku∥2L2(Ω) + Ch2.(36)

Applying Lemma 4 indicates that

∥∇σkv∥2L2
h(Ω) ≤ C∥σku∥2L2

h(Ω) + Ch2∥∇σku∥2L2(Ω) + Ch2.

A combination of the above estimates for ∥∇σkv∥L2
h(Ω) with (31) leads to

∥∇ekv∥2L2
h(Ω) ≤ C∥σku∥2L2

h(Ω) + Ch2∥∇σku∥2L2(Ω) + Ch2.(37)

Substitution of above into (35) leads to

(38) |I11| ≤ C∥σku∥2L2
h(Ω) +

1

20
∥∇σk+1

u ∥2L2
h(Ω) + Ch2∥∇σku∥2L2(Ω) + Ch2.



286 W. CHEN, Q. LIU, AND J. SHEN

Next we estimate the second term R1 = I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8. For
the first term, we can derive [48]

(39)

|I1| = |
(
∂uk − uk+1

t , σk+1
u

)
| ≤ Cτ1/2(

∫ tk+1

tk

∥utt∥2L2(Ω)ds)
1/2∥σk+1

u ∥L2(Ω)

≤ Cτ

∫ tk+1

tk

∥utt∥2L2(Ω)ds+
1

20
∥∇σk+1

u ∥2L2(Ω).

An application of the property of the interpolation and the Young inequality leads
to

(40)

|I2| =|
(
∂Ihu

k − ∂uk, σk+1
u

)
|

≤ 1

τ
∥Ih(uk+1 − uk)− (uk+1 − uk)∥L2(Ω)∥σk+1

u ∥L2(Ω)

=
1

τ
∥(Ihut − ut)τ∥L2(Ω)∥σk+1

u ∥L2(Ω)

≤ Ch2∥ut∥H2(Ω)∥∇σk+1
u ∥L2(Ω)

≤ Ch4 +
1

20
∥∇σk+1

u ∥2L2(Ω).

Using the Cauchy-Schwarz inequality and the property of the interpolation, we have

(41)

|I3| =|
(
∇(Ihu

k+1 − uk+1), ∇σk+1
u

)
|

≤∥∇(Ihu
k+1 − uk+1)∥L2(Ω)∥∇σk+1

u ∥L2(Ω)

≤Ch∥uk+1∥H2(Ω)∥∇σk+1
u ∥L2(Ω)

≤Ch2 + 1

20
∥∇σk+1

u ∥2L2(Ω).

Similarly, we have

(42)

|I4| =|χ
(
(uk − Ihu

k)∇vk, ∇σk+1
u

)
|

≤ χ∥uk − Ihu
k∥L2(Ω)∥∇vk∥L∞(Ω)∥∇σk+1

u ∥L2(Ω)

≤ Ch2∥uk∥H2(Ω)∥∇σk+1
u ∥L2(Ω)

≤ Ch4 +
1

20
∥∇σk+1

u ∥2L2(Ω).

Now we apply the Cauchy-Schwarz inequality and the Young inequality:

(43)

|I5| =|χ
(
τut∇vk+1 + τuk∇vt, ∇σk+1

u

)
|

≤ C
(
∥ut∥L∞(Ω)∥∇v∥L∞(Ω) + ∥u∥L∞(Ω)∥∇vt∥L∞(Ω)

)
τ∥∇σk+1

u ∥L2(Ω)

≤ Cτ2 +
1

20
∥∇σk+1

u ∥2L2(Ω).

Notice that

I6 =
1

τ

(
Ihu

k+1 − Ihu
k, σk+1

u

)
− 1

τ

(
Ihu

k+1 − Ihu
k, σk+1

u

)
h

= −ϵh
(
Ihut, σ

k+1
u

)
,

therefore, using Lemma 4 leads to the following estimate for I6:

|I6| = |ϵh(Ihut, σk+1
u )| ≤ Ch2∥∇Ihut∥∥∇σk+1

u ∥ ≤ Ch4 +
1

20
∥∇σk+1

u ∥2L2(Ω).(44)

