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NUMERICAL ANALYSIS AND SIMULATION FOR A GENERALIZED
PLANAR GINZBURG-LANDAU EQUATION IN
A CIRCULAR GEOMETRY*

SEAN COLBERT-KELLY', GEOFFREY B. MCFADDEN?¥, DANIEL PHILLIPS!, AND JIE
SHENY

Abstract. In this paper, a numerical scheme for a generalized planar Ginzburg-Landau energy in
a circular geometry is studied. A spectral-Galerkin method is utilized, and a stability analysis and an
error estimate for the scheme are presented. It is shown that the scheme is unconditionally stable. We
present numerical simulation results that have been obtained by using the scheme with various sets of
boundary data, including those the form u(0) =exp(idf), where the integer d denotes the topological
degree of the solution. These numerical results are in good agreement with the experimental and
analytical results. Results include the computation of bifurcations from pure bend or splay patterns to
spiral patterns for d =1, energy decay curves for d =1, spectral accuracy plots for d =2 and computations
of metastable or unstable higher-energy solutions as well as the lowest energy ground state solutions
for values of d ranging from two to five.
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1. Introduction
This paper considers a numerical scheme for solving a generalized planar Ginzburg—
Landau equation over the unit disk in R?:

g — k1 (V(V )+ s (V 5 (V x ) = e%u(l Cll?), (2.8 € Ba(0) x (0.T]
dlonmg (1.1)

u|t:0=u0.

In Equation (1.1), By :=B1(0) denotes the open ball of unit radius about the origin in
R? and u:B; —R?. When convenient, for ease of notation, we view u as a complex-
valued function such that u=u!(xq,29)+iu?(x1,72) takes values in C for z=(z1,72)
in B;. We consider boundary data g(z) that lie on the unit circle S, that is, g(z) has
|g(x)|=1. The boundary data then has an associated integer degree d=deg(g) defined
by the number of revolutions made by the vector g(e'?) as 6 varies from 0 to 27. We
mainly study the case d >0, but do conduct simulations in the case d <0. If ky =ko,
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330 G-L EQ. IN CIRCULAR GEOMETRY

then we obtain —k1 (V(V-u)) +k2(V x (V X u)) = —kAwu. This turns Equation (1.1) into

1 10f
ut—kAu::Qu(l—|u|2)::€—2%, (x,t) € B1(0) x (0,T]
_ (1.2)
ulpo =g
ul1=0 = uo

over the unit disk. This is a vector version of the well-known Allen-Cahn equation,
introduced by Allen and Cahn to discuss the motion of anti-phase boundaries by way
of diffusion in solids that are crystalline in nature [1, 2]. The free energy per unit
volume of the homogeneous phase, f, is the Ginzburg-Landau bulk term, which is used
to describe the occurrence of phase transitions in superconductors and superfluids [4].
Due to the applications of the Allen-Cahn equation, the development of precise and
efficient numerical schemes to solve this equation is essential. Numerical schemes for
the case k1 = ko that utilize spectral methods to find steady state solutions to Equation
(1.2) have been analyzed previously [15, 16]. Hence, we will assume k; # k.

Dynamical properties of vortices in R? and their interaction in Equation (1.2) have
been studied previously [3]. By discretizing the partial differential equation in (1.2), ef-
ficient and accurate numerical schemes were proposed on both circular and rectangular
domains to obtain simulated interactions of the vortices in their domains and numeri-
cally different patterns of the steady states for vortex lattices (three or more vortices).
Our focus here is centered on obtaining steady-state solutions to Equation (1.1) over
the unit disk and their vector field orientation near the vortex center.

We define k=max(ky,k2) and k=min(ky,k2). The steady-state solution u(z,t) =
ue(x), where Oyu. =0, is a minimizer of the energy functional

Je(u):= %/B Ey(V-u)? + ko (V x u)2—|—2—12(1— |u|?)? da. (1.3)

Since V X (V xu)—V(V-u)=—Au, depending on whether ki <k or ks <k; we can
express the equation in (1.1) as

— 1 1
= FAu+ i yu= (1= luf?) =~ f(u), (1.4

where

(ky—k1)V x (V xu) when k=k;

fkl,;@u: — (1.5)
(kg—kl)V(Vu) when k:kQ

A weak formulation of (1.4) is to find u€ H'(B1(0)) such that
(11, 0) 4+ T (Y, V0) - (L s 0) = Elz( Fu),0) (1.6)

for every ve H}(B1(0)), with
(k:g—kl)/B (Vxu)(V xv)de when k= ki

(thkzuav) = B
(kl—k:g)/ (V-u)(V-v)de when k= ks.
B
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1.1. Principal results. = We develop a spectral-Galerkin numerical method for
solutions to Equation (1.1) in order to help interpret the experimental observations
and analytical results described in Subsection 1.2. Tt is also useful to obtain insight on
results not currently proven and to explore the nature of the defects computationally.
Our methodology involves first discretizing the Euler-Lagrange equations via a first
order semi-implicit stabilized scheme. The discretized equations are converted into a
polar geometry representation, approximating the solution with a Fourier expansion
in the angular variable using an FFT and approximating the Fourier coeflicients using
Chebyshev polynomials. This scheme is shown to be unconditionally stable with error
estimates on the order of exp(7T'/€?).

We tested the scheme with varying boundary conditions of the form g=exp(idf) for
integer values of d. When ky < ko and d > 0, the vector field is asymptotically radial near
the singularities, whereas when ko < k1, the vector field is asymptotically tangential. In
the case d=1, the singularity is at the origin and the solution is radially symmetric. We
find a critical value €. =€.(k1,k2) for which the numerical solutions bifurcate from purely
radial or tangential solutions to spiral solutions. For example, in the case k; < ks and
g=exp(i(f—m/2)), if € > €., the lowest energy solution is purely tangential. For e <e., a
spiral solution, tangential at the boundary but radial at the origin, bifurcates from the
purely tangential solution, having lower energy. When d=2, there are two +1 degree
singularities, which seem to have a unique location, giving rise to a unique minimizer
in both cases k1 <ko and ko <k;. When d=3, the global minimizers have three +1
degree singularities with unique locations up to a 7/2 rotation. Depending on the
initial condition ug, additional higher-energy solutions may also be found that appear
to be (locally) stable. For example, we find a vector field with four +1 degree vortices
and one —1 degree vortex for boundary conditions with d=3. We have performed a
number of numerical computations for both the lowest and higher energy solutions with
a variety of boundary conditions of various degrees d, with several possible locations of
the defects that depend on the values of ky and k».

1.2. Applications. Equation (1.3) has been used to study thin film chiral smectic
C (SmC*) liquid crystals. Smectic C (SmC) liquid crystals are molecular layers such
that each molecule’s long axis is tilted at a constant angle 0 <6y <7 /2 relative to the
layer normal. Thus, SmC are both positionally ordered and orientationally ordered.
The vector parallel to the local average of the molecular long axes at a point in the
layer z is the director field for the liquid crystal, denoted as n(z). Thin films are
usually just several layers thick and the Oseen-Frank energy [7] gives the elastic energy
for the molecular orientation of the liquid crystal. In this context, the vector field u
in Equations (1.1) and (1.3) is the projection of n(x) onto the film’s plane, called the
c-director field. The film can be represented as a two-dimensional liquid [12] and the
integral is taken over the film,

1
5 Eo(div u)? + ky(curl w)? de. (1.8)
Q

SmC* liquid crystals have the additional property of the molecules twisting perpendic-
ularly to the director. This forms a spontaneous polarization field that produces elastic
and electro-static contributions to the energy, which is modeled by introducing bound-
ary values for « on € [9] and increasing the bend constant k; above its bare elastic value
[10]. In the second instance, this motivates studying the case ki # ko in which k; =k
is the splay constant and ko =k is the bend constant.
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If a particle is introduced in the thin film SmC*, then a singularity in the spon-
taneous polarization field will occur. This will cause an island to nucleate around the
defect, with an island width that is several times the film thickness. Various experiments
have been conducted and models derived to investigate this phenomenon [9, 10, 11, 12].
The islands in these experiments are disk-like and on the island’s outer edge, the c-
director is tangential counterclockwise (e!(°+7/2)), resulting in the degree of the vector
field being +1. Ref. [9] represents the island-defect scenario by setting Q@ = Br(0) \ Bs(0)
in the integral (1.8), where Bs(0) represents the defect. Lee et al. [9] investigate the
stability of equilibria both experimentally and numerically over S'-valued fields with
ks > kp. The initial orientation of the director field is tangential. As the island increases
in size, or through the effects of external forces (such as blowing on the film with a
small jet of gas), the pure bend texture can transform. The vector field at the outer
edge remained tangential counterclockwise, while the vector field at the core particle
would either change to approximately radial, or remain unchanged. Their simulations
for the case k1 < ko were similar to these experimental results. We intend to show that
the stable solutions to Equation (1.1) have similar properties and produce fields that
follow the same pattern as observed in these experiments for small .

