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We develop a new Lagrangian approach — flow dynamic approach to effectively capture 
the interface in the Allen-Cahn type equations. The underlying principle of this approach is 
the Energetic Variational Approach (EnVarA), motivated by Rayleigh and Onsager [27,28]. 
Its main advantage, comparing with numerical methods in Eulerian coordinates, is that 
thin interfaces can be effectively captured with few points in the Lagrangian coordinate. 
We concentrate in the one-dimensional case and construct numerical schemes for the 
trajectory equation in Lagrangian coordinate that obey the variational structures, and as 
a consequence, are energy dissipative. Ample numerical results are provided to show that 
only fewer points are enough to resolve very thin interfaces by using our flow dynamic 
approach.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Diffuse interface methods have been widely used in many applications in science and engineering, especially in describ-
ing phase transitions [2], microstructure coarsening [22], porous medium [33], liquid crystals [21] or vesicle membrane 
[8,9]. In this paper we will explore the Allen-Cahn model which is related to the studies of the dynamic behavior of sharp 
interface. The standard Allen-Cahn model in an isothermal closed system, following the First and Second Laws of Thermo-
dynamics, yields an energy dissipative law [7,15,16]:

d

dt
E( f ) = −�, (1.1)

where E( f ) is the total free energy and � is attributed to entropy production of measuring energy dissipative rate. The 
Allen-Cahn model, with E( f ) = ∫

�
1
2 |∇ f |2 + 1

4ε2 ( f 2 − 1)2dx, can also be viewed as the L2 gradient flow of the Ginzburg-
Landau functional E( f ), i.e., its equation can be derived by taking variational derivative of the free energy with respect to 
the order parameter in L2-topology

ft = −δE( f )

δ f
. (1.2)
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In this formulation, the solution will be able to capture the free interface motion by mean curvature [4,6,12,20]. It is 
well-known that solutions of Allen-Cahn equation will develop interfaces with thickness O (ε), which renders its numerical 
simulation difficult as resolving thin interfaces will require expensive computational efforts. How to effectively capture thin 
interfacial layers has been an active research topic.

Many efforts have been devoted to design efficient numerical schemes to capture the interface of transient phenomena 
by using the energy dissipative law (1.1) and the underlying variational structure, such as spectral method [24,31], moving 
mesh method [5,13,19,23,25,30], adaptive time stepping method and adaptive spatial finite element methods which have 
been considered in [14,35]. We refer to [10] for an up-to-date review on this subject.

Traditional methods for interface capturing are mainly developed in Eulerian coordinate based on various moving mesh 
strategies. The objective of this paper is to develop a new Lagrangian approach for interface capturing by using the Energetic 
Variational Approach [11,27,28,34], since the energy dissipative law with kinematic relations of variables employed in the 
system describes all the physical and mechanical phenomenon for mathematical models. To be specific, for the Allen-Cahn 
model (1.2), we introduce a transport equation which connects the Eulerian coordinate and Lagrangian coordinate under 
a suitably defined flow map, and derive the trajectory equation for Allen-Cahn model following the Least Action Principle 
and Maximum Dissipative Principle by using the flow map. The main feature of this approach is that the solution of the 
trajectory equation will be free of thin interfaces if the flow map is suitably defined, so that it can be solved with a resolution 
which is independent of ε , the interfacial thickness in the Eulerian coordinates. This is due to the fact that we target the 
mesh velocity by using the trajectory equation which is consistent with the original Allen-Cahn equation, rather than adding 
moving mesh PDEs used in Eulerian approaches [5,19,23].

Unlike the Allen-Cahn equation which takes a simple form in the Eulerian coordinates, the trajectory equation is an 
non-standard, highly nonlinear parabolic equation, which also possesses an energy dissipative law. We develop efficient 
numerical schemes for the trajectory equation which preserve the variational structure and satisfy the energy dissipative law. 
Furthermore, they can be interpreted as the Euler-Lagrange equations of convex functionals so that they can be effectively 
solved by using a Newton type iteration. The flow dynamic approach has a distinct advantage for interface problems. Meshes, 
in the Eulerian coordinate through the flow map, will automatically move to the region of thin interfaces without using any 
adaptive mesh movement strategy, and consequently thin interfaces can be well resolved with only a few points. In fact, as 
the interfacial width ε decreases, our numerical results show that lesser points are needed to resolve the interfaces with 
flow dynamic approach.

The reminder of this paper is structured as follows. In Section 2 we introduce the flow dynamic approach for Allen-
Cahn type equations. In Section 3 we develop semi-discrete and fully discrete numerical schemes for trajectory equations 
in Lagrangian coordinates. In Section 4, we consider the two-dimensional axi-symmetric case. In Section 5 we present 
numerical results to demonstrate the efficiency of our new approach. Some concluding remarks are given in Section 6, 
followed by an appendix on the energetic variational interpretation of our approach.

2. Flow dynamic approach

In this section, we introduce the flow dynamic approach to capture the diffusive interface in the Allen-Cahn equation.
Let �x ∈ Rd (d = 1, 2, 3) be an open bounded domain. To fix the idea, we consider the following Allen-Cahn equation 

with Dirichlet boundary condition in �x:

ft − � f + F ′( f ) = 0; f (x, t)|∂� = 0; (2.1)

f (x,0) = f0(x), (2.2)

where F ( f ) is a nonlinear potential, a typical example is the double well potential F ( f ) = 1
4ε2 ( f 2 − 1)2.