We recall the quadrature formula defined before and Lemma 4, and arrive at

I7 =
(
Ihu

k+1,∇σk+1
u

)
h
−
(
Ihu

k+1,∇σk+1
u

)
= 0,(45)
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An application of the Cauchy-Schwarz inequality and the property of the interpo-
lation leads to

(46)

|I8| = |χ
(
Ihu

k∇vk,∇σk+1
u

)
− χ

(
Ihu

k∇vk,∇σk+1
u

)
h
|

= |χ
(
Ihu

k∇(I − Ih)v
k,∇σk+1

u

)
− χ

(
Ihu

k∇(I − Ih)v
k,∇σk+1

u

)
h
|

≤ Ch∥Ihuk∥L∞∥uk∥L2(Ω)∥∇σk+1
u ∥L2(Ω)

≤ Ch2 +
1

20
∥∇σk+1

u ∥2L2(Ω).

Substituting estimates (39)-(46) into R1 and applying the property (4), we obtain

(47)

|R1| ≤Cτ
∫ tk+1

tk

∥utt∥2L2(Ω)ds+
7

20
∥∇σk+1

u ∥2L2(Ω) + Ch2 + Cτ2

=Cτ

∫ tk+1

tk

∥utt∥2L2(Ω)ds+
7

20
∥∇σk+1

u ∥2L2
h(Ω) + Ch2 + Cτ2.

It remains to bound each term of R2 = I9+I10. Now we use the Cauchy-Schwarz
inequality and the Young inequality:

(48)

|I9| =|
(
ukh∇(I − Ih) log u

k+1
h ,∇σk+1

u

)
h
|

≤ ∥ukh∇(I − Ih) log u
k+1
h ∥L2

h(Ω)∥∇σk+1
u ∥L2

h(Ω)

≤ ∥ukh∥L∞(Ω)∥∇(I − Ih) log u
k+1
h ∥L2

h(Ω)∥∇σk+1
u ∥L2

h(Ω)

≤ Ch2 +
1

20
∥∇σk+1

u ∥L2
h(Ω),

where we have used the following inequality:

∥∇(I − Ih) log u
k+1
h ∥L2

h(Ω) ≤ Ch
∑
e

∑
|α|=2

(

∫
e

|Dα log uk+1
h |2dx)1/2

≤ Ch
∑
e

(

∫
e

1

(uk+1
h )4

|∇uk+1
h |4dx)1/2

≤ Ch
1

(ϵ0/4)4

∑
e

(

∫
e

|∇uk+1
h |4dx)1/2

≤Ch.

An application of the strict separation property and the W 1,∞ bound of the nu-
merical solution leads to

(49)

|I10| =|
(
(uk+1
h − ukh)∇ log uk+1

h ,∇σk+1
u

)
h
|

≤ ∥
uk+1
h − ukh
uk+1
h

∇uk+1
h ∥L2

h(Ω)∥∇σk+1
u ∥L2

h(Ω)

≤
∥∇uk+1

h ∥L∞(Ω)

ϵ0/4

(
∥σk+1

u − σku∥L2
h(Ω) + Cτ

)
∥∇σk+1

u ∥L2
h(Ω)

≤ C(∥σk+1
u − σku∥L2

h(Ω) + Cτ)∥∇σk+1
u ∥L2

h(Ω)

≤ C∥σk+1
u − σku∥2L2

h(Ω) + Cτ2 +
1

20
∥∇σk+1

u ∥2L2
h(Ω).

Combining the estimates (48)-(49), we obtain

(50) |R2| ≤ C∥σk+1
u − σku∥2L2

h(Ω) +
1

10
∥∇σk+1

u ∥2L2
h(Ω) + Ch2 + Cτ2.
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Finally, combining (38),(47) and (50) in (34), we find

(51)

1

2τ

(
∥σk+1

u ∥2L2
h(Ω) − ∥σku∥2L2

h(Ω) + ∥σk+1
u − σku∥2L2

h(Ω)

)
+ ∥∇σk+1

u ∥2L2
h(Ω)

≤ C∥σku∥2L2(Ω) + C∥σk+1
u − σku∥2L2

h(Ω) +
1

2
∥∇σk+1

u ∥2L2
h(Ω) + Ch2 + Cτ2

+ Ch2∥∇σku∥2L2(Ω) + Cτ

∫ tk+1

tk

∥utt∥2L2(Ω)ds.