Although we mainly describe results for boundary conditions having positive degrees
d >0, there is also interest in studying the problem with d <0. For example in Ref. [17],
Silvestre et al. studied the texture in the background film of free standing SmC'x
containing d disjoint circular islands. The results from their simulations and experiments
show a topological defect of degree —1 is associated with each island. We have therefore
included some computations for kjy # ks with boundary data having negative degree.
We note that if k1 =k then a solution with negative degree d <0 simply corresponds to
the complex conjugate of an equal-energy solution with positive degree —d. For ki # ko
this is no longer true, as we illustrate with examples for d=—1 and d=—2.

Ref. [5] studies the minimization of the energy functional (1.3) over a multiply-
connected domain, with a fixed S'-valued Dirichlet boundary condition and k; # ky. A
subsequence u., converges to an S'-valued vector field with the same number of degree
1 singularities as the degree of the boundary condition d. At each singularity a € R?, u*
behaves locally as
r—a

ut =

(1.9)

Ag T,
|z —al

where a, =+1 when k=k; and o, ==+i when k=*k, (regarding u, x, and a as complex
variables). The location of these singularities also minimize a renormalized energy
related to Equation (1.1) (see [5]). The study in [5] examines the case where  is
multiply connected. Here we focus on the special case that 2 is simply connected.
Singularities form in u* and the local property (1.9) holds as in the general case; however
the structure of the renormalized energy and the overall pattern in u* are simpler. The
purpose of this paper is to validate computationally the aforementioned results from [5]
in the simply connected domain Bj.

Our paper is organized as follows. In Section 2, we introduce the time discretization
of Equation (1.4) and show that the energy is stable unconditionally. In Section 3,
we describe the spectral-Galerkin method used to determine numerical solutions to
Equation (1.1) in the unit disk. In Section 4, we establish an error estimate for the
discretized scheme utilizing the spectral-Galerkin method. Since the domain of interest
is a disk, we modify pre-existing error estimates from [16] and incorporate estimates
in a circular geometry. We present some numerical results from simulations that we
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conducted in Section 5, while comparing results found by experiments conducted with
SmC* in the literature [9, 10, 11, 12]. We conclude the paper with some remarks in
Section 6.

2. Time discretization and stability results

In this section, we analyze a scheme that will be used to numerically find equilibrium
solutions to Equation (1.1). Let u™ be the solution at time step t,,, with «™ =g on 0B,
and let dt=t,11—t,. We consider the following first-order semi-implicit stabilized
scheme for (1.4):

u Tl —yn 1

- S
T_kAun-‘rl +$k1,k2un+§(un+l_un): un(l_|un|2)7 (21)

=]
where the stabilizing term €25 (u"™! —u™) introduces an extra consistency error [16]
that is of order Sdt /€2, which is of the same order as replacing the implicit treatment of
nonlinear term by the explicit treatment. Note that the above scheme is straightforward
to implement, since at each time step, only a Poisson type equation needs to be solved.
For notational purposes, we will denote F(u)=(1—|u|?)?/4 and f(u)=F,(u). We

also say that a function v in is “well-prepared” if:

1. v(xz)=g(x) on 0N with degree of g equal d >0,

2. |v(z)| < My, |Dv(z)| < My/e,|D?*v(z)| < M3 /e on Q and

3. Je(v(z)) <kmdln(e 1)+ My

for constants M, >0 for all 1<i<4. If we assume that ug in Equation (1.1) is “well-
prepared” we can get a uniform bound on solutions to Equation (1.1), |uc(z,t)| < M;
for every x,t >0 and 0 <e<1. This can be shown by first using the gradient flow to
obtain

1
62/31(1 e (D) do < My

for all ¢>0. The uniform bound follows from this, [5], and parabolic estimates [13].
From [16], we can use a modified F, denoted as F, that has quadratic growth outside
of the interval [—Ms5, M5] without affecting the solution in the numerical scheme. This
truncation applies if the boundary data’s degree, d, is nonnegative and uy has d degree
one, well-separated vortices. This does not include solutions that have negative degree
vortices such as cases found in Section 5. We must note that it is still a major open
problem to show that solution of the discrete problem u"*! will remain bounded pro-
vided that ug is bounded. Since the main focus of the paper is finding steady-state,
minimal energy solutions, for simplicity we will assume that

max|f'(u)| < L

for some positive constant L. Then we have the following convergence property for this
scheme.

THEOREM 2.1. For S> %, the scheme (2.1) is energy stable, i.e. the following discrete
energy law holds

Je(un+1) <Je(u™)

for all m>0.
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Proof. This proof is similar to the proof of Lemma 2.2 in [16], but special care is
needed to deal with the term %, ,u".

Taking the inner product of Equation (2.1) with (u"*!—u")/6t (noting that
[(u"*! —u™)/8t]|ap, =0), we obtain, with integration by parts,

1

2+ 56t untl —un 2 k

€2 || St | +7(vun+1’v(un+1_un)) (gkhkzu u” e un)

) 5t 5t (2_2)
- n n+l__ n _
s (), =) =0,

where (2%, k,u,v) is defined in (1.7). Using the identities

2(a,a—b)=|a—b* +|a|* —[b|*

2(b,a—b)=—|a—b]*+lal>—[b]*, (23)
we can obtain the following equalities

E(Vu™™ W (u™ T —u™))
k(IIW"HHQ IV 12+ V (" —u™) %)
(k2 - kl)(V xu™ V x (u" Tt —u™))

L9 w2 [V s 2= 9 ¢ (w1 =) )
(k1 —kg)(V-u",V~(u"+1 —u™))

(IIVU”“HQ— IV a2 = |V - (@ ™)), (2.4)

For the term (f (u”),u"+1 —u™), we use a Taylor series approximation in several
variables:

1

Fu"™) = F(u™) = f(u™)- (u" T —u™) + i(un+1 —u™)T () (W™ —u™). (2.5)

If ko < k1, substituting Equations (2.4) and (2.5) into Equation (2.2) gives

2+ 86t untt —yn k " N . 1 . .
€2 H S5t ||2+25t(vu H,V(u +177.L ))+&($k1,k2u U +1*u )
1 n n+1 n

+(5t€2 (f(u )vu + —u )

_E+86t unrtt —un 2

I = n 7. n T. n n
| P 5 RI VP = RV 24 B[V (! =) )

1
25t((k2—k1)l|v><u"+1H2 (k2 = kD)IV x|+ (ky — ko) |V x (u™ ! —u™)[[?)
—|—/ (F(u"™) = F(u™))dx
B1(0)
_L n+l _ , n\T n n+l __ n
=5 [, T A 0 )

Utilizing the Frobenius matrix norm gives the equality

|Vu|? = (V-u)? +(V x u)? +2det(Vu). (2.6)
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The function det(Vu) is a null Lagrangian. Therefore, for all functions w such that
ulop, =g, we have

/B det(Vu)dz=C(g), (2.7)

with fBl det(V(u"*t —u™))dz=0. Using Equations (2.6), (2.7) and the definition of
Je(+) in (1.3), the equality becomes

i n+1 n|2 n+l - E n+1 ny||2
o P ) = )+ SV -

k
2V ¢ (=)

maXu|fu| n+l _ n 2 n+1 ni|2
<Pl a2 < -t
Similarly, when k; < ks, we obtain
S n+1 ni2
- Je il Je
P4 L >& (u")
k ko —
FE s -l 2R g e a2
maxy, |fu| ” n+l n||2 ” n+l n||2
— 2e26t = 2626t '

+1

Since the terms involving u"™" —u"™ are positive, we obtain

S n n T n T L n n
e — w5+ T () = Je(”) < ol =

The scheme is stable when je(u"*‘l) < _6( ™). This will occur if
L S
22 =@

implying the desired result. ]

3. Spatial discretization

In this section, we develop a spectral-Galerkin scheme to solve Equation (2.1). By
using polar coordinates, we can map Bj to a rectangular domain, which is the most
effective way to deal with this type of geometry [14]. We will derive a computational
algorithm using the methods outlined in [14]. We first assume g =0 then show that the
non-zero boundary condition can be reduced to this case.