It is easy to see that the system (2.1)–(2.2) satisfies the following energy dissipative law

d

dt

∫
�x

1

2
|∇ f |2 + F ( f )dx = −

∫
�x

| ft |2dx. (2.3)

2.1. Flow map and deformation tensor

Given an initial position or a reference configuration X , and a velocity field u, we define a flow map x(X, t) by

dx(X, t)

dt
= u(x(X, t), t),

x(X,0) = X .

(2.4)

From Fig. 1, the flow map defined by (2.4) describes a particle moving from an initial configuration X to an instantaneous 
configuration x(X, t) with velocity u, i.e., x(X, t) is the Eulerian coordinate and X represents Lagrangian coordinate, with 
the deformation tensor or Jacobian F = ∂x(X,t) [17] (Fig. 1).
∂ X
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Fig. 1. A schematic illustration of a flow map x(X, t) at a fixed time t: x(X, t) maps �0
X to �t

x . X is the Lagrangian coordinate while x is the Eulerian 
coordinate, and F (X, t) = ∂x(X,t)

∂ X represents the deformation associated with the flow map.

Remark 2.1. Let f be the solution of the Allen-Cahn equation (2.1)–(2.2). We assume that u is the velocity such that

ft + u · ∇x f = 0. (2.5)

Then, the above transport equation and the flow map defined in (2.4) determine the following kinematic relationship be-
tween Eulerian coordinate and Lagrangian coordinate:

d

dt
f (x(X, t), t) = ft + u · ∇x f = 0, (2.6)

which leads to

f̂0(X) = f (x(X, t), t) = f (x,0) = f0(x) ∀t, (2.7)

where f̂0(X) is the initial condition in the Lagrangian coordinate. Since x(X, 0) = X , we have f̂0(·) = f0(·).
Once we have the flow map x(X, t), we set φ(X; t) = x(X, t) for each t . Then, we derive from (2.6) that the solution of 

(2.1)–(2.2) is given by

f (x, t) = f0(φ
−1(x; t)). (2.8)

Assuming again the transport equation ft + u · ∇x f = 0 is satisfied, we can rewrite the Allen-Cahn equation (2.1) as

u · ∇x f = −�x f + F ′( f ). (2.9)

Just as the Allen-Cahn system (2.1)–(2.2), we have the new energy dissipative law for (2.9)

d

dt

∫
�x

1

2
|∇x f |2 + F ( f )dx = −

∫
�x

|u · ∇x f |2dx, (2.10)

which is obtained by taking the inner product of the (2.9) with ft and using the transport equation (2.5).
The equation (2.9) can also be interpreted as a force balance relation which can be derived from the Energetic Variational 

Approach. For the reader’s convenience, we provide the detail in the Appendix.

2.2. Lagrangian formulation

Since the formulation of Allen-Cahn equation for multi-dimensions in Lagrangian coordinate is more complicated, we 
shall consider first the 1-D case.

Thanks to (2.7), we have the 1-D chain rule ∂x f = f ′
0(X)( ∂x

∂ X )−1. Then, setting x = x(X, t) in (2.9), we can rewrite the 
equation (2.9) in Lagrangian coordinate in 1-D as

xt(X, t) f ′
0(X)(

∂x

∂ X
)−1 = −∂X

(
f ′
0(X)(

∂x

∂ X
)−1

)
(
∂x

∂ X
)−1 + F ′( f0(X)), (2.11)

x|∂� = X |∂�, x(X,0) = X, X ∈ �X . (2.12)

We observe that the last term in (2.11) is just a forcing term for the nonlinear parabolic equation in the Lagrangian 
coordinate. Hence, its solution x(X, t) should not involve thin interfacial layers as the solution of (2.1)–(2.2) in the Eulerian 
coordinate.

Theorem 2.1. The system (2.11)–(2.12) satisfies the following energy dissipative law

d

dt

∫
�X

∂x

∂ X
{1

2
| f ′

0(X)(
∂x

∂ X
)−1|2 + F ( f0(X))}dX

= −
∫

∂x

∂ X
|xt(X, t) f ′

0(X)(
∂x

∂ X
)−1|2dX .

(2.13)
�X
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Proof. Taking the inner product of equation (2.11) with −xt f ′
0(X), since xt |∂� = 0 due to the boundary condition (2.12), we 

derive by taking integration by parts that

−
∫

�X

∂x

∂ X
|xt(X, t) f ′

0(X)(
∂x

∂ X
)−1|2dX

= (∂X

(
f ′
0(X)(

∂x

∂ X
)−1

)
(
∂x

∂ X
)−1, xt f ′

0(X)) − (F ′( f0(X)), xt f ′
0(X))

= (
1

2
∂X | f ′

0(X)(
∂x

∂ X
)−1|2, xt) − (∂X F ( f0(X)), xt)

= −(
1

2
| f ′

0(X)(
∂x

∂ X
)−1|2, ∂X xt) + (F ( f0(X)), ∂X xt)

= d

dt

∫
�X

∂x

∂ X
{1

2
| f ′

0(X)(
∂x

∂ X
)−1|2 + F ( f0(X))}dX .

The last equality is true since

d

dt
{ ∂x

∂ X
| f ′

0(X)(
∂x

∂ X
)−1|2} = | f ′

0(X)|2 d

dt
(
∂x

∂ X
)−1 = −| f ′

0(X)|2( ∂x

∂ X
)−2 d

dt

∂x

∂ X
. �

Remark 2.2. We note that the energy in Eulerian coordinate

E( f ) =
∫
�x

1

2
|∂x f |2 + F ( f )dx,

is equal to the energy E(x(X, t)) in Lagrangian coordinate,

E(x(X, t)) =
∫

�X

∂x

∂ X
{1

2
| f ′

0(X)(
∂x

∂ X
)−1|2 + F ( f0(X))}dX .