Multiplying by 2τ on both sides of (51) and summing up from k = 0 to m− 1, we
get

∥σmu ∥2L2
h(Ω) − ∥σ0

u∥2L2
h(Ω) + (1− 2Cτ)∥σk+1

u − σku∥2L2
h(Ω) + τ

m−1∑
k=0

∥∇σk+1
u ∥2L2

h(Ω)

≤ Cτ
m−1∑
k=0

∥σku∥2L2
h(Ω) + Ch2 + Cτ2 + Cτh2

m−1∑
k=0

∥∇σku∥2L2(Ω) + Cτ2
∫ T

0

∥utt∥2L2ds.

Assuming 1 − 2Cτ > 0, 1 − Ch2 > 1/2 since τ and h is small enough, and
applying the discrete Gronwall inequality (Lemma 12) to the above leads to

∥σmu ∥L2
h(Ω) + (τ

m−1∑
k=0

∥∇σk+1
u ∥2L2

h(Ω))
1/2 ≤ C(h+ τ), ∀m ∈ N.

A combination of the above estimates for ∥σmu ∥L2
h(Ω) and ∥∇σk+1

u ∥L2
h(Ω) with (31)

leads to the desired error estimates for u. Finally, we obtain the error estimates for
v from (36) and (37).

The proof of Theorem 6 is complete.

4. Finite-time blowup

In this section, we discuss whether the solution of the fully discrete scheme (6)-(7)
will blow up in finite time.

We first prove a discrete analog of Lemma 2. Taking φ = IhΦ in (6), where Φ is
defined as in Lemma 2, then from (5), we have the following error estimate

(52) ∥φ− Φ∥L2(Ω) + h∥φ− Φ∥L2(Ω) ≤ Ch2∥Φ∥H2(Ω).

Lemma 13. Assume that u is smooth enough for a fix time T > 0, let Mk =
(ukh, φ)h, θ = (u, 1). Under the mild mesh-sizes requirement τ ≤ Ch, if (u0h, φ)h <
∞, then (ukh, φ)h <∞ and the following inequality holds

Mk+1 −Mk

τ
≤ 4θ − αχ

2π
θ2 + C1θM

k + C2θ
3/2(Mk + Ch)1/2 + C0h.

Proof. We rewrite (6) as

(53)

Mk+1 −Mk

τ
= −(∇uk+1,∇Φ) + χ(uk∇vk,∇Φ) +

8∑
i=1

Ji

≤ 4θ − αχ

2π
θ2 + C1θ(u

k,Φ) + C2θ
3/2(uk,Φ)1/2 +

8∑
i=1

Ji,
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where Lemma 2 has been used in the last inequality, and Ji (i = 1, · · · , 8) are
defined as follows

J1 =(∇uk+1, ∇(Φ− φ)),

J2 =(∇(uk+1 − uk+1
h ), ∇φ),

J3 =
(
∇uk+1

h ,∇φ
)
−
(
∇uk+1

h ,∇φ
)
h
,

J4 =
(
(uk+1
h − ukh)∇ log uk+1

h ,∇φ
)
h
,

J5 =χ
(
uk∇vk,∇(φ− Φ)

)
,

J6 =χ(ukh∇vkh − uk∇vk,∇φ),

J7 =χ(ukh∇vkh,∇φ)h − χ(ukh∇vkh,∇φ),

J8 =
(
ukh∇((I − Ih) log u

k+1
h ),∇φ

)
h
.

Thanks to (52), we obtain

(uk,Φ) = (uk,Φ− φ) + (uk − ukh, φ) + (ukh, φ)− (ukh, φ)h + (ukh, φ)h

≤ ∥uk∥L2(Ω)∥Φ− φ∥L2(Ω) + ∥eku∥L2(Ω)∥φ∥L2(Ω) + Ch2∥∇ukh∥L2(Ω)∥∇φ∥L2(Ω) +Mk

≤ Ch+Mk,

where the error estimates and τ ≤ Ch have been used in the last inequality. Sub-
stitution of above into (53) leads to

(54)
Mk+1 −Mk

τ
≤ 4θ − αχ

2π
θ2 + C1θM

k + C2θ
3/2(Mk + Ch)1/2 +

8∑
i=1

Ji.