3.1. Converting the operator to polar geometry. We multiply Equation
(2.1) by €26t to obtain the equation

(2 + S5t u™ T — 5tk Au™ T = 5tu™ (1 — |u™|*) + (€2 + S0t )u™ + €25t (k1 — ko) Ly 1y u™,

(3.1)

where we assume v =0 on B;(0) for each n. In its variational form, we want to find
u"tt e H}(By) at each time step such that

(€2 +56t) /

u” vdm+626tk/ V(u')"tt - Vo'de
By

Bii=1,2

u" - vde 4 €26t (ky — k‘g)/ (Lo, kyu™) -vdz

:(5t/B (u"-v)(l—|u"|2)dac+(62+5’6t)/3 ;
1 1 1 (3'2)
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holds for all ve H}(By).

We apply the polar transformation x =rcos() and y=rsin(#) to (3.1). The Laplace
operator becomes

1 1
Au= ;8,(7"8,&)4—7289911 (3.3)

while .2, 1, becomes, with some direct calculations,

1 O, Ogou . Opgu . Oplu,
Lr poti == [0y — 2 DOy 9 IO 9 C011i(20)
’ 2 r r r 72
1,1 1
— 5(;8T(7“aru) + ﬁaggu) (3.4)
if k=k, and
1 O, Ogou . OpgU . gl
Lir gyt =[Oy — - OOy 9 IO 9 S0 i(20)
> 2 r 7"2
1,1 1
+ 5 (=00 (rO;u) + 5 Oggu) (3.5)

if k=ky. Here @ is the complex conjugate of u. Let

1 (r,0) = 6tu™(r,0) (1 — [u™(r,0)|?) + (2 + S5t)u™ (1,0) + €25t (k1 — k) Liy gou™ (1,0).
(3.6)
Then Equation (3.1) becomes

(€2 +St)un+! — 625%(%ar(raru”+1) + T%a@gunﬂ) —m (3.7)

for (r,0) € (0,1) x [0,27), with «"(1,6) =0 for 6 €[0,27) and u™ periodic in @ for all n,
keeping in mind the dependency of kq,ks for f™. This also entails that Equation (3.2)
becomes

(62 +.S6t) / u L ordrdd+ 26tk | 0t 9vrdrdd
B, B,

+e20tk 18911”"’1 -Ogvdrdf
B, T

= ; " vrdrds. (3.8)

The polar transformation introduces an artificial singularity at r =0, hence addi-
tional pole conditions must be imposed to obtain the desired regularity [14]. This is
done in the following manner. For the Fourier expansion

(oo}

u"(z,y)=u"(r,0)= Z u™ (r)e™?

m=—0o0

to be infinitely differentiable in Cartesian coordinates the essential pole conditions must
be satisfied [14], i.e.,

up (0)=0 for m#£0. (3.9)

m
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We will now describe the spectral approximations that will be utilized. We choose

m

and the right hand side of Equation (3.7) by f"(r,G)NZIJ\ng:O fr(r)e™®. We then
solve the system

an even cutoff number M >0, approximating the solution by u Nzlml o Uny (r)e'mé

2
(€2 -+ St)un+! —6267%( B, (ropu™ ) — 7?2 WY = f7 (1) (3.10)
for each m, with ), (0)=0 for all n and m#0 and u},(1)=0 for all n and m. For
notational purposes, we will drop the indices n,m, keeping in mind that f is dependent
on the solution from the previous time step.

Now we calculate a weighted variational formulation for the Chebyshev interpolation
in the radial coordinate. As in [14], we use the transformation r=(s+1)/2 in Equation
(3.10). Utilizing the change of variables, Equation (3.10) becomes, letting w(s) =u((s+

1)/2) and g(s) = f((s +1)/2),

4€26tk 4e2m?25tk
—_— Dw') + —M—
PSR Ay oy

and the weighted variational problem becomes to find w € X (m) (refer to the definition
(4.1)) such that, multiplying both sides by (s—+1)/4,

(€ 4 S6t)w — w=g (3.11)

€2+ 56t
4

(54 1)w,v), +e25tk((s+Dw', (vw)) + 62m26t%(5$ : ) = i((s—i— 1)9,v)w,
(3.12)

where (f,g9),= fi1 fgwds. We approximate w,g with Chebyshev polynomials [6] in
XN(m)7

N
w(s)= prTp(S)a 9(s)= ngTp(s)
p=0

3.2. Approximating the curl curl and grad div operators. Recall that g
is the m-th spectral function to §tu™(1— |[u"|?)+ (€2 +Sot)u™ + €26t (k1 — ko) Ly kyu™
The first two terms can be calculated in a straightforward manner. The last term,
however, requires some work. In polar coordinates, using the representation u=
Zlo;l‘zoum(r)eime in Equations (3.4) and (3.5), we have

oo

1 2m—1 m(m —2 (9—m
zkhkzu(r? 0) = | Z;O 5 (87”Tﬂm + Tarﬂm + (T)ﬂm)el@ )0
2
m m
- Z 877um+ 8 Um — T.Tunz)e o (313)
[m|= 0
if k=k; and
1 2m—1 m(m—2)
= i — i —4)— \,i(2—m)8
$k1,kzu(T’6)_|202(arrum+rarum+7n2um)€ ( )
c- 1 1 m2 imé
+ Z 5(8”um+;8rum—r—2um)e (3.14)

|m|=0
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if k=ky, for a function u that is periodic in §. From the above calculations, we find
that the m-th spectral function to %, x,u is

1., 3—2m , _ m(m—2)_ 1 m?
em (T) - 5 (8rru2—m + Tar'ua—m + Tu2—m - (87‘Tum + ;arum - ﬁum))
(3.15)
if k=k; and
1 3—2m m(m—?2 1 m?
U (T) = 5 (aTTEQfm + ” OrUg—m + %E27m + (arrum + ;&ﬂum - TTum))
(3.16)

if k=ko. Then, as before, by changing variables and multiplying by (s+1), we will be
left with the term

v(s)
(s+1)

where a(m) is a constant that depends on m. This can be calculated by plugging in
values for s #—1. However, since we are assuming the functions u are smooth, so are the
functions wu,, and in turn v(s). Then we find, by using the fact that u,,(0)=v(-1)=0
for m=£0,

a(m)

im v(s)
s——1 (S—|— 1)

=v'(-1).

Using a representation by Chebyshev polynomials, we get

N N-1
v(s)~ vaT(s) =(s+1) Z 0,T(s)
p=0 p=0

so that

. N
P Z;OUPT(S).

Therefore we obtain

o _v(s)
51—1>H—11 (S—|— 1)

N—-1
~ > b, T(—1)~v'(-1).
p=0

Since the derivative at —1 can be approximated by a Chebyshev interpolation, we can

replace the term a(m) (Zfi) at s=—1 with a(m)v'(—1). In this manner, Equation (3.6)

can be calculated directly.