This can be easily verified using the chain rule ∂x f = f ′
0(X)( ∂x

∂ X )−1 and the identity dx = ∂x
∂ X dX .

Remark 2.3. Instead of solving (2.1)–(2.2) in the Eulerian coordinate x with potentially thin interfacial layers, such as the 
case if F ( f ) = 1

4ε2 ( f 2 − 1)2 with ε � 1, which need to be resolved with high spatial resolution, we can solve it in the 
Lagrangian coordinate X free of thin interfacial layers as follows:

• Solve the flow map x(X, t) from the trajectory equation (2.11)–(2.12);
• Once we have the flow map x(X, t), the solution of (2.1)–(2.2) is given by (2.8).

3. Numerical schemes

In this section, we construct energy stable time discretization schemes for the trajectory equation (2.11)–(2.12) in 1-D.

3.1. Semi-discrete-in-time schemes

We start by constructing a first-order scheme for Allen-Cahn system (2.1)–(2.2) in Lagrangian coordinate. Note that we 
only need to find an approximation to the flow map through (2.11)–(2.12).

Given δt > 0, let tn = nδt , n = 0, 1, 2, · · · , T
δt . For any function S(·, t), Sn denotes a numerical approximation to S(·, tn).

Scheme 1. (A first order scheme.)

xn+1 − xn

δt
f ′
0(X)(

∂xn

∂ X
)−1 = −∂X

(
f ′
0(X)(

∂xn+1

∂ X
)−1

)
(
∂xn+1

∂ X
)−1 + F ′( f0(X)), (3.1)

xn+1|∂� = X |∂�, x0(X) = X, X ∈ �X . (3.2)

Remark 3.1. Note that in (3.1)–(3.2) the only ε dependent term F ′( f0(X)) is a known forcing function in Lagrangian coordi-
nate, so that its solution will not develop ε dependent interfacial layers in Lagrangian coordinate.
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Remark 3.2. Once we solve xn+1 from (3.1)–(3.2), the approximate solution to the original equation can be obtained as 
f n+1(x) = f (xn+1(X)) = f0(X) = f0(φ

−1(xn+1)). The above relation also indicates that the scheme (3.1)–(3.2) preserves 
maximum principle since max∀n | f (xn+1(X))| = max | f0(X)| where f0(X) is the initial condition in Lagrangian coordinate.

Theorem 3.1. Let xn be the solution of scheme (3.1)–(3.2) at time tn with ∂xn

∂ X > 0. Then the scheme (3.1)–(3.2) admits a unique 
solution xn+1 with ∂xn+1

∂ X > 0, and satisfies the following discrete energy law holds:

E(xn+1) − E(xn)

δt
≤ −〈 ( f ′

0(X))2

∂xn

∂ X

xn+1 − xn

δt
,

xn+1 − xn

δt

〉
, (3.3)

where E(x) = ∫
�X

{ 1
2 | f ′

0(X)( ∂x
∂ X )−1|2 + F ( f0(X))} ∂x

∂ X dX.

Proof. We first prove the existence and uniqueness of the solution of the scheme (3.1)–(3.2). To this end, we define a 
nonlinear functional

J (φ) =
∫

�X

{ 1

2δt

( f ′
0(X))2

∂xn

∂ X

|φ|2 + 1

2
( f ′

0(X))2(
∂φ

∂ X
)−1 − g(X)φ

}
dX, (3.4)

with g(X) = xn

δt
( f ′

0(X))2

∂xn
∂ X

+ f ′
0(X)F ′( f0(X)). One can check that (3.1)–(3.2) is the Euler-Lagrange equation

δ J (φ)

δφ
|φ=xn+1 = 0,

and that J (φ) is a convex functional with respect to φ with ∂φ
∂ X > 0, because of

∂2

∂2ε
{1

2
( f ′

0(X))2(
∂(φ + εψ)

∂ X
)−1} = ( f ′

0(X))2(
∂φ

∂ X
)−3(

∂ψ

∂ X
)2 ≥ 0 ∀ψ.

Hence, the scheme (3.1)–(3.2) admits a unique solution xn+1 with ∂xn+1

∂ X > 0.

Next, we take the inner product of (3.1) with − xn+1−xn

δt f ′
0(X) to obtain

∫
�X

{
∂X ( f ′

0(X)(
∂xn+1

∂ X
)−1)(

∂xn+1

∂ X
)−1 − F ′( f0(X))

}
f ′
0(X)

xn+1 − xn

δt
dX

=
∫

�X

∂X ( f ′
0(X)(

∂xn+1

∂ X
)−1) f ′

0(X)(
∂xn+1

∂ X
)−1 xn+1 − xn

δt
dX

−
∫

�X

∂X F ( f0(X))
xn+1 − xn

δt
dX .