Next, we estimate Ji (i = 1, · · · , 8) respectively. Utilizing the property of the
interpolation operator in (52), we have

(55) |J1| ≤ ∥∇uk+1∥L2(Ω)∥∇(Φ− φ)∥L2(Ω) ≤ Ch.

We derive from Theorem 6 that

(56)

|J2| = |(∇(uk+1 − uk+1
h ), ∇(φ− Φ)) + (∇(uk+1 − uk+1

h ), ∇Φ)|

= |(∇(uk+1 − uk+1
h ), ∇(φ− Φ))− ((uk+1 − uk+1

h ),∆Φ)|

≤ Ch∥∇eku∥L2(Ω)∥Φ∥H2(Ω) + ∥eku∥L2(Ω)∥∆Φ∥L2(Ω)

≤ Ch,

where the property of interpolation and τ ≤ Ch has been used. Noticing the
definition of (·, ·)h, we have

(57) J3 =
(
∇uk+1

h ,∇φ
)
−
(
∇uk+1

h ,∇φ
)
h
= 0.
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An application of the strict separation property, theW 1,∞ bound for the numerical
solution and τ ≤ Ch indicates that

(58)

|J4| = |(
uk+1
h − ukh
uk+1
h

∇uk+1
h ,∇φ)h|

≤ ∥
uk+1
h − ukh
uk+1
h

∇uk+1
h ∥L2

h(Ω)∥∇φ∥L2
h(Ω)

≤
∥∇uk+1

h ∥L∞(Ω)

ϵ0/4
∥uk+1

h − ukh∥L2
h(Ω)∥∇φ∥L2

h(Ω)

≤ C∗

ϵ0/4
(∥ek+1

u − eku∥L2
h(Ω) + Cτ)∥∇φ∥L2

h(Ω)

≤ C(∥ek+1
u ∥L2

h(Ω) + ∥eku∥L2
h(Ω) + Cτ)∥∇φ∥L2

h(Ω)

≤ Ch.

Utilizing the property of the interpolation operator in (52), we have

(59)

|J5| ≤ χ∥uk∇vk∥L2(Ω)∥∇(φ− Φ)∥L2(Ω)

≤ Ch∥uk∥L∞(Ω)∥∇vk∥L2(Ω)∥Φ∥H2(Ω)

≤ Ch∥uk∥L∞(Ω)∥uk∥L2(Ω)∥Φ∥H2(Ω)

≤ Ch.

An application of the Cauchy-Schwarz inequality and the error estimates leads to

(60)

|J6| = | − χ(ukh∇ekv + eku∇vk,∇φ)|

≤χ(∥ukh∥L∞(Ω)∥∇ekv∥L2(Ω)∥∇φ∥L2(Ω) + ∥eku∥L2(Ω)∥∇vk∥L2(Ω)∥∇φ∥L∞(Ω))

≤Ch,

where τ ≤ Ch has been used in the last inequality. An application of Lemma 4 to
J4 leads to

(61) |J7| = |χ(ukh∇vkh,∇φ)h − χ(ukh∇vkh,∇φ)| = 0.

Using the property of the interpolation operator Ih as in the proof of the Theorem
6, we have

|J8| =|
(
ukh∇((I − Ih) log u

k+1
h ),∇φ

)
h
| ≤ Ch.(62)

Finally, a substitution of (55)-(62) into (54) implies that

Mk+1 −Mk

τ
≤ 4θ − αχ

2π
θ2 + C1θM

k + C2θ
3/2(Mk + Ch)1/2 + C0h.

The proof is complete. �

Remark 14. The positive constant C0 in Lemma 13 depends on the regularity of
the exact solutions.

We can then derive the following discrete analog of Theorem 3.