3.3. Nonzero boundary condition. The initial problem involves a boundary
condition u|pp, =g, where g is a smooth function with |g|=1. We can employ the
harmonic extension, g, in the following manner. We represent g by the Fourier expan-
sion g = Zmlzlgmeima, and define §g= Zf:nl:lgmr‘meima. Then §(1,0) = glop, =g and
applying the Laplace operator to § gives Ag=0. Define the function @ =u— g, giving
t|op, =0. Substituting @ into Equation (1.4), using the definition of %, x,, gives

Uy —EAﬂ-l-gkl’]Qﬂ
=Uy _EAU‘Fg}cl,sz_gkl,kgg

1 i
:?u(l, ul?®) = Loy kG-
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From the above calculations, @ satisfies the system

_ 1 o )
—/‘JAUJF(k‘l—kz)fkl,kzuzg(u+g)(1—|U+9|2)—(k1—k2)fkl,k29

iilga =0 (3.17)

Uly—o =g :="1ug — G-

Hence, using the methodology described in the previous subsections of Section 3, we
can find u at each time step, and then add g to @ to obtain wu.

REMARK 3.1. If the simulation domain is rectangular, one can discretize using a
Chebyshev spectral method. We would then construct multi-dimensional basis functions
using the tensor product of one-dimensional basis functions [15]. This leads to direct
calculations of the terms V-u and V xu in the weak formulation. The only non-linear
term is the Ginzburg-Landau term, u(1—|u|?), which can be treated as before, using
the previous time step as input values.

4. Error analysis
In this section, we derive error estimates for the full discretization scheme described
in the previous section.

4.1. Preliminary approximation results. For clarity, we establish first some
notation and approximation results on some projection operators.

Consider the Laplace operator, Au. Applying the polar transformation x=rcos(9)
and y=rsin(f) gives the expression (3.3). We will still denote u:=u(r,0) as the trans-
formed function in polar coordinates. Using a Fourier expansion, we have

oo

u= E Uy ()€™
|m|=0
giving us

A 1 m2 im0
_ u:Z(f;&n(rarum) +gtm)e™.

m|
Define the weight function w®®(¢)=(1—1t)%(1+1¢)’, where t€(—1,1) and the transfor-
mation r=(141t)/2. Then we have for each equation m,

4m?

(102"

Htat((u 1)0yv) +

where v(t) =0, (t) =, ((t+1)/2) and we dropped the indices for notational purposes.
Letting I =(—1,1), we define the space

X(m):{Hé(I) for m#0

{veH'(I):v(1)=0} form=0 (4.1)

and define the approximation space Xy (m)=X(m)N Py, with Py being the space of
polynomials of degree less than or equal to N. Define the bilinear form
U (1,0) 1= (1) ,0") o1 +m% (U, 0) 0,1

1 1
:/ u'F(1+t)dt+m2/ uv(1+t) "1 dt (4.2)
-1

-1
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for u,v € X (m). We denote the orthogonal projection 7y™ : X (m) — X 5 (m) and define
it as

U (T3 U — uywN) =0 (4.3)

for every wy € Xy (m). We next define the anisotropic Jacobi-weighted Sobolev space
By (I)={u:8fuel?, . ,(I),0<k<s}, with the inner product, norm, and semi-
norm as

B*, ;= Z(&‘fu,@fv)wk_l,k_l (4.4&)
k=0

lullB,  =(uwu)p, (4.4b)

lulps, _, =107 ullge-1.5-1, (4.4¢)

1,—-1

and L2, ., .(I) is the weighted L? space over the interval I. From [15], for any
ueX(m)NB2, 4,

G, (W}Vmu uwjlv u— u)—||8t(7rN uw— u)||w01+m2||7rN U— u||w0,_1
N — 1!
<em? NIV v =gz @)

where ¢ is independent of m, N, and u. Define the approximation space

M
Yy n={w= Z wm,N(T)elma
|m|=0
M
Z me (t-i—l /2 imb — Z UmN wng:’l)m’NEXN(m)}
|m|=0 |m|=0

and the operator Hzlw, n onto Yy v such that
M M
H}W’Nu = w]lvmum((t—i— 1)/2)6””9 = n}v’”am(t)e‘ma (4.6)
[m[=0 [m|=0
for periodic functions u(r,0) in 6. As in [15], we define the space Hl‘?sl (B1(0)), with

s,8' >1, to be the space of periodic functions with partial derivatives up to order (s’ —1)
with the norm

lull2 = 32 Q=)D 205,
[m|>0
+ 30 w2 (20 |2+ [ P |l 2 7). (47)

|m[=0

Then for any u€ H} (B1(0)) ﬂH;’S/(Bl (0)), we have, by the orthogonality of the expo-
nential functions {e"™?},
[Ju— H}\/[,Nu”%é

- / IV (u— TIhy )+ fu— T, yuf?de
B,(0)
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2
Sdm Z / 7|0 (t, — 70 1) |2+m—|um—W}Vmum\z—&-dum—w}\}mumﬁdr
T
|m|=0

+4r Z /T|8 U |? +—|um‘2+r|um|2d7’

|m|>M

Using the definition of ||| the inequality (4.5) and the fact that ||r'/2(u,, —

5,5’7
HI’
1,m

1 1 . - .
TN U ) [|2 < Cn (i, — TN Ui U, — TN Uy ), We Obtain the projection estimate

(N—-s+1)!

Iy = ull g < (14 MNH) =

(N+5)(178)/2+M175’)||u||H;)s,_ (48)

4.2. Error estimates. We consider the spectral-Galerkin method for the sta-

bilized scheme: given “9\4, N :H}VL NUo, where ug is the initial condition, for £ >0, find

uﬁj}v € Yy, nv such that

1S _
(57 + )t & = iy s0a) 4 BV & Vorsn) + (o bty s 0ar.)
1

=z — (f(ufr n)somn)  Yourn €Yarn. (4.9)

Here, 6t=t**1 —t* and S is the stabilizing coefficient. We denote

Eyf n =y yu(t™) —uhf (4.10a)
Ezlfjjlv = u(t*) — Ty yu(t™) (4.10Db)
Eyfn=u(t™) —ubf = EN N + BV & (4.10c)

k k
We also denote RF*!:.= w —uy(t**1). Using Taylor expansion with integral

residuals and the Cauchy-Schwarz inequality, we obtain [16]

(L

ot
IRE<T [ uoar (111)
for s=—1,0.
THEOREM 4.1. Let T>0. Assume that ueC(O,T;H&(Bl)ﬂH;*s,(Bl)), Ut €

L2(0,T;H¢ (B1)NH* (By)), and wy € L*(0,T;H-Y(By)).  Then for S/2>L, with
s,8' >1, we have the following error estimate:

[u(t®) —ufy nllo < C(&,T) (K1 (u,€)5t+ Ka(u,€)a(M,N)),
where

C(e,T) ~exp (;2),

1 k—k
Kl(u,e) = ﬁHUttHH(O,T;Hﬂ) +(E + T];)HWHH(O,T;H%

—

5t ot(k—k)
Ko (u,€) =|luo |l m +(€+?+7)Hut”L2(O,T;H; s (g T)Hu”c 0.1 HS )’

—_
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(N—s+1)!

a(M,N)=(1+MN"1) A

(N+S)(1—s)/2+M1—s’_

Proof.  Taking Equation (4.9) and subtracting it from Equation (1.6), with v=
UM,N EY]V[’N in (16), we obtain

LS.