(3.5)

Due to the convexity of 1
y with respect to y with y > 0, we have

(
∂xn

∂ X
)−1 − (

∂xn+1

∂ X
)−1 ≥ −(

∂xn+1

∂ X
)−2(

∂xn

∂ X
− ∂xn+1

∂ X
),

which implies
∫

�X

∂X ( f ′
0(X)(

∂xn+1

∂ X
)−1) f ′

0(X)(
∂xn+1

∂ X
)−1 xn+1 − xn

δt
dX

= −
∫

�X

1

2
| f ′

0(X)(
∂xn+1

∂ X
)−1|2

∂xn+1

∂ X − ∂xn

∂ X

δt
dX

≥ 1

2δt

∫
�X

(
( f ′

0(X))2(
∂xn+1

∂ X
)−1 −

∫
�X

( f ′
0(X))2(

∂xn

∂ X
)−1)dX .

(3.6)

On the other hand, we have
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−
∫

�X

∂X F ( f0(X))
xn+1 − xn

δt
dX =

∫
�X

F ( f0(X))

∂xn+1

∂ X − ∂xn

∂ X

δt
dX . (3.7)

We then derive (3.3) from the above two relations. �
Scheme 2. (A second-order scheme.)

Step 1: Compute a second-order extrapolation for ∂xn+1

∂ X .
We set

∂xn+1
	

∂ X
=

⎧⎨
⎩

∂(2xn−xn−1)
∂ X , if ∂xn

∂ X ≥ ∂xn−1

∂ X ,

1

2/ ∂xn
∂ X −1/ ∂xn−1

∂ X

, if ∂xn

∂ X < ∂xn−1

∂ X .
(3.8)

Step 2:

3xn+1 − 4xn + xn−1

2δt
f ′
0(X)(

∂xn+1
	

∂ X
)−1 = −∂X ( f ′

0(X)(
∂xn+1

∂ X
)−1)(

∂xn+1

∂ X
)−1 + F ′( f0(X)), (3.9)

xn+1|∂� = X |∂�, x0(X) = X, X ∈ �X . (3.10)

Theorem 3.2. Given xk, k = 1, 2, .., n with ∂xk

∂ X > 0, the numerical scheme (3.9)–(3.10) admits a unique solution xn+1 with ∂xn+1

∂ X > 0, 
and the following energy dissipative law is satisfied:

E(xn+1) − E(xn)

δt
≤ − 〈 ( f ′

0(X))2

∂xn+1
	

∂ X

xn+1 − xn

δt
,

xn+1 − xn

δt

〉

− 〈 ( f ′
0(X))2

∂xn+1
	

∂ X

xn+1 − 2xn + xn−1

2δt
,

xn+1 − 2xn + xn−1

2δt

〉
,

(3.11)

where

E(xn+1) =
∫

�X

∂xn+1

∂ X
{1

2
| f ′

0(X)(
∂xn+1

∂ X
)−1|2 + F ( f0(X))}dX

+ 1

4δt

∫
�X

( f ′
0(X))2(

∂xn+1
	

∂ X
)−1|xn+1 − xn|2dX .

(3.12)

Proof. As in the proof of Theorem 3.1, one can construct a convex functional such that its Euler Lagrange equation is 
equivalent to the scheme (3.9)–(3.10). Hence, the scheme admits a unique solution xn+1 with ∂xn+1

∂ X > 0.

Next, taking the inner product of equation (3.9) with − f ′
0(X) xn+1−xn

δt and using the equality,

(3a − 4b + c,2(a − b)) = 5|a − b|2 − |b − c|2 + |a − 2b + c|, (3.13)

the left hand side becomes

−(
3xn+1 − 4xn + xn−1

2δt
( f ′

0(X))2(
∂xn+1

	

∂ X
)−1,

xn+1 − xn

δt
)

= − 5
∫

�X

1

4δt2
( f ′

0(X))2(
∂xn+1

	

∂ X
)−1|xn+1 − xn|2dX

+
∫

�X

1

4δt2
( f ′

0(X))2(
∂xn+1

	

∂ X
)−1|xn − xn−1|2dX

−
∫

�X

1

4δt2
( f ′

0(X))2(
∂xn+1

	

∂ X
)−1|xn+1 − 2xn + xn−1|2dX .

(3.14)

The right hand side can be treated exactly the same way as in the proof of Theorem 3.1, see (3.5)–(3.6). Combining these 
results, we derive the following energy dissipative law:
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E(xn+1) − E(xn)

δt
≤ − 1

δt2

∫
�X

( f ′
0(X))2(

∂xn+1
	

∂ X
)−1|xn+1 − xn|2dX

− 1

4δt2

∫
�X

( f ′
0(X))2(

∂xn+1
	

∂ X
)−1|xn+1 − 2xn + xn−1|2dX . �

Remark 3.3. If we consider logarithmic free energy function F ( f ) = θ
2 [(1 + f ) log(1 + f ) + (1 − f ) log(1 − f )] − θc

2 f 2, where 
θ, θc are two positive constants. Since F ′( f0(X)) is known in Scheme 1 and Scheme 2, so the positive property of solution 
0 < 1 − f n+1, 0 < f n+1 + 1 is preserved naturally. Then comparing with numerical methods in Eulerian coordinate, it is 
more convenient to solve Allen-Cahn equation with logarithmic free energy by using flow dynamic approach.

3.2. Fully discrete schemes

We now describe fully discrete schemes with a Galerkin approximation in space. For the sake of brevity, we only consider 
fully discretization for Scheme 1. Fully discretization for Scheme 2 can be constructed similarly.