Theorem 15. Assume that θ = (u, 1) > 8π/(αχ). If (u0h, φ)h is sufficiently small,
h and τ ≤ Ch are sufficiently small, then the solution (ukh, v

k
h) to the fully dis-

crete scheme (6)-(7) will blow up in finite time, namely the maximal existence time
Tmax = kmaxτ of the discrete solutions is finite.
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Proof. Obviously, we can derive the following inequality from Lemma 13

Mk+1 −Mk

τ
≤ 4θ − αχ

2π
θ2 + C1θM

k + C2θ
3/2(Mk)1/2 + C3h

1/2.

Denote β = −(4θ − αχ
2π θ

2 + C3h
1/2), we have the following inequality

Mk+1 −Mk

τ
≤ −β + C1θM

k + C2θ
3/2

√
Mk.(63)

Under the condition that θ = (u, 1) > 8π/(αχ), we can choose sufficiently small h
such that β > 0. Since M0 = (u0h, φ)h is sufficiently small, we have

β0 := β − C1θM
0 − C2θ

3/2
√
M0 > 0.

We claim that the following inequality holds for all k ∈ N

Mk+1 ≤Mk − τβ0.(64)

We prove the above inequality by induction. Using the inequality (63) for k = 0,
we have

M1 ≤M0 − τ(β − C1θM
0 − C2θ

3/2
√
M0) =M0 − τβ0.

Now assume that (64) holds for k − 1, we have

Mk ≤Mk−1 − τβ0.

Notice that Mk is decreasing about k, we have

Mk+1 ≤Mk − τ(β − C1θM
k − C2θ

3/2
√
Mk)

≤Mk − τ(β − C1θM
0 − C2θ

3/2
√
M0)

=Mk − τβ0.

Next summing (64) over k shows that

Mk+1 ≤M0 − (k + 1)τβ0.

Hence, if the solution (ukh, v
k
h) exists for all k ≥ 0, then Mk+1 becomes negative

provided that T > M0/β0. This is a contradiction to the positivity of Mk. Thus,
the proof is complete. �

Remark 16. Note that in the classical Keller-Segel system, the solution may blow
up in finite time. Based on the error estimates, we prove that the numerical solution
can also blow up under large initial value. There are several numerical examples in
[46] to validate the blowup behavior of the numerical solution to the fully discrete
scheme (6)-(7). The analysis of Theorem 15 depends on the regularity of the so-
lution, it is very interesting whether we can still have similar results under weak
regularity, we will continue to conduct on this issue in the future.

5. Conclusion

In this paper, we established error estimates for a fully discrete scheme proposed
in [46] for the classical parabolic-elliptic Keller-Segel system, and showed that the
numerical solution will blow up in finite time under some assumptions, similar to
the situation for the exact solution of the classical parabolic-elliptic Keller-Segel
system.
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A. Appendix

Lemma 17. Denote A = α(−∆+I)−1, Ah = α(−∆h+I)
−1Qh, where Qh is defined

as (Qhu, ψh) = (u, ψh)h, then the following estimate holds for all u ∈ H2(Ω),

∥Ahu−Au∥L2(Ω) + h∥Ahu−Au∥H1(Ω) ≤ Ch2∥u∥H2(Ω).(A.1)

Proof. Let w = Au and wh = Ahu, we have the following equations:

(∇w,∇ψ) + (w,ψ) = α(u, ψ), ∀ψ ∈ H1,

(∇wh,∇ψ) + (wh, ψ) = α(u, ψ)h, ∀ψ ∈ Xh.

Then we have

(∇(wh − w),∇ψ) + (wh − w,ψ) = α((u, ψ)h − (u, ψ)).

Taking ψ = wh − ψh and denoting wh − w by wh − ψh − (w − ψh) in the above
equation leads to

∥wh − ψh∥2H1 ≤ ∥w − ψh∥H1∥wh − ψh∥H1 + α((u,wh − ψh)h − (u,wh − ψh)).

From [48] and Lemma 4, we have the following estimate

|(u,wh − ψh)− (u,wh − ψh)h|
=|(u− Ihu,wh − ψh)− (u− Ih, wh − ψh)h + (Ihu,wh − ψh)− (Ihu,wh − ψh)h|
≤Ch|u|H1∥wh − ψh∥L2 + Ch2∥∇u∥L2∥∇(wh − ψh)∥L2

≤Ch|u|H1∥wh − ψh∥H1 .