(5t =) (Earv = EN nyom ) FR(VEY N Vs n) + (Lo ko (W) —uliy ) 0ar )
1 S - . S
= (R* o v) + (5+ g)(EJITLN — Enfsonmn) + g(u(tkﬂ) —u(t*),vnr,n)

) = Fluy ) on )

Taking vy v =20t E% 3, in the above, and using the identities (2.3), we obtain

5tS. . - . ~ . .
(L4 =) UBN NG — 1 BRe v 15+ 1 ER N = Edr o [6) + 26tk VER V113

+ 25t($k1,k2 (u(thrl) - u?W,N%EN‘]’tZIl\/)
Sot

k ik ik [k
<20t | Rl B v I+ 200+ =50 1By v = B v ol B3 ) o
20tS - 20t .
+ = () —u) ol B3 v o+ 5 1 () = Fuhy )l | EXF v llo- - (4.12)

When k =k, using the identities (2.3) and by adding/subtracting some terms, we can
obtain

26t<$1€17k2 <u<tk+1) - uﬁ/[N)aE]]?/;t]lV)
=0t(k—R)[IV x E5/ 5115+ IV x Efg vlI5 = IV % (EYf & = Exe )]
+20t(k—k)[(V x B\, V X EY ) + (W x (w(t* ) —u(th)),V x Ef L)
+(Vx (B = By n): V< By )l (4.13)
A similar relation holds when k= ks, replacing Vx with V- in Equation (4.13).

Plug in the above relation into the inequality (4.12): in so doing we will let the
L?-norm squared terms that appear on the left side of Equation (4.13) remain on the
left side of the inequality (4.12), while the other terms will go to the right hand side of
inequality (4.12). Then, using Cauchy-Schwarz inequality, Young’s inequality, and [16],

we can bound each term on the right hand side of the inequality (4.12) in the following
manner:

otk

~ 20t ~
k g k
25t||Rk+1||—1HEMT11VH1SCO?HRIC-HH%l+7||VE1V?:]1VH3
St . ~
2(1+€T)HEJIT/1,N—Eﬂ}vHoHEﬁ}vHo
S22 2t -
<@ 50 [ U=l 2SI IR
2tS . . . iy otzs? St~k
1 I 2 n 12
I~ ol Byl < S [ B+ 1B 1B
25t

@) = F i ) lloll 3 3o
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Lot . Lo [

<ol BB+ G [, 10Tl
Loz [ Lot
v [ lBde s B AIR+ BT IR)
22 i

251(F - >||VxE’;;NHo||vXE’;fN||O

_201(

IR o 3+ Mot s

20t (k— )|V x (u(t*) = u(t®)) oIV x E5f A llo
262 (k—k)2 [ Stk
S%/ IVu t||0dt+;||ka+1 3
a% tk
20t(k— k) |V x (E5f N — Eb n)llollV < B3 o llo

2512(k—k)? [ Stk
AR [ -l SEIVERLR,

Again, similar relations hold for the last three inequalities in the case k= ky (replace V x
with V-). Now, substituting the above and using the assumption S > L/2, we obtain

Lot _
(Hﬁ)(HEk+1 15— I ES n115) + 6t (k=) (IVEN NG — IVES &3
265t [t Cyot Lot
<C T e ||Utf( )||2dt+ 2 ||E§4+N||o 22 ||EJIVN||0
Csot® 2012 (F— t’““
(O 2Dy [ty

Cs6t2 252 (k—k)? /t“l
+ )
k tk

€2

+ (2 + [t |32 dt.

Summing up the above inequality for all n=0,1,...,k(k< %+1) and using the in-

equality (4.11), we get

- = 1 Cs  2(k—k)?
||E1kv;f11v||%11 — | ERy wl|7m <6t? (E”UHHQLQ(O,T;H*) Jr(67JFT)||Ut||%2(0,T;H1)>

Cs6t2 2612 (k— k)2
(€ + =5+ I~y WuelFago o

L 2k—k)?
+(72+T)II(I—HMN)“HQW,T;H”

L(St ; Cy6t .
ZIIE TN+ = ZHE Il

n=0

By applying the discrete Gronwall lemma to the inequality, the triangle inequality
Ju(tF) —ufy v < ||E’J’f4N||—|—||EJ’f4N||7 the approximation result (4.8), and the assump-
tions on u, we obtain the desired results. 0
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5. Numerical results

In this section we present some numerical results using the algorithm presented
above. All computations are performed in MATLAB!.

Simulations were conducted with boundary conditions having various degrees. For
each boundary condition, we ran simulations with k=%k; and k=k,. Except where
otherwise noted, for each run we set 6t=0.1, e=0.1, S=1.7, M =32, and N =16, and
run the simulation over the time interval 0 <¢ <7 =2000. The solutions usually stabilize
well before reaching the final time step. We let ki, ko € {0.5,1.5}, so that if k=kq, then
k1=0.5 and ko =1.5; the roles of the constants are reversed when k==ks. Multiple
experiments, with varying boundary values, for both cases have been conducted, and
we present a few of the results for each scenario.

5.1. Degree one. We first consider the boundary conditions g=e*(?*+) for var-
ious values of . We ran simulations for various initial conditions of the form

e (x—agp)

= 5.1
0.1+ |z —aop| (5-1)

()

Crientation of vector field u Orientation of vector field u

(a) Orientation of field for k=ki, (b) Orientation of field for k=ka,
with Je(u)=6.333. with Je(u)=14.844.

Fig. 5.1: The vector field of the solution with boundary data g=¢e' for e=0.1.

5.1.1. Radially symmetric solutions with ap=0. Figure 5.1 shows the mini-
mizing vector field orientation of (1.3) for the boundary conditions g =% for k=k; and
k=kso. In both cases the vector field has a degree one singularity at the origin where
u(0)=0. For k= k; the energy is minimized by a vector field that has a splay orientation
near the singularity. For k= ko, however, the energy is minimized by a vector field that
has a bend orientation near the singularity.

Since there is a subsequence u,, that converges to «* on compact subsets away from
the singularities in C* for k€N [5], then the behavior of u., will be similar to u* for

ICertain commercial equipment, instruments, or software are identified in this paper to foster
understanding. Such identification does not imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.
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Orientation af vector field u

Orientation of vector field u
1 T T e T

(a) Orientation of field for k=ki, (b) Orientation of field for k=ka,
with Je(u)=14.844. with Je(u) =6.333.

Fig. 5.2: The vector field of the solution with boundary data g=ie'® for e=0.1.

small enough €,. Given a singularity a,,, we have

Ly ifk=k

.. (5.2)
+iy if k=ko

u*(py+an)—>{

in L?(0B1(0);C) as p—0 [5]. Hence, we expect for a small enough chosen ¢, to see a
similar pattern, which we generally do for a small enough e, which we discuss further.

For k =k, the entire vector field in Figure 5.1(a) has a splay pattern, satisfying both
the boundary condition and condition (5.2). For k= ks the vector field in Figure 5.1(b)
has a spiral pattern, with a transition from a splay pattern at the boundary to a bend
pattern at the singularity. Similarly for g=ie’ and k=k, the entire vector field in
Figure 5.2(b) has a bend pattern, but for k==Fk; the vector field in Figure 5.2(a) exhibits
a spiral pattern, with a transition from a bend pattern at the boundary to a splay
pattern at the singularity. This pattern is similar to the experiment described in the
introduction from [9].

The steady-state, degree one solutions in Figures 5.1 and 5.2 can be represented in
the form

u(r,@):v(r)f+w(r)é:[v(r)—i—iw(r)}ew, (5.3)

where the scalar functions v(r) and w(r) represent splay and bend components of u in
the radial direction 7(0) = (cosf,sinf) and angular direction 6(6) = (—siné,cos0), respec-
tively. These components satisfy the coupled ordinary differential equations (ODEs)

Pv 1dv 1 v

— - — —(1=v?—w?) = 4
kl{dr2+7'dr 7'2U}+e2< v w) 0, (5-4)

dw ldw 1 w 9 9
kz{d’l“Q+TCl7‘_’l“2w}+€2(1_v —w )—0, (55)

with v(0) =w(0) =0. The pure splay solution in Figure 5.1(a) corresponds to the bound-
ary conditions v(1) =1 and w(1) =0, with w(r) vanishing identically. The spiral solution
in Figure 5.1(b) satisfies the same set of boundary conditions, but both v(r) and w(r)
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are non-zero. Similarly, the solutions in Figure 5.2 correspond to boundary conditions
v(1)=0 and w(1l)=1. The pure bend solution with v(r)=0 in Figure 5.2b and spiral
solution in Figure 5.2a can be regarded as the result of interchanging the roles of the
constants k1 and ks and the components v(r) and w(r) in these ODEs. The corre-
sponding solutions that are related by this symmetry have the same energy; that is, the
solutions in Figure 5.1(a) and Figure 5.2(b) have the same energy J(u), as do those in
Figure 5.1(b) and Figure 5.2(a).