Let Vh ∈ H1(�X ) be a finite dimensional approximation space and V 0
h = Vh ∪ H1

0(�X ), a fully discrete version of Scheme 1

is: Find xn+1
h ∈ Vh such that

(
1

2
| f ′

0(X)(
∂xn+1

h

∂ X
)−1|2, ∂X yh) + (F ′( f0(X)), yh f ′

0(X))

= (
xn+1

h − xn
h

δt
f ′
0(X)(

∂xn
h

∂ X
)−1, yh f ′

0(X)), ∀yh ∈ V 0
h , (3.15)

xn+1
h |∂� = X |∂�, x0

h(X) = X, X ∈ �. (3.16)

In our numerical tests, we set the domain to be �x = �X = (−1, 1), and use two different spatial discretizations. The 
first is the Legendre-Galerkin method [29] with

Vh := V N = span{L j(x) : j = 0,1, · · · , N}, (3.17)

where L j(x) is the Legendre polynomial of j-th degree, and

V 0
h := V 0

N = span{φ j(x) := L j(x) − L j+2(x) : j = 0,1, · · · , N − 2}. (3.18)

The other is the piecewise linear finite-element method.
The scheme (3.15)–(3.16) leads to a nonlinear system: G(xn+1

h ) = 0 at each time step, which can be effectively solved by 
using, for example, a damped Newton’s iteration [26]:

xn+1,k+1
h = xn+1,k

h − α(δx)(∇G(xn+1,k
h ))−1G(xn+1,k

h ),

with α = O (ε2) as the damped coefficient.
Using exactly the same arguments as in the proof of Theorem 3.1, we can establish the following:

Theorem 3.3. Given xn
h ∈ Vh with ∂xn

h
∂ X > 0. Then the scheme (3.15)–(3.16) admits a unique solution xn+1

h with ∂xn+1
h

∂ X > 0, and satisfies 
the following discrete energy law holds:

E(xn+1
h ) − E(xn

h)

δt
≤ −〈 ( f ′

0(X))2

∂xn
h

∂ X

xn+1
h − xn

h

δt
,

xn+1
h − xn

h

δt

〉
, (3.19)

where E(x) = ∫
�X

{ 1
2 | f ′

0(X)( ∂x
∂ X )−1|2 + F ( f0(X))} ∂x

∂ X dX.

4. Some extensions

We consider in the section two immediate extensions of our flow dynamic approach.
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4.1. Allen-Cahn equation with advection

We consider here a generalized Allen-Cahn equation (4.1) with an advection term:

ft + v · ∇x f = (�x f − 1

ε2
f ( f 2 − 1)), (4.1)

where v is a given velocity field. We still assume that there exists a velocity field u satisfying the kinematic equation

ft + u · ∇x f = 0, (4.2)

so we can define the flow map (2.4). Using (4.2), we can rewrite (4.1) as

(v − u) · ∇x f = �x f − 1

ε2
f ( f 2 − 1). (4.3)

Let us consider now the 1-D case. By using the flow map dx(X,t)
dt = u and the chain rule ∂x f = f ′

0(X)( ∂x
∂ X )−1, we can 

derive from (4.3) in Eulerian coordinate the trajectory equation in Lagrangian coordinate:

(xt(X, t) − v) f ′
0(X)(

∂x

∂ X
)−1 = −∂X ( f ′

0(X)(
∂x

∂ X
)−1)(

∂x

∂ X
)−1 + F ′( f0(X)), (4.4)

x|∂� = X |∂� and x(X,0) = X, X ∈ �. (4.5)

Similar to the trajectory equation (2.11) for the Allen-Cahn equation, we can construct first-order and second-order schemes 
for (4.5) as in the last section. We leave the detail to the interested readers.

4.2. Two dimensional axis-symmetric case

We consider the Allen-Cahn equation (2.2) in a two-dimensional axis-symmetric domain �. To fix the idea, we set 
� = {x2 + y2 < h2}. Using the polar transform x = rcos(θ), y = rsin(θ), we can rewrite (2.2) in polar coordinates for the 
axis-symmetric case as

ft − 1

r
∂r(r∂r f ) + F ′( f ) = 0, f (h, t) = 0,

f (r,0) = f0(r),
(4.6)

and the associated flow map (2.4) for the axis-symmetric case as

dr(R, t)

dt
= u,

r(R,0) = R,

(4.7)

where R is the Lagrangian coordinate and r is Eulerian coordinate. Then, the assumed transport equation (2.5) takes the 
form

ft + u fr = ft + dr(R, t)

dt
fr = 0, (4.8)

f |t=0 = f0(r), (4.9)

which is equivalent to f (r(R, t), t) = f (r, 0) = f0(R) because of flow map (4.7) (cf. Remark 2.1). We then derive from (4.8)
and (4.6) the following force balance equation

dr(R, t)

dt
fr = −1

r
∂r(r∂r f ) + F ′( f ). (4.10)

Using the chain rule ∂r f = f ′
0(R)( ∂r

∂ R )−1, we arrive at the trajectory equation in polar coordinate:

rt(
∂r

∂ R
)−1∂R f0(R) = − 1

r(R)
(
∂r

∂ R
)−1∂R(r(R)(

∂r

∂ R
)−1∂R f0(R)) + F ′( f0(R)),

r(h, t) = h, r(R,0) = R.

(4.11)

Theorem 4.1. The Allen-Cahn equation in Lagrangian coordinate (4.11) satisfies the following energy dissipative law

d

dt

∫
�R

{1

2
|( ∂r

∂ R
)−1∂R f0(R)|2 + F ( f0(R))} ∂r

∂ R
rdR

= −
∫

|rt∂R f0(R))(
∂r

∂ R
)−1|2 ∂r

∂ R
rdR,

(4.12)
�R
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where r(R, t) is a function of R and time t.