Combing the above estimates with the elliptic regularity estimate leads to

∥w − wh∥H1 ≤ C inf
∀ψh∈Xh

∥w − ψh∥H1 + Ch|u|H1

≤ Ch|w|H2 + Ch|u|H1 ≤ Ch∥u∥H1 .

The L2 error estimate can be obtained by using the duality argument

∥w − wh∥L2 ≤ Ch∥w − wh∥H1 + Ch2|u|H2 ≤ Ch2∥u∥H2 .

Combing above estimates with the definitions of A and Ah shows that

∥Ahu−Au∥L2(Ω) + h∥Ahu−Au∥H1(Ω)

=∥wh − w∥L2(Ω) + h∥wh − w∥H1(Ω)

≤Ch2∥u∥H2(Ω),

which completes the proof. �

In order to obtain Lemma 8, we proceed in several steps. Firstly, we deal with
û1 := u+ hf1 and construct f1 as follows.
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Lemma 18. Assume that τ ≤ Ch and u is smooth enough, then there exists a
bounded smooth function f1, such that û1 := u+ hf1 satisfies(

∂ûk1 , φ
)
h
+
(
ûk1∇Ih log ûk+1

1 ,∇φ
)
h
− χ

(
ûk1∇Ahûk1 ,∇φ

)
h
= ⟨Rk

1 , φ⟩,(A.2)

for all φ ∈ Xh, k ∈ N, where Ah is defined as in Lemma 17 and

|⟨Rk
1 , φ⟩| ≤ Ch2∥φ∥H1 .

Proof. From (A.2), we have the following equality:

(A.3)

(
∂û1
∂t

, φ) + (∇û1,∇φ)− χ(û1∇Aû1,∇φ)

=(
∂û1
∂t

, φ) + (∇û1,∇φ)− χ(û1∇Aû1,∇φ) + ⟨Rk
1 , φ⟩

−
(
∂ûk1 , φ

)
h
−
(
ûk1∇Ih log ûk+1

1 ,∇φ
)
h
+ χ

(
ûk1∇Ahûk1 ,∇φ

)
h
,

where the operators A and Ah are defined as in Lemma 17. Moreover, the left hand
of (A.3) can be rewritten as

(
∂û1
∂t

, φ) + (∇û1,∇φ)− χ(û1Aû1,∇φ)

=h((
∂f1
∂t

, φ) + (∇f1,∇φ)− χ(uAf1,∇φ)− χ(f1Au,∇φ))

− h2(f1Af1,∇φ),

where equation (26) has been used.
Step 1: Construction for f1. For any φ ∈ H1, define ⟨Rk

0(u), φ⟩ as

⟨Rk
0(u), φ⟩ :=(

∂u

∂t
− ∂uk, φ) + (∇(u− uk+1),∇φ)− (uk∇(Ih − I)(log uk+1),∇φ)h

− ((uk − uk+1)∇ log uk+1,∇φ)h + (∇uk+1,∇φ)− (∇uk+1,∇φ)h
+ χ(uk∇Ahuk − u∇Ahu,∇φ)h + χ(u∇(Ah −A)u,∇φ)

:=⟨N (u), φ⟩+ χ(uk∇Ahuk − u∇Ahu,∇φ)h + χ(u∇(Ah −A)u,∇φ),

we can show that 1
hR

k
0(u) ∈ H−1 is well defined. Using the Cauchy-Schwarz in-

equality and the property of the interpolation, we obtain

|(∇uk+1,∇φ)− (∇uk+1,∇φ)h| =(∇(I − Ih)u
k+1,∇φ)− (∇(I − Ih)u

k+1,∇φ)h
≤Ch∥uk+1∥H2∥∇φ∥L2 ,

then the following estimate holds for ⟨N (u), φ⟩:

⟨N (u), φ⟩ ≤ C4h∥φ∥H1 ,(A.4)

and the positive constant

C4 = C4(∥u∥W 2,∞(0,T ;H2) + ∥u∥W 1,∞(0,T ;L∞)∥ log u∥L∞(0,T ;H2)).

An application of Lemma 17 leads to

|(u∇(Ah −A)u,∇φ)| ≤∥u∥L∞∥∇(Ahu−Au)∥L2∥∇φ∥L2

≤Ch∥u∥L∞∥u∥H2∥∇φ∥L2 .