Finite difference solutions to the ODEs were computed using a quasi-Newton
method and compared with the spectral solutions. The results show that the spiral
solution in the Figure 5.1b with k =k, is obtained for small enough values of €, and is
found to have a lower energy than a pure splay solution would have under the same
conditions. Indeed, as € is decreased the spiral solution is found to bifurcate from the
splay solution at a critical value of €.~ 0.244 as shown in the left figure of Figure 5.3.

0.8 25
> 06 ~~
£ 2 20
® 04 —
0.2 15
0 3
0 0.1 0.2 0.3 0 0.1 0.2 0.3
€ €

Fig. 5.3: The behavior of the steady-state spiral solution as a function of € for k1 =1.5 and
ko =0.5. Left: The maximum value of the bend component wmax versus €, exhibiting a bifurcation
from the splay solution (with wmax=0) at e.~0.244. Right: The energy Je(u) of the spiral
solution (black curve) and the splay solution (red curve) versus e, indicating the stability of the
spiral solution for € <ec.

0.9 T
0.8 B
07 R
=06
ES .
=05 /.
= p el
Z 04 B hR
. \\
. .
0.3 B — v(r),e=0.01| *“~_
o2l |— w),e=0.01 .
oal £ --- y(r), e=0.2
. 4 ~o q
=== w(r), e=0.2 AN
0 ‘ ‘ ‘
0 0.2 04 06 08 1

r

Fig. 5.4: The radial component v(r) (black curves) and angular component w(r) (red curves) of
the steady-state spiral solution with k1 =1.5 and k2 =0.5 for e=0.2 (dashed curves) and e=0.01
(solid curves).

For e€>e¢., the lowest energy solution is a splay solution with a vanishing bend
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component w(r). For € <e. a spiral solution has the lower energy, as shown in the right
figure of Figure 5.3. The components of the spiral solution are shown in Figure 5.4 for
two values of € <e.. Near the bifurcation point the magnitude of the bend component
w(r) is small, but with decreasing e the bend component steadily increases in magnitude
and exhibits a boundary layer structure near »=0. The value of the bifurcation point
€. varies strongly with ki and ks, and as k; tends to one while keeping ko =2 — kq,
the bifurcation point €, tends to zero and the spiral solution gives way to the splay
solution. Analogous results are obtained for the case k =k, with the roles of the bend
and splay components reversed. We note that the spiral solution shown in Figure 5.1(b)
is not unique: Equation (5.5) is invariant under a sign change in w(r), which changes
the orientation of the spiral pattern in Figure 5.1(b) from counterclockwise to clockwise.
Similarly, the spiral solution shown in Figure 5.2(a) is also not unique: Equation (5.4) is
invariant under a sign change in v(r), which converts the outward spiral in Figure 5.2(a)
to an inward spiral.

g= ﬁ:z‘ kl :kgil kl :05,k2:15 k1:1.5,k2 =0.5
a=0 11.5812 6.3326 14.8444
a=0.5 11.1397 6.1115 14.2427
a=2(1+i) | 11.1397 6.1115 14.2427
a=0.5i 11.1397 6.1115 14.2427
a=0.7 10.5803 5.8295 13.6071
a=52(1+1) | 10.5803 5.8295 13.6071
a=0.7i 10.5803 5.8295 13.6071

Table 5.1: Energy of minimizer for various boundary conditions, with e=0.1.

5.1.2. Energies. Table 5.1 compares the computed energy values J.(u) for degree
one solutions with various boundary conditions and values of k1 and ks. The points
a=0.5, v2(1+i)/4, and 0.5i lie on the circle of radius 0.5 and the points a=0.7,
7v/2(1+1)/20, and 0.7i lie on the circle of radius 0.7. Table 5.1 suggests that for distinct
boundary functions ¢; = (z—ay)/|x —a1| and go = (x —ag)/|z —as| with |a;|=]asz| the
energy may be the same; this can be verified analytically. Indeed, since a; =aas with
|| =1, we can express g1 as g1(x) =aga(y), where y=ax, giving |y|=1. Take u; to
be a minimizer to the functional (1.3), with u1|op, = g1, and us to be a minimizer to
(1.3), with us|gp, = g2. Denote 41 (x) =u; (ax) and G (x) = aus(@x). Then 41|op, = g2
and Uz|pp, =¢g1. Using a comparison argument and direct calculations, we have that
Je(ur) = Jc(u2) as indicated in Table 5.1.

Figure 5.5 shows the energy decay curves given the boundary condition g=e*(?+7/2)
and initial conditions ug =e"™/2x/(|z|+0.1). In the case k= ks, where the bend consant
is the minimal constant, the initial condition was fairly close to the minimal configura-
tion and the vector field remained tangential. As seen in Figure 5.5(b) the energy rapidly
decayed and remained fairly constant with further changes of magnitude less than 10~%
after t=1 (time step 10 with 6¢t=0.1). In the case k=k;, where the splay constant is
minimal, we see from Figure 5.5(a) that there are two drops in the energy. This first
drop follows the behavior in (b), where the tangential vector field matches the bound-
ary conditions and initially remains in this state, starting at t=0.4 (times step 4 with
0t=0.1). However since kj < ks, the vector field has minimal energy when it is radial
near the singularity and the field begins to transform to satisfy this property, occurring
at t=60.5 (time step 605 with dt=0.1), with further changes of magnitude less than
10~* following ¢ = 84.8 (time step 848 with t =0.1). When g=e¢" and uo=x/(|z|+0.1),
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(a) k1 <ka and g= et(0+7/2) (b) ko <k1 and g:ei(0+7r/2)

Fig. 5.5: Energy decay curves for the degree one singularity case. The insets show the short time
behavior.
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(a) Orientation of field for k=ki, (b) Orientation of field for k=ka,
with Je(u) =14.346. with Je(u) =14.346.

Fig. 5.6: The vector field of the solution with boundary data g:ezi(e) and e=0.1. Contours corre-
spond to the norm of the vector field.

the energy decay curve when ky < ko exhibits similar behavior as in Figure 5.5(b) and
when ko < kj exhibits similar behavior as in Figure 5.5(a), however becoming radial
when ky < ks and tangential near the singularity when ko <k;.

5.2. Degree two. We use the boundary conditions g=e%? with various initial
conditions of the form
(x—ap)(z—bg)
(0.1+ ]z —ap|)(0.14 |z —bg|)

Uog =

(5.6)

for ag,bp € B1(0). From [5], in conjunction with [4], even though the boundary data
has a singularity of degree 2, there will be two points a;,a; € B1(0), with a; #a;, that
will be the singularities for the limiting solution uw*. Figure 5.6 shows the minimizer
to the functional (1.3) for the cases k1 <ky and ko <ki. In both cases, even though
the boundary condition has a degree two singularity, the minimizer has two vortices of
degree 1, both either having a splay pattern or a bend pattern. Also in both cases, using
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initial conditions (5.6) for various ag,bg, the simulation tends to the equilibria depicted
in Figure 5.6; these solutions appear to be the unique minimizers. The singularities
apparently lie symmetrically about the origin: for k1 < ke both lie on the real axis, and
for ko < ki both lie on the imaginary axis. Both solutions are regular at the origin,
and have the same energy, J.(u)=14.346; in contrast, for k1 =ko=1 the energy is
Je(u) =22.665, with the singularities in this case being unique up to rotation in addition
to being symmetric about the origin [8].