Proof. Taking inner product of equation (4.11) with −rrt∂R f0(R), we obtain

(rt(
∂r

∂ R
)−1∂R f0(R),−rrt∂R f0(R)) = (− 1

r(R)
(
∂r

∂ R
)−1∂R(r(R)(

∂r

∂ R
)−1∂R f0(R)),−rrt∂R f0(R))

+ (F ′( f0(R)),−rrt∂R f0(R)).

(4.13)

Notice that 
∫
�r

rdr = ∫
�R

rr′(R)dR , we derive the equality

(rt(
∂r

∂ R
)−1∂R f0(R),−rrt∂R f0(R)) = −

∫
�R

|rt∂R f0(R))(
∂r

∂ R
)−1|2r

∂r

∂ R
dR. (4.14)

Taking integration by part, we derive

(F ′( f0(R)),−rrt∂R f0(R)) = (∂R F ( f0(R)),−rrt) = (F ( f0(R)),
∂r

∂ R
rt + r

∂rt

∂ R
)

= d

dt

∫
�R

F ( f0(R))r
∂r

∂ R
dR.

(4.15)

We consider

(− 1

r(R)
(
∂r

∂ R
)−1∂R(r(R)(

∂r

∂ R
)−1∂R f0(R)),−rrt∂R f0(R)) = (

1

2
∂R |r(R)(

∂r

∂ R
)−1∂R f0(R)|2, rt

r
)

= −(
1

2
|r( ∂r

∂ R
)−1∂R f0(R)|2, ∂R(

rt

r
)) = −(

1

2
|( ∂r

∂ R
)−1∂R f0(R)|2, rrt R − rt

∂r

∂ R
)

= d

dt

∫
�R

1

2
|∂R f0(R)|2r(

∂r

∂ R
)−1dR = d

dt

∫
�R

1

2
|( ∂r

∂ R
)−1∂R f0(R)|2r

∂r

∂ R
dR.

(4.16)

Finally, combining equations (4.14)–(4.16), we obtain the energy dissipative law. �
Remark 4.1. Similar with Remark 2.2, the energy dissipative law in Theorem 4.1 is equivalent with energy dissipative law in 
Eulerian coordinate by using the chain rule ∂r f = f ′

0(R)( ∂r
∂ R )−1,

d

dt

∫
�r

{1

2
|∂r f |2 + 1

4ε2
( f 2 − 1)2}rdr = −

∫
�r

|u fr |2rdr. (4.17)

Similarly, we can construct first and second schemes for the above equation. For example, a first-order scheme for (4.11)
is as follows:

rn+1 − rn

δt
(
∂rn

∂ R
)−1∂R f0(R) = −(

∂rn+1

∂ R
)−1∂R((

∂rn+1

∂ R
)−1∂R f0(R))

− 1

rn+1(R)
(
∂rn+1

∂ R
)−1∂R f0(R) + F ′( f0(R)),

rn+1|r=h = h, r(R,0) = R.

(4.18)

Remark 4.2. The current approach using the transport equation ft + u · ∇ f = 0 is not suitable for truely high-dimensional 
problems. Indeed, when combined with the Allen-Cahn equation, it leads to

u · ∇ f = −� f + F ′( f ). (4.19)

Then, with the flow map equation (2.4), it leads to the trajectory equation

dx(X, t)

dt
· ∇ f = −� f + F ′( f ), (4.20)

with d unknowns (x1(X, t), · · · , xd(X, t)) (d is the dimension) but only one equation (4.20).
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Fig. 2. Accuracy test for the Allen-Cahn equation (2.1)–(2.2).

5. Numerical experiments

In this section, we present some numerical tests to show the efficiency, stability and accuracy of the numerical schemes 
(3.15)–(3.16) and its second-order version for the Allen-Cahn equation (2.1)–(2.2) with F ( f ) = 1

4ε2 ( f 2 −1)2. In the following, 
we set �x = �X = (−1, 1) and use, as spatial discretization, the Legendre-Galerkin method [29] and the piecewise linear 
finite-element method.

5.1. Accuracy test

We first perform an accuracy test. We used Legendre-Galerkin method in space so that the spatial error is negligible 
compared with the temporal error. We start with a smooth initial condition f0(x) = x and using solution computed by the 
second-order scheme with δt = 10−5 as the reference solution. In Fig. 2 we plot the L∞ error between numerical solution 
and reference solution at time t = 0.1. We observe that the first-order scheme BDF1 achieves first-order convergence while 
the second-order scheme BDF2 achieves second-order convergence.

5.2. Interface capturing

We now present numerical simulations to demonstrate the effectiveness of our new Lagrangian approach for interface 
capturing. In Fig. 3 we choose interface width parameter as ε2 = 0.001 and initial condition as f0(x) = 1 − x2. We depict 
profiles of interface at various time in Fig. 3.(a) and in Fig. 3.(b) using the second-order new Lagrangian scheme with 
spectral method and finite element method in space, and in Fig. 3.(c) using the second-order semi-implicit method in 
Eulerian coordinate with spectral method in space. We observe that the profiles of interface can be well captured with 
mesh resolution of N = 64 by the Lagrangian method, as compared with N = 256 by the Eulerian method. We also plot 
in Fig. 3.(d), the mesh distribution of the Lagrangian method in Eulerian coordinate. We observe that as interface getting 
steeper, more points will move closer to the interface area.