Combining (A.4) with few direct calculations shows that the following estimate
holds for ⟨Rk

0(u), φ⟩:

|⟨Rk
0(u), φ⟩| ≤ C5h∥φ∥H1 ,
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where

C5 = C5(∥u∥W 2,∞(0,T ;H2) + ∥u∥W 1,∞(0,T ;L∞)∥ log u∥L∞(0,T ;H2) + ∥u∥2W 1,∞(0,T ;L∞)),

then 1
h ⟨R

k
0(u), φ⟩ is well-defined. Combining ⟨Rk

0(u), φ⟩ with (A.3) leads to the
following linear partial differential equation for f1:

(
∂f1
∂t

, φ) + (∇f1,∇φ)− χ(u∇Af1,∇φ)− χ(f1∇Au,∇φ) =
1

h
⟨Rk

0(u), φ⟩,(A.5)

for all t ∈ (tk, tk+1]. From [17, Chapter7.1, Theorem 3], there exists a weak solution
f1 of (A.5). In addition, from [17, Chapter7.1, Theorem 7], suppose that u is
smooth enough such that Rk

0(u) is smooth enough in Ω × [tk, tk+1], and the mth-
order compatibility conditions hold for m = 0, 1, · · · , then the problem (A.5) has a
smooth enough solution f1 in Ω× [tk, tk+1].

Step 2: Construction for ⟨Rk
1(û1), φ⟩. Let ⟨Rk

1(û1), φ⟩ be

⟨Rk
1(û1), φ⟩ :=h⟨N (f1), φ⟩+ χh((u∇(Ah −A)f1 + f1∇(Ah −A)u,∇φ))

+χh((uk∇Ahfk1 − u∇Ahf1,∇φ)h + (fk1∇Ahuk − f1∇Ahu,∇φ)h)

−(uk∇Ih(log(uk+1 + hfk+1
1 )− log uk+1 − hfk+1

1

uk+1
),∇φ)h

−h(uk∇(Ih − I)
fk+1
1

uk+1
,∇φ)h − h((uk − uk+1)∇fk+1

1

uk+1
,∇φ)h

+
(
∂uk, φ

)
−
(
∂uk, φ

)
h
+ h2(fk1∇

fk+1
1

uk+1
,∇φ) + χh2(f1∇Af1,∇φ)

+χ((u∇Ahu,∇φ)h − (u∇Ahu,∇φ)).

Similarly, the following estimate holds for ⟨N (f1), φ⟩ as discussed in (A.4):

⟨N (f1), φ⟩ ≤ C6h∥φ∥H1 ,(A.6)

where the positive constant

C6 = C6(∥f1∥W 2,∞(0,T ;H2) + ∥f1∥W 1,∞(0,T ;L∞)∥ log u∥L∞(0,T ;H2)).

Combining (A.6) with few calculations yields the following estimate for ⟨Rk
1(û1), φ⟩:

|⟨Rk
1(û1), φ⟩| ≤ C7h

2∥φ∥H1 ,

where the positive constant

C7 = C7(∥u∥W 1,∞(0,T ;H2) + (∥u∥W 1,∞(0,T ;L∞) + ∥f1∥L∞(0,T ;L∞))∥
f1
u
∥L∞(0,T ;H2)

+∥u∥W 1,∞(0,T ;L∞)∥f1∥W 1,∞(0,T ;L∞) + ∥u∥2L∞(0,T ;H2) + ∥f1∥2L∞(0,T ;L∞)) + C6,

then the O(h2) consistency for û1 = u + hf1 is obtained, which leads to Lemma
18. �

After repeated application of the perturbation argument as illustrated in Lemma
18, Lemma 8 can be proved.