5.2.1. Spectral accuracy. We tested the spectral accuracy of the scheme in
space by increasing the mesh size by various factors. We looked at the case ky < ko,
g=¢%" and radial grid sizes N =4,6,8,12,16,24,32,64 and 96. For each N, the angular
grid sizes were M =2N. The solution calculated using the largest mesh size, with
N =096, is treated as the “exact” solution and is denoted by u.,. We used the fo-
norm to calculate the error. Figure 5.7 plots ||uapp — Uez||2, Where wqp, is the solution
calculated using the various mesh sizes N as a fuction of N annd the u,, is the solution
using a time step of §t=0.5 and N=96. After N =12, the linear-log plot exhibits a
linear behavior with a negative slope, which is indicative of spectral convergence of the
solution. Our calculations throughout the paper uses a grid size of N =16,M =32, and
0t=0.1, which for this example gave an error of 0.0611.
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10712

10-14
0 20 40 60 80 100

N

Fig. 5.7: linear-log plot of the error as a function of the number of radial grid points.

5.3. Degree three. We next let g=¢3?, with various initial conditions of the
form

_ (z—ap)(x—bo)(x—cp)
(0.1+4]z—ao])(0.14]z —bo|)(0.1+ |z —co|)

Ug (5.7)
In the minimum energy solution the vortices in the resulting steady-state vector field
formed a triangular pattern, as depicted in Figure 5.8. The solutions are regular at the
origin. The location of the vortices seems to be unique up to a rotation of 7 /2, resulting
in four-fold degeneracy. In contrast, for the case ki = ko the configuration consist of an
equilateral triangle of vortices centered at the origin that is unique up to an arbitrary
rotation [8].

An alternate solution, having four vortices with degree +1, with a vortex at the
origin with degree —1. as depicted in Figure 5.9. Here the initial conditions have the
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Orientation of vector field u Orientation of vector field u
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(a) Orientation of field for k=k (b) Orientation of field for k=ka
with Je(u)=23.277. with Je(u)=23.277.

Fig. 5.8: The vector field of the solution with boundary data g=e30 and e=0.1. Contours corre-
spond to the norm of the vector field.
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(a) Orientation of field for k=k, (b) Orientation of field for k=ka,
with Je(u)=24.146. with Je(u) =24.146.

Fig. 5.9: The vector field of another solution with boundary data g=e39 and e=0.1. Contours
correspond to the norm of the vector field.
form

j(%—ao)(l‘—f'ao)(x—bo)(ﬂ?—Fbo)
(0142 —ao])(0-1+ [z +-ao) (0.1 e —bo]) (0. 1+ + bo])”

up = (5.8)

where ¥ denotes the complex conjugate of x, regarded as a complex variable. The
energy for the vector fields in Figure 5.9 is calculated as J.(u)=24.146 in both cases,
whereas the energy for the vector fields in Figure 5.8 is calculated to J.(u)=23.277 in
both cases. The former solutions appear to be metastable, that is, dynamically stable to
small perturbations, and are non-degenerate. This higher energy configuration persists
through our run time of T'=200. As a further check the run was continued to T'=400
with no observed further changes, suggesting that this is a local minimizer to the energy.

Another alternate solution, having three vortices with degree +1, including a vortex
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(a) Orientation of field for k=ki, (b) Orientation of field for k=ka,
with Je(u) = 25.910. with Je(u) = 25.910.

Fig. 5.10: The vector field of another solution with boundary data g=e3® and ¢=0.1. Contours
correspond to the norm of the vector field.

at the origin, is depicted in Figure 5.10. Here the initial conditions have the form

_ x(x—ap)(z+aog)
(0.1+]2)(0.14 |z —ao|)(0.1+ [z +ao|)"

Uo

(5.9)

Orientation of vector field u Origntation of vector field u
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(a) Orientation of field for k=k, (b) Orientation of field for k=ko,
with Je(u) =25.901. with Je(u)=25.901.

Fig. 5.11: The vector field of a solution with boundary data g = e*(®) gnd e=0.1. Contours correspond
to the norm of the vector field.

The energy for the vector fields in Figure 5.10 is calculated as J.(u)=25.901 in
both cases. The location of the vortices seems to be unique up to a rotation of 7/2,
resulting in two-fold degeneracy. This solution has two sets of symmetry planes, and
appears to be unstable to a symmetry-breaking perturbation that displaces the vortex
at the origin in a direction normal to the plane containing the three vortices. Indeed,
at some time step between 1500 and 2000, the vector field begins to revert to a field
that is similar to the ones in Figure 5.8. In the case of Figure 5.10(a), the vortex at the
origin is shifted down along the y-axis, while the other two vortices are rotated towards
the positive y-axis.
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Orientation of vector field u Orientation of vector field u
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(a) Orientation of field for k=ki, (b) Orientation of field for k=ka,
with Je(u)=30.475. with Je(u)=30.475.

Fig. 5.12: The vector field of another solution with boundary data g=e*®) and e=0.1. Contours
correspond to the norm of the vector field.

5.4. Degree four. A solution with boundary data g=e**’ is shown in Fig-
ure 5.11. In Figure 5.11(a) for k=Fk; there are horizontal and vertical planes of sym-
metry, with two degree 1 vortices representing “sources” (with “outflow”) on the left
side, and two degree 1 vortices representing “sinks” (with “inflow”) on the right side.
The solution shown in Figure 5.11(b) for k= ko has the same energy, but is rotated by
/6 relative to Figure 5.11(a). The location of the vortices seems to be unique up to a
rotation of 7/3 in each case, resulting in three-fold degeneracy.

Another solution with d=4 with four degree 1 vortices is shown in Figure 5.12. In
contrast to Figure 5.11, the solution in Figure 5.12(a) for k=k; has only a horizontal
plane of symmetry, with two degree 1 vortices on the horizontal axis representing a
sink on the left side, and one representing a source on the right. Above and below
the axis, on the right hand side, are two more degree 1 vortices that are both sinks.
This solution has an energy J.(u)=30.475 which exceeds that of the minimum energy
solution, J.(u)=25.901. Again the solution shown in Figure 5.12(b) for k= ko has the
same energy, but is rotated by /2 relative to Figure 5.12(a). The location of the
vortices again seems to be unique up to a rotation of /3 in each case, resulting in
three-fold degeneracy.

5.5. Degree five. Minimal energy solutions for d=5 are shown in Figure 5.13.
The solution in Figure 5.13(a) for k=Fk; has a horizontal symmetry plane containing
one vortex; the solution is regular at the origin. Above and below the symmetry plane
are two pairs of vorticies, each pair consisting of an outflow and an inflow vortex. Vortex
locations that are rotated by 7/4 are also solutions, resulting in an eight-fold degeneracy.
The solution in Figure 5.13(b) for k= ko is similar but rotated by 7/6. There are also
higher energy d=1>5 solutions that are analogous to those found for d=3 in Figures 5.9
and 5.10; that is, solutions with 6 vortices of degree 1 near the boundary and one vortex
of degree —1 at the origin, as shown in Figure 5.14(a), and solutions with 4 vortices
of degree 1 near the boundary and one vortex of degree 1 at the origin, as shown in
Figure 5.14(b). The former solution appears to be linearly unstable, and requires the
imposition of symmetry planes to obtain convergence. The perturbation shifts the —1
vortex at the origin along the positive y-axis, combining with the 41 degree vortex on
that particular axis.
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(a) Orientation of field for k=ki, (b) Orientation of field for k=ka,
with Je(u)=36.279. with Je(u)=36.279.

Fig. 5.13: The vector field of a solution with boundary data g = P and e=0.1. Contours correspond
to the norm of the vector field.

Orientation of vector field u Orientation of vector fleld u

(a) Orientation of field for k=ki, (b) Orientation of field for k=ka,
with Je(u)=42.441. with Je(u)=42.441.

Fig. 5.14: The wvector field of other solutions with boundary data g=¢e59) and ¢=0.1. Contours
correspond to the norm of the vector field.