Next we examine what happens as we decrease the interfacial width. It is expected that the solution, in the limit of ε
going to zero, behaves like a piecewise constant function with values ±1 in much of two bulk regions which are separated 
by a diffusive interfacial layer of thickness O (ε).

We first use the Lagrangian scheme with the finite-element method in space. In Fig. 4, we plot the results for ε2 = 10−3

to ε2 = 10−6 with N = 8, 16, 32, 64 points and initial condition is f0(x) = x. It is observed that almost all points are 
concentrated at the interfacial region. The interface location is well captured even with only 8 points, although the value is 
a bit off due to the limited accuracy of finite-elements. We obtain similar results as we decrease ε further. This example 
shows the amazing ability of the flow dynamic approach in capturing thin interfaces of Allen-Cahn equation: the number of 
points needed to resolve the interface is independent of interfacial width!

To obtain better approximation for both location and values of the interface, it is natural to consider the Lagrangian 
scheme with spectral method in space. In Fig. 5 and Fig. 6, we plot the results for ε2 = 10−3 and ε2 = 10−5 with N =
8, 16, 32, 64, respectively. We first look at the first and third column of the two figures, we observe that most of the points 
are still located in the interfacial region, but the approximate solutions exhibit oscillations except at the finest resolution
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Fig. 3. Capturing interface by Lagrangian numerical method based on Variational Energetic Approach.

with N = 64. This is a common phenomena with under-resolved spectral methods. Usually this can be fixed with a suitable 
filter to post-process the oscillatory approximate solutions [18,32].

Hence, in order to remove the oscillation, we use an exponential filter for post-processing. More precisely, given ap-

proximate solution uN =
N∑

n=0
ûn Ln(x) with Ln(x) being the Legendre polynomial of degree n, we set the filtered solution to 

be

F N uN =
N∑

n=0

σ(
n

N
)ûn Ln(x), (5.1)

where σ( n
N ) = exp(−a( n

N )), and a = − log(εM) where εM is the machine accuracy. The filtered results are presented in the 
second and fourth columns of Fig. 5 and Fig. 6. We observe that the filtered solutions are non-oscillatory and approximate 
the exact solutions much better than the finite-element methods. In fact, while the values with N = 8 are still visibly 
different from the exact solution, excellent approximations are obtained with N = 16 for both cases.

Next, we consider the generalized Allen-Cahn equation (4.1) with an advection velocity v ≡ 1, so the interface will evolve 
and move to the right. We would like to see how our Lagrangian method performs with moving interfaces. In Fig. 7 we 
plot the interface profiles at various times computed by the Lagrangian scheme with spectral method and finite element 
method in space for the generalized Allen-Cahn equation (4.1) with v ≡ 1. As a comparison, we also plot results by using 
a semi-implicit method in Eulerian coordinate. We observe that as the interface moves, our Lagrangian method can still 
capture the interface well with few points.
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Fig. 4. Approximate steady states of Allen-Cahn equation by using the Lagrangian method with finite-element in space.

5.3. Two-dimensional axis-symmetric case

As a final example, we examine the performance of our flow dynamic approach for a two-dimensional axis-symmetric 
case with � = {x2 + y2 < 1} and initial condition f0(x) = x. More precisely, we solve (4.6) with ε2 = 0.001 using the 
Lagrangian scheme with a spectral method in space with N = 16, 64. Since (4.6) is axi-symmetric, we only plot the one-
dimensional profiles in Fig. 8.

6. Concluding remarks

We present in this paper a new Lagrangian approach which can effectively capture the thin interface of the Allen-Cahn 
type equations. Using the Energetic Variational Approach, we introduce a transport equation and reformulated the Allen-
Cahn equation in Eulerian coordinates to a trajectory equation for the flow map in Lagrangian coordinates. We then develop 
effective energy stable schemes for the highly nonlinear trajectory equation, and present ample numerical results to show 
the effectiveness of this approach for interface capturing.
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Fig. 5. Approximate steady states of Allen-Cahn equation by the Lagrangian scheme with Legendre Spectral method in space for ε2 = 10−3.

Fig. 6. Approximate steady states of Allen-Cahn equation by the Lagrangian scheme with Legendre Spectral method in space for ε2 = 10−5.

The main advantage of the flow dynamic approach is that meshes, in the Eulerian coordinate through the flow map, 
automatically move to the interfacial regions so that only a few points are needed to resolve thin interfaces. In fact, the 
number of points required to resolve interfacial layers of width ε is independent of ε!

To fix the idea, we restricted ourselves to the one-dimensional case in this paper. In this case, the assumption that 
the flow velocity satisfies the transport equation (2.5) leads to a well-posed trajectory equation. But as pointed out in 
Remark 4.2, the transport equation (2.5) is not a suitable choice for multi-dimensional cases. However, the methodology 
introduced in this paper is still applicable for multi-dimensional cases and for other types of diffuse interface models 
such as Cahn-Hilliard models. The key is to use an alternative transport equation so that the resulting trajectory equation 
becomes well-posed. For instance, a mass-conserving transport equation has to be used for the Cahn-Hilliard models. In a 
future work, we shall apply the new Lagrangian approach introduced in this paper to Cahn-Hilliard equations as well as 
multi-dimensional diffuse-interface models.
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Fig. 7. Approximate solutions for the generalized Allen-Cahn equation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Appendix A. Derivation by an energetic variational approach

We shall use the energetic variational approach to derive the Allen-Cahn equation (2.9) using flow map (2.4) and kine-
matic relation (2.6).