Proof of Lemma 8. The duality product 1
h2 ⟨Rk

1(û1), φ⟩ is well-defined since the fact

that 1
h2 ⟨Rk

1(û1), φ⟩ is uniformly bounded as h → 0, τ → 0 and τ ≤ Ch. We can
construct f2 by solving the following linear partial differential equation:

(
∂f2
∂t

, φ) + (∇f2,∇φ)− χ(u∇Af2,∇φ)− χ(f2∇Au,∇φ) =
1

h2
⟨Rk

1(û1), φ⟩,(A.7)

for all t ∈ (tk, tk+1]. As discussed in Step 1 above, the problem (A.7) has a smooth
enough solution f2 in Ω× [tk, tk+1].
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By repeated application of the methods in Step 2 above, we can construct
⟨Rk

2(û2), φ⟩ by û2 := û1 + h2f2 such that the O(h3) consistency for û2 is arrived:(
∂ûk2 , φ

)
h
+
(
ûk2∇Ih log ûk+1

2 ,∇φ
)
h
− χ

(
ûk2∇Ahûk2 ,∇φ

)
h
= ⟨Rk

2(û2), φ⟩,(A.8)

for all φ ∈ Xh, k ∈ N, where

|⟨Rk
2(û2), φ⟩| ≤ Ch3∥φ∥H1 ,

where C is a positive constant depending on the derivatives of û2, such that
1
h3 ⟨Rk

2(û2), φ⟩ is well-defined.
Again, by using Step 1 in Lemma 18, the correction function f3 can be con-

structed by the following linear partial differential equation:

(
∂f3
∂t

, φ) + (∇f3,∇φ)− χ(u∇Af3,∇φ)− χ(f3∇Au,∇φ) =
1

h3
⟨Rk

2(û2), φ⟩,(A.9)

for all t ∈ (tk, tk+1], and the problem (A.9) has a smooth enough solution f3 in
Ω× [tk, tk+1].

Combing equations (A.5),(A.7) and (A.9) leads to

(A.10)

(
∂û

∂t
, φ) + (∇û,∇φ)− χ(ûAû,∇φ)

=⟨Rk
0(u), φ⟩+ ⟨Rk

1(û1), φ⟩+ ⟨Rk
2(û2), φ⟩ − h4χ((f2∇Af2,∇φ)

+ (f1∇Af3 + f3∇Af1,∇φ))− h5χ(f2∇Af3 + f3∇Af2,∇φ)
− h6χ(f3∇Af3,∇φ).

Denote ⟨Rk(û), φ⟩ as follows

⟨Rk(û), φ⟩ := h3((∂fk3 − ∂f3
∂t

, φ) + (∂fk3 , φ)h − (∂fk3 , φ)

+ (fk3∇(Ih − I) log ûk+1
2 , φ)h − ((uk+1 − uk)∇fk+1

3

ûk+1
2

,∇φ)h

+ (∇fk+1
3 ,∇φ)h − (∇fk+1

3 ,∇φ) + ((fk3 − fk+1
3 )∇ log ûk+1

2 ,∇φ)h)

+ h6(fk3∇
fk+1
3

ûk+1
2

,∇φ)h + (ûk∇(log ûk+1 − log ûk+1
2 − h3fk+1

3

ûk+1
2

),∇φ)h

+ (ûk2∇(log ûk+1 − log ûk+1
1 − h2fk+1

2

ûk+1
1

),∇φ)h + h4(fk2∇
fk+1
2

ûk+1
1

,∇φ)h

+ h2((∂fk2 , φ)h − (∂fk2 , φ)) + h3χ((fk3∇Ahûk2 + ûk2∇Ahfk3 ,∇φ)h
− (f3∇Ahû2 + û2∇Ahf3,∇φ)) + h6χ((fk3∇Ahfk3 ,∇φ)h
− (f3∇Ahf3,∇φ)) + h4χ((fk2∇Ahfk2 ,∇φ)h − (f2∇Ahf2,∇φ))
+ h2χ((f2∇Ahû1 + û1∇Ahf2,∇φ)h − (f2∇Ahû1 + û1∇Ahf2,∇φ)).

Combining above with few direct calculations shows the following estimate for
⟨Rk(û), φ⟩

|⟨Rk(û), φ⟩| ≤ Ch4∥φ∥H1 ,

where C depending on the derivatives of u, then the 1
h4 ⟨Rk(û), φ⟩ is well defined

and the O(h4) consistency holds for û = u + hf1 + h2f2 + h3f3, which leads to
Lemma 8. �
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