5.6. Higher Degrees with d>0. When comparing higher degrees we used
boundary data g=e*. In general this boundary data lead to lowest energy solutions
that display d vortices that are degenerate with high degrees of symmetry; in additional,
there are often additional solutions with d or more vortices having only a small difference
in energy from the minimum. In contrast, for the case k1 =ky the minimum energy
solutions have vortices that form regular polygons, and the solutions are unique up to
arbitrary rotations about the origin.

5.7. Degree negative one. = We next consider degree d=—1 solutions with
boundary data g=e~" as shown in Figure 5.15. These solutions for kj #ko appear
to be non-degenerate. Their structure is more complicated than that exhibited by the
d=1 solutions: for example, the amplitude of the vector field displays shallow interior
maxima with four-fold symmetry for d=—1 that do not occur for d=1. On the other
hand, in each case the direction of the vector field is to a good approximation the same
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Orientation of vector field u Orientation of vector field u

-1

(a) Orientation of field for k=ki, (b) Orientation of field for k=ka,
with Je(u)=5.012. with Je(u)=>5.012.

Fig. 5.15: The vector field of other solutions with boundary data g=e~*? and e=0.1. Contours
correspond to the norm of the vector field.

as the complex conjugate of the corresponding vector field for d=1. Also in contrast
to the case for d=1, for d=—1 we have not observed any bifurcations of the solutions
with changes in e. The local behavior of the vector field near the origin is saddle-like
for both k=Fk; and k=ky, whereas the locations of the interior maxima differ by /4
rotations in these cases. Both solutions have the same energy, J.(u)=>5.012.
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(a) Orientation of field for k=ki, (b) Orientation of field for k1=ka,
with Je(u)=9.518. with Je(u)=9.518.

Fig. 5.16: The vector field of a solution with boundary data g:e’%(g) and e=0.1. Contours corre-
spond to the norm of the vector field.

5.8. Degree negative two. Lowest energy solutions of degree d=—2 with
boundary data g=e~%" are shown in Figure 5.16. These solutions for each k; # ko
show a three-fold degeneracy. For k=ks a solution with two d=—1 vortices located
at symmetrical positions on the z-axis is shown in Figure 5.16(b); there are also two
other solutions where the vortices are rotated by +120 degees relative to this solution,
with J.(u)=9.513. A stable solution, with two —1 degree vortices on the y-axis, ex-
ists with Jc(u)=10.001. The solution in Figure 5.16(a) for k=4k; behaves similarly,
with vortex locations that are rotated by 90 degrees relative to the k=ky solutions.
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Orientation of vector field u Orientation of vector field u

(a) Orientation of field for k=k, (b) Orientation of field for k=ko,
with Je(u) =13.370. with Je(u) =13.370.

Fig. 5.17: The vector field of a solution with boundary data g:e’%(g) and e=0.1. Contours corre-
spond to the norm of the vector field.

A stable solution, with two —1 degree vortices on the z-axis and J.(u)=10.001, exists
as well in this case. All such solutions corresponding to Figure 5.16 have the same
energy, J.(u)=9.518. In Figure 5.17 we show higher energy d= —2 solutions with the
same boundary data g=e 2" but consisting of three d=—1 vortices surrounding a
d=1 vortex at the origin. For Figure 5.17(a) with k =k, the three d=—1 vortices look
equidistant from the origin and one is located on the negative z-axis; the d=1 vortex
at the origin has an outward splay pattern. This solution is two-fold degenerate, with
another equal energy solution having a vortex on the positive z-axis with an inward
splay pattern at the origin. In Figure 5.17(b) for k= ko there is a d=—1 vortex on the
positive y-axis with a d=1 vortex at the orgin with a counter-clockwise bend pattern.
The other equal energy solution has a vortex on the negative y-axis with a clockwide
bend pattern at the origin. These solutions all have an energy J.(u)=13.370. These
solutions are numerically unstable to a symmetry-breaking perturbation.

6. Concluding remarks

In this paper, we developed a numerical scheme to calculate the equilibrium configu-
rations of planar Ginzburg-Landau equation which is the Euler-Lagrange equation of an
energy functional for vector fields, and used it to perform various numerous simulations,
which lead to some previous known results as well as some new phenomena.

Our stability analysis shows that our semi-implicit scheme, using a stabilizing term,
is unconditionally energy stable. Hence for long times the energy will stabilize to a
minimum value given by the energy functional evaluated at the equilibria. We also
derived an error estimate in polar geometry. The stability results and error estimates
are based on a weak formulation of the Euler-Lagrange equations.

The numerical results from the simulations closely follow results proven analytically
in literature and some results found experimentally. When k; < ko, meaning the splay
constant is less than the bend constant in terms of ferroelectric liquid crystals, the vector
field has an asymptotic splay pattern near each vortex in the domain. When ks <k
the vector field has an asymptotic bend pattern near each vortex instead. In the case
where k1 < ko with the vector field being tangential to the boundary, we obtain a simple
spiral, remaining tangential at the boundary and radial near the vortex. This follows
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what has been observed experimentally.

In the degree two case, with g=e?", the singularities follow the same manner as
in the degree one case, with the added effect that when ki <ko, both singularities
seem to lie on the real axis symmetrically about the origin. If ke <k;, they lie on
the imaginary axis. These results are independent of initial conditions. This seems to
suggest uniqueness of the vortices locations in B;(0). In the case k; =ko, when the
degree of the boundary data is two, the minimum configuration of the renormalized
energy is unique (up to a rotation) and consists of two points which are symmetric with
respect to the origin [8]. In the case k; = ko, the renormalized expression only depends
on the boundary data [4], which leads to an explicit expression when the domain is
the unit disk [8]. In our case, the renormalized energy is not only dependent on the
boundary data, but also the vector field in the domain. The simulations suggest a
stronger statement on the uniqueness of the vortices when the degree of the boundary
data is two, which needs to be investigated analytically.

In the degree three case, with g=e3", the vortex configuration seems is in the form
of a triangle, with the origin in the triangle, for both &y < ks and ko < k1. This generalizes
the case k1 = ks, in which the configuration consists of an equilateral triangle centered
at the origin [8]. An alternate solution is possible, given particular initial values for
ug, with four vortices that include a degree —1 vortex at the origin. This configuration
has a higher energy value than the other cases, and so represents a local minimizer
and not a global minimizer. There were also apparently unstable configurations in
which the initial equilibrium reverts to a minimum energy orientation after long enough
computation times.

As we increased the value of d, we see that the vortices move closer to dB;. This
would require studying the effect of x4 =min{|a;|;1<i<d}, where a; are the vortices,
as d—o00. Based on our results, we would expect that limg_,.oxqy=1. This question
was posed by [8] for the case ky =ks. We also noticed that an increase in the value
of d can lead to the existence of not only steady-state solutions, but also meta-stable
and unstable solutions, where the meta-stable solutions remained in that orientation
for the entire simulation run, and the unstable orientations eventually revert to a stable
steady-state solution after a long enough time, which may depend on the number of
vortices in the domain.

Although the paper’s main focus is on the case for positive degree boundary data, we
also ran simulations for boundary degrees d=—1 and d = —2, to examine any qualitative
differences between positive and negative degree cases with the same value of |d|. In
both instances, the negative degree case has a lower energy than the positive degree
case, while the modulus of the field has a more complicated structure for d=—1 than
for d=1.

We also considered letting € decrease from e=0.1. When € =0.05, we generally ob-
tain similar results with the same number of radial points and angular points. However,
when e=0.01, the matrices become too stiff and give inaccurate results. Increasing the
number of radial points to 27 and angular points to 2% leads to excessive execution
times, and further computations were not pursued. To study the effect of decreasing e,
alternative methods will need to be employed.

In conclusion, we have obtained new computational results that complement previ-
ously published experimental and theoretical findings, and raised some new questions
based on the simulation results. These questions could be answered by studying the
renormalized energy for the energy functional (1.3).
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