A.1. Energy dissipative law with flow map

The energy dissipative law consisting the conservation function as well as the dissipation function plus kinematic re-
lationship determine all the physical information for mathematical models. So we combine original energy dissipative law 
(2.3) with transport equation (2.6) together to define the singularity by using the Energetic Variational Approach. If we plug 
the kinematic equations (2.6) into the energy dissipative law (2.3), we can derive an equivalent energy dissipative law with 
respect to flow map of equation (2.4) in Eulerian coordinate. For Allen-Cahn system (2.1)–(2.2), we have the new energy 
dissipative law as⎧⎪⎪⎨

⎪⎪⎩

d

dt

∫
�x

1

2
|∇x f |2 + 1

4ε2
( f 2 − 1)2dx = −

∫
�x

|u · ∇x f |2dx,

f + (u · ∇ ) f = 0.

(A.1)
t x
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Fig. 8. Axis-symmetric case computed by Lagrangian numerical method with ε2 = 0.001 and time step δt = 10−4.

Where the total free energy is Etotal := ∫
�x

w( f )dx with free energy density w := 1
2 |∇x f |2 + 1

4ε2 ( f 2 − 1)2, and � is repre-
sented as

� =
∫
�x

|u · ∇x f |2dx, (A.2)

which is dissipative term with respect to velocity u and also can be regarded as entropy production from the Second Law 
of Thermodynamics. In order to derive the constitution equation of Allen-Cahn equation in terms of force balance, we need 
to introduce the framework of Least Action principle and Maximum Dissipative principle.

A.1.1. Least action principle
The Least Action Principle [1,3] is interpreted as for a Hamiltonian system the trajectories of particles from position 

x(X, 0) at time t = 0 to position x(X, T ) at time t = T are determined by the variational of Least Action function with 
respect to trajectory flow map. From energy dissipative law (2.3), for Allen-Cahn equation, the least action function is 
defined as

A(x) : = −
T∫

0

Fdt = −
T∫

0

∫
�x

w(∇x f , f )dxdt

= −
T∫ ∫

1

2
|∇x f |2 + 1

4ε2
( f 2 − 1)2dxdt,

(A.3)
0 �x



16 Q. Cheng et al. / Journal of Computational Physics 419 (2020) 109509
where F is Helmholtz free energy and w(∇x f , f ) = 1
2 |∇x f |2 + 1

4ε2 ( f 2 − 1)2. Since from the kinematic relationship defined 
by equation (2.6) in Allen-Cahn system, we have the following equalities in Lagrange coordinate

f (x(X, t), t) := f (X,0) = f0(X). (A.4)

By (A.4), for Allen-Cahn system (2.1)–(2.2), using deformation tensor F , the action function is formulated as follows in 
Lagrangian coordinate

A(x) := −
T∫

0

∫
�X

w(∇X f0(X)(
∂x

∂ X
)−1, f0(X))det FdXdt. (A.5)

Taking the variational derivative of action function A(x) with respect to flow map x → x + ε y and combined with chain 
rule ∇x f = ∇X f0(X)( ∂x

∂ X )−1, and notice the equality (A.4). Then we obtain

δA

δx
= d

dε
|ε=0

∫
�x

w(∇x f (x + ε y), f (x + ε y))dx

= d

dε
|ε=0

∫
�X

w(∇X f0(X)(
∂(x + ε y)

∂ X
)−1, f0(X))det(

∂(x + ε y)

∂ X
)dX

=
∫

�X

∂ w(∇x f , f )

∂∇x f
(−F −1 ∂ y

∂ X
F −1∇X f0(X))det F + w(∇x f , f )det F · tr(F −T ∂ y

∂ X
)dX

=
∫

�X

−∂ w(∇x f , f )

∂∇x f
⊗ ∇x f

∂ y

∂x
+ w(∇x f , f )∇x · ydx

=
∫

�X

∇x · ( ∂ w(∇x f , f )

∂∇x f
⊗ ∇x f − w(∇x f , f )I)ydx =

∫
�x

w f ∇x f ydx.

(A.6)

Where δw
δ f = w f = −�x f + 1

ε2 f ( f 2 − 1), δw
δ f is also called chemical potential and I is identity matrix. According to Least 

Action Principle we have the conservative force as Fcon = δA
δx in Eulerian coordinate.

As a consequence, we derive that

Fcon = δA

δx
= w f ∇x f . (A.7)

In order to derive the constitution equation, as we have computed the conservative force (A.7) from the Least Action prin-
ciple, the dissipative force shall be obtained from the following Maximum dissipative principle.

A.1.2. Maximum dissipative principle
The Maximum Dissipative Principle is also named as Onsager principle, i.e. the dissipative force can be obtained by

taking variational of 1
2 � with respect to velocity u. Since � is said to be quadratic in the rates, so the force is linear with 

respective rates.

Fdis = δ 1
2 �

δu
= u · ∇x f ∇x f . (A.8)

A.2. Force balance and constitution equation

From Newton’s force balance law,

Fcon = Fdis (A.9)

We derive the constitution equation of Allen-Cahn equation in Eulerian coordinate in combination of conservative force and 
dissipative force, for system (2.1)–(2.2)

w f ∇x f = u · ∇x f ∇x f ,

w f = −�x f + 1

ε2
f ( f 2 − 1).

(A.10)

Remark 6.1. For Allen-Cahn system (2.9), taking inner product of (2.9) with −u · ∇x f and notice the equality ft = −u · ∇x f . 
We can also derive the equivalent energy dissipative law (A.1) in Eulerian coordinate.
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